
Computing if a token can follow

first(B1 ... Bp) = {a | B1...Bp ...  aw }

follow(X) = {a | S ...  ...Xa... }

There exists a derivation from the start symbol
that produces a sequence of terminals and
nonterminals of the form ...Xa...
(the token a follows the non-terminal X)

Rule for Computing Follow

Given X ::= YZ (for reachable X)

then first(Z)  follow(Y)
and follow(X)  follow(Z)

Now take care of nullable ones as well:

For each rule X ::= Y1 ... Yp ... Yq ... Yr

follow(Yp) should contain:

• first(Yp+1Yp+2...Yr)

• also follow(X) if nullable(Yp+1Yp+2Yr)

S ::= Xa
X ::= YZ
Y ::= b
Z ::= c S => Xa => YZa => Yba

Compute nullable, first, follow

stmtList ::=  | stmt stmtList

stmt ::= assign | block

assign ::= ID = ID ;

block ::= beginof ID stmtList ID ends

Compute follow (for that we need nullable,first)

Conclusion of the Solution

The grammar is not LL(1) because we have

• nullable(stmtList)

• first(stmt)  follow(stmtList) = {ID}

• If a recursive-descent parser sees ID, it does
not know if it should

– finish parsing stmtList or

– parse another stmt

LL(1) Grammar - good for building
recursive descent parsers

• Grammar is LL(1) if for each nonterminal X

– first sets of different alternatives of X are disjoint

– if nullable(X), first(X) must be disjoint from follow(X)

• For each LL(1) grammar we can build
recursive-descent parser

• Each LL(1) grammar is unambiguous

• If a grammar is not LL(1), we can sometimes
transform it into equivalent LL(1) grammar

Table for LL(1) Parser: Example

S ::= B EOF

 (1)
B ::=  | B (B)
 (1) (2)

EOF ()

S {1} {1} {}

B {1} {1,2} {1}

nullable: B

first(S) = { (}
follow(S) = {}

first(B) = { (}
follow(B) = {), (, EOF }

Parsing table:

parse conflict - choice ambiguity:
grammar not LL(1)

empty entry:
when parsing S,
if we see) ,
report error

1 is in entry because (is in follow(B)
2 is in entry because (is in first(B(B))

Table for LL(1) Parsing

Tells which alternative to take, given current token:

choice : Nonterminal x Token -> Set[Int]

A ::= (1) B1 ... Bp
 | (2) C1 ... Cq

 | (3) D1 ... Dr

For example, when parsing A and seeing token t

choice(A,t) = {2} means: parse alternative 2 (C1 ... Cq)

choice(A,t) = {1} means: parse alternative 3 (D1 ... Dr)

choice(A,t) = {} means: report syntax error

choice(A,t) = {2,3} : not LL(1) grammar

if t  first(C1 ... Cq) add 2
 to choice(A,t)

if t  follow(A) add K to choice(A,t)
where K is nullable alternative

Transform Grammar for LL(1)

S ::= B EOF
B ::=  | B (B)
 (1) (2)

EOF ()

S {1} {1} {}

B {1} {1,2} {1}

Transform the grammar
so that parsing table has
no conflicts.

Old parsing table:

conflict - choice ambiguity:
grammar not LL(1)

1 is in entry because (is in follow(B)
2 is in entry because (is in first(B(B))

EOF ()

S

B

S ::= B EOF
B ::=  | (B) B
 (1) (2)

 Left recursion is bad for LL(1)
choice(A,t)

Parse Table is Code for Generic Parser
var stack : Stack[GrammarSymbol] // terminal or non-terminal
stack.push(EOF);
stack.push(StartNonterminal);
var lex = new Lexer(inputFile)
while (true) {
 X = stack.pop
 t = lex.curent
 if (isTerminal(X))
 if (t==X) if (X==EOF) return success
 else lex.next // eat token t
 else parseError("Expected " + X)
 else { // non-terminal
 cs = choice(X)(t) // look up parsing table
 cs match { // result is a set
 case {i} => { // exactly one choice
 rhs = p(X,i) // choose correct right-hand side
 stack.push(reverse(rhs)) }
 case {} => parseError("Parser expected an element of " + unionOfAll(choice(X)))
 case _ => crash(“parse table with conflicts - grammar was not LL(1)")
 }
}

What if we cannot transform the
grammar into LL(1)?

1) Redesign your language

2) Use a more powerful parsing technique

regular

Languages semi-decidable

decidable

context-sensitive

context-free

unambiguous

deterministic = LR(1)

LL(1)

LALR(1)

SLR LR(0)

Remark: Grammars and Languages

• Language S is a set of words

• For each language S, there can be multiple
possible grammars G such that S=L(G)

• Language S is

– Non-ambiguous if there exists a non-ambiguous
grammar for it

– LL(1) if there is an LL(1) grammar for it

• Even if a language has ambiguous grammar, it
can still be non-ambiguous if it also has a
non-ambiguous grammar

Parsing General Grammars: Why
• Can be difficult or impossible to make

grammar unambiguous

• Some inputs are more complex than simple
programming languages

– mathematical formulas:
x = y /\ z ? (x=y) /\ z x = (y /\ z)

– future programming languages

– natural language:

 I saw the man with the telescope.

Ambiguity

 I saw the man with the telescope.

1)

2)

CYK Parsing Algorithm

C:
John Cocke and Jacob T. Schwartz (1970). Programming languages and their compilers:
Preliminary notes. Technical report, Courant Institute of Mathematical Sciences, New York
University.

Y:
Daniel H. Younger (1967). Recognition and parsing of context-free languages in time n3.
Information and Control 10(2): 189–208.

K:
T. Kasami (1965). An efficient recognition and syntax-analysis algorithm for context-free
languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab, Bedford, MA.

http://en.wikipedia.org/wiki/John_Cocke
http://en.wikipedia.org/wiki/John_Cocke
http://en.wikipedia.org/wiki/Courant_Institute_of_Mathematical_Sciences
http://en.wikipedia.org/wiki/New_York_University
http://en.wikipedia.org/wiki/New_York_University
http://en.wikipedia.org/wiki/Tadao_Kasami
http://en.wikipedia.org/wiki/Tadao_Kasami
http://en.wikipedia.org/wiki/Tadao_Kasami
http://en.wikipedia.org/wiki/Bedford,_MA

Two Steps in the Algorithm

1) Transform grammar to normal form
 called Chomsky Normal Form
(Noam Chomsky, mathematical linguist)

2) Parse input using transformed grammar
 dynamic programming algorithm

“a method for solving complex problems by breaking them

down into simpler steps.

It is applicable to problems exhibiting the properties of

overlapping subproblems” (>WP)

Chomsky Normal Form

• Essentially, only binary rules

• Concretely, these kinds of rules:

X ::= Y Z binary rule X,Y,Z - non-terminals

X ::= a non-terminal as a name for token
S ::=  only for top-level symbol S

Balanced Parentheses Grammar

Original grammar G

S   | (S) | S S

Modified grammar in Chomsky Normal Form:

S   | S’

S’  N(NS) | N(N) | S’ S’
NS)  S’ N)
N( (
N) )

• Terminals: () Nonterminals: S S’ NS) N) N(

Idea How We Obtained the Grammar

S  (S)

S’  N(NS) | N(N)

N( (

NS)  S’ N)

N) )

Chomsky Normal Form transformation

can be done fully mechanically

Transforming Grammars
into Chomsky Normal Form

Steps:

1. remove unproductive symbols

2. remove unreachable symbols

3. remove epsilons (no non-start nullable symbols)

4. remove single non-terminal productions X::=Y

5. transform productions w/ more than 3 on RHS

6. make terminals occur alone on right-hand side

4) Eliminating single productions

• Single production is of the form

X ::=Y

where X,Y are non-terminals

 program ::= stmtSeq
 stmtSeq ::= stmt
 | stmt ; stmtSeq
 stmt ::= assignment | whileStmt
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt

4) Eliminate single productions - Result

• Generalizes removal of epsilon transitions
from non-deterministic automata

 program ::= expr = expr | while (expr) stmt
 | stmt ; stmtSeq
 stmtSeq ::= expr = expr | while (expr) stmt
 | stmt ; stmtSeq
 stmt ::= expr = expr | while (expr) stmt
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt

4) “Single Production Terminator”

• If there is single production

X ::=Y put an edge (X,Y) into graph

• If there is a path from X to Z in the graph, and
there is rule Z ::= s1 s2 … sn then add rule

 program ::= expr = expr | while (expr) stmt
 | stmt ; stmtSeq
 stmtSeq ::= expr = expr | while (expr) stmt
 | stmt ; stmtSeq
 stmt ::= expr = expr | while (expr) stmt

X ::= s1 s2 … sn

At the end, remove all single productions.

5) No more than 2 symbols on RHS

 stmt ::= while (expr) stmt

becomes

 stmt ::= while stmt1
 stmt1 ::= (stmt2

 stmt2 ::= expr stmt3
 stmt3 ::=) stmt

6) A non-terminal for each terminal

 stmt ::= while (expr) stmt

becomes

 stmt ::= Nwhile stmt1
 stmt1 ::= N(stmt2

 stmt2 ::= expr stmt3
 stmt3 ::= N) stmt
 Nwhile ::= while
 N(::= (
 N) ::=)

Parsing using CYK Algorithm

• Transform grammar into Chomsky Form:

1. remove unproductive symbols

2. remove unreachable symbols

3. remove epsilons (no non-start nullable symbols)

4. remove single non-terminal productions X::=Y

5. transform productions of arity more than two

6. make terminals occur alone on right-hand side

Have only rules X ::= Y Z, X ::= t, and possibly S ::= “”

• Apply CYK dynamic programming algorithm

Dynamic Programming to Parse Input

Assume Chomsky Normal Form, 3 types of rules:

 S   | S’ (only for the start non-terminal)

 Nj  t (names for terminals)

 Ni  Nj Nk (just 2 non-terminals on RHS)

Decomposing long input:

find all ways to parse substrings of length 1,2,3,…

((() ()) ()) (())

Ni

Nj Nk

Parsing an Input
S’  N(NS) | N(N) | S’ S’
NS)  S’ N)
N( (
N) )

N(N(N) N(N) N(N) N) 1

2

3

4

5

6

7
ambiguity

(() () ())

Algorithm Idea
S’  S’ S’

1

2

3

4

5

6

7
wpq – substring from p to q

dpq – all non-terminals that
 could expand to wpq

Initially dpp has Nw(p,p)

key step of the algorithm:

if X  Y Z is a rule,
 Y is in dp r , and
 Z is in d(r+1)q

then put X into dpq

 (p r < q),

in increasing value of (q-p)

N(N(N) N(N) N(N) N)

(() () ())

Algorithm
INPUT: grammar G in Chomsky normal form
 word w to parse using G
OUTPUT: true iff (w in L(G))
N = |w|
var d : Array[N][N]
for p = 1 to N {
 d(p)(p) = {X | G contains X->w(p)}
 for q in {p + 1 .. N} d(p)(q) = {} }
for k = 2 to N // substring length
 for p = 0 to N-k // initial position
 for j = 1 to k-1 // length of first half
 val r = p+j-1; val q = p+k-1;
 for (X::=Y Z) in G
 if Y in d(p)(r) and Z in d(r+1)(q)
 d(p)(q) = d(p)(q) union {X}
return S in d(0)(N-1)

(() () ())

What is the running time
as a function of grammar
size and the size of input?

O()

http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/

Parsing another Input
S’  N(NS) | N(N) | S’ S’
NS)  S’ N)
N( (
N) )

() () () ()

N(N) N(N) N(N) N(N) 1

2

3

4

5

6

7

Number of Parse Trees

• Let w denote word ()()()

– it has two parse trees

• Give a lower bound on number of parse trees
of the word wn

 (n is positive integer)

w5 is the word

 ()()() ()()() ()()() ()()() ()()()

• CYK represents all parse trees compactly

– can re-run algorithm to extract first parse tree, or
enumerate parse trees one by one

Earley’s Algorithm
also parser arbitrary grammars

J. Earley, "An efficient context-free parsing

algorithm", Communications of the Association for

Computing Machinery, 13:2:94-102, 1970.

http://portal.acm.org/citation.cfm?doid=362007.362035
http://portal.acm.org/citation.cfm?doid=362007.362035
http://portal.acm.org/citation.cfm?doid=362007.362035
http://portal.acm.org/citation.cfm?doid=362007.362035

Z ::= X Y Z parses wpq

• CYK: if dpr parses X and d(r+1)q parses Y, then
in dpq stores symbol Z

• Earley’s parser:
in set Sq stores item (Z ::= XY. , p)

• Move forward, similar to top-down parsers

• Use dotted rules to avoid binary rules

CYK vs Earley’s Parser Comparison

(() () ())

Example: expressions

D ::= e EOF

e ::= ID | e – e | e == e

Rules with a dot inside

D ::= . e EOF | e . EOF | e EOF .

e ::= . ID | ID .

 | . e – e | e . – e | e – . e | e – e .

 | . e == e | e . == e | e == . e | e == e .

ID - ID == ID EOF

ID ID- ID-ID ID-ID== ID-ID==ID

ID - -ID -ID== -ID==ID

- ID ID== ID==ID

ID == ==ID

== ID

ID

EOF

e ::= . ID | ID .

 | . e – e | e . – e | e – . e | e – e .

 | . e == e | e . == e | e == . e | e == e .

S ::= . e EOF | e . EOF | e EOF .

ID - ID == ID EOF

ID ID- ID-ID ID-ID== ID-ID==ID

ID - -ID -ID== -ID==ID

- ID ID== ID==ID

ID == ==ID

== ID

ID

EOF

e ::= . ID | ID .

 | . e – e | e . – e | e – . e | e – e .

 | . e == e | e . == e | e == . e | e == e .

S ::= . e EOF | e . EOF | e EOF .

