Type soundness

In @ more formal way

Proving Soundness of Type Systems

e Goal of a sound type system:
— if the program type checks, then it never “crashes”
— crash = some precisely specified bad behavior

e.g. invoking an operation with a wrong type
e dividing one string by another string “cat” / “frog
e trying to multiply a Window object by a File object

e.g. not dividing an integer by zero

e Never crashes: no matter how long it executes
— proof is done by induction on program execution

Definition of Simple Language

Programs: k: Pos -k: Int
\ .
varx, : Pos variable declarations (:C’ T> el I'Fe:T
var x, : Int . var x: Pos ' (z=e):void
or
var x_: Pos var x: Int I'Fao:T T<:T
Y | R A
foll db
o (z,T) €T
X; = X; statements of one of 3 forms I'Ex:T
— 1) X: = X.
X. =X, +X i | . .
P~ a7 S 2) x=x /% e : Int es : Int
X, = Xp / X, BN Tt
3) X=X+ X €1 te2:In
Xp = Xg X) (No complex expressions) er : Int es : Pos
e1/es : Int
Soundness here: no division by zero e1 : Pos ey . Pos

e1 + eo : Pos

Proving Soundness by Induction

VG || VG VG VG VG VG Good

Program moves from state to state

Bad state = state where program is about to exhibit a bad
operation (3/0)

Good state = state that is not bad

To prove:
program type checks = states in all executions are good

Usually need a stronger inductive hypothesis;

some notion of very good (VG) state such that:
program type checks = program’s initial state is very good
state is very good = next state is also very good
state is very good - state is good (not about to crash)

Proving Soundness by Induction

VG || VG VG VG VG VG

Good

Usually need a stronger inductive hypothesis;

some notion of very good (VG) state such that:
program type checks = program’s initial state is very good
state is very good = next state is also very good
state is very good -2 state is good (not about to crash)

Given program statements and type rules, and under the
assumption that programs type check

1. Define a formal description of program execution
(operational semantics)

2. Find aninvariant to describe very good states
3. Prove that the invariant is preserved for each execution step
Prove that the invariant implies no division by zero

Operational semantics

Operational semantics gives meaning to programs by describing
how the program state changes as a sequence of steps.

e big-step semantics: consider the effect of entire blocks
e small-step semantics: consider individual steps (e.g. z=x +)

V: set of variables in the program

pc: integer variable denoting the program counter
g:V—Int fnc. giving the values of program variables

(g, pc) program state

Then, for each possible statement in the program we define how it
changes the program state.

Example: z = x

(g, pc)—=(g,pc+1) s.t. g =9g(z:=9(x))

Step 1: operational semantics

Give the operational semantics for our simple language.

Programs:
& ™
variable declarations
var x, : Pos var x: Pos (assume default value 1)
var x, : Int > or
var x: Int (assume default value 0)
var x,, : Pos Py
followed by
W A tatements of f3f
statements of one of 3 forms :
Xp = Xq T X, 1) x=x Notation:
X, =X,/ X)
a “bf Tc > 2) X = % 1 % _
X; = XJ + X, g(x :=e) function update
X, = Xq + X,
) (No complex expressions) g(x) value of variable x

Step 2: invariant

“A state is very good, if each variable belongs to
the domain determined by its type.”

Find the invariant that formalizes this.

Step 3:invariant is inductive

Show that if a program type checks,
e invariant holds in program’s initial state
e if the invariant holds in one state, it holds in the next state

ki Pos -k: Int e1 : Int eo : Int
(x,T) el 'Fe: T e1 + eo: Int

Lh(z=e):void e1 : Int e : Pos
Pz T T<T e1/es : Int

trer e1 : Pos es : Pos
@) el e1 + e2 : Pos

I'Fx:T

Step 4: invariant implies no crash

Show that assuming a program type checks,
its execution will not divide by zero.

Back to the start

k: Pos -k: Int

I'Fx:T I'Fe: T

't (x =e):void

I'x:T T <: T’

F'Fx:T

(x,T) el
I'Fax:T

e1: Int eo : Int
e1 +eo: Int

e1: Int es : Pos

e1/eq : Int

e1 : Pos es : Pos

e1 + es: Pos

Does the proof still work?

If not, where does it break?

What if we want more complex types?

class A { } « Should it type check?
class B extends A { . .

void foo() { } * Does this type check in Java?
} * Does this type check in Scala?

class Test {
public static void main(String[] args) {

B[] b = new B[5];
Al] aj
a = b;
System.out.println("Hello,");
a[0] = new A();
System.out.println("world!");
b[0].foo();

What if we want more complex types?

Suppose we add to our language a reference type:

class Ref[T](var content : T)

Programs:

var X, :
var x, :
var g :
var x, :

X=Yy

Pos

Int
Ref[Int]
Ref[Pos]

X=Yy+z

x=y/z

X =y + z.content
x.content =y

Exercise 1:
Extend the type rules to use with Ref[T] types.
Show your new type system is sound.

Exercise 2:
Can we use the subtyping rule?
If not, where does the proof break?

T <. T
Ref|T| <: Ref[T’]

