
Types for Positive and Negative Ints
Int = { ... , -2, -1, 0, 1, 2, ... }
Pos = { 1, 2, ... } (not including zero)

Neg = { ..., -2, -1 } (not including zero)

Pos <: Int

Neg <: Int
Pos Int

Neg Int

(y not zero)

(x/y well defined)

types: sets:

More Rules

More rules for division?

Making Rules Useful

• Let x be a variable

var x : Int

var y : Int

if (y > 0) {

 if (x > 0) {

 var z : Pos = x * y

 res = 10 / z

} } type system proves: no division by zero

Subtyping Example

def f(x:Int) : Pos = {

 if (x < 0) –x else x+1

}

var p : Pos

var q : Int

q = f(p)

Pos <: Int

 f: Int Pos

Does this statement type check?

Using Subtyping

def f(x:Pos) : Pos = {

 if (x < 0) –x else x+1

}

var p : Int

var q : Int

q = f(p)

 - does not type check

Pos <: Int

 f: Pos Pos

What Pos/Neg Types Can Do

def multiplyFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) {

 (p1*q1, q1*q2)

}

def addFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) {

 (p1*q2 + p2*q1, q1*q2)

}

def printApproxValue(p : Int, q : Pos) = {

 print(p/q) // no division by zero

}

More sophisticated types can track intervals of numbers and ensure
that a program does not crash with an array out of bounds error.

Subtyping and Product Types

Using Subtyping

def f(x:Pos) : Pos = {

 if (x < 0) –x else x+1

}

var p : Int

var q : Int

q = f(p)

 - does not type check

Pos <: Int

 f: Pos Pos

Subtyping for Products

T1 <: T2 implies for all e:

So, we might as well add:

covariant subtyping for pair types

denoted (T1, T2) or Pair[T1, T2]

Type for

a tuple:

Analogy with Cartesian Product

A x B = { (a, b) | a A, b B}

Subtyping and Function Types

Subtyping for Function Types

Consequence:

contravariance covariance

T1 <: T2 implies for all e:

Function [T1, T2]

contra- co-

as if |- m: T'1 x … x Tn’ T’

(())

To get the appropriate behavior we need to
assign sets to function types like this:

T1 T2 = { f| x. (x T1 f(x) T2)}

We can prove

Function Space as Set

contravariance because

x T1 is left of implication

Proof T1 T2 = { f | x. (x T1 f(x) T2)}

Subtyping for Classes

• Class C contains a collection of methods

• We view field var f: T as two methods

– getF(this:C): T C T

– setF(this:C, x:T): void C x T void

• For val f: T (immutable): we have only getF

• Class has all functionality of a pair of method

• We must require (at least) that methods
named the same are subtypes

• If type T is generic, it must be invariant

– as for mutable arrays

Example

class C {

 def m(x : T1) : T2 = {...}

}

class D extends C {

 override def m(x : T’1) : T’2 = {...}

}

D <: C so need to have (T'1 T'2) <: (T1 T2)

Therefore, we need to have:

T’2 <: T2 (result behaves like class)

T1 <: T’1 (argument behaves opposite)

Soundness of Types

ensuring that a type system
is not broken

Example: Tootool 0.1 Language

Tootool is a rural community in the central east part of the Riverina

[New South Wales, Australia]. It is situated by road, about 4 kilometres east

from French Park and 16 kilometres west from The Rock.

Tootool Post Office opened on 1 August 1901 and closed in 1966. [Wikipedia]

Type System for Tootool 0.1

Pos <: Int
Neg <: Int

 does it type check?
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

Runtime error: intSqrt invoked
with a negative argument!

unsound

 = {(p, Pos), (q, Neg), (r, Pos),

(intSqrt, Pos Pos)}

assignment

subtyping

What went wrong in Tootool 0.1 ?

Pos <: Int
Neg <: Int

 does it type check? – yes
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

assignment

subtyping

= {(p, Pos), (q, Neg), (r, Pos),

(intSqrt, Pos Pos)}

x must be able to store any

value from T

e can have any value from T

Cannot use |- e:T to mean “x promises it can store any e T”

Runtime error: intSqrt invoked
with a negative argument!

Recall Our Type Derivation

Pos <: Int
Neg <: Int

 does it type check? – yes
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

assignment

subtyping

¡ = {(p, Pos), (q, Neg), (r, Pos),

(intSqrt, Pos Pos)}

Values from p are

integers. But p

did not promise

to store all kinds

of integers/ Only

positive ones!

Runtime error: intSqrt invoked
with a negative argument!

Corrected Type Rule for Assignment

Pos <: Int
Neg <: Int

 does it type check? – yes
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

assignment

subtyping

¡ = {(p, Pos), (q, Neg), (r, Pos),

(intSqrt, Pos Pos)}

x must be able to store any

value from T

e can have any value from T

 stores declarations (promises)

does not type check

How could we ensure that some
other programs will not break?

Type System Soundness

Proving Soundness of Type Systems

• Goal of a sound type system:

– if the program type checks, then it never “crashes”

– crash = some precisely specified bad behavior

 e.g. invoking an operation with a wrong type

• dividing one string by another string “cat” / “frog

• trying to multiply a Window object by a File object

 e.g. not dividing an integer by zero

• Never crashes: no matter how long it executes

– proof is done by induction on program execution

Proving Soundness by Induction

• Program moves from state to state

• Bad state = state where program is about to exhibit a bad
operation (“cat” / “frog”)

• Good state = state that is not bad

• To prove:
 program type checks states in all executions are good

• Usually need a stronger inductive hypothesis;
some notion of very good (VG) state such that:
 program type checks program’s initial state is very good
 state is very good next state is also very good
 state is very good state is good (not about to crash)

VG VG VG VG VG VG

VG

VG

VG

VG

VG

Good

VG

A Simple Programming Language

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = 1
 z = 1

position in source

Initially, all variables

have value 1

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 3
 y = 1
 z = 1

position in source

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 3
 y = -5
 z = 1

position in source

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 3
 y = -5
 z = 4 position in source

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 7
 y = -5
 z = 4

position in source

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 7
 y = 1
 z = 4

position in source

formal description of such program execution
is called operational semantics

Operational semantics

Operational semantics gives meaning to programs by describing
how the program state changes as a sequence of steps.

• big-step semantics: consider the effect of entire blocks

• small-step semantics: consider individual steps (e.g. z = x + y)

 V: set of variables in the program

 pc: integer variable denoting the program counter

 g: V Int function giving the values of program variables

 (g, pc) program state

Then, for each possible statement in the program we define how it
changes the program state.

Example: z = x+y

(g, pc) (g’, pc + 1) s. t. g’ = g[z := g(x)+g(y)]

Type Rules of Simple Language

var x1 : Pos
var x2 : Int
...
var xn : Pos

xi = xj
xp = xq + xr

xa = xb / xc

...
xp = xq + xr

Programs:
Type rules:
 = { (x1, Pos),
 (x2, Int),
 …
 (xn, Pos)}
Pos <: Int

variable declarations

 var x: Pos (strictly positive)

or

 var x: Int

followed by

statements of one of the forms
1) xi=k
2) xi = xj

3) xi = xj / xk

4) xi = xj + xk

(No complex expressions)

Bad State: About to Divide by Zero
(Crash)

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 0

Definition: state is bad if the next instruction is of the form
 xi = xj / xk and xk has value 0 in the current state.

position in source

Good State: Not (Yet) About to Divide by Zero

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 1

Definition: state is good if it is not bad.

Good

Definition: state is bad if the next instruction is of the form
 xi = xj / xk and xk has value 0 in the current state.

position in source

Good State: Not (Yet) About to Divide by Zero

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 0

Definition: state is good if it is not bad.

Good

Definition: state is bad if the next instruction is of the form
 xi = xj / xk and xk has value 0 in the current state.

position in source

Moved from Good to Bad in One Step!

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 0

Bad

Definition: state is good if it is not bad.

Being good is not preserved by one step, not inductive!
It is very local property, does not take future into account.

Definition: state is bad if the next instruction is of the form
 xi = xj / xk and xk has value 0 in the current state.

position in source

Being Very Good: A Stronger Inductive Property

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 0

Definition: state is good if it is not about to divide by zero.

Definition: state is very good if each variable belongs to the
domain determined by its type (if z:Pos, then z is strictly positive).

This state is already not very good.
We took future into account.

Pos = { 1, 2, 3, ... }

position in source
∉ Pos

If you are a little typed program,
what will your parents teach you?

If you type check and succeed:

– you will be very good from the start

– if you are very good, then you will remain
very good in the next step

– If you are very good, you will not crash

Hence, please type check, and you will never crash!

Soundnes proof = defining “very good” and
checking the properties above.

Definition of Simple Language

var x1 : Pos
var x2 : Int
...
var xn : Pos

xi = xj
xp = xq + xr

xa = xb / xc

...
xp = xq + xr

Programs:
Type rules:
 = { (x1, Pos),
 (x2, Int),
 …
 (xn, Pos)}
Pos <: int

variable declarations

 var x: Pos

or

 var x: Int

followed by

statements of one of the forms
1) xi=k
2) xi = xj

3) xi = xj / xk

4) xi = xj + xk

(No complex expressions)

Checking Properties in Our Case

Definition: state is very good if each variable belongs to the
domain determined by its type (if z:Pos, then z is strictly positive).

Holds: in initial state, variables are =1

• If you type check and succeed:

– you will be very good from the start.

– if you are very good, then you will remain
very good in the next step

– If you are very good, you will not crash.

If next state is x / z, type rule ensures z has type Pos
Because state is very good, it means z Pos
so z is not 0, and there will be no crash.

1 Pos

1 Int

Example Case 1

var x : Pos
var y : Pos
var z : Pos
y = 3
z = 2
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = 3
 z = 2

the next statement is: z=x+y
where x,y,z are declared Pos.

Goal: prove that again each variable belongs to its type.
• variables other than z did not change, so belong to their type
• z is sum of two positive values, so it will have positive value

Assume each variable belongs to its type.

position in source

Example Case 2

var x : Pos
var y : Int
var z : Pos
y = -5
z = 2
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -5
 z = 2

the next statement is: z=x+y
where x,z declared Pos, y declared Int

Goal: prove that again each variable belongs to its type.
this case is impossible, because z=x+y would not type check

How do we know it could not type check?

Assume each variable belongs to its type.

position in source

Must Carefully Check Our Type Rules

var x : Pos
var y : Int
var z : Pos
y = -5
z = 2
z = x + y
x = x + z
y = x / z
z = z + x

Conclude that the only
types we can derive are:
 x : Pos, x : Int
 y : Int
 x + y : Int

Cannot type check
 z = x + y in this environment.

Type rules:
 = { (x1, Pos),
 (x2, Int),
 …
 (xn, Pos)}
Pos <: int

We would need to check all cases
(there are many, but they are easy)

Back to the start

Does the proof still work?

If not, where does it break?

Remark

• We used in examples Pos <: Int

• Same examples work if we have

class Int { ... }
class Pos extends Int { ... }

and is therefore relevant for OO languages

What if we want more complex types?
class A { }

class B extends A {

 void foo() { }

}

class Test {

 public static void main(String[] args) {

 B[] b = new B[5];

 A[] a;

 a = b;

 System.out.println("Hello,");

 a[0] = new A();

 System.out.println("world!");

 b[0].foo();

 }

}

• Should it type check?

• Does this type check in Java?

• can you run it?

• Does this type check in Scala?

What if we want more complex types?

Suppose we add to our language a reference type:

 class Ref[T](var content : T)

var x1 : Pos
var x2 : Int
var x3 : Ref[Int]
var x4 : Ref[Pos]

x = y
x = y + z

x = y / z
x = y + z.content
x.content = y
…

Programs:
Exercise 1:

Extend the type rules to use with

Ref[T] types.

Show your new type system is

sound.

Exercise 2:

Can we use the subtyping rule?

If not, where does the proof break?

Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

type checks

Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

1

-1

Ref[Pos]

Ref[Int]

x

y

Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

1

-1

Ref[Pos]

Ref[Int]

x

y

Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

0

-1

Ref[Pos]

Ref[Int]

x

y

CRASHES

Analogously

class Ref[T](var content : T)

Can we use the converse subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
x = y
y.content = 0
z = z / x.content

1

0

Ref[Pos]

Ref[Int]

x

y

CRASHES

Mutable Classes do not
Preserve Subtyping

class Ref[T](var content : T)

Even if T <: T’,

Ref[T] and Ref[T’] are unrelated types

var x : Ref[T]
var y : Ref[T’]
...
x = y
...

type checks only if T=T’

Same Holds for Arrays, Vectors,
all mutable containers

var x : Array[Pos](1)
var y : Array[Int](1)
var z : Int
x[0] = 1
y[0] = -1
y = x
y[0] = 0
z = z / x[0]

Even if T <: T’,

Array[T] and Array[T’] are unrelated types

Case in Soundness Proof Attempt

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

prove each variable belongs to its type:
variables other than y did not change.. (?!)

1

-1

Ref[Pos]

Ref[Int]

x

y

Mutable vs Immutable Containers

• Immutable container, Coll[T]
– has methods of form e.g. get(x:A) : T
– if T <: T’, then Coll[T’] has get(x:A) : T’
– we have (A T) <: (A T’)

covariant rule for functions, so Coll[T] <: Coll[T’]

• Write-only data structure have
– setter-like methods, set(v:T) : B
– if T <: T’, then Container[T’] has set(v:T) : B
– would need (T B) <: (T’ B)

contravariance for arguments, so Coll[T’] <: Coll[T]

• Read-Write data structure need both,
so they are invariant, no subtype on Coll if T <: T’

