
More Examples of  
Abstract Interpretation 

 
Register Allocation 



1) Constant Propagation 

Special case of interval analysis: 

D = { [a,a] | a{-M,-(M-1),…,-2,-1,0,1,2,3,…,M-1}} 
 U {,T} 

Write [a,a] simply as a. So values are: 

• a known constant at this point: a 

• "we could not show it is constant": T 

• "we did not reach this program point":  

Convergence fast - lattice has small height 



Transfer Function for Plus in pscala 

x = y + z 

For each variable (x,y,z) we store a constant , or T 

abstract class Element 
case class Top extends Element 
case class Bot extends Element 
case class Const(v:Int) extends Element 
var facts : Map[Nodes,Map[VarNames,Element]] 
 what executes during analysis: 
oldY = facts(v1)("y") 
oldZ = facts(v1)("z") 
newX = tableForPlus(oldY, oldZ) 
facts(v2) = facts(v2) join facts(v1).updated("x", newX) 

def tableForPlus(y:Element, z:Element) =  
(x,y) match { 
case (Const(cy),Const(cz)) => Const(cy+cz) 
case (Bot,_) => Bot 
case (_,Bot) => Bot 
case (Top,Const(cz)) => Top 
case (Const(cy),Top) => Top 
} 

table for +: 



2) Initialization Analysis 

uninitialized 

first  
initialization 

initialized 



What does javac say to this: 
class Test { 

    static void test(int p) { 

 int n; 

 p = p - 1; 

 if (p > 0) { 

     n = 100; 

 } 

 while (n != 0) { 

     System.out.println(n); 

     n = n - p; 

 } 

    } 

} 

Test.java:8: variable n might not have been initialized 
 while (n > 0) { 
               ^ 
1 error 



Program that compiles in java 
class Test { 

    static void test(int p) { 

 int n; 

 p = p - 1; 

 if (p > 0) { 

     n = 100; 

 } 

 else { 

     n = -100; 

 } 

 while (n != 0) { 

     System.out.println(n); 

     n = n - p; 

 } 

    } 

} // Try using if (p>0) second time. 

We would like variables to be 
initialized on all execution paths.  
 
Otherwise, the program execution 
could be undesirable affected by the 
value that was in the variable initially. 
 
We can enforce such check using 
initialization analysis. 



Initialization Analysis 
T indicates presence of flow from states where 
variable was not initialized: 

• If variable is possibly uninitialized, we use T 

• Otherwise (initialized, or unreachable):  

class Test { 

    static void test(int p) { 

 int n; 

 p = p - 1; 

 if (p > 0) { 

     n = 100; 

 } 

 else { 

     n = -100; 

 } 

 while (n != 0) { 

     System.out.println(n); 

     n = n - p; 

 } 

    } 

} // Try using if (p>0) second time. 

If var occurs anywhere but left-hand side 
of assignment and has value T, report error 



3) Liveness Analysis 

dead 

live 

dead 

last use 

first  
initialization 

dead 
live 

Variable is dead if its current value will not be used in the future. 
If there are no uses before it is reassigned or the execution ends, 
then the variable is sure dead at a given point. 



Example: 

x = y + x 

 

if (x > y)  

What is Written and What Read 

Purpose: 
Register allocation: 

find good way to decide 
which variable should go 
to which register at what 
point in time. 



How Transfer Functions Look 



Initialization: Forward Analysis 

Liveness: Backward Analysis 

while (there was change) 
   pick edge (v1,statmt,v2) from CFG 
             such that facts(v1) has changed 
   facts(v2)=facts(v2) join transferFun(statmt, facts(v1)) 
} 

while (there was change) 
   pick edge (v1,statmt,v2) from CFG 
             such that facts(v2) has changed 
   facts(v1)=facts(v1) join transferFun(statmt, facts(v2)) 
} 



Example 

x = m[0] 

y = m[1] 

xy = x * y 

z = m[2] 

yz = y*z 

xz = x*z 

res1 = xy + yz 

m[3] = res1 + xz 



4) Data Representation Overview 



Original and Target Program have 
Different Views of Program State 

• Original program: 
– local variables given by names (any number of them) 
– each procedure execution has fresh space for its variables 

(even if it is recursive) 
– fields given by names 

• Java Virtual Machine 
– local variables given by slots (0,1,2,…), any number 
– intermediate values stored in operand stack 
– each procedure call gets fresh slots and stack 
– fields given by names and object references 

• Machine code: program state is a large arrays of bytes 
and a finite number of registers 



Compilation Performs Automated  
Data Refinement 

x = y + 7 * z iload 2 
iconst 7 
iload 3 
imul 
iadd 
istore 1 

x  0 
y  5 
z  8 

1  0 
2  5 
3  8 

x  61 
y  5 
z  8 

1  61 
2  5 
3  8 

Data Refinement  

Function R 

[[x = y + 7 * z]] = 

s 

s’ 

c 

c' 
If interpreting program P 
leads from s to s’ 
then running the compiled code [[P]] 
leads from R(s) to R(s’) 

P: 



Inductive Argument for Correctness 

R 

x = y + 7 * z 

x  0 
y  5 
z  8 

x  61 
y  5 
z  8 

s1 

s2 

y = z + 1 

R 

x  61 
y  9 
z  8 

s3 R 

[[x = y + 7 * z]] 

0  0 
1  5 
2  8 

0  61 
1  5 
2  8 

c1 

c2 

iload 3; iconst 1; iadd; istore 2  

0  61 
1  9 
2  8 

c3 

(R may need to be a relation, not just function) 



A Simple Theorem 

  P : S  S  is a program meaning function 
  Pc : C  C    is meaning function for the compiled program 
  R : S  C is data representation function 
Let sn+1 = P(sn),  n = 0,1,… be interpreted execution 
Let cn+1 = P(cn),  n = 0,1,… be compiled execution 
 

 

 

 

Theorem: If 

– c0 = R(s0) 

– for all s,   Pc(R(s)) = R(P(s)) 

then cn = R(cn) for all n. 

Proof: immediate, by induction.      R is often called simulation relation. 



Example of a Simple R 

• Let the received, the parameters, and local 
variables, in their order of declaration, be  
x1, x2 … xn 

• Then R maps program state with only integers 
like this: 

x1  v1 
x2  v2 
x3  v3 
   … 
xn  vn 

0        v1 
1        v2 
2        v3 
          … 
(n-1)  vn 

R 



R for Booleans 

• Let the received, the parameters, and local 
variables, in their order of declaration, be  
x1, x2 … xn  

• Then R maps program state like this, where x1 
and x2 are integers but x3 and x4 are Booleans: 

x1  3 
x2  9 
x3  true 

x4  false 

0   3 
1   9 
2   1 
3   0 

R 



R  that depends on Program Point 

def main(x:Int) { 
  var res, y, z: Int 
  if (x>0) { 
    y = x + 1 
    res = y 
  } else { 
     z = -x - 10 
     res = z 
  } 
  … 
} 

x      v1 
res  v2 
y      v3 
z      v4 

R 

0  v1 
1  v2 
2  v3 
3  v4 

x      v1 
res  v2 
y      v3 
z      v4 

R1 
0  v1 
1  v2 
2  v3 

x      v1 
res  v2 
y      v3 
z      v4 

R2 
0  v1 
1  v2 
2  v4 

Map y,z to same slot. 
Consume fewer slots! 



Packing Variables into Memory 

• If values are not used at the same time, we 
can store them in the same place 

• This technique arises in 

– Register allocation: store frequently used values 
in a bounded number of fast registers 

– ‘malloc’ and ‘free’ manual memory management: 
free releases memory to be used for later objects 

– Garbage collection, e.g. for JVM, and .NET as well 
as languages that run on top of them (e.g. Scala) 



Register Machines 
Better for most purposes than stack machines 

– closer to modern CPUs (RISC architecture) 

– closer to control-flow graphs 

– simpler than stack machine 

Example: ARM architecture  

Directly 
Addressable 

RAM 
(large - GB, 

slow) 

R0,R1,…,R31 
A few fast 
registers 

http://en.wikipedia.org/wiki/ARM architecture


Basic Instructions of Register Machines 

Ri  Mem[Rj] load 

Mem[Rj] Ri store 

Ri  Rj  * Rk compute: for an operation * 

 

 

Efficient register machine code uses as few loads 
and stores as possible. 



State Mapped to Register Machine 
Both dynamically allocated heap and stack expand  

– heap need not be contiguous can request more 
memory from the OS if needed 

– stack grows downwards 

Heap is more general:  
• Can allocate, read/write, and deallocate,  

in any order 
• Garbage Collector does deallocation automatically 

– Must be able to find free space among used one, 
group free blocks into larger ones (compaction),… 

Stack is more efficient: 
• allocation is simple: increment, decrement  
• top of stack pointer (SP) is often a register 
• if stack grows towards smaller addresses:  

– to allocate N bytes on stack (push):    SP := SP - N  
– to deallocate N bytes on stack (pop): SP := SP + N  

 

Stack 

Heap 

Constants 

Static Globals 

free memory 

SP 

0 

50kb 

10MB 

1 GB 

Exact picture may 
depend on  
hardware and OS 



JVM vs General Register Machine Code 

R1  Mem[SP] 

SP = SP + 4 

R2  Mem[SP] 

R2  R1 * R2 

Mem[SP]  R2 

imul 

JVM: Register Machine: 



5) Register Allocation 



How many variables?    
   x,y,z,xy,xz,res1 

x = m[0] 

y = m[1] 

xy = x * y 

z = m[2] 

yz = y*z 

xz = x*z 

res1 = xy + yz 

m[3] = res1 + xz 

Do we need 6 distinct registers if we wish to avoid load and stores? 

x = m[0] 

y = m[1] 

xy = x * y 

z = m[2] 

yz = y*z 

y = x*z      // reuse y 

x = xy + yz       // reuse x 

m[3] = x + y 



Idea of Graph Coloring 

• Register Interference Graph (RIG): 

– indicates whether there exists a point of time 
where both variables are live 

– if so, we draw an edge 

– we will then assign different registers to these 
variables 

– finding assignment of variables to K registers 
corresponds to coloring graph using K colors! 



Graph Coloring Algorithm 
Simplify 
If there is a node with less than K neighbors, we will always be able to color it!  
so we can remove it from the graph 
This reduces graph size (it is incomplete) 
Every planar can be colored by at most 4 colors (yet can have nodes with 100 neighbors) 
 
Spill 
If every node has K or more neighbors, we remove one of them  
we mark it as node for potential spilling 
then remove it and continue 
 
Select 
Assign colors backwards, adding nodes that were removed  
If we find a node that was spilled, we check if we are lucky that we can color it  
if yes, continue 
if no, insert instructions to save and load values from memory 
   restart with new graph (now we have graph that is easier to color, we killed a variable) 


