
Continuing Abstract Interpretation 

We have seen: 

1. How to compile abstract syntax trees into 
control-flow graphs 

2. Lattices, as structures that describe abstractly 
sets of program states (facts) 

3. (started) Transfer functions that describe 
how to update facts 
Reviewing and continuing with: 

4. Iterative algorithm, examples, convergence 



Defining Abstract Interpretation 
Abstract Domain D (elements are data-flow facts), 
describing which information to compute, e.g. 

– inferred types for each variable: x:C, y:D 

– interval for each variable   x:[a,b], y:[a’,b’] 

– for each variable if is: initialized, constant, live 

Transfer Functions, [[st]] for each statement st,  
how this statement affects the facts 

– Example:  



For now: domain of Intervals 

• D = {} U { [a,b] | a ≤ b, a,bInt32} 

Int64 = {-MI,...,-1,0,1,MI-1},  MI is e.g. 263 

• Intervals [a,b] whose ends are machine 
integers a,b where a is less than or equal to b 

    [a,b] = { x | a ≤ x ≤ b} 

• When a is minimal int, b maximal int, we have 
the largest representable set, largest element 
of the lattice, we also denote this by T (top) 

• Least element , bottom represents empty set 



Transfer Functions for Tests 

if (x > 1) { 
 
   y = 1 / x 
} else { 
 
   y = 42 
} 

Tests e.g. [x>1] come from translating if,while into CFG 



Joining Data-Flow Facts 

if (x > 0) { 
 
   y = x + 100 

 
} else { 
 
   y = -x – 50 

 
} 

join 



Handling Loops: Iterate Until Stabilizes 

   x = 1 
 
   while (x < 10) { 
 
     x = x + 2 
 
   } 
 



Analysis Algorithm 

var facts : Map[Node,Domain] = Map.withDefault(empty) 
facts(entry) = initialValues 

while (there was change) 
   pick edge (v1,statmt,v2) from CFG 
             such that facts(v1) has changed 
   facts(v2)=facts(v2) join transerFun(statmt, facts(v1)) 
} 

Order does not matter for the  
end result, as long as we do not  
permanently neglect any  edge  
whose source was changed. 



Work List Version 

var facts : Map[Node,Domain] = Map.withDefault(empty) 
var worklist : Queue[Node] = empty 

  def assign(v1:Node,d:Domain) = if (facts(v1)!=d) { 
    facts(v1)=d 
    for (stmt,v2) <- outEdges(v1) { worklist.add(v2) } 
 } 
assign(entry, initialValues) 

while (!worklist.isEmpty) { 
   var v2 = worklist.getAndRemoveFirst 
   update = facts(v2) 
   for (v1,stmt) <- inEdges(v2)  
      { update = update join transferFun(facts(v1),stmt) } 
   assign(v2, update) 
} 



Run range analysis, prove error is unreachable 
int M = 16; 
int[M] a; 

x := 0; 

while (x < 10) { 

  x := x + 3; 

} 

if (x >= 0) { 

  if (x <= 15) 

    a[x]=7;  

  else 

     error; 

} else { 

   error; 
} 

checks array accesses 



Range analysis results 
int M = 16; 
int[M] a; 

x := 0; 

while (x < 10) { 

  x := x + 3; 

} 

if (x >= 0) { 

  if (x <= 15) 

    a[x]=7;  

  else 

     error; 

} else { 

   error; 
} 

checks array accesses 



Simplified Conditions 
int M = 16; 
int[M] a; 

x := 0; 

while (x < 10) { 

  x := x + 3; 

} 

if (x >= 0) { 

  if (x <= 15) 

    a[x]=7;  

  else 

     error; 

} else { 

   error; 
} 

checks array accesses 



Remove Trivial Edges, Unreachable Nodes 
int M = 16; 
int[M] a; 

x := 0; 

while (x < 10) { 

  x := x + 3; 

} 

if (x >= 0) { 

  if (x <= 15) 

    a[x]=7;  

  else 

     error; 

} else { 

   error; 
} 

checks array accesses 

Benefits: 
 - faster execution (no checks) 
 - program cannot crash with error 



Apply Range Analysis and Simplify   int a, b, step, i; 

  boolean c; 

  a = 0; 

  b = a + 10; 

  step = -1; 

  if (step > 0) { 

    i = a; 

  } else { 

    i = b; 

  } 

  c = true; 

  while (c) { 

    process(i); 

    i = i + step; 

    if (step > 0) { 

      c = (i < b); 

    } else { 

      c = (i > a); 

    } 

  } 

For booleans, use this lattice: Db = { {}, {false}, {true}, {false,true} } 
with ordering given by set subset relation. 

(left as exercise) 



Correctness 

Once the iterative loop stops, there were no changes. From there it follows:  
All program states that flow along an edge are included in  
the states in the target node. 
As long as this condition holds, it does not matter how we computed the states, 
the analysis results are correct. 
Proof is by considering an execution sequence through CFG and showing by 
induction that each state in the sequence is contained in the intervals. 



How Long Does Analysis Take? 



Handling Loops: Iterate Until Stabilizes 

   x = 1 
 
   while (x < n) { 
     x = x + 2 
   } 
 

How many steps until it stabilizes? Compute. 

n = 100000 



Handling Loops: Iterate Until Stabilizes 

   var x : BigInt = 1 
 
   while (x < n) { 
     x = x + 2 
   } 
 

For unknown program 
inputs and unbounded 
domains it may be 
practically impossible to 
know how long it takes. 

var n : BigInt = readInput() 

Solutions 
  - smaller domain, e.g. only certain intervals 
    [a,b] where a,b in {-MI,-127,-1,0,1,127,MI-1} 
  - widening techniques (make it less precise on demand) 

How many steps until it stabilizes? 



Smaller domain: intervals [a,b] where 
a,b{-MI,-127,0,127,MI-1}  (MI denoted M) 



Size of analysis domain 

Interval analysis: 
  D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {} 
Constant propagation: 
  D2 = { [a,a] | a{-M,-(M-1),…,-2,-1,0,1,2,3,…,M-1}} U { ,T} 
 suppose M is 263

 

|D1| =  
 
|D2| =  

How many steps  
until it stabilizes, for any 
program with one variable? 



How many steps does the analysis take 
to finish (converge)? 

Interval analysis: 
  D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {} 
Constant propagation: 
  D2 = { [a,a] | a{-M,-(M-1),…,-2,-1,0,1,2,3,…,M-1}} U {,T} 
 suppose M is 263

 

With D1 takes at most       steps. 
 
With D2 takes at most       steps. 



Chain of length n 

• A set of elements x0,x1 ,..., xn in D that are 
linearly ordered, that is  x0  x1  ...  xn 

• A lattice can have many chains. Its height is 
the maximum n for all the chains, if finite 

• If there is no upper bound on lengths of 
chains, we say lattice has infinite height 

• A monotonic sequence of distinct elements 
has length at most equal to lattice height 



Termination Given by Length of Chains 

Interval analysis: 
  D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {} 
 
 
 
Constant propagation: 
  D2 = { [a,a] | a{-M,…,-2,-1,0,1,2,3,…,M-1}} U {,T} 
 suppose M is 263

 



Product Lattice for All Variables 

• If we have N variables, we keep one element 
for each of them 

• This is like N-tuple of variables 

• Resulting lattice is product of N lattices for 
individual variables 

• Size is |D|N 

• The height is only N times the height of D 

 

 



Relational Analysis 
Suppose we keep track of interval for each var 

... 

// x:[0,10], y:[0,10] 

if (x > y) { 
  if (y > 3) { 

     t = 100/(x - 4) 
  } 

} 

We would not be able to prove that x-4 > 0. 

Relational analysis would remember the constraint x<y to make 
such reasoning possible. 

Instead of tracking bounds on x,y, it tracks also bounds on x-y 
and x+y. 


