
Types for Positive and Negative Ints 
Int = { ... , -2, -1, 0, 1, 2, ... } 
Pos = { 1, 2, ... }      (not including zero) 

Neg = { ..., -2, -1 }   (not including zero) 

 

Pos <: Int 

Neg <: Int 
Pos  Int 

Neg  Int 

(y not zero) 

(x/y well defined) 

types: sets: 



More Rules 

More rules for division? 



Making Rules Useful 

• Let x be a variable 

var x : Int 

var y : Int 

if (y > 0) { 

  if (x > 0) { 

    var z : Pos = x * y 

    res = 10 / z 

} } type system proves: no division by zero 



Subtyping Example 

def f(x:Int) : Pos = {  

  if (x < 0) –x else x+1 

} 

 

var p : Pos 

var q : Int 

 

q = f(p) 

Pos <: Int 

 

       f: Int  Pos 

Does this statement type check? 



Using Subtyping 

def f(x:Pos) : Pos = {  

  if (x < 0) –x else x+1 

} 

 

var p : Int 

var q : Int 

 

q = f(p) 

 - does not type check 

Pos <: Int 

 

       f: Pos  Pos 



What Pos/Neg Types Can Do 

def multiplyFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) { 

  (p1*q1, q1*q2) 

} 

def addFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) { 

  (p1*q2 + p2*q1, q1*q2) 

} 

def printApproxValue(p : Int, q : Pos) = { 

  print(p/q)   // no division by zero 

} 

 

More sophisticated types can track intervals of numbers and ensure 
that a program does not crash with an array out of bounds error.  



Subtyping and Product Types 



Using Subtyping 

def f(x:Pos) : Pos = {  

  if (x < 0) –x else x+1 

} 

 

var p : Int 

var q : Int 

 

q = f(p) 

 - does not type check 

Pos <: Int 

 

    f: Pos  Pos 



Subtyping for Products 

T1 <: T2  implies for all e:  

So, we might as well add: 

covariant subtyping for pair types 

denoted (T1, T2) or Pair[T1, T2] 

Type for 

a tuple: 



Analogy with Cartesian Product 

A x B = { (a, b) | a  A, b  B} 



Subtyping and Function Types 



Subtyping for Function Types 

Consequence: 

contravariance covariance 

T1 <: T2  implies for all e:  

Function [T1, T2] 

contra- co- 

as if   |- m:  T'1 x … x Tn’   T’ 

( ( ) ) 



To get the appropriate behavior we need to 
assign sets to function types like this: 

 

T1  T2 = { f|  x. (x  T1  f(x)  T2)} 

 

 

We can prove 

Function Space as Set 

contravariance because 

x  T1 is left of implication 



Proof T1  T2 = { f |  x. (x  T1  f(x)  T2)} 



Subtyping for Classes 

• Class C contains a collection of methods 

• We view field var f: T as two methods 

– getF(this:C): T                   C  T 

– setF(this:C, x:T): void      C x T  void 

• For val f: T (immutable): we have only getF 

• Class has all functionality of a pair of method 

• We must require (at least) that methods 
named the same are subtypes 

• If type T is generic, it must be invariant 

– as for mutable arrays 



Example  

class C { 

  def m(x : T1) : T2 = {...} 

} 

class D extends C { 

  override def m(x : T’1) : T’2  = {...} 

} 

 

D <: C    so need to have  (T'1  T'2) <: (T1  T2) 

Therefore, we need to have: 

T’2 <: T2  (result behaves like class) 

T1 <: T’1  (argument behaves opposite) 



Soundness of Types 
 

ensuring that a type system  
is not broken 



Example: Tootool 0.1 Language 

Tootool is a rural community in the central east part of the Riverina  

[New South Wales, Australia]. It is situated by road, about 4 kilometres east 

from French Park and 16 kilometres west from The Rock. 

Tootool Post Office opened on 1 August 1901 and closed in 1966.  [Wikipedia] 



Type System for Tootool 0.1 

Pos <: Int 
Neg <: Int 

      does it type check? 
def intSqrt(x:Pos) : Pos = { ...} 
var p : Pos 
var q : Neg 
var r : Pos 
q = -5 
p = q 
r = intSqrt(p) 

Runtime error: intSqrt invoked  
with a negative argument! 

unsound 

 = {(p, Pos), (q, Neg), (r, Pos), 

(intSqrt, Pos  Pos)} 

assignment 

subtyping 



What went wrong in Tootool 0.1 ? 

Pos <: Int 
Neg <: Int 

      does it type check? – yes 
def intSqrt(x:Pos) : Pos = { ...} 
var p : Pos 
var q : Neg 
var r : Pos 
q = -5 
p = q 
r = intSqrt(p) 

assignment 

subtyping 

= {(p, Pos), (q, Neg), (r, Pos), 

(intSqrt, Pos  Pos)} 

x must be able to store any 

value from T 

e can have any value from T 

Cannot use   |- e:T to mean “x promises it can store any e  T” 

Runtime error: intSqrt invoked  
with a negative argument! 



Recall Our Type Derivation 

Pos <: Int 
Neg <: Int 

      does it type check? – yes 
def intSqrt(x:Pos) : Pos = { ...} 
var p : Pos 
var q : Neg 
var r : Pos 
q = -5 
p = q 
r = intSqrt(p) 

assignment 

subtyping 

¡ = {(p, Pos), (q, Neg), (r, Pos), 

(intSqrt, Pos  Pos)} 

Values from p are 

integers. But p 

did not promise 

to store all kinds 

of integers/ Only 

positive ones! 

Runtime error: intSqrt invoked  
with a negative argument! 



Corrected Type Rule for Assignment 

Pos <: Int 
Neg <: Int 

      does it type check? – yes 
def intSqrt(x:Pos) : Pos = { ...} 
var p : Pos 
var q : Neg 
var r : Pos 
q = -5 
p = q 
r = intSqrt(p) 

assignment 

subtyping 

¡ = {(p, Pos), (q, Neg), (r, Pos), 

(intSqrt, Pos  Pos)} 

x must be able to store any 

value from T 

e can have any value from T 

   stores declarations (promises) 

does not type check 



How could we ensure that some 
other programs will not break? 

Type System Soundness 



Proving Soundness of Type Systems 

• Goal of a sound type system: 

– if the program type checks, then it never “crashes” 

– crash = some precisely specified bad behavior 

 e.g. invoking an operation with a wrong type 

• dividing one string by another string    “cat” / “frog 

• trying to multiply a Window object by a File object 

 e.g. not dividing an integer by zero 

• Never crashes: no matter how long it executes 

– proof is done by induction on program execution 



Proving Soundness by Induction 

• Program moves from state to state 

• Bad state = state where program is about to exhibit a bad 
operation ( “cat” / “frog” ) 

• Good state = state that is not bad 

• To prove: 
  program type checks  states in all executions are good 

• Usually need a stronger inductive hypothesis;  
some notion of very good (VG) state such that: 
  program type checks  program’s initial state is very good 
  state is very good  next state is also very good 
  state is very good  state is good (not about to crash) 

VG VG VG VG VG VG 

 

 
VG 

 

 
VG 

 

 
VG 

 

 
VG 

 

 
VG 

Good 

 

 
VG 



A Simple Programming Language 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = 1 
  z = 1 

position in source 

Initially, all variables 

have value 1 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 3 
  y = 1 
  z = 1 

position in source 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 3 
  y = -5 
  z = 1 

position in source 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 3 
  y = -5 
  z = 4 position in source 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 7 
  y = -5 
  z = 4 

position in source 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 7 
  y = 1 
  z = 4 

position in source 

formal description of such program execution 
is called operational semantics  



Operational semantics 

Operational semantics gives meaning to programs by describing 
how the program state changes as a sequence of steps. 

• big-step semantics: consider the effect of entire blocks 

• small-step semantics: consider individual steps (e.g. z = x + y) 

    V:   set of variables in the program 

    pc:   integer variable denoting the program counter 

    g: V  Int  function giving the values of program variables 

    (g, pc)  program state 

Then, for each possible statement in the program we define how it 
changes the program state. 

 

 

  

Example:    z = x+y 

     

(g, pc)  (g’, pc + 1)     s. t.   g’ = g[z := g(x)+g(y)] 



Type Rules of Simple Language 

var x1 : Pos 
var x2 : Int 
... 
var xn : Pos 
 
xi = xj 
xp = xq + xr 

xa = xb / xc 

... 
xp = xq + xr 

Programs: 
Type rules: 
 = { (x1, Pos), 
         (x2, Int),  
          … 
         (xn, Pos)} 
Pos <: Int 

variable declarations 

    var x: Pos (strictly positive) 

or  

    var x: Int 

followed by 

statements of one of the forms 
1) xi=k 
2) xi = xj 

3) xi = xj / xk 

4) xi = xj + xk 

 

(No complex expressions) 



Bad State: About to Divide by Zero 
(Crash) 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 0 

Definition: state is bad if the next instruction is of the form 
  xi = xj / xk   and xk has value 0 in the current state. 

position in source 



Good State: Not (Yet) About to Divide by Zero 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 1 

Definition: state is good if it is not bad. 

Good 

Definition: state is bad if the next instruction is of the form 
  xi = xj / xk   and xk has value 0 in the current state. 

position in source 



Good State: Not (Yet) About to Divide by Zero 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 0 

Definition: state is good if it is not bad. 

Good 

Definition: state is bad if the next instruction is of the form 
  xi = xj / xk   and xk has value 0 in the current state. 

position in source 



Moved from Good to Bad in One Step! 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 0 

Bad 

Definition: state is good if it is not bad. 

Being good is not preserved by one step, not inductive! 
It is very local property, does not take future into account. 

Definition: state is bad if the next instruction is of the form 
  xi = xj / xk   and xk has value 0 in the current state. 

position in source 



Being Very Good: A Stronger Inductive Property 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 0 

Definition: state is good if it is not about to divide by zero. 

Definition: state is very good if each variable belongs to the 
domain determined by its type (if z:Pos, then z is strictly positive). 

This state is already not very good. 
We took future into account. 

Pos = { 1, 2, 3, ... } 

position in source 
∉ Pos 



If you are a little typed program, 
what will your parents teach you? 

If you type check and succeed: 

– you will be very good from the start 

– if you are very good, then you will remain  
very good in the next step 

– If you are very good, you will not crash 

 
Hence, please type check, and you will never crash! 

Soundnes proof = defining “very good” and 
checking the properties above. 



Definition of Simple Language 

var x1 : Pos 
var x2 : Int 
... 
var xn : Pos 
 
xi = xj 
xp = xq + xr 

xa = xb / xc 

... 
xp = xq + xr 

Programs: 
Type rules: 
 = { (x1, Pos), 
         (x2, Int),  
          … 
         (xn, Pos)} 
Pos <: int 

variable declarations 

    var x: Pos 

or  

    var x: Int 

followed by 

statements of one of the forms 
1) xi=k 
2) xi = xj 

3) xi = xj / xk 

4) xi = xj + xk 

 

(No complex expressions) 



Checking Properties in Our Case 

Definition: state is very good if each variable belongs to the 
domain determined by its type (if z:Pos, then z is strictly positive). 

Holds: in initial state, variables are =1 

• If you type check and succeed:  

– you will be very good from the start. 

– if you are very good, then you will remain  
very good in the next step 

– If you are very good, you will not crash. 

If next state is x / z, type rule ensures z has type Pos 
Because state is very good, it means z  Pos 
so z is not 0, and there will be no crash. 

1  Pos 

1  Int 



Example Case 1 

var x : Pos 
var y : Pos 
var z : Pos 
y = 3 
z = 2 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = 3 
  z = 2 

the next statement is: z=x+y 
where x,y,z are declared Pos. 

Goal: prove that again each variable belongs to its type. 
• variables other than z did not change, so belong to their type 
• z is sum of two positive values, so it will have positive value 
 

Assume each variable belongs to its type. 

position in source 



Example Case 2 

var x : Pos 
var y : Int 
var z : Pos 
y = -5 
z = 2 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -5 
  z = 2 

the next statement is: z=x+y 
where x,z declared Pos, y declared Int 

Goal: prove that again each variable belongs to its type. 
this case is impossible, because z=x+y would not type check 

How do we know it could not type check? 

Assume each variable belongs to its type. 

position in source 



Must Carefully Check Our Type Rules 

var x : Pos 
var y : Int 
var z : Pos 
y = -5 
z = 2 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

Conclude that the only 
types we can derive are: 
   x : Pos, x : Int 
   y : Int 
   x + y : Int 

Cannot type check 
 z = x + y in this environment. 

Type rules: 
 = { (x1, Pos), 
         (x2, Int),  
          … 
         (xn, Pos)} 
Pos <: int 



We would need to check all cases 
(there are many, but they are easy) 



Back to the start 

Does the proof still work? 

 

If not, where does it break? 



Remark 

• We used in examples  Pos <: Int 

 

• Same examples work if we have 

 

class Int { ... } 
class Pos extends Int { ... } 

 

and is therefore relevant for OO languages 



What if we want more complex types? 
class A { }  

class B extends A {  

  void foo() { }  

} 

class Test {  

  public static void main(String[] args) {  

    B[] b = new B[5];  

    A[] a;  

    a = b;  

    System.out.println("Hello,");  

    a[0] = new A();       

    System.out.println("world!");  

    b[0].foo();  

  } 

}  

• Should it type check? 

• Does this type check in Java? 

• can you run it?  

• Does this type check in Scala? 



What if we want more complex types? 

Suppose we add to our language a reference type: 

 class Ref[T](var content : T) 

 

 

 
var x1 : Pos 
var x2 : Int 
var x3 : Ref[Int] 
var x4 : Ref[Pos] 
 
x = y 
x = y + z 

x = y / z 
x = y + z.content 
x.content = y 
… 
 

Programs: 
Exercise 1:  

Extend the type rules to use with 

Ref[T] types. 

Show your new type system is 

sound. 

 

 

 

Exercise 2: 

Can we use the subtyping rule? 

If not, where does the proof break? 

  

 



Simple Parametric Class 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 

 

type checks 



Simple Parametric Class 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 

1 

-1 

Ref[Pos] 

Ref[Int] 

x 

y 



Simple Parametric Class 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 

1 

-1 

Ref[Pos] 

Ref[Int] 

x 

y 



Simple Parametric Class 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 

0 

-1 

Ref[Pos] 

Ref[Int] 

x 

y 

CRASHES          



Analogously 

class Ref[T](var content : T) 

Can we use the converse subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
x = y 
y.content = 0 
z = z / x.content 

1 

0 

Ref[Pos] 

Ref[Int] 

x 

y 

CRASHES          



Mutable Classes do not  
Preserve Subtyping 

class Ref[T](var content : T) 

Even if T <: T’,  

Ref[T] and Ref[T’] are unrelated types 

var x : Ref[T] 
var y : Ref[T’] 
... 
x = y 
... 

type checks only if T=T’ 



Same Holds for Arrays, Vectors,  
all mutable containers 

var x : Array[Pos](1) 
var y : Array[Int](1) 
var z : Int 
x[0] = 1 
y[0] = -1 
y = x 
y[0] = 0 
z = z / x[0] 

Even if T <: T’,  

Array[T] and Array[T’] are unrelated types 



Case in Soundness Proof Attempt 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 

prove each variable belongs to its type: 
variables other than y did not change.. (?!) 

1 

-1 

Ref[Pos] 

Ref[Int] 

x 

y 



Mutable vs Immutable Containers 

• Immutable container, Coll[T] 
– has methods of form e.g.     get(x:A) : T 
– if T <: T’, then Coll[T’] has get(x:A) : T’ 
– we have   (A  T) <: (A T’)   

covariant rule for functions, so Coll[T] <: Coll[T’] 

• Write-only data structure have 
– setter-like methods,     set(v:T) : B 
– if T <: T’, then Container[T’] has set(v:T) : B 
– would need (T  B) <: (T’  B) 

contravariance for arguments, so Coll[T’] <: Coll[T] 

• Read-Write data structure need both,  
so they are invariant, no subtype on Coll if T <: T’ 


