Parsing using CYK Algorithm

e Transform grammar into Chomsky Form:

remove unproductive symbols

remove unreachable symbols

remove epsilons (no non-start nullable symbols)
remove single non-terminal productions X::=Y
transform productions of arity more than two

SR A

make terminals occur alone on right-hand side
Have only rules X ::=YZ, X::=t

e Apply CYK dynamic programming algorithm

Questions:

— With steps in the order above, what is the worst-case increase
in grammar size, in each step and overall?

— Does any step break the effect of a previous one?
— Propose alternative step order and answer again the above.
— Which steps could we omit and still have CYK working?

Suggested Order

Removing epsilons (3) can increase grammar
size exponentially

This problem is avoided if we make rules
binary first (5).

Removing epsilons can make some symbols
unreachable, so we can repeat 2

Resulting order:
1,2,5,3,4,2,6

A CYK for Any Grammar

grammar G, non-terminals A,,...,A,, tokens t,,....t,
input word: W =W W ...W g

Wo.a T WipWipen) - Wigr)
Triple (A, p, q) means: A=>"w

o.q » Acanbe:A,t,ore

repeat {
choose rule (A::=B,...B_)eG
if ((A,Pg,Py) £P &&

((m=0 && py,=p,,) || (B1,Pe:P1)s -+-+(B,ysP1y.1-P 1) € P))

P:=PU{(A,pypy)}
} until no more insertions possible

What is the maximal number of steps? for grammar in
How long does it take to check step for a rule? | given normal form

Observation

e How many ways are there to split a string of
length Q into m segments?

(Q V’;‘”‘) _ (@rwm)l

Qrmt
e Exponential in m, so algorithm is exponential.

e For binary rules, m=2, so algorithm is efficient.

Name Analysis Problems Detected

a class is defined more than once: classA{...}classB{... }classA{... }
a variable is defined more than once: int x; int y; int x;

a class member is overloaded (forbidden in Tool, requires override keyword in Scala):
class A{int x; ... } class B extends A{intx; ... }

a method is overloaded (forbidden in Tool, requires override keyword in Scala):
class A{int x; ... } class B extends A{intx; ... }

a method argument is shadowed by a local variable declaration (forbidden in Java, Tool):
def (x:Int) { var x : Int; ...}

two method arguments have the same name: def (x:Int,y:Int,x:Int) { ... }

a class name is used as a symbol (as parent class or type, for instance) but is not declared:
class A extends Objekt {}

an identifier is used as a variable but is not declared:
def(amount:Int) { total = total + ammount }

the inheritance graph has a cycle: class A extends B {} class B extends C {} class C extends A

To make it efficient and clean to check for such errors, we associate mapping from each
identifier to the symbol that the identifier represents.

We use Map data structures to maintain this mapping (Map, what else?)

The rules that specify how declarations are used to construct such maps are given by
scope rules of the programming language.

http://lara.epfl.ch/w/cc10:tool
http://lara.epfl.ch/w/cc10:tool

