
Continuing Abstract Interpretation

We have seen:

1. How to compile abstract syntax trees into
control-flow graphs

2. Lattices, as structures that describe abstractly
sets of program states (facts)

3. (started) Transfer functions that describe
how to update facts
Reviewing and continuing with:

4. Iterative algorithm, examples, convergence

Defining Abstract Interpretation
Abstract Domain D (elements are data-flow facts),
describing which information to compute, e.g.

– inferred types for each variable: x:C, y:D

– interval for each variable x:[a,b], y:[a’,b’]

– for each variable if is: initialized, constant, live

Transfer Functions, [[st]] for each statement st,
how this statement affects the facts

– Example:

For now: domain of Intervals

• D = {} U { [a,b] | a ≤ b, a,bInt32}

Int64 = {-MI,...,-1,0,1,MI-1}, MI is e.g. 263

• Intervals [a,b] whose ends are machine
integers a,b where a is less than or equal to b

 [a,b] = { x | a ≤ x ≤ b}

• When a is minimal int, b maximal int, we have
the largest representable set, largest element
of the lattice, we also denote this by T (top)

• Least element , bottom represents empty set

Transfer Functions for Tests

if (x > 1) {

 y = 1 / x
} else {

 y = 42
}

Tests e.g. [x>1] come from translating if,while into CFG

Joining Data-Flow Facts

if (x > 0) {

 y = x + 100

} else {

 y = -x – 50

}

join

Handling Loops: Iterate Until Stabilizes

 x = 1

 while (x < 10) {

 x = x + 2

 }

Analysis Algorithm

var facts : Map[Node,Domain] = Map.withDefault(empty)
facts(entry) = initialValues

while (there was change)
 pick edge (v1,statmt,v2) from CFG
 such that facts(v1) has changed
 facts(v2)=facts(v2) join transerFun(statmt, facts(v1))
}

Order does not matter for the
end result, as long as we do not
permanently neglect any edge
whose source was changed.

Work List Version

var facts : Map[Node,Domain] = Map.withDefault(empty)
var worklist : Queue[Node] = empty

 def assign(v1:Node,d:Domain) = if (facts(v1)!=d) {
 facts(v1)=d
 for (stmt,v2) <- outEdges(v1) { worklist.add(v2) }
 }
assign(entry, initialValues)

while (!worklist.isEmpty) {
 var v2 = worklist.getAndRemoveFirst
 update = facts(v2)
 for (v1,stmt) <- inEdges(v2)
 { update = update join transferFun(facts(v1),stmt) }
 assign(v2, update)
}

Run range analysis, prove error is unreachable
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

 x := x + 3;

}

if (x >= 0) {

 if (x <= 15)

 a[x]=7;

 else

 error;

} else {

 error;
}

checks array accesses

Range analysis results
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

 x := x + 3;

}

if (x >= 0) {

 if (x <= 15)

 a[x]=7;

 else

 error;

} else {

 error;
}

checks array accesses

Simplified Conditions
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

 x := x + 3;

}

if (x >= 0) {

 if (x <= 15)

 a[x]=7;

 else

 error;

} else {

 error;
}

checks array accesses

Remove Trivial Edges, Unreachable Nodes
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

 x := x + 3;

}

if (x >= 0) {

 if (x <= 15)

 a[x]=7;

 else

 error;

} else {

 error;
}

checks array accesses

Benefits:
 - faster execution (no checks)
 - program cannot crash with error

Apply Range Analysis and Simplify int a, b, step, i;

 boolean c;

 a = 0;

 b = a + 10;

 step = -1;

 if (step > 0) {

 i = a;

 } else {

 i = b;

 }

 c = true;

 while (c) {

 process(i);

 i = i + step;

 if (step > 0) {

 c = (i < b);

 } else {

 c = (i > a);

 }

 }

For booleans, use this lattice: Db = { {}, {false}, {true}, {false,true} }
with ordering given by set subset relation.

(left as exercise)

Correctness

Once the iterative loop stops, there were no changes. From there it follows:
All program states that flow along an edge are included in
the states in the target node.
As long as this condition holds, it does not matter how we computed the states,
the analysis results are correct.
Proof is by considering an execution sequence through CFG and showing by
induction that each state in the sequence is contained in the intervals.

How Long Does Analysis Take?

Handling Loops: Iterate Until Stabilizes

 x = 1

 while (x < n) {
 x = x + 2
 }

How many steps until it stabilizes? Compute.

n = 100000

Handling Loops: Iterate Until Stabilizes

 var x : BigInt = 1

 while (x < n) {
 x = x + 2
 }

For unknown program
inputs and unbounded
domains it may be
practically impossible to
know how long it takes.

var n : BigInt = readInput()

Solutions
 - smaller domain, e.g. only certain intervals
 [a,b] where a,b in {-MI,-127,-1,0,1,127,MI-1}
 - widening techniques (make it less precise on demand)

How many steps until it stabilizes?

Smaller domain: intervals [a,b] where
a,b{-MI,-127,0,127,MI-1} (MI denoted M)

Size of analysis domain

Interval analysis:
 D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {}
Constant propagation:
 D2 = { [a,a] | a{-M,-(M-1),…,-2,-1,0,1,2,3,…,M-1}} U { ,T}
 suppose M is 263

|D1| =

|D2| =

How many steps
until it stabilizes, for any
program with one variable?

How many steps does the analysis take
to finish (converge)?

Interval analysis:
 D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {}
Constant propagation:
 D2 = { [a,a] | a{-M,-(M-1),…,-2,-1,0,1,2,3,…,M-1}} U {,T}
 suppose M is 263

With D1 takes at most steps.

With D2 takes at most steps.

Chain of length n

• A set of elements x0,x1 ,..., xn in D that are
linearly ordered, that is x0  x1  ...  xn

• A lattice can have many chains. Its height is
the maximum n for all the chains, if finite

• If there is no upper bound on lengths of
chains, we say lattice has infinite height

• A monotonic sequence of distinct elements
has length at most equal to lattice height

Termination Given by Length of Chains

Interval analysis:
 D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {}

Constant propagation:
 D2 = { [a,a] | a{-M,…,-2,-1,0,1,2,3,…,M-1}} U {,T}
 suppose M is 263

Product Lattice for All Variables

• If we have N variables, we keep one element
for each of them

• This is like N-tuple of variables

• Resulting lattice is product of N lattices for
individual variables

• Size is |D|N

• The height is only N times the height of D

Relational Analysis
Suppose we keep track of interval for each var

...

// x:[0,10], y:[0,10]

if (x > y) {
 if (y > 3) {

 t = 100/(x - 4)
 }

}

We would not be able to prove that x-4 > 0.

Relational analysis would remember the constraint x<y to make
such reasoning possible.

Instead of tracking bounds on x,y, it tracks also bounds on x-y
and x+y.

