
More Examples of
Abstract Interpretation

Register Allocation

1) Constant Propagation

Special case of interval analysis:

D = { [a,a] | a{-M,-(M-1),…,-2,-1,0,1,2,3,…,M-1}}
 U {,T}

Write [a,a] simply as a. So values are:

• a known constant at this point: a

• "we could not show it is constant": T

• "we did not reach this program point": 

Convergence fast - lattice has small height

Transfer Function for Plus in pscala

x = y + z

For each variable (x,y,z) we store a constant , or T

abstract class Element
case class Top extends Element
case class Bot extends Element
case class Const(v:Int) extends Element
var facts : Map[Nodes,Map[VarNames,Element]]
 what executes during analysis:
oldY = facts(v1)("y")
oldZ = facts(v1)("z")
newX = tableForPlus(oldY, oldZ)
facts(v2) = facts(v2) join facts(v1).updated("x", newX)

def tableForPlus(y:Element, z:Element) =
(x,y) match {
case (Const(cy),Const(cz)) => Const(cy+cz)
case (Bot,_) => Bot
case (_,Bot) => Bot
case (Top,Const(cz)) => Top
case (Const(cy),Top) => Top
}

table for +:

2) Initialization Analysis

uninitialized

first
initialization

initialized

What does javac say to this:
class Test {

 static void test(int p) {

 int n;

 p = p - 1;

 if (p > 0) {

 n = 100;

 }

 while (n != 0) {

 System.out.println(n);

 n = n - p;

 }

 }

}

Test.java:8: variable n might not have been initialized
 while (n > 0) {
 ^
1 error

Program that compiles in java
class Test {

 static void test(int p) {

 int n;

 p = p - 1;

 if (p > 0) {

 n = 100;

 }

 else {

 n = -100;

 }

 while (n != 0) {

 System.out.println(n);

 n = n - p;

 }

 }

} // Try using if (p>0) second time.

We would like variables to be
initialized on all execution paths.

Otherwise, the program execution
could be undesirable affected by the
value that was in the variable initially.

We can enforce such check using
initialization analysis.

Initialization Analysis
T indicates presence of flow from states where
variable was not initialized:

• If variable is possibly uninitialized, we use T

• Otherwise (initialized, or unreachable): 

class Test {

 static void test(int p) {

 int n;

 p = p - 1;

 if (p > 0) {

 n = 100;

 }

 else {

 n = -100;

 }

 while (n != 0) {

 System.out.println(n);

 n = n - p;

 }

 }

} // Try using if (p>0) second time.

If var occurs anywhere but left-hand side
of assignment and has value T, report error

3) Liveness Analysis

dead

live

dead

last use

first
initialization

dead
live

Variable is dead if its current value will not be used in the future.
If there are no uses before it is reassigned or the execution ends,
then the variable is sure dead at a given point.

Example:

x = y + x

if (x > y)

What is Written and What Read

Purpose:
Register allocation:

find good way to decide
which variable should go
to which register at what
point in time.

How Transfer Functions Look

Initialization: Forward Analysis

Liveness: Backward Analysis

while (there was change)
 pick edge (v1,statmt,v2) from CFG
 such that facts(v1) has changed
 facts(v2)=facts(v2) join transferFun(statmt, facts(v1))
}

while (there was change)
 pick edge (v1,statmt,v2) from CFG
 such that facts(v2) has changed
 facts(v1)=facts(v1) join transferFun(statmt, facts(v2))
}

Example

x = m[0]

y = m[1]

xy = x * y

z = m[2]

yz = y*z

xz = x*z

res1 = xy + yz

m[3] = res1 + xz

4) Data Representation Overview

Original and Target Program have
Different Views of Program State

• Original program:
– local variables given by names (any number of them)
– each procedure execution has fresh space for its variables

(even if it is recursive)
– fields given by names

• Java Virtual Machine
– local variables given by slots (0,1,2,…), any number
– intermediate values stored in operand stack
– each procedure call gets fresh slots and stack
– fields given by names and object references

• Machine code: program state is a large arrays of bytes
and a finite number of registers

Compilation Performs Automated
Data Refinement

x = y + 7 * z iload 2
iconst 7
iload 3
imul
iadd
istore 1

x  0
y  5
z  8

1  0
2  5
3  8

x  61
y  5
z  8

1  61
2  5
3  8

Data Refinement

Function R

[[x = y + 7 * z]] =

s

s’

c

c'
If interpreting program P
leads from s to s’
then running the compiled code [[P]]
leads from R(s) to R(s’)

P:

Inductive Argument for Correctness

R

x = y + 7 * z

x  0
y  5
z  8

x  61
y  5
z  8

s1

s2

y = z + 1

R

x  61
y  9
z  8

s3 R

[[x = y + 7 * z]]

0  0
1  5
2  8

0  61
1  5
2  8

c1

c2

iload 3; iconst 1; iadd; istore 2

0  61
1  9
2  8

c3

(R may need to be a relation, not just function)

A Simple Theorem

 P : S  S is a program meaning function
 Pc : C  C is meaning function for the compiled program
 R : S  C is data representation function
Let sn+1 = P(sn), n = 0,1,… be interpreted execution
Let cn+1 = P(cn), n = 0,1,… be compiled execution

Theorem: If

– c0 = R(s0)

– for all s, Pc(R(s)) = R(P(s))

then cn = R(cn) for all n.

Proof: immediate, by induction. R is often called simulation relation.

Example of a Simple R

• Let the received, the parameters, and local
variables, in their order of declaration, be
x1, x2 … xn

• Then R maps program state with only integers
like this:

x1  v1
x2  v2
x3  v3
 …
xn  vn

0  v1
1  v2
2  v3
 …
(n-1)  vn

R

R for Booleans

• Let the received, the parameters, and local
variables, in their order of declaration, be
x1, x2 … xn

• Then R maps program state like this, where x1
and x2 are integers but x3 and x4 are Booleans:

x1  3
x2  9
x3  true

x4  false

0  3
1  9
2  1
3  0

R

R that depends on Program Point

def main(x:Int) {
 var res, y, z: Int
 if (x>0) {
 y = x + 1
 res = y
 } else {
 z = -x - 10
 res = z
 }
 …
}

x  v1
res  v2
y  v3
z  v4

R

0  v1
1  v2
2  v3
3  v4

x  v1
res  v2
y  v3
z  v4

R1
0  v1
1  v2
2  v3

x  v1
res  v2
y  v3
z  v4

R2
0  v1
1  v2
2  v4

Map y,z to same slot.
Consume fewer slots!

Packing Variables into Memory

• If values are not used at the same time, we
can store them in the same place

• This technique arises in

– Register allocation: store frequently used values
in a bounded number of fast registers

– ‘malloc’ and ‘free’ manual memory management:
free releases memory to be used for later objects

– Garbage collection, e.g. for JVM, and .NET as well
as languages that run on top of them (e.g. Scala)

Register Machines
Better for most purposes than stack machines

– closer to modern CPUs (RISC architecture)

– closer to control-flow graphs

– simpler than stack machine

Example: ARM architecture

Directly
Addressable

RAM
(large - GB,

slow)

R0,R1,…,R31
A few fast
registers

http://en.wikipedia.org/wiki/ARM architecture

Basic Instructions of Register Machines

Ri  Mem[Rj] load

Mem[Rj] Ri store

Ri  Rj * Rk compute: for an operation *

Efficient register machine code uses as few loads
and stores as possible.

State Mapped to Register Machine
Both dynamically allocated heap and stack expand

– heap need not be contiguous can request more
memory from the OS if needed

– stack grows downwards

Heap is more general:
• Can allocate, read/write, and deallocate,

in any order
• Garbage Collector does deallocation automatically

– Must be able to find free space among used one,
group free blocks into larger ones (compaction),…

Stack is more efficient:
• allocation is simple: increment, decrement
• top of stack pointer (SP) is often a register
• if stack grows towards smaller addresses:

– to allocate N bytes on stack (push): SP := SP - N
– to deallocate N bytes on stack (pop): SP := SP + N

Stack

Heap

Constants

Static Globals

free memory

SP

0

50kb

10MB

1 GB

Exact picture may
depend on
hardware and OS

JVM vs General Register Machine Code

R1  Mem[SP]

SP = SP + 4

R2  Mem[SP]

R2  R1 * R2

Mem[SP]  R2

imul

JVM: Register Machine:

5) Register Allocation

How many variables?
 x,y,z,xy,xz,res1

x = m[0]

y = m[1]

xy = x * y

z = m[2]

yz = y*z

xz = x*z

res1 = xy + yz

m[3] = res1 + xz

Do we need 6 distinct registers if we wish to avoid load and stores?

x = m[0]

y = m[1]

xy = x * y

z = m[2]

yz = y*z

y = x*z // reuse y

x = xy + yz // reuse x

m[3] = x + y

Idea of Graph Coloring

• Register Interference Graph (RIG):

– indicates whether there exists a point of time
where both variables are live

– if so, we draw an edge

– we will then assign different registers to these
variables

– finding assignment of variables to K registers
corresponds to coloring graph using K colors!

Graph Coloring Algorithm
Simplify
If there is a node with less than K neighbors, we will always be able to color it!
so we can remove it from the graph
This reduces graph size (it is incomplete)
Every planar can be colored by at most 4 colors (yet can have nodes with 100 neighbors)

Spill
If every node has K or more neighbors, we remove one of them
we mark it as node for potential spilling
then remove it and continue

Select
Assign colors backwards, adding nodes that were removed
If we find a node that was spilled, we check if we are lucky that we can color it
if yes, continue
if no, insert instructions to save and load values from memory
 restart with new graph (now we have graph that is easier to color, we killed a variable)

