
Exercise 1: Balanced Parentheses

Show that the following balanced parentheses
grammar is ambiguous (by finding two parse
trees for some input sequence) and find
unambiguous grammar for the same language.

 B ::= | (B) | B B

Remark

• The same parse tree can be derived using two
different derivations, e.g.

 B -> (B) -> (BB) -> ((B)B) -> ((B)) -> (())

 B -> (B) -> (BB) -> ((B)B) -> (()B) -> (())

this correspond to different orders in which
nodes in the tree are expanded

• Ambiguity refers to the fact that there are
actually multiple parse trees, not just multiple
derivations.

Towards Solution

• (Note that we must preserve precisely the set
of strings that can be derived)

• This grammar:

 B ::= | A
 A ::= () | A A | (A)

solves the problem with multiple symbols
generating different trees, but it is still
ambiguous: string () () () has two different
parse trees

Solution
• Proposed solution:

 B ::= | B (B)

• this is very smart! How to come up with it?

• Clearly, rule B::= B B generates any sequence of B's. We can also encode it
like this:
 B ::= C*
 C ::= (B)

• Now we express sequence using recursive rule that does not create
ambiguity:

 B ::= | C B
 C ::= (B)

• but now, look, we "inline" C back into the rules for so we get exactly the
rule

 B ::= | B (B)

This grammar is not ambiguous and is the solution. We did not prove this fact
(we only tried to find ambiguous trees but did not find any).

Exercise 2: Dangling Else

The dangling-else problem happens when the
conditional statements are parsed using the
following grammar.
 S ::= S ; S
 S ::= id := E
 S ::= if E then S
 S ::= if E then S else S
Find an unambiguous grammar that accepts the
same conditional statements and matches the
else statement with the nearest unmatched if.

Discussion of Dangling Else

if (x > 0) then

 if (y > 0) then
 z = x + y
else x = - x

• This is a real problem languages like C, Java

– resolved by saying else binds to innermost if

• Can we design grammar that allows all
programs as before, but only allows parse
trees where else binds to innermost if?

Sources of Ambiguity in this Example

• Ambiguity arises in this grammar here due to:

– dangling else

– binary rule for sequence (;) as for parentheses

– priority between if-then-else and semicolon (;)

if (x > 0)

 if (y > 0)
 z = x + y;
 u = z + 1 // last assignment is not inside if

Wrong parse tree -> wrong generated code

How we Solved It
We identified a wrong tree and tried to refine the grammar to prevent it, by
making a copy of the rules. Also, we changed some rules to disallow
sequences inside if-then-else and make sequence rule non-ambiguous. The
end result is something like this:

 S::= |A S // a way to write S::=A*
 A ::= id := E
 A ::= if E then A
 A ::= if E then A' else A

 A' ::= id := E
 A' ::= if E then A' else A'

At some point we had a useless rule, so we deleted it.

We also looked at what a practical grammar would have to allow sequences
inside if-then-else. It would add a case for blocks, like this:

 A ::= { S }
 A' ::= { S }

We could factor out some common definitions (e.g. define A in terms of A'),
but that is not important for this problem.

Transforming Grammars
into Chomsky Normal Form

Steps:

1. remove unproductive symbols

2. remove unreachable symbols

3. remove epsilons (no non-start nullable symbols)

4. remove single non-terminal productions X::=Y

5. transform productions w/ more than 3 on RHS

6. make terminals occur alone on right-hand side

1) Unproductive non-terminals

What is funny about this grammar:

 stmt ::= identifier := identifier
 | while (expr) stmt
 | if (expr) stmt else stmt
 expr ::= term + term | term – term
 term ::= factor * factor
 factor ::= (expr)

There is no derivation of a sequence of tokens from expr

Why? In every step will have at least one expr, term, or factor

If it cannot derive sequence of tokens we call it unproductive

How to compute them?

 stmt ::= identifier := identifier
 | while (expr) stmt
 | if (expr) stmt else stmt
 expr ::= term + term | term – term
 term ::= factor * factor
 factor ::= (expr)
 program ::= stmt | stmt program

1) Unproductive non-terminals

• Productive symbols are obtained using these
two rules (what remains is unproductive)

– Terminals (tokens) are productive

– If X::= s1 s2 … sn is rule and each si is productive
then X is productive

Delete unproductive
symbols.

Will the meaning of
top-level symbol
(program) change?

What is funny about this grammar with starting
terminal ‘program’

 program ::= stmt | stmt program
 stmt ::= assignment | whileStmt

 assignment ::= expr = expr

 ifStmt ::= if (expr) stmt else stmt
 whileStmt ::= while (expr) stmt
 expr ::= identifier

2) Unreachable non-terminals

No way to reach symbol ‘ifStmt’ from ‘program’

2) Computing unreachable
non-terminals

What is the general algorithm?

What is funny about this grammar with starting
terminal ‘program’

 program ::= stmt | stmt program
 stmt ::= assignment | whileStmt

 assignment ::= expr = expr

 ifStmt ::= if (expr) stmt else stmt
 whileStmt ::= while (expr) stmt
 expr ::= identifier

2) Unreachable non-terminals

• Reachable terminals are obtained using the
following rules (the rest are unreachable)

– starting non-terminal is reachable (program)

– If X::= s1 s2 … sn is rule and X is reachable then
each non-terminal among s1 s2 … sn is reachable

Delete unreachable
symbols.

Will the meaning of
top-level symbol
(program) change?

3) Removing Empty Strings

Ensure only top-level symbol can be nullable

 program ::= stmtSeq
 stmtSeq ::= stmt | stmt ; stmtSeq
 stmt ::= “” | assignment | whileStmt | blockStmt
 blockStmt ::= { stmtSeq }
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt
 expr ::= identifier

How to do it in this example?

3) Removing Empty Strings - Result

 program ::= | stmtSeq
 stmtSeq ::= stmt| stmt ; stmtSeq |
 | ; stmtSeq | stmt ; | ;
 stmt ::= assignment | whileStmt | blockStmt
 blockStmt ::= { stmtSeq } | { }
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt
 whileStmt ::= while (expr)
 expr ::= identifier

3) Removing Empty Strings - Algorithm

• Compute the set of nullable non-terminals

• Add extra rules

– If X::= s1 s2 … sn is rule then add new rules of form
 X::= r1 r2 … rn

where ri is either si or, if

• Remove all empty right-hand sides

• If starting symbol S was nullable, then
introduce a new start symbol S’ instead, and
add rule S’ ::= S |

si is nullable then

ri can also be the empty string (so it disappears)

3) Removing Empty Strings

• Since stmtSeq is nullable, the rule
 blockStmt ::= { stmtSeq }
gives
 blockStmt ::= { stmtSeq } | { }

• Since stmtSeq and stmt are nullable, the rule
 stmtSeq ::= stmt | stmt ; stmtSeq
gives
 stmtSeq ::= stmt | stmt ; stmtSeq
 | ; stmtSeq | stmt ; | ;

