Type soundness

In a more formal way

Proving Soundness of Type Systems

- Goal of a sound type system:
 - if the program type checks, then it never "crashes"
 - crash = some precisely specified bad behavior
 - e.g. invoking an operation with a wrong type
 - dividing one string by another string "cat" / "frog
 - trying to multiply a Window object by a File object
 - e.g. not dividing an integer by zero
- Never crashes: no matter how long it executes
 - proof is done by induction on program execution

Definition of Simple Language

Programs:

var x₁ : Pos var x₂ : Int ... var x_n : Pos

variable declarations var x: Pos

or

var x: Int

followed by

$$x_{i} = x_{j}$$

$$x_{p} = x_{q} + x_{r}$$

$$x_{a} = x_{b} / x_{c}$$
...

 $x_p = x_q + x_r$

statements of one of 3 forms

$$1) \quad x_i = x_j$$

. 2)
$$x_i = x_j / x_k$$

$$3) \quad x_i = x_j + x_k$$

(No complex expressions)

$$\frac{(x,T) \in \Gamma \qquad \Gamma \vdash e : T}{\Gamma \vdash (x=e) : void}$$

$$\frac{\Gamma \vdash x : T \qquad T <: T'}{\Gamma \vdash x : T'}$$

$$\frac{(x,T) \in \Gamma}{\Gamma \vdash x : T}$$

$$\frac{e_1:Int}{e_1+e_2:Int}$$

$$\frac{e_1:Int}{e_1/e_2:Int}$$

$$e_1: Pos \qquad e_2: Pos$$

$$e_1 + e_2: Pos$$

Soundness here: no division by zero

Proving Soundness by Induction

- Program moves from state to state
- Bad state = state where program is about to exhibit a bad operation (3 / 0)
- Good state = state that is not bad
- To prove:
 program type checks → states in all executions are good
- Usually need a stronger inductive hypothesis;
 some notion of very good (VG) state such that:
 program type checks → program's initial state is very good
 state is very good → next state is also very good
 state is very good → state is good (not about to crash)

Proving Soundness by Induction

Usually need a stronger inductive hypothesis; some notion of very good (VG) state such that: program type checks → program's initial state is very good state is very good → next state is also very good state is very good → state is good (not about to crash)

Given program statements and type rules, and under the assumption that programs type check

- Define a formal description of program execution (operational semantics)
- 2. Find an invariant to describe very good states
- 3. Prove that the invariant is preserved for each execution step
- 4. Prove that the invariant implies no division by zero

Operational semantics

Operational semantics gives meaning to programs by describing how the program state changes as a sequence of steps.

- big-step semantics: consider the effect of entire blocks
- small-step semantics: consider individual steps (e.g. z = x + y)

V: set of variables in the program

pc: integer variable denoting the program counter

g: $V \rightarrow Int$ fnc. giving the values of program variables

(g, pc) program state

Then, for each possible statement in the program we define how it changes the program state.

Example: z = x

$$(g, pc) \rightarrow (g', pc + 1)$$
 s. t. $g' = g(z := g(x))$

Step 1: operational semantics

Give the operational semantics for our simple language.

Programs:

```
var x_1 : Pos
var x_2 : Int
```

 $var x_n : Pos$

variable declarations

var x: Pos (assume default value 1)

or

var x: Int (assume default value 0)

followed by

$$x_i = x_j$$

 $x_p = x_q + x_r$
 $x_a = x_b / x_c$

$$x_p = x_q + x_r$$

statements of one of 3 forms

- $x_i = x_i$
- 2) $x_i = x_j / x_k$ 3) $x_i = x_j + x_k$

(No complex expressions)

Notation:

g(x := e) function update

value of variable x g(x)

Step 2: invariant

"A state is very good, if each variable belongs to the domain determined by its type."

Find the invariant that formalizes this.

Step 3: invariant is inductive

Show that if a program type checks,

- invariant holds in program's initial state
- if the invariant holds in one state, it holds in the next state

k: Pos-k: Int
$$e_1: Int$$
 $e_2: Int$ $(x,T) \in \Gamma$ $\Gamma \vdash e: T$ $e_1 + e_2: Int$ $\Gamma \vdash (x = e): void$ $e_1: Int$ $e_2: Pos$ $\Gamma \vdash x: T$ $e_1/e_2: Int$ $\Gamma \vdash x: T'$ $e_1 : Pos$ $e_2: Pos$ $(x,T) \in \Gamma$ $e_1 + e_2: Pos$ $\Gamma \vdash x: T$ $e_1 + e_2: Pos$

Step 4: invariant implies no crash

Show that assuming a program type checks, its execution will not divide by zero.

Back to the start

$$\frac{\Gamma \vdash x : T \qquad \Gamma \vdash e : T}{\Gamma \vdash (x = e) : void}$$

$$\frac{\Gamma \vdash x : T \qquad T <: T'}{\Gamma \vdash x : T'}$$

$$\frac{(x,T) \in \Gamma}{\Gamma \vdash x : T}$$

$$e_1: Int \qquad e_2: Int$$
$$e_1 + e_2: Int$$

$$e_1: Int \qquad e_2: Pos$$
$$e_1/e_2: Int$$

$$\begin{array}{cc}
e_1: Pos & e_2: Pos \\
\hline
e_1 + e_2: Pos
\end{array}$$

Does the proof still work?

If not, where does it break?

What if we want more complex types?

```
class A { }

    Should it type check?

class B extends A {

    Does this type check in Java?

  void foo() { }

    Does this type check in Scala?

class Test {
  public static void main(String[] args) {
    B[] b = new B[5];
    A[] a;
    a = b;
    System.out.println("Hello,");
    a[0] = new A();
    System.out.println("world!");
    b[0].foo();
```

What if we want more complex types?

Suppose we add to our language a reference type:

```
class Ref[T](var content : T)
```

Programs:

 $var x_1 : Pos var x_2 : Int$

var x_3 : Ref[Int] var x_4 : Ref[Pos]

x = y x = y + z x = y / z x = y + z.content x.content = y

Exercise 1:

Extend the type rules to use with Ref[T] types. Show your new type system is sound.

Exercise 2:

Can we use the subtyping rule? If not, where does the proof break?

$$\frac{T <: T'}{Ref[T] <: Ref[T']}$$