
Exercise 1: Balanced Parentheses 

Show that the following balanced parentheses 
grammar is ambiguous (by finding two parse 
trees for some input sequence) and find 
unambiguous grammar for the same language. 

   B ::=  | ( B ) | B B  
 



Remark 

• The same parse tree can be derived using two 
different derivations, e.g. 

 B -> (B) -> (BB) -> ((B)B) -> ((B)) -> (()) 

 B -> (B) -> (BB) -> ((B)B) -> (()B) -> (()) 

this correspond to different orders in which 
nodes in the tree are expanded 

• Ambiguity refers to the fact that there are 
actually multiple parse trees, not just multiple 
derivations. 



Towards Solution 

• (Note that we must preserve precisely the set 
of strings that can be derived) 

• This grammar: 

  B ::=  | A  
  A ::= ( ) | A A | (A) 

solves the problem with multiple  symbols 
generating different trees, but it is still 
ambiguous: string ( ) ( ) ( ) has two different 
parse trees 



Solution 
• Proposed solution: 

  B ::=  | B (B) 

• this is very smart! How to come up with it? 

• Clearly, rule B::= B B generates any sequence of B's. We can also encode it 
like this: 
 B ::= C* 
 C ::= (B) 

• Now we express sequence using recursive rule that does not create 
ambiguity: 

 B ::=  | C B 
 C ::= (B) 

• but now, look, we "inline"  C back into the rules for so we get exactly the 
rule 

 B ::=  | B (B) 

This grammar is not ambiguous and is the solution. We did not prove this fact 
(we only tried to find ambiguous trees but did not find any). 



Exercise 2: Dangling Else 

The dangling-else problem happens when the 
conditional statements are parsed using the 
following grammar.  
 S ::= S ; S 
 S ::= id := E 
 S ::= if E then S 
 S ::= if E then S else S  
Find an unambiguous grammar that accepts the 
same conditional statements and matches the 
else statement with the nearest unmatched if. 



Discussion of Dangling Else 

if (x > 0) then 

    if (y > 0) then 
       z  = x + y 
else x = - x 

• This is a real problem languages like C, Java 

– resolved by saying else binds to innermost if 

• Can we design grammar that allows all 
programs as before, but only allows parse 
trees where else binds to innermost if? 



Sources of Ambiguity in this Example 

• Ambiguity arises in this grammar here due to: 

– dangling else 

– binary rule for sequence (;) as for parentheses 

– priority between if-then-else and semicolon (;) 

if (x > 0) 

    if (y > 0) 
      z  = x + y; 
      u = z + 1       // last assignment is not inside if 

Wrong parse tree -> wrong generated code 

 

 



How we Solved It 
We identified a wrong tree and tried to refine the grammar to prevent it, by 
making a copy of the rules. Also, we changed some rules to disallow 
sequences inside if-then-else and make sequence rule non-ambiguous. The 
end result is something like this: 

 S::=  |A S   // a way to write  S::=A* 
 A ::= id := E 
 A ::= if E then A 
 A ::= if E then A' else A  

 A' ::= id := E 
 A' ::= if E then A' else A' 

At some point we had a useless rule, so we deleted it. 

We also looked at what a practical grammar would have to allow sequences 
inside if-then-else. It would add a case for blocks, like this: 

 A ::=  { S } 
 A' ::= { S } 

We could factor out some common definitions (e.g. define A in terms of A'), 
but that is not important for this problem. 



Transforming Grammars  
into Chomsky Normal Form 

Steps: 

1. remove unproductive symbols 

2. remove unreachable symbols 

3. remove epsilons (no non-start nullable symbols) 

4. remove single non-terminal productions X::=Y 

5. transform productions w/ more than 3 on RHS 

6. make terminals occur alone on right-hand side 



1) Unproductive non-terminals 

What is funny about this grammar: 

  stmt ::=  identifier := identifier 
              | while (expr) stmt 
              | if (expr) stmt else stmt 
  expr ::= term + term | term – term  
  term ::= factor * factor 
  factor ::= ( expr ) 
 
There is no derivation of a sequence of tokens from expr 

Why? In every step will have at least one expr, term, or factor 

If it cannot derive sequence of tokens we call it unproductive 

How to compute them? 



  stmt ::=  identifier := identifier 
              | while (expr) stmt 
              | if (expr) stmt else stmt 
  expr ::= term + term | term – term  
  term ::= factor * factor 
  factor ::= ( expr ) 
  program ::= stmt | stmt program 

1) Unproductive non-terminals 

• Productive symbols are obtained using these 
two rules (what remains is unproductive) 

– Terminals (tokens) are productive 

– If X::= s1 s2 … sn is rule and each si is productive 
then X is productive 

Delete unproductive 
symbols. 
 
Will the meaning of 
top-level symbol 
(program) change? 



What is funny about this grammar with starting 
terminal ‘program’ 

  program ::= stmt | stmt program 
  stmt ::= assignment | whileStmt 

  assignment ::= expr = expr 

  ifStmt ::= if (expr) stmt else stmt 
  whileStmt ::= while (expr) stmt 
  expr ::= identifier 

2) Unreachable non-terminals 

No way to reach symbol ‘ifStmt’ from ‘program’ 



2) Computing unreachable  
non-terminals 

What is the general algorithm? 

What is funny about this grammar with starting 
terminal ‘program’ 

  program ::= stmt | stmt program 
  stmt ::= assignment | whileStmt 

  assignment ::= expr = expr 

  ifStmt ::= if (expr) stmt else stmt 
  whileStmt ::= while (expr) stmt 
  expr ::= identifier 



2) Unreachable non-terminals 

• Reachable terminals are obtained using the 
following rules (the rest are unreachable) 

– starting non-terminal is reachable (program) 

– If X::= s1 s2 … sn is rule and  X is reachable then 
each non-terminal among s1 s2 … sn is reachable 

Delete unreachable 
symbols. 
 
Will the meaning of 
top-level symbol 
(program) change? 



3) Removing Empty Strings 

Ensure only top-level symbol can be nullable 

  program ::= stmtSeq 
  stmtSeq ::= stmt | stmt ; stmtSeq 
  stmt ::= “” | assignment | whileStmt | blockStmt 
  blockStmt ::= { stmtSeq } 
  assignment ::= expr = expr 
  whileStmt ::= while (expr) stmt 
  expr ::= identifier 

How to do it in this example? 



3) Removing Empty Strings - Result 

  program ::=  | stmtSeq  
  stmtSeq ::= stmt| stmt ; stmtSeq |  
                     | ; stmtSeq | stmt ; | ; 
  stmt ::= assignment | whileStmt | blockStmt 
  blockStmt ::= { stmtSeq } | { } 
  assignment ::= expr = expr 
  whileStmt ::= while (expr) stmt 
  whileStmt ::= while (expr) 
  expr ::= identifier 



3) Removing Empty Strings - Algorithm 

• Compute the set of nullable non-terminals 

• Add extra rules 

– If X::= s1 s2 … sn is rule then add new rules of form 
   X::=  r1 r2 … rn   

where ri is either si or, if 

 

• Remove all empty right-hand sides 

• If starting symbol S was nullable, then 
introduce a new start symbol S’ instead, and 
add rule  S’ ::= S |     

si is nullable then 

ri can also be the empty string (so it disappears) 



3) Removing Empty Strings 

• Since stmtSeq is nullable, the rule 
   blockStmt ::= { stmtSeq } 
gives 
   blockStmt ::=  { stmtSeq } | { } 

• Since stmtSeq and stmt are nullable, the rule 
   stmtSeq ::= stmt | stmt ; stmtSeq 
gives 
   stmtSeq ::= stmt | stmt ; stmtSeq   
        | ; stmtSeq | stmt ; | ; 


