
Computing if a token can follow 

first(B1 ... Bp) = {a | B1...Bp    ...    aw } 

follow(X) = {a | S    ...    ...Xa... } 

 

There exists a derivation from the start symbol 
that produces a sequence of terminals and 
nonterminals of the form  ...Xa... 
(the token a follows the non-terminal X) 



Rule for Computing Follow 

Given  X ::= YZ  (for reachable X) 

then first(Z)  follow(Y) 
and  follow(X)  follow(Z) 

       

Now take care of nullable ones as well: 

For each rule X ::= Y1 ... Yp ... Yq ... Yr 

follow(Yp) should contain: 

• first(Yp+1Yp+2...Yr) 

• also follow(X) if  nullable(Yp+1Yp+2Yr) 

S ::= Xa 
X ::= YZ 
Y ::= b 
Z ::= c S => Xa => YZa => Yba 



Compute nullable, first, follow 

stmtList ::=  | stmt  stmtList  

stmt ::= assign | block  

assign ::= ID  =  ID  ;  

block ::= beginof  ID stmtList ID ends 

 

 

Compute follow (for that we need nullable,first) 



Conclusion of the Solution 

The grammar is not LL(1) because we have  

• nullable(stmtList) 

• first(stmt)  follow(stmtList) = {ID}  

 

• If a recursive-descent parser sees ID, it does 
not know if it should  

– finish parsing stmtList or 

– parse another stmt 



LL(1) Grammar - good for building 
recursive descent parsers  

• Grammar is LL(1) if for each nonterminal X 

– first sets of different alternatives of X are disjoint 

– if nullable(X), first(X) must be disjoint from follow(X) 

• For each LL(1) grammar we can build  
recursive-descent parser 

• Each LL(1) grammar is unambiguous 

• If a grammar is not LL(1), we can sometimes 
transform it into equivalent LL(1) grammar 

 



Table for LL(1) Parser: Example 

S ::= B EOF  

             (1) 
B ::=   | B (B) 
         (1)      (2) 

 
EOF ( ) 

S {1} {1} {} 

B {1} {1,2} {1} 

nullable: B 

first(S) = { ( } 
follow(S) = {} 

first(B) = { ( } 
follow(B) = { ), (, EOF } 

Parsing table: 

parse conflict - choice ambiguity: 
grammar not LL(1) 

empty entry: 
when parsing S, 
if we see ) , 
report error 

1 is in entry because ( is in follow(B) 
2 is in entry because ( is in first(B(B)) 



Table for LL(1) Parsing 

Tells which alternative to take, given current token: 

choice : Nonterminal x Token -> Set[Int] 

A ::=  (1)  B1 ... Bp 
       | (2)  C1 ... Cq 

       | (3)  D1 ... Dr 

For example, when parsing A and seeing token t 

choice(A,t) = {2}  means: parse alternative 2   (C1 ... Cq ) 

choice(A,t) = {1}  means: parse alternative 3   (D1 ... Dr) 

choice(A,t) = {}    means: report syntax error 

choice(A,t) = {2,3} : not LL(1) grammar 

if   t  first(C1 ... Cq)   add 2 
    to choice(A,t) 

if   t  follow(A) add K to choice(A,t) 
where K is nullable alternative  



Transform Grammar for LL(1) 

S ::= B EOF  
B ::=   | B (B) 
         (1)      (2) 

 

EOF ( ) 

S {1} {1} {} 

B {1} {1,2} {1} 

Transform the grammar 
so that parsing table has 
no conflicts. 

Old parsing table: 

conflict - choice ambiguity: 
grammar not LL(1) 

1 is in entry because ( is in follow(B) 
2 is in entry because ( is in first(B(B)) 

EOF ( ) 

S 

B 

S ::= B EOF  
B ::=   | (B) B 
         (1)      (2) 

 Left recursion is bad for LL(1) 
choice(A,t)  



Parse Table is Code for Generic Parser 
var stack : Stack[GrammarSymbol] // terminal or non-terminal 
stack.push(EOF); 
stack.push(StartNonterminal); 
var lex = new Lexer(inputFile) 
while (true) { 
 X = stack.pop 
  t = lex.curent 
  if (isTerminal(X)) 
     if (t==X)   if (X==EOF) return success 
                      else lex.next // eat token t  
    else parseError("Expected " + X) 
  else { // non-terminal 
    cs = choice(X)(t) // look up parsing table 
    cs match { // result is a set 
    case {i} => { // exactly one choice 
      rhs = p(X,i) // choose correct right-hand side 
      stack.push(reverse(rhs)) } 
    case {} => parseError("Parser expected an element of " + unionOfAll(choice(X))) 
    case _ => crash(“parse table with conflicts - grammar was not LL(1)") 
  } 
} 



What if we cannot transform the 
grammar into LL(1)? 

 

1) Redesign your language 

 

2) Use a more powerful parsing technique 



 

 

 

 

 

 

 

 

 

 

 

 

regular 

Languages semi-decidable 

decidable 

context-sensitive 

context-free 

unambiguous 

deterministic = LR(1) 

LL(1) 

LALR(1) 

SLR LR(0) 



Remark: Grammars and Languages 

• Language S is a set of words 

• For each language S, there can be multiple 
possible grammars G such that S=L(G) 

• Language S is 

– Non-ambiguous if there exists a non-ambiguous 
grammar for it 

– LL(1) if there is an LL(1) grammar for it 

• Even if a language has ambiguous grammar, it 
can still be non-ambiguous if it also has a  
non-ambiguous grammar 



Parsing General Grammars: Why 
• Can be difficult or impossible to make 

grammar unambiguous 

 

• Some inputs are more complex than simple 
programming languages 

– mathematical formulas: 
x = y /\ z ?  (x=y) /\ z              x = (y /\ z) 

– future programming languages 

– natural language: 

  I saw the man with the telescope. 



Ambiguity 

  I saw the man with the telescope. 

1) 

2) 



CYK Parsing Algorithm 

C: 
John Cocke and Jacob T. Schwartz (1970).  Programming languages and their compilers: 
Preliminary notes. Technical report, Courant Institute of Mathematical Sciences, New York 
University.  
 

Y: 
Daniel H. Younger (1967). Recognition and parsing of context-free languages in time n3. 
Information and Control 10(2): 189–208.  
 

K: 
T. Kasami (1965). An efficient recognition and syntax-analysis algorithm for context-free 
languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab, Bedford, MA.  
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Two Steps in the Algorithm 

1) Transform grammar to normal form 
 called Chomsky Normal Form 
(Noam Chomsky, mathematical linguist) 

 

2) Parse input using transformed grammar 
 dynamic programming algorithm 

“a method for solving complex problems by breaking them 

down into simpler steps.  

It is applicable to problems exhibiting the properties of 

overlapping subproblems”            (>WP) 



Chomsky Normal Form 

• Essentially, only binary rules 

• Concretely, these kinds of rules: 

 

X ::= Y Z  binary rule    X,Y,Z - non-terminals 

X ::= a  non-terminal as a name for token 
S ::=   only for top-level symbol S 



Balanced Parentheses Grammar 

Original grammar G 

S   | ( S ) | S S 

Modified grammar in Chomsky Normal Form: 

S   | S’ 
 

S’  N( NS) | N(  N) | S’ S’  
NS)  S’ N) 
N(  ( 
N)  ) 

• Terminals: (  )     Nonterminals: S  S’  NS)  N)  N( 



Idea How We Obtained the Grammar 

S           (     S   ) 

 

 

S’        N(     NS)     |  N(   N) 

 

N(     ( 

 

NS)  S’ N)  
 

N)   ) 

Chomsky Normal Form transformation 

can be done fully mechanically 



Transforming Grammars  
into Chomsky Normal Form 

Steps: 

1. remove unproductive symbols 

2. remove unreachable symbols 

3. remove epsilons (no non-start nullable symbols) 

4. remove single non-terminal productions X::=Y 

5. transform productions w/ more than 3 on RHS 

6. make terminals occur alone on right-hand side 



4) Eliminating single productions 

• Single production is of the form 

X ::=Y 

where X,Y are non-terminals 

  program ::= stmtSeq 
  stmtSeq ::= stmt  
                    | stmt ; stmtSeq 
  stmt ::= assignment | whileStmt 
  assignment ::= expr = expr 
  whileStmt ::= while (expr) stmt 



4) Eliminate single productions - Result 

• Generalizes removal of epsilon transitions 
from non-deterministic automata 

  program ::= expr = expr | while (expr) stmt  
                    | stmt ; stmtSeq 
  stmtSeq ::= expr = expr | while (expr) stmt  
                    | stmt ; stmtSeq 
  stmt ::= expr = expr | while (expr) stmt  
  assignment ::= expr = expr 
  whileStmt ::= while (expr) stmt   



4) “Single Production Terminator” 

• If there is single production 

X ::=Y  put an edge (X,Y) into graph 

• If there is a path from X to Z in the graph, and 
there is rule Z ::= s1 s2 … sn then add rule 

  program ::= expr = expr | while (expr) stmt  
                    | stmt ; stmtSeq 
  stmtSeq ::= expr = expr | while (expr) stmt  
                    | stmt ; stmtSeq 
  stmt ::= expr = expr | while (expr) stmt  

X ::= s1 s2 … sn 

At the end, remove all single productions. 



5) No more than 2 symbols on RHS 

 stmt ::= while (expr) stmt 

becomes 

 stmt ::= while stmt1 
 stmt1 ::= ( stmt2 

 stmt2 ::= expr stmt3 
 stmt3 ::= ) stmt 



6) A non-terminal for each terminal 

 stmt ::= while (expr) stmt 

becomes 

 stmt ::= Nwhile stmt1 
 stmt1 ::= N( stmt2 

 stmt2 ::= expr stmt3 
 stmt3 ::= N) stmt 
 Nwhile ::= while 
 N( ::= ( 
 N) ::= ) 



Parsing using CYK Algorithm 

• Transform grammar into Chomsky Form: 

1. remove unproductive symbols 

2. remove unreachable symbols 

3. remove epsilons (no non-start nullable symbols) 

4. remove single non-terminal productions X::=Y 

5. transform productions of arity more than two 

6. make terminals occur alone on right-hand side 

Have only rules X ::= Y Z,  X ::= t, and possibly S ::= “” 

• Apply CYK dynamic programming algorithm 



Dynamic Programming to Parse Input 

Assume Chomsky Normal Form, 3 types of rules: 

 S   | S’   (only for the start non-terminal) 

 Nj  t  (names for terminals) 

 Ni  Nj  Nk   (just 2 non-terminals on RHS) 

Decomposing long input: 

 

 

 

find all ways to parse substrings of length 1,2,3,… 

( ( ( ) ( ) ) ( ) ) ( ( ) ) 

Ni 

Nj Nk 



Parsing an Input 
S’  N( NS) | N(  N) | S’ S’  
NS)  S’ N) 
N(  ( 
N)  ) 

N( N( N) N( N) N( N) N) 1 

2 

3 

4 

5 

6 

7 
ambiguity 

( ( ) ( ) ( ) ) 



Algorithm Idea 
S’  S’ S’  

1 

2 

3 

4 

5 

6 

7 
wpq – substring from p to q 

dpq – all non-terminals that 
         could expand to wpq 

Initially  dpp has Nw(p,p) 

key step of the algorithm: 

if  X  Y Z  is a rule, 
    Y is in dp r  , and 
    Z is in d(r+1)q 

then put X into dpq 

 (p     r < q),  

in increasing value of (q-p) 

N( N( N) N( N) N( N) N) 

( ( ) ( ) ( ) ) 



Algorithm 
INPUT:  grammar G in Chomsky normal form  
               word w to parse using G 
OUTPUT: true iff (w in L(G))  
N = |w|  
var d : Array[N][N]  
for p = 1 to N {  
   d(p)(p) = {X | G contains X->w(p)}  
   for q in {p + 1 .. N} d(p)(q) = {} }  
for k = 2 to N // substring length  
  for p = 0 to N-k // initial position 
    for j = 1 to k-1 // length of first half  
      val r = p+j-1; val q = p+k-1; 
      for (X::=Y Z) in G 
        if Y in d(p)(r) and Z in d(r+1)(q)  
           d(p)(q) = d(p)(q) union {X}  
return  S in d(0)(N-1) 

( ( ) ( ) ( ) ) 

What is the running time 
as a function of grammar 
size and the size of input? 

 
O(       ) 

http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/


Parsing another Input 
S’  N( NS) | N(  N) | S’ S’  
NS)  S’ N) 
N(  ( 
N)  ) 

( ) ( ) ( ) ( ) 

N( N) N( N) N( N) N( N) 1 

2 

3 

4 

5 

6 

7 



Number of Parse Trees 

• Let w denote word ()()() 

– it has two parse trees 

• Give a lower bound on number of parse trees 
of the word wn 

  (n is positive integer) 

w5  is the word 

 ()()() ()()() ()()() ()()() ()()() 

• CYK represents all parse trees compactly 

– can re-run algorithm to extract first parse tree, or 
enumerate parse trees one by one 



Earley’s Algorithm 
also parser arbitrary grammars 

J. Earley, "An efficient context-free parsing 

algorithm", Communications of the Association for 

Computing Machinery, 13:2:94-102, 1970. 

http://portal.acm.org/citation.cfm?doid=362007.362035
http://portal.acm.org/citation.cfm?doid=362007.362035
http://portal.acm.org/citation.cfm?doid=362007.362035
http://portal.acm.org/citation.cfm?doid=362007.362035


Z ::= X Y  Z parses wpq 

• CYK: if dpr parses X and d(r+1)q parses Y, then 
in dpq stores symbol Z 

• Earley’s parser:  
in set Sq stores item (Z ::= XY. , p)  

• Move forward, similar to top-down parsers 

• Use dotted rules to avoid binary rules 

CYK vs Earley’s Parser Comparison 

( ( ) ( ) ( ) ) 



Example: expressions 

D ::= e EOF 

e ::=  ID | e – e | e == e 

Rules with a dot inside 

D ::= . e EOF | e . EOF | e EOF . 

e ::= . ID | ID .  

       | . e – e | e . – e | e – . e | e – e .  

       | . e == e | e . == e | e == . e | e == e . 

 



ID - ID == ID EOF 

ID ID- ID-ID ID-ID== ID-ID==ID 

ID - -ID -ID== -ID==ID 

- ID ID== ID==ID 

ID == ==ID 

== ID 

ID 

EOF 

e ::= . ID | ID .  

       | . e – e | e . – e | e – . e | e – e .  

       | . e == e | e . == e | e == . e | e == e . 

S ::= . e EOF | e . EOF | e EOF . 



ID - ID == ID EOF 

ID ID- ID-ID ID-ID== ID-ID==ID 

ID - -ID -ID== -ID==ID 

- ID ID== ID==ID 

ID == ==ID 

== ID 

ID 

EOF 

e ::= . ID | ID .  

       | . e – e | e . – e | e – . e | e – e .  

       | . e == e | e . == e | e == . e | e == e . 

S ::= . e EOF | e . EOF | e EOF . 


