
Program Analysis

auxiliary information
(hints, proof steps, types)

Can come
from compiler or user

Goal:
Automatically computes potentially useful information about the program.

efficiency

correctness

use it to help

Uses of Program Analysis

Compute information about the program and
use it for:

• efficiency (codegen): Program transformation

– Use the information in compiler to transform the
program, make it more efficient (“optimization”)

• correctness: Program verification

– Provide feedback to developer about possible
errors in the program

Example Transformations

• Common sub-expression elimination using available
expression analysis
– avoid re-computing (automatically or manually generated)

identical expressions

• Constant propagation
– use constants instead of variables if variable value known

• Copy propagation
– use another variable with the same name

• Dead code elimination
– remove unnecessary code

• Automatically generate code for parallel machines

Examples of Verification Questions

Example questions in analysis and verification
(with sample links to tools or papers):

• Will the program crash?

• Does it compute the correct result?

• Does it leak private information?

• How long does it take to run?

• How much power does it consume?

• Will it turn off automated cruise control?

http://www.altran-praxis.com/spark.aspx
http://www.key-project.org/
http://www.cs.cornell.edu/jif/
http://www.absint.com/ait/
http://portal.acm.org/citation.cfm?id=963948.963960
http://dx.doi.org/10.1016/j.conengprac.2004.04.002

French Guyana, June 4, 1996
t = 0 sec

t = 40 sec
$800 million software failure

Space Missions

Arithmetic Overflow

L_M_BV_32 := TBD.T_ENTIER_32S ((1.0/C_M_LSB_BV) * G_M_INFO_DERIVE(T_ALG.E_BV));

if L_M_BV_32 > 32767 then

 P_M_DERIVE(T_ALG.E_BV) := 16#7FFF#;

elsif L_M_BV_32 < -32768 then

 P_M_DERIVE(T_ALG.E_BV) := 16#8000#;

else

 P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TDB.T_ENTIER_16S(L_M_BV_32));

end if;

P_M_DERIVE(T_ALG.E_BH) :=

 UC_16S_EN_16NS (TDB.T_ENTIER_16S ((1.0/C_M_LSB_BH)*G_M_INFO_DERIVE(T_ALG.E_BH)));

According to a presentation by Jean-Jacques Levy (who was part of the team who
searched for the source of the problem), the source code in Ada that caused the problem
was as follows:

http://en.wikipedia.org/wiki/Ariane_5_Flight_501

http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/Ariane_5_Flight_501

 Air Transport

ASTREE Analyzer

“In Nov. 2003, ASTRÉE was able to prove
completely automatically the absence of any
RTE in the primary flight control software of the
Airbus A340 fly-by-wire system, a program of
132,000 lines of C analyzed in 1h20 on a 2.8 GHz
32-bit PC using 300 Mb of memory (and 50mn
on a 64-bit AMD Athlon™ 64 using 580 Mb of
memory).”

• http://www.astree.ens.fr/

http://www.astree.ens.fr/
http://www.astree.ens.fr/

AbsInt

• 7 April 2005. AbsInt contributes to
guaranteeing the safety of the A380, the
world's largest passenger aircraft. The
Analyzer is able to verify the proper response
time of the control software of all components
by computing the worst-case execution time
(WCET) of all tasks in the flight control
software. This analysis is performed on the
ground as a critical part of the safety
certification of the aircraft.

http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm

Coverity Prevent

• SAN FRANCISCO - January 8, 2008 - Coverity®,
Inc., the leader in improving software quality and
security, today announced that as a result of its
contract with US Department of Homeland
Security (DHS), potential security and quality
defects in 11 popular open source software
projects were identified and fixed. The 11
projects are Amanda, NTP, OpenPAM, OpenVPN,
Overdose, Perl, PHP, Postfix, Python, Samba,
and TCL.

http://www.coverity.com/
http://www.coverity.com/
http://www.coverity.com/

Microsoft’s Static Driver Verifier
Static Driver Verifier (SDV) is a thorough, compile-time, static verification tool
designed for kernel-mode drivers. SDV finds serious errors that are unlikely to
be encountered even in thorough testing. SDV systematically analyzes the
source code of Windows drivers that are written in the C language. SDV uses a
set of interface rules and a model of the operating system to determine
whether the driver interacts properly with the Windows operating system.
SDV can verify device drivers (function drivers, filter drivers, and bus drivers)
that use the Windows Driver Model (WDM), Kernel-Mode Driver Framework
(KMDF), or NDIS miniport model. SDV is designed to be used throughout the
development cycle. You should run SDV as soon as the basic structure of a
driver is in place, and continue to run it as you make changes to the driver.
Development teams at Microsoft use SDV to improve the quality of the WDM,
KMDF, and NDIS miniport drivers that ship with the operating system and the
sample drivers that ship with the Windows Driver Kit (WDK).
SDV is included in the Windows Driver Kit (WDK) and supports all x86-based
and x64-based build environments.

http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx
http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx

Further Reading on Verification

• Recent Research Highlights from the
Communications of the ACM
– A Few Billion Lines of Code Later: Using Static Analysis

to Find Bugs in the Real World
– Retrospective: An Axiomatic Basis for Computer

Programming
– Model Checking: Algorithmic Verification and

Debugging
– Software Model Checking Takes Off
– Formal Verification of a Realistic Compiler
– seL4: Formal Verification of an Operating-System

Kernel
(click on the links to see pointers to papers)

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/11/48424-model-checking-algorithmic-verification-and-debugging/fulltext
http://cacm.acm.org/magazines/2009/11/48424-model-checking-algorithmic-verification-and-debugging/fulltext
http://cacm.acm.org/magazines/2010/2/69362-software-model-checking-takes-off/fulltext
http://cacm.acm.org/magazines/2009/7/32099-formal-verification-of-a-realistic-compiler/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext

Type Inference

Example Analysis: Type Inference

• Avoid the need for some type declarations,
but still know the type

• Infer types that programmer is not willing to
write (e.g. more precise ones)

• We show a simple example: inferring types
that can be simple values or functions

– we assume no subtyping in this part

– corresponds to Simply Typed Lambda Calculus

Subset of Scala

• Int, Boolean (unless otherwise specified)

– These are two disjoint types

• arithmetic operations (+, -, …), Int x Int => Int

• relations relate Int and give Boolean

• boolean operators

• functions

– also anonymous functions x=>E

• if-then-else statements

Example
object Main {

 val a = 2 * 3

 val b = a < 2

 val c = sumOfSquares(a)

 val d = if(b) c(3) else square(a)

}

def square(x) = x * x

def sumOfSquares(x) = {

 (y) => square(x) + square(y)

}

Can it type-check?

Do there exist some type declarations
for which it type checks

object Main {

 val a: TA = 2 * 3

 val b: TB = a < 2

 val c: TC = sumOfSquares(a)

 val d: TD = if(b) c(3) else square(a)

}

def square(x: TE): TF = x * x

def sumOfSquares(x: TG): TH = {

 (y: TI) => square(x) + square(y)

}

Find assignment
{TA -> Int, TB -> Boolean …}

Type constraints in example

object Main {

 val a: TA = 2 * 3

 val b: TB = a < 2

 val c: TC = sumOfSquares(a: TA)

 val d: TD =

 if(b) c(3): S1 else square(a): S2

}

def square(x: TE): TF = x * x

def sumOfSquares(x: TG): TH = {

 (y: TI) => (square(x) + square(y)): S3

}

2: Int, 3: Int

TA = Int
TB = Boolean

TE = TG
TI = TE
TH = TI -> S3
S3 = Int
S3 = TF

S1 = S2
TD = S2
TD = S1
TA = TE

TC = TH
TA = TG

TF = Int
TE = TF

Hindley-Milner algorithm, intuitively

1. Record type constraints
 val a: A = 3

 val b: B = a

2. Solve type constraints

– obvious in the case above: {A= Int, B = Int}

– in general use unification algorithm

3. Return assignment to type variables or failure

constraints:
{ A = Int, A = B}

Recording type constraints

T1 = Boolean
T2 = T3 = T4

T1 = T2 = T3 = Int

Rules for Solving Equations

Unification

Finds a solution (substitution) to a set of equational
constraints.
• works for any constraint set of equalities between (type) constructors
• finds the most general solution

Definition
A set of equations is in solved form if it is of the form
{x1 = t1, … xn = tn} iff variables xi do not appear in terms ti, that is
{x1, …, xn} ∩ (FV(t1)∪…∪FV(tn)) = ∅

In what follows,
• x denotes a type variable (like TA, TB before)
• t, ti, si denote terms, that may contain type variables

Unification Algorithm
We obtain a solved form in finite time using the non-deterministic algorithm that
applies the following rules as long as no clash is reported and as long as the
equations are not in solved form.

Orient: Select t = x, t ≠ x and replace it with x = t.

Delete: Select x = x, remove it.

Eliminate: Select x = t where x does not occur in t, put it aside,
 substitute x with t in all remaining equations

Occurs Check: Select x = t, where x occurs in t, report clash.

Decomposition: Select f(t1, …, tn) = f(s1, …, sn),

 replace with t1 = s1, …, tn = sn.

 e.g. (T1 x T2) = (S1 x S2) becomes T1 = S1 , T2 = S2

Decomposition Clash: f(t1,…,tn) = g(s1,…,sn), f ≠ g, report clash.

 e.g. (T1 x T2) = (S1 -> S2) is f(T1,T2) = g(S1,S2) so it is a clash

f and g can denote x, ->, as well as constructor of polymorphic containers:

 Map[A, B] = Map[C, D] will be replaced by A = C and B = D

Example 2
Construct and Solve Constraints

def twice(f) = (x) => f(f(x))

Example 2, cleaned up

def twice(f) = (x) => f(f(x))

add type variables:

def twice(f:TF):TA = (x:TX) => f(f(x):TR):TB

constraints:

TA=TX->TB, TF=TX->TR, TF=TR->TB

consequences derived:

TX=TR, TR=TB

replace TR,TB with TX:

TR=TX, TB=TX, TA=TX->TX, TF=TX->TX

twice: TT = TF->TA = (TX->TX)->(TX->TX)

Most General Solution
What is the general solution for

def f(x) = x

def g(a) = f(f(a))

Example solution: a:Int, f,g : Int -> Int

Are there others? How do all solutions look like?

Instantiating Type Variables
def f(x) = x

def test() = if (f(true)) f(3) else f(4)

Generate and solve constraints.

Is result different if we clone f for each invocation?

Generalization Rule

• If after inferring top-level function definitions
certain variables remain unconstrained, then
generalize these variables

• When applying a function with generalized
variables, rename variables into fresh ones

def f(x) = x

def test() = if (f(true)) f(3) else f(4)

Individual exercise 1:

def length(s : String) : Int = {...}

def foo(s: String) = length(s)

def bar(x, y) = foo(x) + y

Individual exercise 2:

def CONS[T](x:T, lst:List[T]):List[T]={...}

def listInt() : List[Int] = {...}

def listBool() : List[Bool] = {...}

def baz(a, b) = CONS(a(b), b)

def test(f,g) =

 (baz(f,listInt), baz(g,listBool))

