
Parsing using CYK Algorithm
• Transform grammar into Chomsky Form:

1. remove unproductive symbols

2. remove unreachable symbols

3. remove epsilons (no non-start nullable symbols)

4. remove single non-terminal productions X::=Y

5. transform productions of arity more than two

6. make terminals occur alone on right-hand side

Have only rules X ::= Y Z, X ::= t

• Apply CYK dynamic programming algorithm

Questions:

– With steps in the order above, what is the worst-case increase
in grammar size, in each step and overall?

– Does any step break the effect of a previous one?

– Propose alternative step order and answer again the above.

– Which steps could we omit and still have CYK working?

Suggested Order

• Removing epsilons (3) can increase grammar
size exponentially

• This problem is avoided if we make rules
binary first (5).

• Removing epsilons can make some symbols
unreachable, so we can repeat 2

• Resulting order:

1,2,5,3,4,2,6

A CYK for Any Grammar

grammar G, non-terminals A1,...,AK, tokens t1,....tL
input word: w = w(0)w(1) …w(N-1)
wp..q = w(p)w(p+1) …w(q-1)

Triple (A, p, q) means: A =>* wp..q , A can be: Ai, tj, or 
 P = {(w(i),i,i+1)| 0  i < N-1}
 repeat {
 choose rule (A::=B1...Bm)G

 if ((A,p0,pm)P &&

 ((m=0 && p0=pm) || (B1,p0,p1), ...,(Bm,pm-1,pm)  P))
 P := P U {(A,p0,pm)}
 } until no more insertions possible

What is the maximal number of steps?
How long does it take to check step for a rule?

for grammar in
given normal form

Observation

• How many ways are there to split a string of
length Q into m segments?

• Exponential in m, so algorithm is exponential.

• For binary rules, m=2, so algorithm is efficient.

Name Analysis Problems Detected
• a class is defined more than once: class A { ...} class B { ... } class A { ... }

• a variable is defined more than once: int x; int y; int x;

• a class member is overloaded (forbidden in Tool, requires override keyword in Scala):
 class A { int x; ... } class B extends A { int x; ... }

• a method is overloaded (forbidden in Tool, requires override keyword in Scala):
 class A { int x; ... } class B extends A { int x; ... }

• a method argument is shadowed by a local variable declaration (forbidden in Java, Tool):
 def (x:Int) { var x : Int; ...}

• two method arguments have the same name: def (x:Int,y:Int,x:Int) { ... }

• a class name is used as a symbol (as parent class or type, for instance) but is not declared:
 class A extends Objekt {}

• an identifier is used as a variable but is not declared:
 def(amount:Int) { total = total + ammount }

• the inheritance graph has a cycle: class A extends B {} class B extends C {} class C extends A

To make it efficient and clean to check for such errors, we associate mapping from each
identifier to the symbol that the identifier represents.

• We use Map data structures to maintain this mapping (Map, what else?)

• The rules that specify how declarations are used to construct such maps are given by
scope rules of the programming language.

http://lara.epfl.ch/w/cc10:tool
http://lara.epfl.ch/w/cc10:tool

