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making sense of trees 



Today 

• Type Checking Idea 

– Evaluation and Types 

– Type Rules for Ground Expressions 

– Type Environments 

– Assignments 

– Arrays 



Evaluating an Expression 

scala prompt: 
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 } 
min1: (x: Int,y: Int)Int  
min1(10,5) 
res1: Int = 6  

How can we think about this evaluation? 
x  10 
y  5 
if (x < y) x else y+1 



Each Value has a Type 

scala prompt: 
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 } 
min1: (x: Int,y: Int)Int  
min1(10,5) 
res1: Int = 6  

How can we think about this evaluation? 
x : Int  10 
y : Int  5 
if (x < y) x else y+1 



We can compute types without values 

scala prompt: 
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 } 
min1: (x: Int,y: Int)Int  
min1(10,5) 
res1: Int = 6  

How can we think about this evaluation? 
x : Int 
y : Int 
if (x < y) x else y+1 



We do not like trees upside-down 



Leaves are Up 

type rules move  
from leaves to root 





Type Rules as Local Tree Constraints 

x : Int 
y : Int 

Type Rules 

for every type T, if 

then 

b has type Boolean, and ... 



Type Rules with Environment 

x : Int 
y : Int 

Type Rules 



if the free variables of e have types given by gamma, 

then e (correctly) type checks and has type T 

If e1 type checks in gamma and has type T1  and ... 

and en  type checks in gamma and has type Tn 

then e type checks in gamma and has type T 



Derivation Using Type Rules 

x : Int 
y : Int 



Type Rule for Function Application 

We can treat operators as variables that have function type 

We can replace many previous rules with application rule: 



Computing the Environment of a Class 

object World { 
  var data : Int 
  var name : String 
  def m(x : Int, y : Int) : Boolean { ... } 
  def n(x : Int) : Int { 
    if (x > 0) p(x – 1) else 3 
  } 
  def p(r : Int) : Int = { 
     var k = r + 2 
     m(k, n(k)) 
  } 
} 

Type check each function m,n,p in this global environment 



Extending the Environment 

class World { 
  var data : Int 
  var name : String 
  def m(x : Int, y : Int) : Boolean { ... } 
  def n(x : Int) : Int { 
    if (x > 0) p(x – 1) else 3 
  } 
  def p(r : Int) : Int = { 
     var k:Int = r + 2 
     m(k, n(k)) 
  } 
} 



Type Checking Expression in a Body 

class World { 
  var data : Int 
  var name : String 
  def m(x : Int, y : Int) : Boolean { ... } 
  def n(x : Int) : Int { 
    if (x > 0) p(x – 1) else 3 
  } 
  def p(r : Int) : Int = { 
     var k:Int = r + 2 
     m(k, n(k)) 
  } 
} 



Remember Function Updates 

 

{(x,T1),(y,T2)} ⊕ {(x,T3)}  =  {(x,T3),(y,T2)} 



Type Rule for Method Bodies 

Type Rule for Assignments 

Type Rules for Block: { var x1:T1 ... var xn:Tn; s1; ... sm; e } 



Blocks with Declarations in the Middle 

just 

expression 
empty 

declaration is first 

statement is first 



Rule for While Statement 



Rule for Method Call 



Example to Type Check 

class World { 
  var z : Boolean 
  var u : Int 
  def f(y : Boolean) : Int { 
    z = y 
    if (u > 0) { 
      u = u – 1 
      var z : Int 
      z = f(!y) + 3 
      z+z 
    } else { 0 } 

  } 

} 



Overloading of Operators 

Not a problem for type checking from leaves to root 



Arrays 

Using array as an expression, on the right-hand side 

Assigning to an array 



Example with Arrays 

def next(a : Array[Int], k : Int) : Int = { 
   a[k] = a[a[k]] 
} 



Type Rules (1) 

variable constant 

function application 

plus 

if 

assignment 
while 



Type Rules (2) 

array use 

array 
assignment 



Type Rules (3) 

field use 

field assignment 

top-level environment of class C 

method invocation 



Type Rules (1) 

variable constant 

function application 

plus 

if 

assignment 
while 



Type Rules (2) 

array use 

array 
assignment 



Type Rules (3) 

field use 

field assignment 

top-level environment of class C 

method invocation 



Meaning of Types 

• Types can be viewed as named entities 

– explicitly declared classes, traits 

– their meaning is given by methods they have 

– constructs such as inheritance establishe 
relationships between classes 

• Types can be viewed as sets of values 

– Int = { ..., -2, -1, 0, 1, 2, ... } 

– Boolean = { false, true } 

– Int  Int = { f : Int -> Int | f is computable } 



Types as Sets 

• Sets so far were disjoint 

• Sets can overlap 



SUBTYPING 



Subtyping 

• Subtyping corresponds to subset 

• Systems with subtyping have non-disjoint sets 

• T1 <: T2    means    T1  is a subtype of T2 

– corresponds to T1 ⊆ T2 in sets of values 

• Main rule for subtyping     corresponds to 

 

 



Types for Positive and Negative Ints 
Int = { ... , -2, -1, 0, 1, 2, ... } 
Pos = { 1, 2, ... } 
Neg = { ..., -2, -1 } 



More Rules 



Making Rules Useful 

• Let x be a variable 

if (y > 0) { 
  if (x > 0) { 
    var z : Pos = x * y 
    res = 10 / z 
} } 



Subtyping Example 

Pos <: Int 
 
def f(x:Int) : Pos = {  
  if (x < 0) –x else x+1 
} 
 
var p : Pos 
var q : Int 
 
q = f(p) 

 - type checks 



Using Subtyping 

Pos <: Int 
 
def f(x:Pos) : Pos = {  
  if (x < 0) –x else x+1 
} 
 
var p : Int 
var q : Int 
 
q = f(p) 

 - does not type check 



What Pos/Neg Types Can Do 

def multiplyFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) { 

  (p1*q1, q1*q2) 

} 

def addFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) { 

  (p1*q2 + p2*q1, q1*q2) 

} 

def printApproxValue(p : Int, q : Pos) = { 

  print(p/q) // no division by zero 

} 

 

More sophisticated types can track intervals of numbers and ensure 
that a program does not crash with an array out of bounds error.  



Subtyping and Product Types 



Using Subtyping 

Pos <: Int 
 
def f(x:Pos) : Pos = {  
  if (x < 0) –x else x+1 
} 
 
var p : Int 
var q : Int 
 
q = f(p) 

 - does not type check 



Subtyping for Products 



Analogy with Cartesian Product 



Subtyping and Function Types 



Subtyping for Function Types 

Consequence: 

contravariance covariance 



Function Space as Set 

To get the appropriate behavior we need to 
assign sets to function types like this: 
 
T1  T2  = * f | ∀𝑥. (𝑥 ∈ 𝑇1 →  𝑓 𝑥 ∈ 𝑇2)+ 

 

We can prove 



Proof 



Subtyping for Classes 

• Class C contains a collection of methods 

• We view field var f: T as two methods 

– getF(this:C): T                   C  T 

– setF(this:C, x:T): void      C x T  void 

• For val f: T (immutable): we have only getF 

• Class has all functionality of a pair of method 

• We must require (at least) that methods 
named the same are subtypes 

• If type T is generic, it must be invariant 

– as for mutable arrays 



Example  

class C { 
  def m(x : T1) : T2 = {...} 
} 
class D extends C { 
  override def m(x : T’1) : T’2  = {...} 
} 
D <: C   Therefore, we need to have: 

T1 <: T’1  (argument behaves opposite) 

T’2 <: T2  (result behaves like class) 



Today 

• More Subtyping Rules 

– product types (pairs) 

– function types 

– classes 

• Soundness 

– motivating example 

– idea of proving soundness 

– operational semantics 

– a soundness proof 

• Subtyping and generics 



Example: Tootool 0.1 Language 
Tootool rest area  

Tootool is a rural community in the central east part of the Riverina  

[New South Wales, Australia]. It is situated by road, about 4 kilometres east 

from French Park and 16 kilometres west from The Rock. 

Tootool Post Office opened on 1 August 1901 and closed in 1966.  [Wikipedia] 



Type System for Tootool 0.1 

Pos <: Int 
Neg <: Int 

      does it type check? 
def intSqrt(x:Pos) : Pos = { ...} 
var p : Pos 
var q : Neg 
var r : Pos 
q = -5 
p = q 
r = intSqrt(p) 

Runtime error: intSqrt invoked  
with a negative argument! 

unsound 



What went wrong in Tootool 0.1 ? 

Pos <: Int 
Neg <: Int 

      does it type check? 
def intSqrt(x:Pos) : Pos = { ...} 
var p : Pos 
var q : Neg 
var r : Pos 
q = -5 
p = q 
r = intSqrt(p) 

Runtime error: intSqrt invoked  
with a negative argument! 



Recall Our Type Derivation 

Pos <: Int 
Neg <: Int 

      does it type check? 
def intSqrt(x:Pos) : Pos = { ...} 
var p : Pos 
var q : Neg 
var r : Pos 
q = -5 
p = q 
r = intSqrt(p) 

Runtime error: intSqrt invoked  
with a negative argument! 



Corrected Type Rule for Assignment 

Pos <: Int 
Neg <: Int 

      does it type check? 
def intSqrt(x:Pos) : Pos = { ...} 
var p : Pos 
var q : Neg 
var r : Pos 
q = -5 
p = q 
r = intSqrt(p) 

     stores declarations (promises) 



How could we ensure that some 
other programs will not break? 

Type System Soundness 



Today 

• More Subtyping Rules 

– product types (pairs) 

– function types 

– classes 

• Soundness 

– motivating example 

– idea of proving soundness 

– operational semantics 

– a soundness proof 

• Subtyping and generics 



Proving Soundness of Type Systems 

• Goal of a sound type system: 

– if the program type checks, then it never “crashes” 

– crash = some precisely specified bad behavior 

 e.g. invoking an operation with a wrong type 

• dividing one string by another string    “cat” / “frog 

• trying to multiply a Window object by a File object 

 e.g. not dividing an integer by zero 

• Never crashes: no matter how long it executes 

– proof is done by induction on program execution 



Proving Soundness by Induction 

• Program moves from state to state 

• Bad state = state where program is about to exhibit a bad 
operation ( “cat” / “frog” ) 

• Good state = state that is not bad 

• To prove: 
  program type checks  states in all executions are good 

• Usually need a stronger inductive hypothesis;  
some notion of very good (VG) state such that: 
  program type checks  program’s initial state is very good 
  state is very good  next state is also very good 
  state is very good  state is good (not about to crash) 

VG VG VG VG VG VG Good 



A Simple Programming Language 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = 1 
  z = 1 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 3 
  y = 1 
  z = 1 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 3 
  y = -5 
  z = 1 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 3 
  y = -5 
  z = 4 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 7 
  y = -5 
  z = 4 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 7 
  y = 1 
  z = 4 

formal description of such program execution 
is called operational semantics  



Definition of Simple Language 

var x1 : Pos 
var x2 : Int 
... 
var xn : Pos 
 
xi = xj 
xp = xq + xr 

xa = xb / xc 

... 
xp = xq + xr 

Programs: Type rules: 



Bad State: About to Divide by Zero 
(Crash) 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 0 

Definition: state is bad if the next instruction is of the form 
  xi = xj / xk   and xk has value 0 in the current state. 



Good State: Not (Yet) About to Divide by Zero 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 1 

Definition: state is good if it is not bad. 

Good 

Definition: state is bad if the next instruction is of the form 
  xi = xj / xk   and xk has value 0 in the current state. 



Good State: Not (Yet) About to Divide by Zero 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 0 

Definition: state is good if it is not bad. 

Good 

Definition: state is bad if the next instruction is of the form 
  xi = xj / xk   and xk has value 0 in the current state. 



Moved from Good to Bad in One Step! 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 0 

Bad 

Definition: state is good if it is not bad. 

Being good is not preserved by one step, not inductive! 
It is very local property, does not take future into account. 

Definition: state is bad if the next instruction is of the form 
  xi = xj / xk   and xk has value 0 in the current state. 



Being Very Good: A Stronger Inductive Property 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 0 

Definition: state is good if it is not about to divide by zero. 

Definition: state is very good if each variable belongs to the 
domain determined by its type (if z:Pos, then z is strictly positive). 

This state is already not very good. 
We took future into account. 

Pos = { 1, 2, 3, ... } 



If you are a little typed program, 
what will your parents teach you? 

• If you type check and succeed: 

– you will be very good from the start. 

– if you are very good, then you will remain  
very good in the next step 

– If you are very good, you will not crash. 

 
Hence, type check and you will never crash! 

Soundnes proof = defining “very good” and 
checking the properties above. 



Definition of Simple Language 

var x1 : Pos 
var x2 : Int 
... 
var xn : Pos 
 
xi = xj 
xp = xq + xr 

xa = xb / xc 

... 
xp = xq + xr 

Programs: Type rules: 



Checking Properties in Our Case 

Definition: state is very good if each variable belongs to the 
domain determined by its type (if z:Pos, then z is strictly positive). 

Holds: in initial state, variables are =1 

• If you type check and succeed:  

– you will be very good from the start. 

– if you are very good, then you will remain  
very good in the next step 

– If you are very good, you will not crash. 

If next state is x / z, type rule ensures z has type Pos 
Because state is very good, it means 
so z is not 0, and there will be no crash. 



Example Case 1 

var x : Pos 
var y : Pos 
var z : Pos 
y = 3 
z = 2 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = 3 
  z = 2 

the next statement is: z=x+y 
where x,y,z are declared Pos. 

Goal: prove that again each variable belongs to its type. 

Assume each variable belongs to its type. 

- variables other than z did not change, so belong to their type 
- z is sum of two positive values, so it will have positive value 



Example Case 2 

var x : Pos 
var y : Int 
var z : Pos 
y = -5 
z = 2 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -5 
  z = 2 

the next statement is: z=x+y 
where x,z declared Pos, y declared Int 

Goal: prove that again each variable belongs to its type. 

Assume each variable belongs to its type. 

- this case is impossible, because z=x+y would not type check 
  How do we know it could not type check? 



Must Carefully Check Our Type Rules 

Type rules: 

var x : Pos 
var y : Int 
var z : Pos 
y = -5 
z = 2 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

Conclude that the only 
types we can derive are: 
   x : Pos, x : Int 
   y : Int 
   x + y : Int 

Cannot type check 
 z = x + y in this environment. 



We would need to check all cases 
(there are many, but they are easy) 



Remark 

• We used in examples  Pos <: Int 

 

• Same examples work if we have 

 

class Int { ... } 
class Pos extends Int { ... } 

 

and is therefore relevant for OO languages 



Today 

• More Subtyping Rules 

– product types (pairs) 

– function types 

– classes 

• Soundness 

– motivating example 

– idea of proving soundness 

– operational semantics 

– a soundness proof 

• Subtyping and generics 



Simple Parametric Class 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 



Simple Parametric Class 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 



Simple Parametric Class 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 



Simple Parametric Class 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 



Analogously 

class Ref[T](var content : T) 

Can we use the converse subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
x = y 
y.content = 0 
z = z / x.content 



Mutable Classes do not  
Preserve Subtyping 

class Ref[T](var content : T) 

Even if T <: T’,  

Ref[T] and Ref*T’+ are unrelated types 

var x : Ref[T] 
var y : Ref*T’+ 
... 
x = y 
... 

Type checks only if T = T’ 



Same Holds for Arrays, Vectors,  
all mutable containers 

var x : Array[Pos](1) 
var y : Array[Int](1) 
var z : Int 
x[0] = 1 
y[0] = -1 
y = x 
y[0] = 0 
z = z / x[0] 

Even if T <: T’,  

Array[T] and Array[T’+ are unrelated types 



Case in Soundness Proof Attempt 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 

prove each variable belongs to its type: 

variables other than y did not change... (?!) 



Mutable vs Immutable Containers 

• Immutable container, Coll[T] 
– has methods of form e.g.     get(x:A) : T 
– if T <: T’, then Coll*T’+ has  get(x:A) : T’ 
– we have   (A  T) <: (A T’)   

covariant rule for functions, so Coll[T] <: Coll*T’+ 

• Write-only data structure have 
– setter-like methods,    set(v:T) : B 
– if T <: T’, then Container*T’+ has set(v:T) : B 
– would need (T  B) <: (T’  B) 

contravariance for arguments, so Coll*T’+ <: Coll[T] 

• Read-Write data structure need both,  
so they are invariant, no subtype on Coll if T <: T’ 


