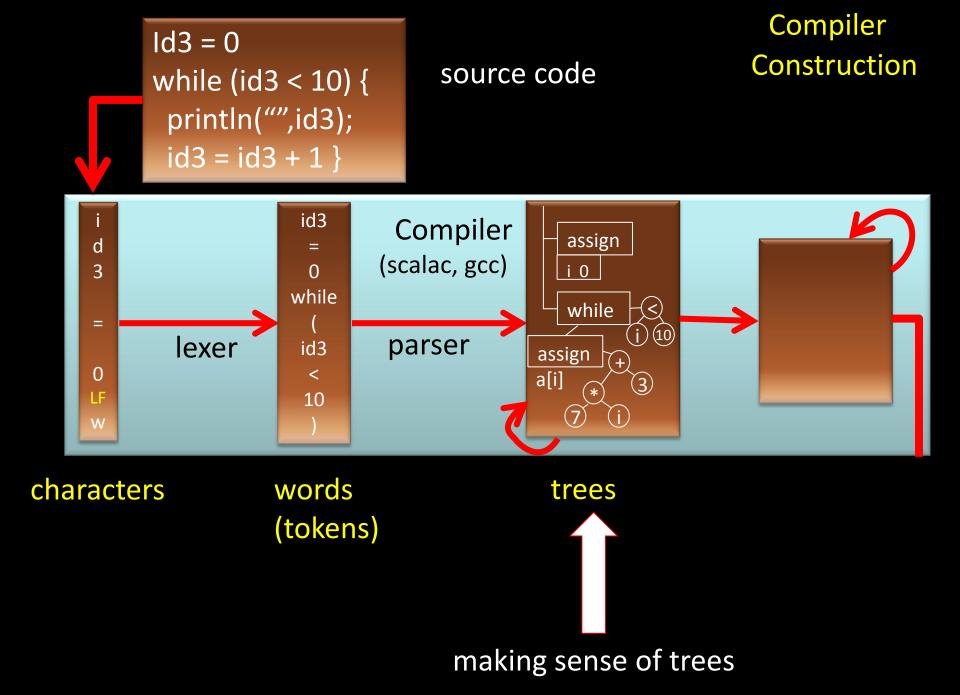


http://lara.epfl.ch

Compiler Construction 2010, Lecture 7

Type Analysis



Today

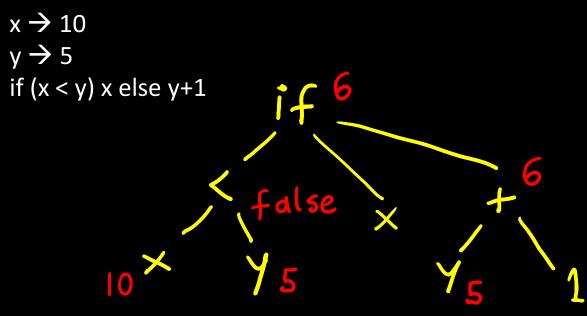
- Type Checking Idea
 - Evaluation and Types
 - Type Rules for Ground Expressions
 - Type Environments
 - Assignments
 - Arrays

Evaluating an Expression

scala prompt:

```
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 }
min1: (x: Int,y: Int)Int
min1(10,5)
res1: Int = 6</pre>
```

How can we think about this evaluation?

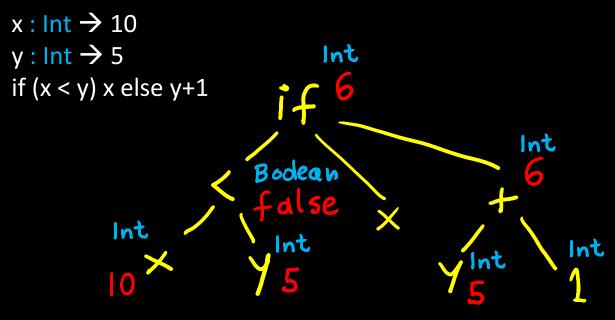


Each Value has a Type

scala prompt:

```
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 }
min1: (x: Int,y: Int)Int
min1(10,5)
res1: Int = 6</pre>
```

How can we think about this evaluation?

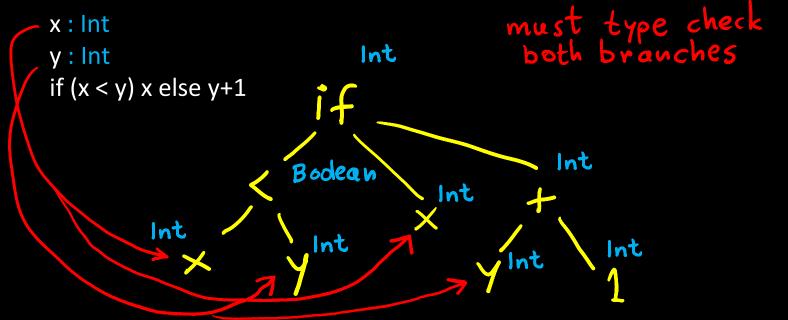


We can compute types without values

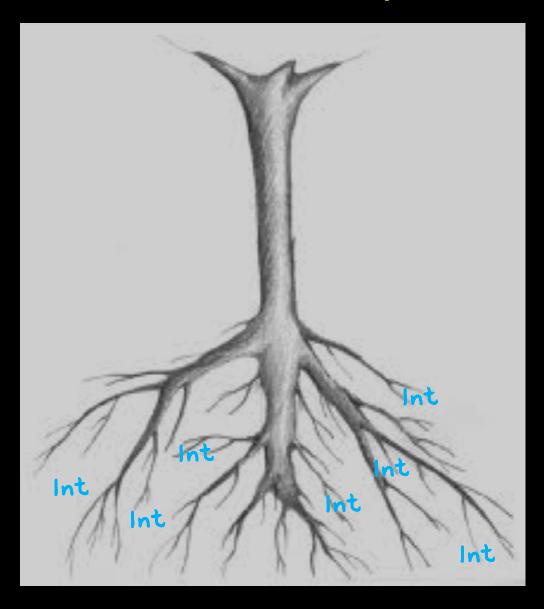
scala prompt:

```
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 }
min1: (x: Int,y: Int)Int
min1(10,5)
res1: Int = 6</pre>
```

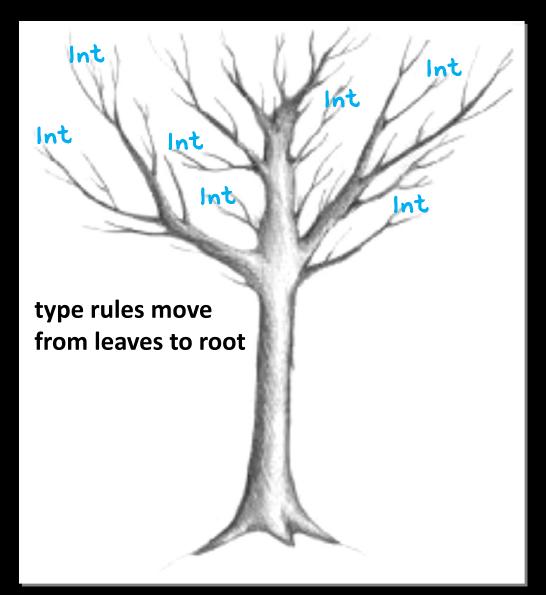
How can we think about this evaluation?

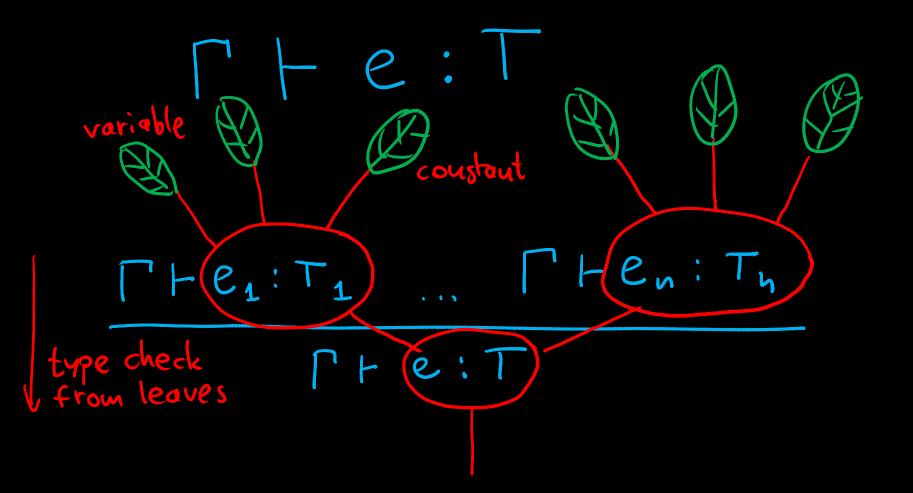


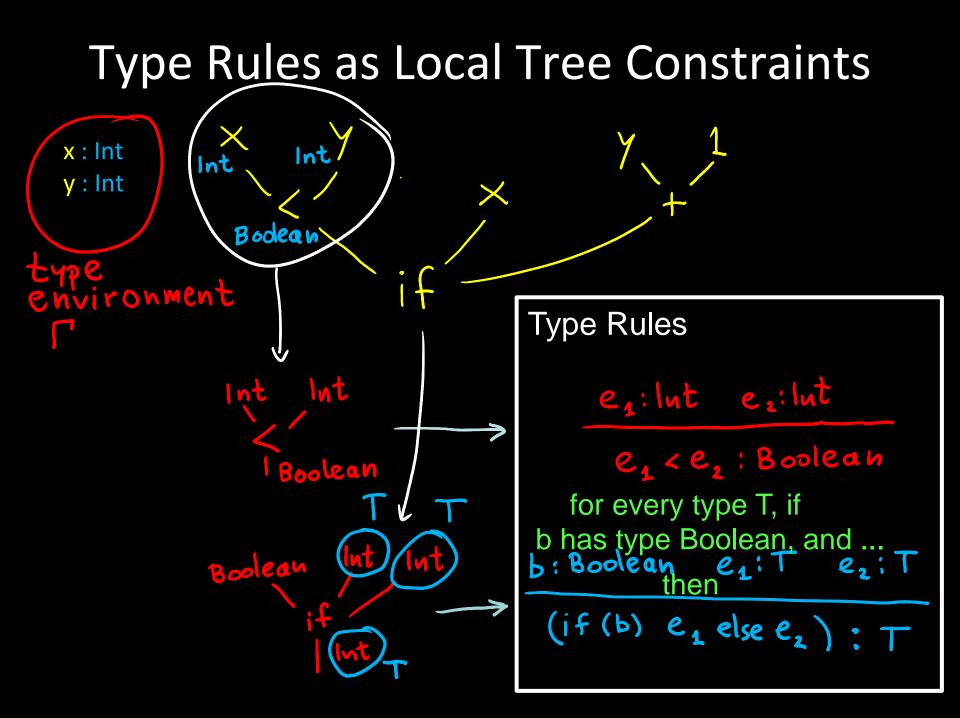
We do not like trees upside-down



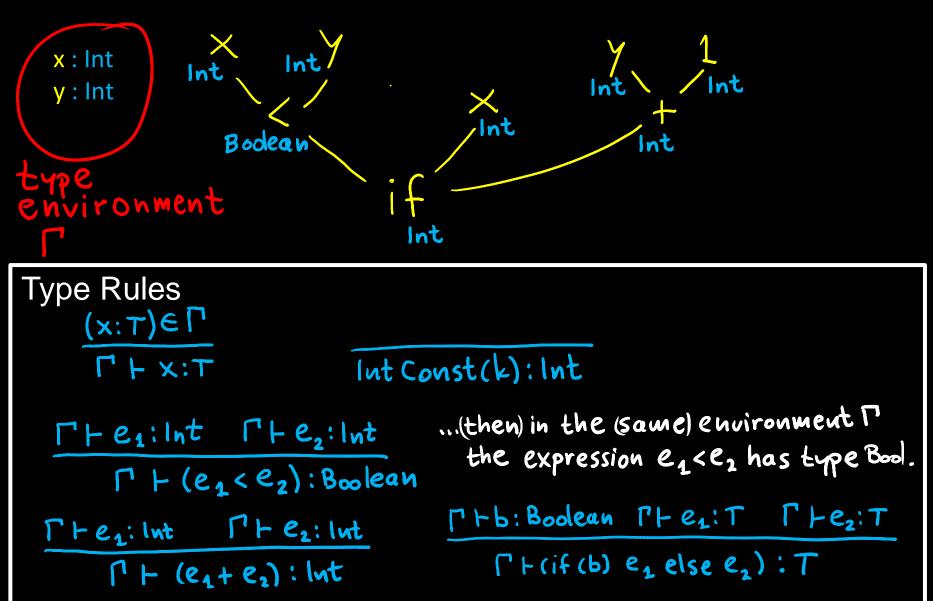
Leaves are Up







Type Rules with Environment



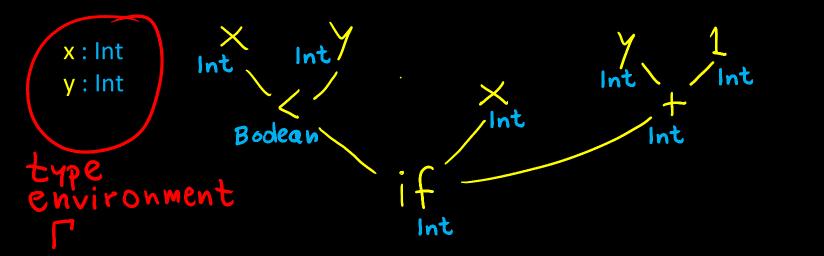
$\Gamma \vdash e : T$

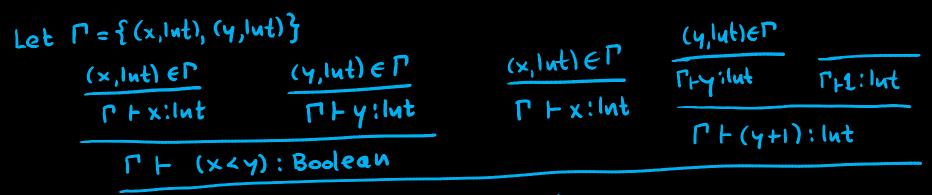
if the free variables of e have types given by gamma, then e (correctly) type checks and has type T

$$\begin{array}{c} \Gamma + e_1 : T_1 & \Gamma + e_n : T_n \\ \hline \\ \Gamma + e_1 : T \end{array}$$

If e_1 type checks in gamma and has type T_1 and ... and e_n type checks in gamma and has type T_n then e type checks in gamma and has type T

Derivation Using Type Rules





T+ (if (x<y) x else y+1): Int

Type Rule for Function Application

We can treat operators as variables that have function type

+ : IntxInt → Int < : IntxInt → Boolean & Boolean × Boolean → Boolean

We can replace many previous rules with application rule:

$$\begin{array}{ccc} \Gamma + e_1:T_1 & \Gamma + e_n:T_n & \Gamma + f:(T_1 \times \cdots \times T_n \rightarrow T) \\ \end{array} \\ \Gamma + f(e_1, \ldots, e_n):T \end{array}$$

Computing the Environment of a Class

[] = {

```
object World {
 var data : Int
 var name : String
 def m(x : Int, y : Int) : Boolean \{ ... \} (m, Int xlut \rightarrow Boolean),
 def n(x : Int) : Int {
  if (x > 0) p(x - 1) else 3
 def p(r:Int):Int = \{
  var k = r + 2
  m(k, n(k))
```

(data, int), (name, String), $(n, |ut \rightarrow |ut),$

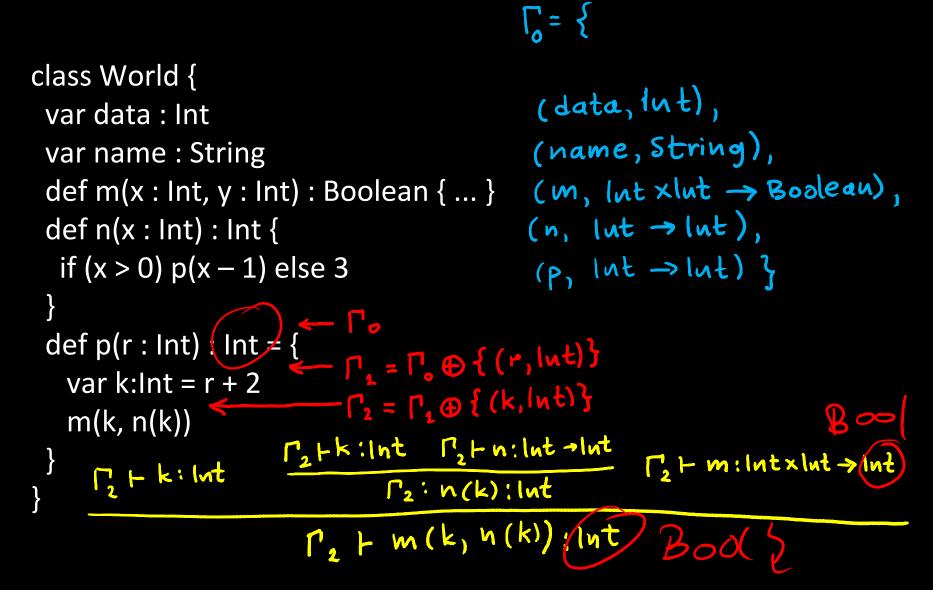
```
(p, lut \rightarrow lut)
```

Type check each function m,n,p in this global environment

Extending the Environment

 $\int_{a} = {$ class World { (data, int), var data : Int (name, String), var name : String def m(x : Int, y : Int) : Boolean $\{ ... \}$ (m, Int xlut \rightarrow Boolean), $(n, |ut \rightarrow |ut),$ def n(x : Int) : Int { (p, lut -> lut) } if (x > 0) p(x - 1) else 3 $def p(r : Int) : Int = {$ var k: Int = r + 2 $\leftarrow \Gamma_1 = \Gamma_0 \oplus \{(r, |ut)\}$ $-\Gamma_{2} = \Gamma_{1} \oplus \{(k, lnt)\} = \Gamma_{0} \cup \{(r, lnt), (k, lnt)\}$ m(k, n(k))

Type Checking Expression in a Body

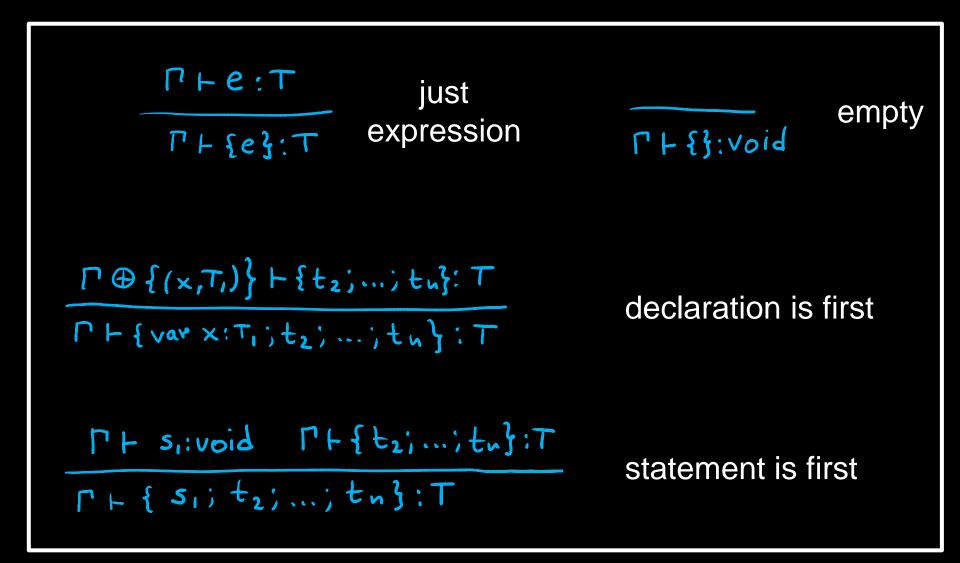


Remember Function Updates

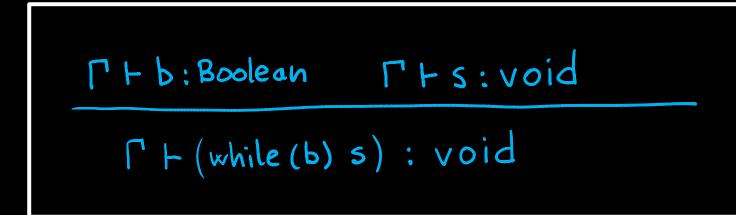
$\{(x,T_1),(y,T_2)\} \bigoplus \{(x,T_3)\} = \{(x,T_3),(y,T_2)\}$

Type Rule for Method Bodies $\Gamma \oplus \{(x_1,T_1), \dots, (x_n,T_n)\} \vdash e:T$ $\Gamma \vdash (def m(X_1;T_1,...,X_n;T_n);T=e):OK$ Type Rule for Assignments (x,T) er re:T Γ + (x=e):void Type Rules for Block: { var $x_1:T_1$... var $x_n:T_n$; s_1 ; ... s_m ; e } S1: void $(\Gamma \oplus \{(x_1,T_1)\}) \oplus \dots \oplus \{(x_n,T_n)\} \vdash S_n: void$ e:T $\Gamma \vdash \{ var X_i : T_i ; ...; var X_n : T_n; S_1; ...; S_n; e_i : T$

Blocks with Declarations in the Middle



Rule for While Statement



Rule for Method Call

class To {
def
$$m(x_1:T_1,...,x_n;T_n):T = {}$$

 $j^{(i)}$
 $j^{(i)}$
 $\forall i \in \{1,2,...,n\}$
 $\forall i \in \{1,2,...,n\}$
 $\forall i \in \{1,2,...,n\}$

 $\Gamma \vdash x.m(e_1,...,e_n) : T$

.

```
Example to Type Check
 object
                                       Γ_ = {
                                         (2, Boolean),
   class World {
    var z : Boolean
                                         (u, lut),
🔓 var u : Int
                                         (f, Booleon -> lut) ?
    def f(y : Boolean) : Int {
     z = y = \Gamma_1 = \Gamma_0 \oplus \{(y, Boolean)\}
                                           P1+ 2: Booleon P, +y: Boolea.
     if (u > 0) {
                                            1. + (z=y): void
      u = u - 1
      var<u>z:Int</u>
      z = f(!y) + 3
      Z+Z
     } else { 0 }
```

Overloading of Operators

Intxlut
$$\rightarrow$$
 lut $\Gamma \vdash e_1 : lut \Gamma \vdash e_2 : lut \Gamma \vdash (e_1 \vdash e_2) : lut$
Not a problem for type checking from leaves to root

String $String - String \Gamma + e_1$: String $\Gamma + e_2$: String $\Gamma + (e_1 + e_2)$: String

Arrays

Using array as an expression, on the right-hand side

$$\Gamma \vdash a: Array(T)$$
 $\Gamma \vdash i:lut$
 $\Gamma \vdash a[i]: T$

Assigning to an array

Γ + a: Array(T) Γ + i: Int Γ + e: T

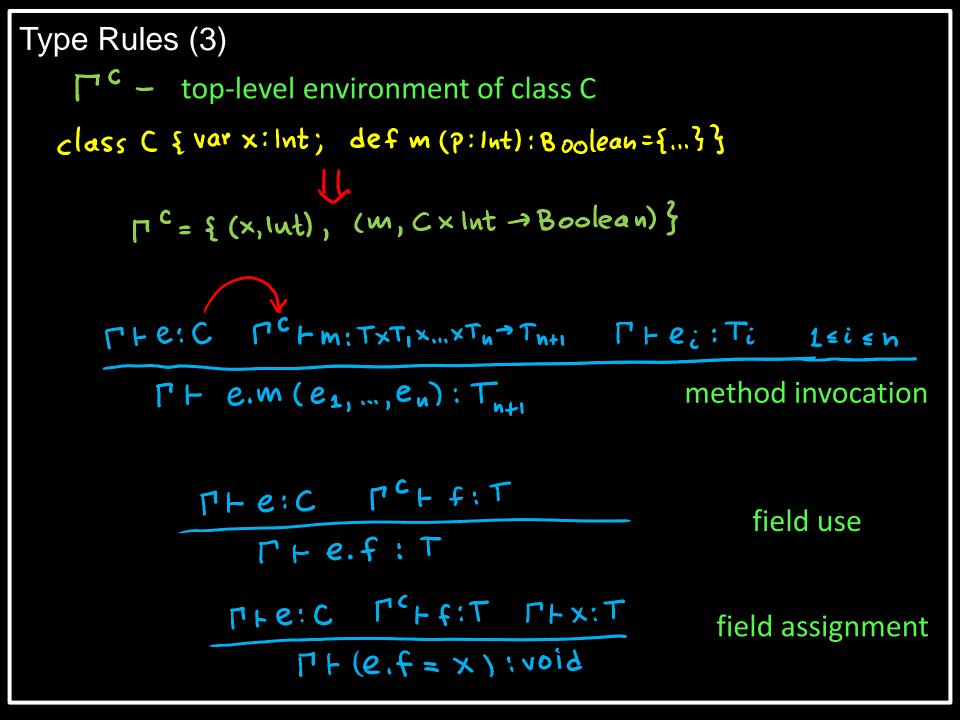
$$\Gamma \vdash (a [i] = e) : void$$

Example with Arrays

def next(a : Array[Int], k : Int) : Int = { a[k] = a[a[k]] $T = \{(o, Arroy(lut))\}$ (k, (ut) z r+a: Arroy (lut) r+k:lut PLa: Arrey (Int) [] + a[k]: Int THAEAELETT: Int PHA: Array (67) PHEilot $\Gamma \vdash \alpha[k] = \alpha \Sigma$

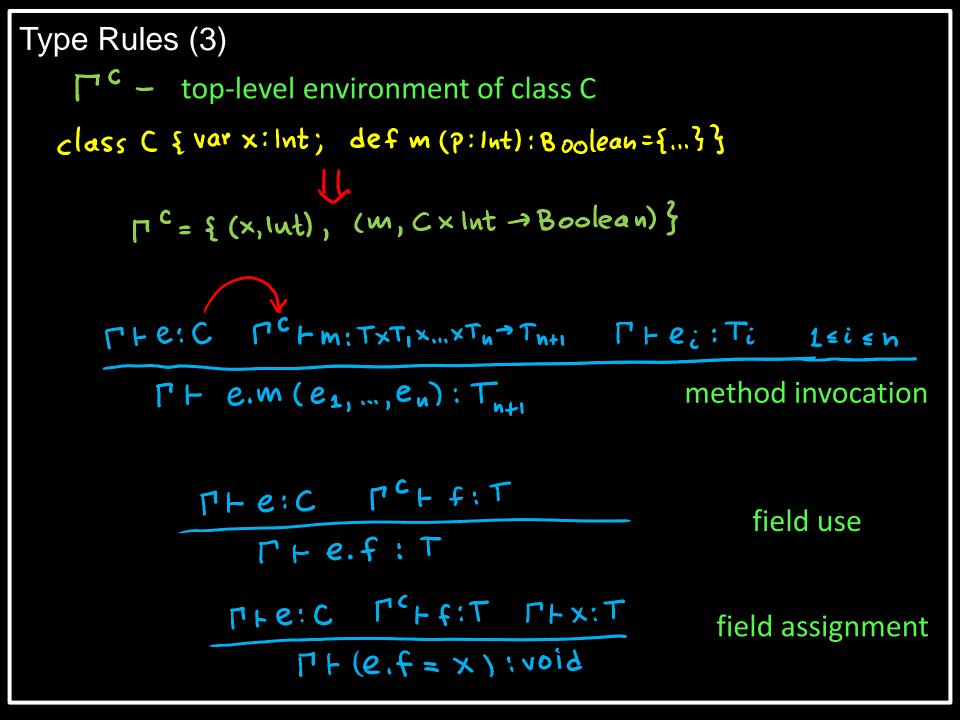
Type Rules (1)	
$\frac{(x:T)\in\Gamma}{\Gamma \vdash x:T}$ variable $\frac{1}{1} \operatorname{Const}(k): \operatorname{Int}$ constant	
$\Gamma \vdash e_1:T_1 \dots \Gamma \vdash e_n:T_n \Gamma \vdash f:(T_1 \times \dots \times T_n \rightarrow T)$	
$\Gamma \vdash f(e_1, \dots, e_n) : T$ function ap	plication
$\Gamma \vdash e_1$: Int $\Gamma \vdash e_2$: Int $\Gamma \vdash e_1$: String $\Gamma \vdash e_2$: Stri	-
$\frac{1}{\Gamma \vdash (e_1 + e_2): \text{Int}} \text{ plus } \Gamma \vdash (e_1 + e_2): \text{ Strin}$	9
Γ+b: Boolean Γ+e1: T Γ+e2: T	
$\Gamma \vdash (if(b) e_1 else e_2) : T$ if $(x_1 T) \in \Gamma$ $\Gamma \vdash e_2$	(T)
$\Gamma \vdash (x = e): void$	
<u>CHB: Boolean</u> CHS: void ass while	ignment
Γ + (while (b) s) : void	

Type Rules (2)	
$P \vdash e : T$	
$\Gamma \vdash \{e\}: T$	TH {}: void
$ \Gamma \oplus \{(x,T_i)\} \vdash \{t_2;\ldots;t_n\} $	- T block
$\Gamma \vdash \{ var \times : T_i; t_2; \dots; t_n \}$	T
$\Gamma \vdash s_1: void \Gamma \vdash \{t_2;;$	t_{r} ;T
$\Gamma \vdash \{ s_1; t_2;; t_n \} : T$	
[+ a: Array(T) [+i:lu	array use
$\Gamma \vdash a[i]:T$	
Γ + a: Array(T) Γ + i:1	array
$\Gamma \vdash a[i]=e$	assignment



Type Rules (1)	
$\frac{(x:T)\in\Gamma}{\Gamma \vdash x:T}$ variable $\frac{1}{1} \operatorname{Const}(k): \operatorname{Int}$ constant	
$\Gamma \vdash e_1:T_1 \dots \Gamma \vdash e_n:T_n \Gamma \vdash f:(T_1 \times \dots \times T_n \rightarrow T)$	
$\Gamma \vdash f(e_1, \dots, e_n) : T$ function ap	plication
$\Gamma \vdash e_1$: Int $\Gamma \vdash e_2$: Int $\Gamma \vdash e_1$: String $\Gamma \vdash e_2$: Stri	-
$\frac{1}{\Gamma \vdash (e_1 + e_2): \text{Int}} \text{ plus } \Gamma \vdash (e_1 + e_2): \text{ Strin}$	9
Γ+b: Boolean Γ+e1: T Γ+e2: T	
$\Gamma \vdash (if(b) e_1 else e_2) : T$ if $(x_1 T) \in \Gamma$ $\Gamma \vdash e_2$	(T)
$\Gamma \vdash (x = e): void$	
<u>CHB: Boolean</u> CHS: void ass while	ignment
Γ + (while (b) s) : void	

Type Rules (2)	
$P \vdash e : T$	
$\Gamma \vdash \{e\}: T$	TH {}: void
$ \Gamma \oplus \{(x,T_i)\} \vdash \{t_2;\ldots;t_n\} $	- T block
$\Gamma \vdash \{ var \times : T_i; t_2; \dots; t_n \}$	T
$\Gamma \vdash s_1: void \Gamma \vdash \{t_2;;$	t_{r} ;T
$\Gamma \vdash \{ s_1; t_2;; t_n \} : T$	
[+ a: Array(T) [+i:lu	array use
$\Gamma \vdash a[i]:T$	
Γ + a: Array(T) Γ + i:1	array
$\Gamma \vdash a[i]=e$	assignment



Meaning of Types

- Types can be viewed as named entities
 - explicitly declared classes, traits
 - their meaning is given by methods they have
 - constructs such as inheritance establishe relationships between classes
- Types can be viewed as sets of values
 - Int = { ..., -2, -1, 0, 1, 2, ... }
 - Boolean = { false, true }
 - $Int \rightarrow Int = \{ f : Int \rightarrow Int | f is computable \}$

Types as Sets

SUBTYPING

Subtyping

- Subtyping corresponds to subset
- Systems with subtyping have non-disjoint sets
- $T_1 <: T_2$ means T_1 is a subtype of T_2 - corresponds to $T_1 \subseteq T_2$ in sets of values
- Main rule for subtyping corresponds to $\frac{\Gamma \vdash e: \tau_1}{\Gamma \vdash e: \tau_2} \qquad \underbrace{e \in T_1}_{e \in T_1} \quad T_1 \subseteq \tau_2$ $\Gamma \vdash e: \tau_2 \qquad \underbrace{e \in T_1}_{e \in T_2} \quad \underbrace{e \in T_2}_{e \in T_2}$

Types for Positive and Negative Ints			
Int = { , -2, -1, 0, 1, 2, }			
Pos = { 1, 2, } not including 2000			
Neg = {, -2, -1 } not including zero			
Pos <: Int	Pos ⊆ Int		
Neg <: lut	Neg⊆lnt		
T+X: Pos T+Y: Pos	XEPOS YEPOS		
T + x+y : Pos	X+Y EPOS		
rtx: Pos rty: Neg	XEPOS YENeg		
T+ X+Y: Neg	×·Y E Neg		
THX: Pos Thy: Pos	xePos yePos		
Γ + ×/y: Pos type checks	×/y E Pos well defined		

More Rules

• 1

PHX: Neg PHY: Neg
TH X * y: Pos
CFX: Neg CFY: Neg
Γ + x+y: Neg
More rules for division?
THX: Neg THY: Neg
T + X14: Neg
P + x: Pos P+y: Neg
TH X14: Neg
Ptx: Int Pty: Neg
$\Gamma + x/y$: Int

Making Rules Useful

• Let x be a variable

 $\Gamma \vdash x: lut \quad \Gamma \oplus \{(x, Pos)\} \vdash e_1; T \quad \Gamma \vdash e_2; T$

 $T \vdash (if (x>0) e_1 else e_2):T$

 $P \vdash x: lut P \vdash e_1:T P \oplus \{(x, Neg)\} \vdash e_2:T$

 $\Gamma \vdash (if(x \ge 0) e, else e_2) : T$

Subtyping Example

Pos <: Int

r: f: Int → Pos

def f(x:Int) : Pos = {
 if (x < 0) -x else x+1
}</pre>

var p : Pos var q : Int

→ q = f(p)
 - type checks

 $\begin{array}{ccc} P: Pos & (P, Pos) \in \Gamma \\ q: Int \\ \hline P: Pos & Pos <: Int \\ \hline P: Pos & Pos <: Int \\ \hline P: Int & f: Int \rightarrow Pos \\ f(P): Pos & Pos <: Int \\ \hline (q, Int) \in \Gamma & f(p): Int \\ \hline q = f(P) & : void \end{array}$

Using Subtyping

Pos <: Int

```
def f(x:Pos) : Pos = {
    if (x < 0) -x else x+1
}</pre>
```

var p : Int var q : Int

q = f(p)

- does not type check

What Pos/Neg Types Can Do

```
def multiplyFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int, Pos) {
 (p1*q1, q1*q2)
}
def addFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int, Pos) {
 (p1*q2 + p2*q1, q1*q2)
}
def printApproxValue(p : Int, q : Pos) = {
 print(p/q) // no division by zero
```

More sophisticated types can track intervals of numbers and ensure that a program does not crash with an array out of bounds error.

Subtyping and Product Types

Using Subtyping

Pos <: Int

```
def f(x:Pos) : Pos = {
    if (x < 0) -x else x+1
}</pre>
```

var p : Int var q : Int

q = f(p)

- does not type check

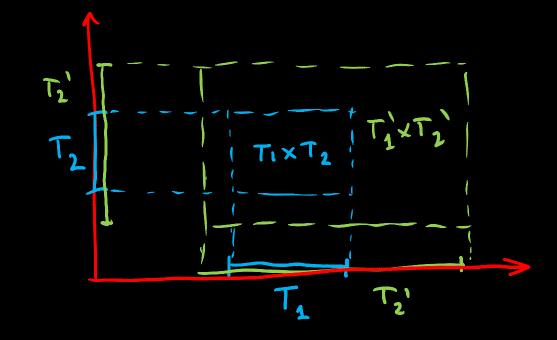
Subtyping for Products rie:T, $T_1 <: T_2 \xrightarrow{implies} for all e:$ $\Gamma \vdash e: T_{2}$ $X:T_1$ $Y:T_2$ $(\times, \gamma): T_1 \times T_2$ $(X:T_1)$ $T_1 <:T_1'$ $Y:T_2$ $T_2 <:T_2'$ $(\gamma: T_2)$ XIT $(x,y): T'_{1} \times T'_{1}$ $(X, Y): T_1 \times T_2'$ So, we might as well add $T_1 <: T_1' \quad T_2 <: T_2'$ covariant subtyping for pairs $T_1 \times T_2 <: T_1' \times T_2'$ Pair [T1, T2]

Analogy with Cartesian Product

$$\frac{T_{1} < :T_{1}' \quad T_{2} < :T_{2}'}{T_{1} \times T_{2} \quad <: \quad T_{1}' \times T_{2}'}$$

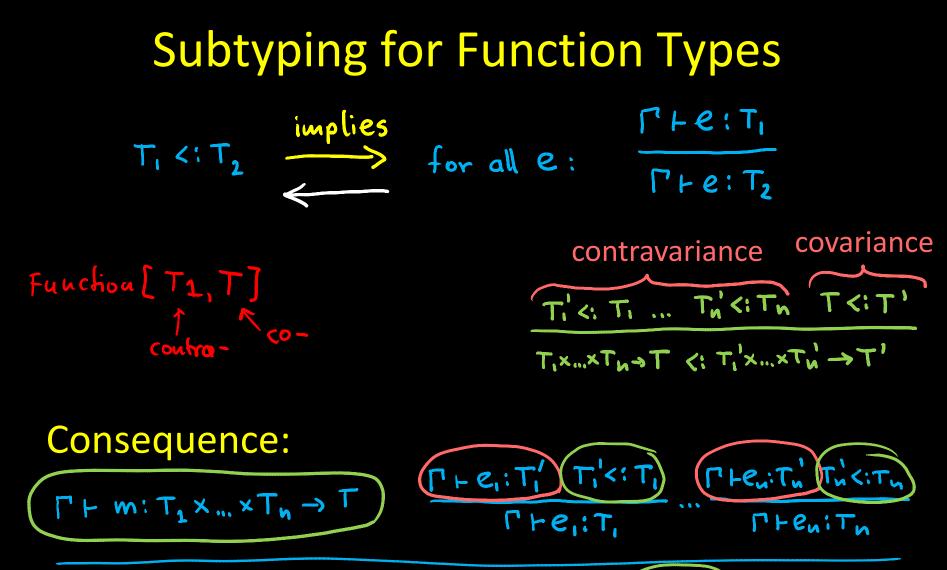
$$T_1 \subseteq T_1' \qquad T_2 \subseteq T_2'$$

$$T_1 \times T_2 \subseteq T_1' \times T_2'$$



 $A \times B = \{(a,b) \mid a \in A, b \in B\}$

Subtyping and Function Types



as if $\Gamma \vdash m(e_1,...,e_n): T$ $T \prec T'$ $\Gamma \vdash m(e_1,...,e_n): T$ $\Gamma \prec T'$ $\Gamma \vdash m(e_1,...,e_n): T'$

Function Space as Set

To get the appropriate behavior we need to assign sets to function types like this: $(\forall x \in T_i) \lor f(x) \in T_j$ $T_1 \rightarrow T_2 = \{ f \mid \forall x. (x \in T_1 \rightarrow f(x) \in T_2) \}$ $\begin{array}{ccc} \pi & f: D \rightarrow D \\ \leq T_{1} \times T_{7} \end{array}$ contravariance because XET, is left of implication We can prove $T_2 \subseteq T_2^{1}$ $T_{i}^{\prime} \subseteq T_{i}$ $T_1 \rightarrow T_2 \subseteq T_1' \rightarrow T_2'$

 $T_1 \rightarrow T_2 = \{f \mid \forall x \in T_1 \rightarrow f(x) \in T_2 \}$ Proof $T_1' \subseteq T_1$ $T_2 \subseteq T_2'$ $T_1 \rightarrow T_2 \subseteq T_1' \rightarrow T_1'$ Let $T_1' \subseteq T_1$ and $T_2 \subseteq T_2'$. Let $f \in T_1 \rightarrow T_2$ Thus $\forall x. x \in T, \rightarrow f(x) \in T_2$ Let XET, From T'ST2, also XET, Thus $f(x) \in T_2$. By $T_2 \in T_2'$, also $f(x) \in T_1'$ Thus, Vx. XET, -) f(x) ET, Therefore, $f \in T_1' \rightarrow T_2'$ Thus, $T_1 \rightarrow T_2 \subseteq T_1' \rightarrow T_2'$.

Subtyping for Classes

- Class C contains a collection of methods
- We view field var f: T as two methods
 - -getF(this:C):T $C \rightarrow T$
 - setF(this:C, x:T): void $C \times T \rightarrow void$
- For val f: T (immutable): we have only getF
- Class has all functionality of a pair of method
- We must require (at least) that methods named the same are subtypes
- If type T is generic, it must be invariant
 - as for mutable arrays

Example

```
class C {
 def m(x : T_1) : T_2 = {...}
class D extends C {
 override def m(x : T'_1) : T'_2 = {...}
}
D <: C Therefore, we need to have:
   T_1 <: T'_1
                     (argument behaves opposite)
   T'<sub>2</sub> <: T<sub>2</sub>
                     (result behaves like class)
```

Today

More Subtyping Rules

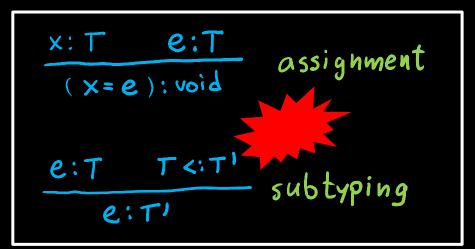
- product types (pairs)
- function types
- classes
- Soundness 🔶
 - motivating example
 - idea of proving soundness
 - operational semantics
 - a soundness proof
- Subtyping and generics

Example: Tootool 0.1 Language

Tootool is a rural community in the central east part of the Riverina [New South Wales, Australia]. It is situated by road, about 4 kilometres east from French Park and 16 kilometres west from The Rock. Tootool Post Office opened on 1 August 1901 and closed in 1966. [Wikipedia]

unsound Type System for *Tootool 0.1*

Pos <: Int Neg <: Int



P: Pos

does it type check? -yes def intSqrt(x:Pos) : Pos = { ...} var p : Pos var q : Neg var r : Pos $q = -5 \leftarrow r = \{(P, Pos), (q, Neg), (r, Pos), (int Sqrt, Pos \rightarrow Pos)\}$ p = qr = intSqrt(p)Runtime error: intSqrt invoked with a negative argument! Neg <i Int q: Neg g: Int

(p=q):void

Pos <: lut

p:Int

What went wrong in *Tootool 0.1*?

does it type check? -yes Pos <: Int def intSqrt(x:Pos) : Pos = { ...} Neg <: Int var p : Pos var q : Neg P-X:T rie:T assignment var r: Pos $\Gamma \mapsto (X = e)$: void GUILTY! $q = -5 \qquad r = \{(P, Pos), (q, Neg), (r, Pos), (int Sqrt, Pos \rightarrow Pos)\}$ p = qPHE:T PHT <: TI subtyping r = intSqrt(p)r-e:TI Runtime error: intSqrt invoked with a negative argument! x must be able to store e can have any value from T any value from r-e:T r + (x=e): void Cannot use [+X: T to mean "x promises it can store any eer"

Recall Our Type Derivation

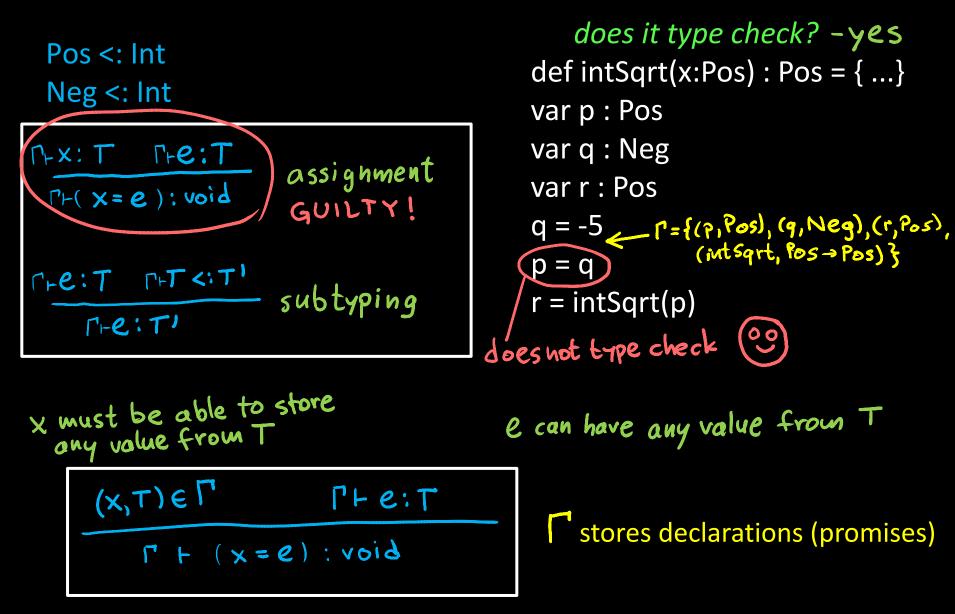
Pos <: Int Neg <: Int

$\frac{\prod_{i=1}^{n} X_{i} \cdot T_{i} $	assignment
$\frac{\prod_{i=1}^{n} e:T}{\prod_{i=1}^{n} r_i e:T'}$	subtyping

does it type check? -yes def intSqrt(x:Pos) : Pos = { ...} var p : Pos var q : Neg varr: Pos $q = -5 \qquad r = \{(P, Pos), (q, Neg), (r, Pos), (int Sqrt, Pos \rightarrow Pos)\}$ p = qr = intSqrt(p)Runtime error: intSqrt invoked with a negative argument! Neg <: Int g: Neg g: Int

P: Pos Pos <: Int 9: Neg Values from P P: Int 9: are integers. But p did not promise (p=q): void to store all kinds of integers. Only positive ones!

Corrected Type Rule for Assignment



How could we ensure that some other programs will not break?

Type System Soundness

Today

More Subtyping Rules

- product types (pairs)
- function types
- classes

Soundness

- motivating example
- idea of proving soundness
- operational semantics
- a soundness proof
- Subtyping and generics

Proving Soundness of Type Systems

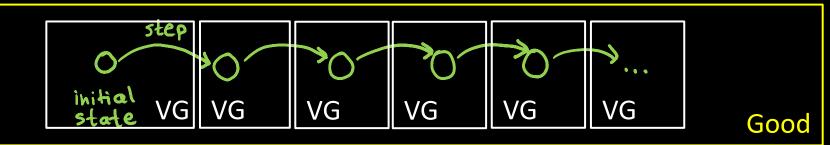
• Goal of a sound type system:

- if the program type checks, then it never "crashes"
- crash = some precisely specified bad behavior
 - e.g. invoking an operation with a wrong type
 - dividing one string by another string "cat" / "frog
 - trying to multiply a Window object by a File object

e.g. not dividing an integer by zero

- Never crashes: no matter how long it executes
 - proof is done by induction on program execution

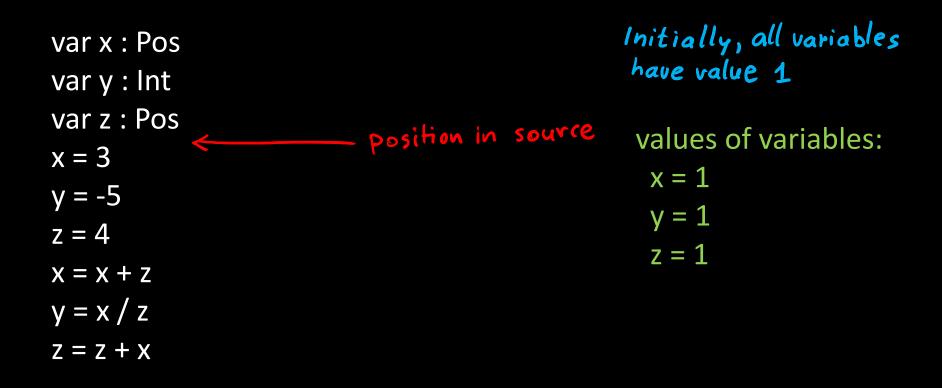
Proving Soundness by Induction

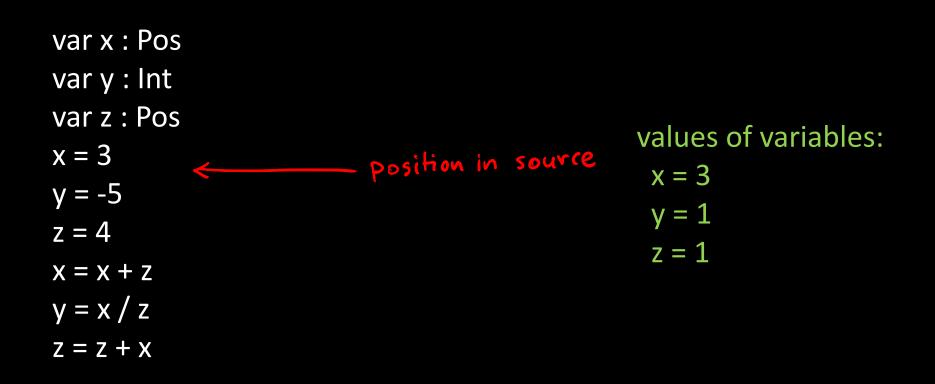


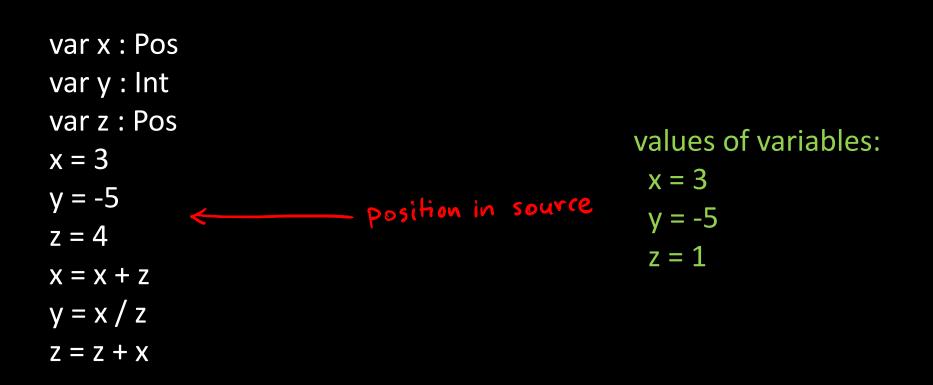
- Program moves from state to state
- Bad state = state where program is about to exhibit a bad operation ("cat" / "frog")
- Good state = state that is not bad
- To prove:

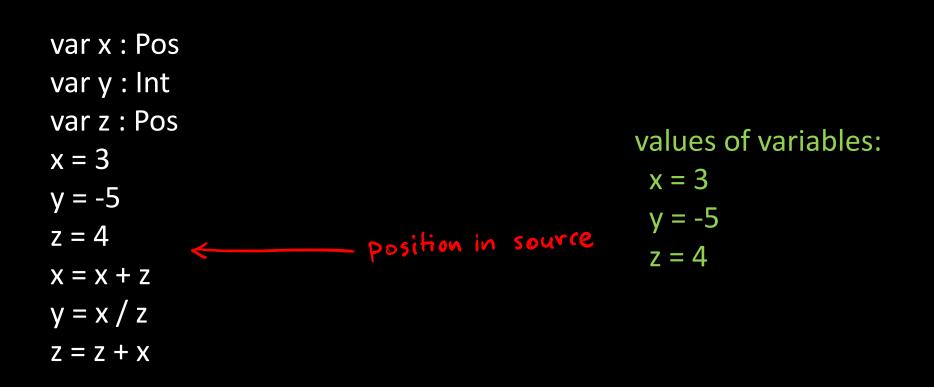
program type checks \rightarrow states in all executions are good

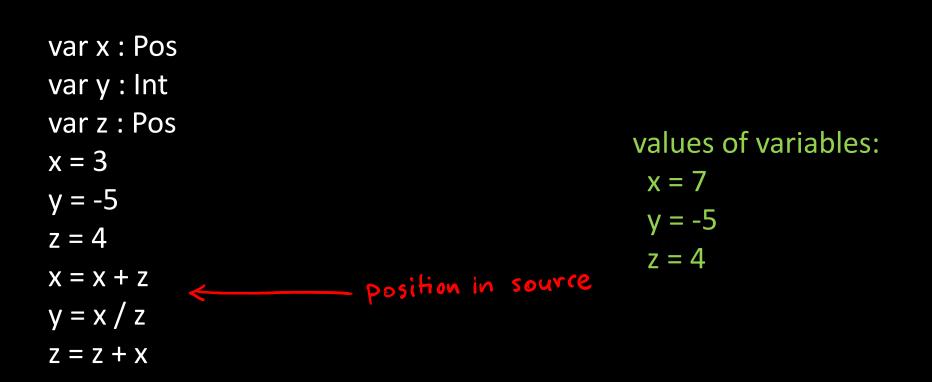
 Usually need a stronger inductive hypothesis; some notion of very good (VG) state such that: program type checks → program's initial state is very good state is very good → next state is also very good state is very good → state is good (not about to crash) A Simple Programming Language

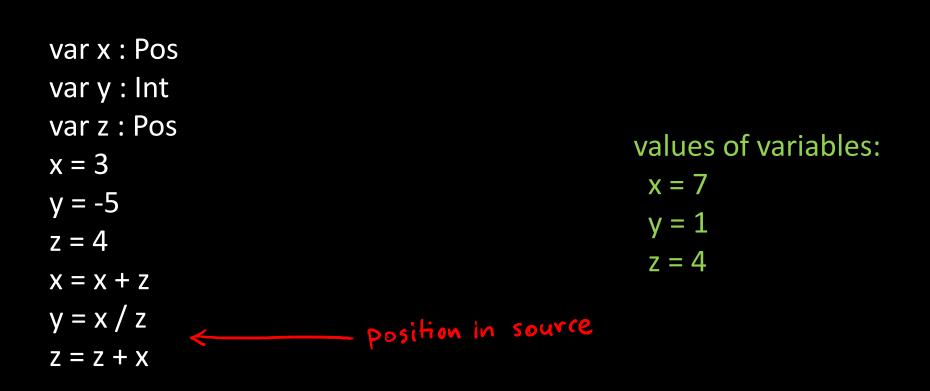










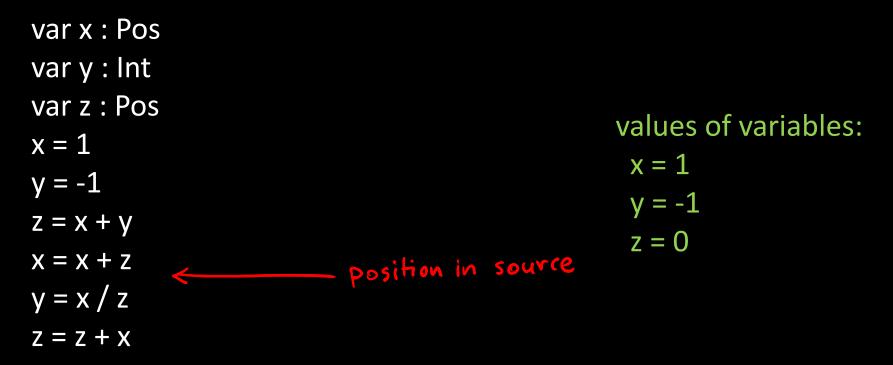


formal description of such program execution is called operational semantics

Definition of Simple Language

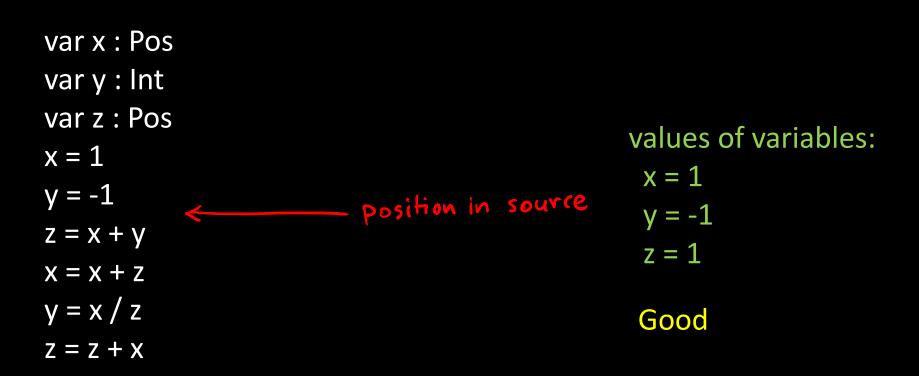
Programs:	Type rules:		
var x_1 : Pos var x_2 : Int var x_2 : Int var x_1 : Pos var x_2 : Pos	$\Gamma = \{ (x_1, Pos), (x_2, (ut), (x_n, Pos) \}$		
	Pos <: lut		
$x_i = x_i$ $\int^{followed by:}$	(×,T)er		
$x_p = \dot{x}_q + x_r$ (statements of one of 3 f	Forms: $\Gamma + (x = e)$	biov:	
$x_a = x_b / x_c \qquad \qquad$		<u>' <: T'</u>	
$ \begin{array}{c} \cdots \\ \mathbf{x}_{p} = \mathbf{x}_{q} + \mathbf{x}_{r} \end{array} \int \begin{array}{c} 2 \\ 3 \end{array} \times \mathbf{i} = \mathbf{x}_{j} \\ 3 \end{array} \times \mathbf{i} = \mathbf{x}_{j} \\ \mathbf{x}_{k} \end{array} $	$\frac{(\mathbf{X},\mathbf{T}) \in \mathbf{\Gamma}}{\mathbf{\Gamma} + \mathbf{X}; \mathbf{T}}$	$\frac{e_1:1ut}{e_1+e_2:1ut}$	
(No complex expressions.)	e,: lut e2: Pos	e: Pos ez: Pos	
kipos -kilnt	e, /e2: lut	e, tez: Pos	

Bad State: About to Divide by Zero (Crash)



Definition: state is *bad* if the next instruction is of the form $x_i = x_i / x_k$ and x_k has value 0 in the current state.

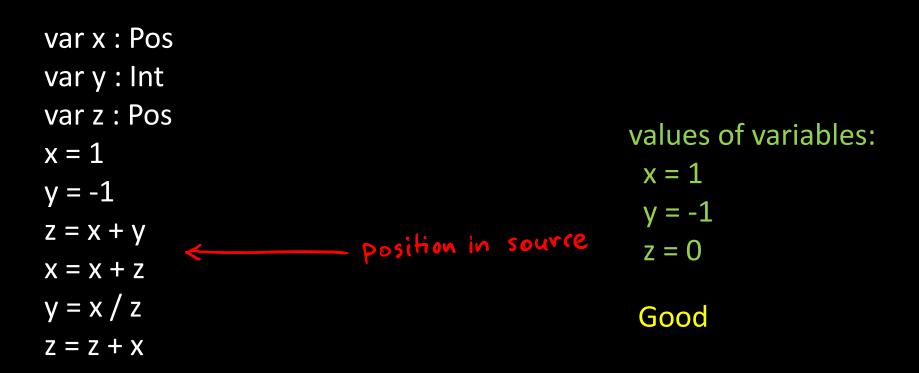
Good State: Not (Yet) About to Divide by Zero



Definition: state is *good* if it is not *bad*.

Definition: state is *bad* if the next instruction is of the form $x_i = x_i / x_k$ and x_k has value 0 in the current state.

Good State: Not (Yet) About to Divide by Zero



Definition: state is *good* if it is not *bad*.

Definition: state is *bad* if the next instruction is of the form $x_i = x_i / x_k$ and x_k has value 0 in the current state.

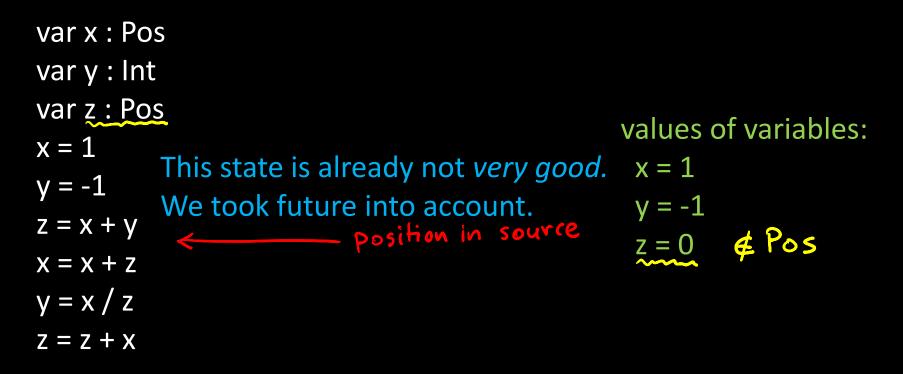
Moved from Good to Bad in One Step! Being good is not preserved by one step, not inductive! It is very local property, does not take future into account. var x : Pos var y : Int var z : Pos values of variables: x = 1x = 1 y = -1y = -1z = x + yz = 0 $\mathbf{x} = \mathbf{x} + \mathbf{z}$ - position in source y = x / zBad z = z + x

Definition: state is *good* if it is not *bad*.

Definition: state is *bad* if the next instruction is of the form $x_i = x_i / x_k$ and x_k has value 0 in the current state.

Being Very Good: A Stronger Inductive Property

Pos = { 1, 2, 3, ... }



Definition: state is *good* if it is not about to divide by zero.

Definition: state is *very good* if each variable belongs to the domain determined by its type (if z:Pos, then z is strictly positive).

If you are a little typed program, what will your parents teach you?

- If you *type check* and succeed:
 - you will be *very good* from the start.
 - if you are very good, then you will remain very good in the next step
 - If you are *very good*, you will not *crash*.

Hence, type check and you will never crash! Soundnes proof = defining "very good" and checking the properties above.

Definition of Simple Language

Programs:	Type rules:		
var x_1 : Pos var x_2 : Int var x_2 : Int var x_1 : Pos var x_2 : Pos	$\Gamma = \{(x_1, Pos), (x_2, (ut), (x_n, Pos))\}$		
	Pos <: Int		
$x_i = x_i$ $\int^{followed by:}$	(×,T)er		
$x_p = \dot{x}_q + x_r$ (statements of one of 3 f	euts of one of 3 forms: [+ (x = e): void		
$x_a = x_b / x_c \qquad \qquad$		<u>' <: T'</u>	
$ \begin{array}{c} \cdots \\ \mathbf{x}_{p} = \mathbf{x}_{q} + \mathbf{x}_{r} \end{array} \int \begin{array}{c} 2 \\ 3 \end{array} \times \mathbf{i} = \mathbf{x}_{j} \\ 3 \end{array} \times \mathbf{i} = \mathbf{x}_{j} \\ \mathbf{x}_{k} \end{array} $	$\frac{(\mathbf{X},\mathbf{T}) \in \mathbf{\Gamma}}{\mathbf{\Gamma} + \mathbf{X}; \mathbf{T}}$	$\frac{e_1:1ut}{e_1+e_2:1ut}$	
(No complex expressions.)	e,: lut e2: Pos	e: Pos ez: Pos	
kipos -kilnt	e, /e2: lut	e, tez: Pos	

Checking Properties in Our Case

Holds: in initial state, variables are =1

1 e Pos

1 Elist

• If you *type check* and succeed:

 $\sqrt{-}$ you will be *very good* from the start.

 if you are very good, then you will remain very good in the next step

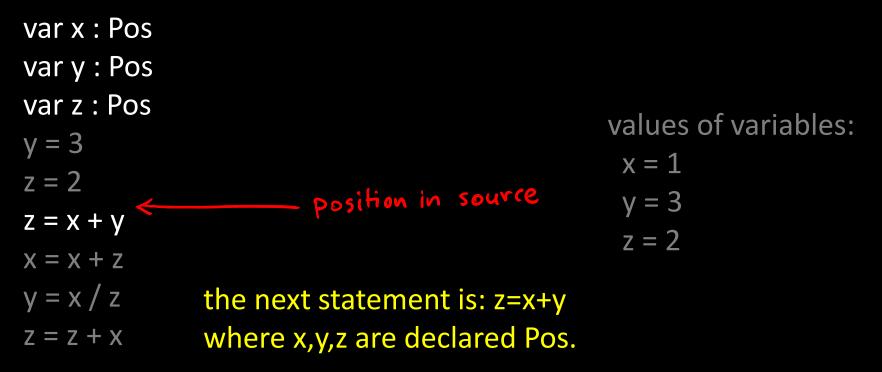
 \checkmark – If you are *very good*, you will not *crash*.

If next state is x / z, type rule ensures z has type Pos Because state is very good, it means $z \in Pos$ so z is not 0, and there will be no crash.

Definition: state is *very good* if each variable belongs to the domain determined by its type (if z:Pos, then z is strictly positive).

Example Case 1

Assume each variable belongs to its type.



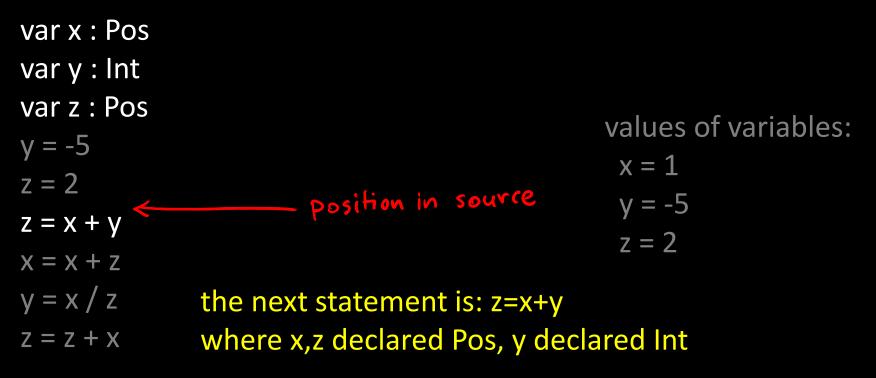
Goal: prove that again each variable belongs to its type.

- variables other than z did not change, so belong to their type

- z is sum of two positive values, so it will have positive value

Example Case 2

Assume each variable belongs to its type.



Goal: prove that again each variable belongs to its type.

 this case is impossible, because z=x+y would not type check How do we know it could not type check?

Must Carefully Check Our Type Rules

Typo rulocy

		Type rule	S:
var x : Pos var y : Int	Conclude that the only	Γ = { (× ₁ , Pos (× ₂ , lut)	
var z : Pos	types we can derive are: x : Pos, x : Int	(xn, Pos	3
y = -5 z = 2	y : Int	Pos <: lut	
z = z z = x + y	x + y : Int	(×,T) e r	rte:T
x = x + z	Cannot type check z = x + y in this environment	r+ (x = e):void
I - V / 7		it. $\frac{\Gamma_{FX} \cdot T}{\Gamma_{FX} \cdot T}$	<u>r <: T'</u>
		$\frac{(\mathbf{X},\mathbf{T})\in\mathbf{\Gamma}}{\mathbf{\Gamma}\vdash\mathbf{X};\mathbf{T}}$	e_1 : Int e_2 : Int $e_1 + e_2$: Int
	e	e: Int ez: Pos	e: Pos ez: Pos
	kipos -kilnt	e_1/e_2 : lut	Q, 102: Pos

We would need to check all cases (there are many, but they are easy)

Remark

• We used in examples Pos <: Int

• Same examples work if we have

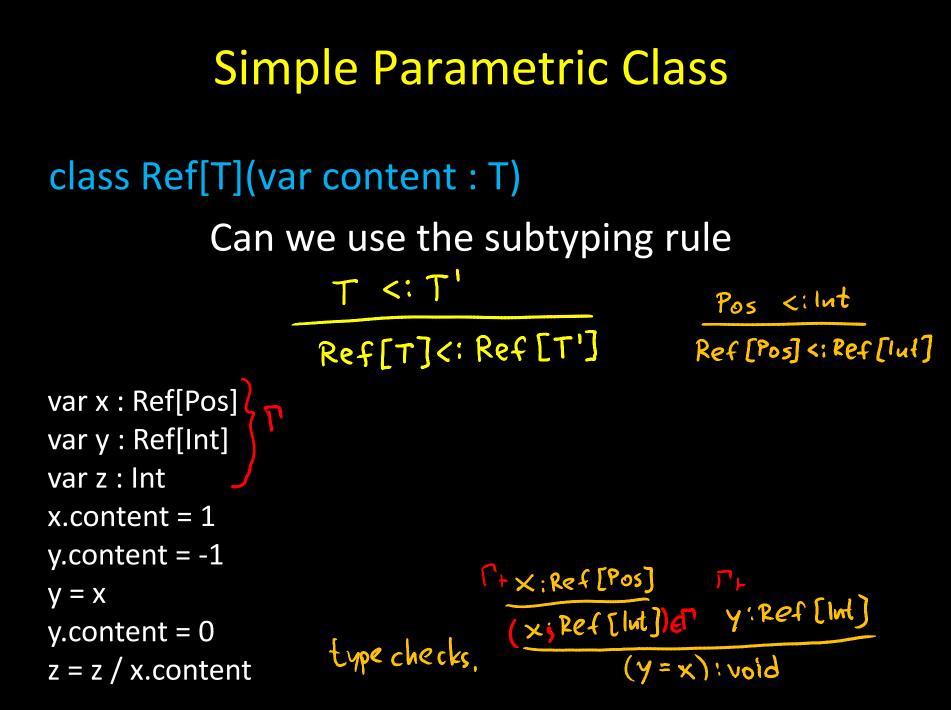
```
class Int { ... }
class Pos extends Int { ... }
```

and is therefore relevant for OO languages

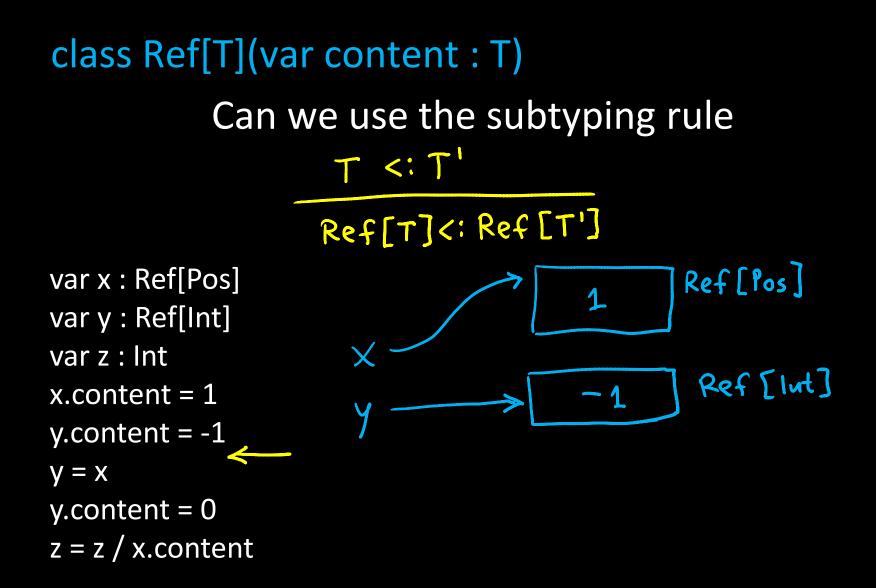
Today

More Subtyping Rules

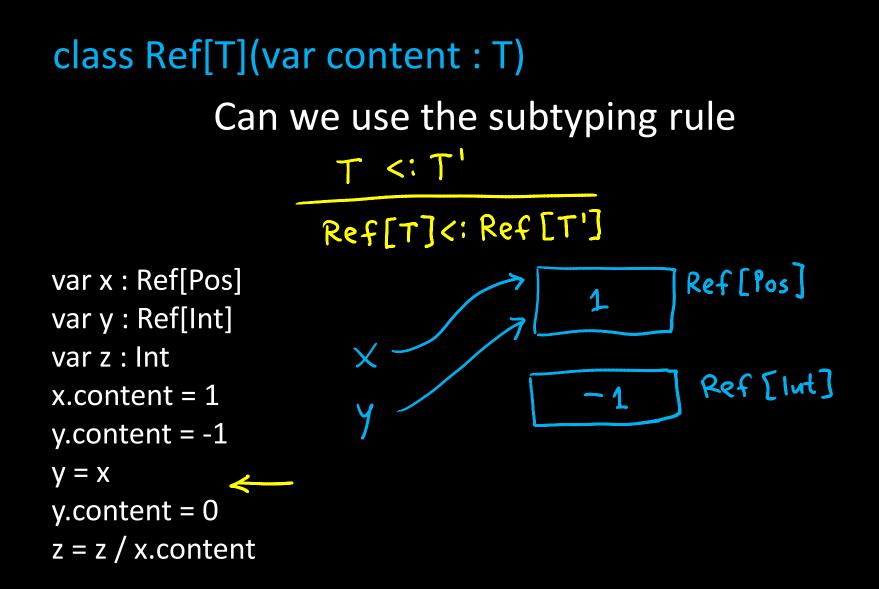
- product types (pairs)
- function types
- classes
- Soundness
 - motivating example
 - idea of proving soundness
 - operational semantics
 - a soundness proof
- Subtyping and generics



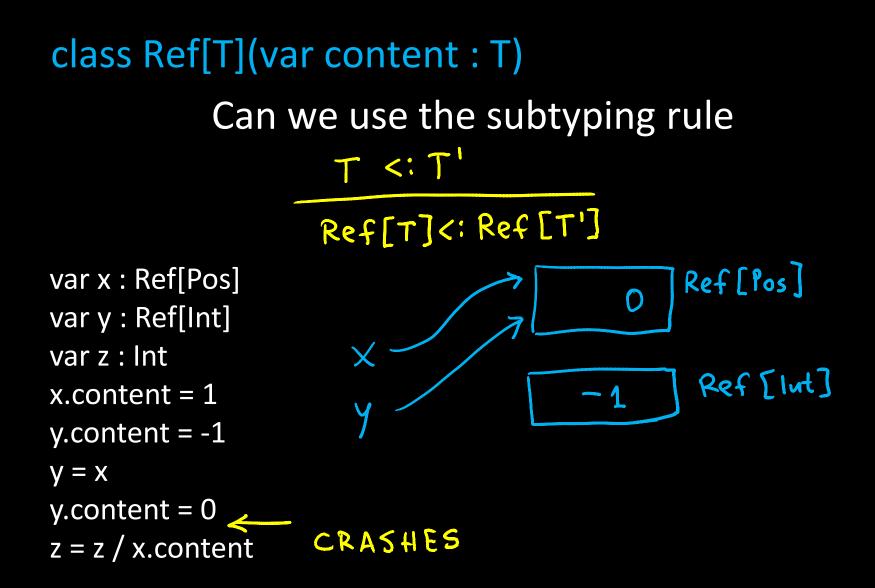
Simple Parametric Class



Simple Parametric Class

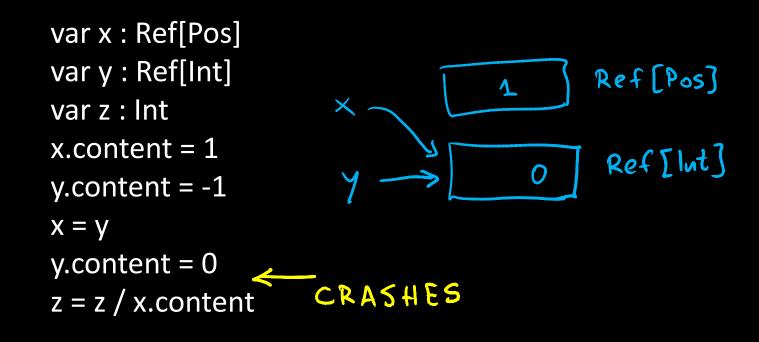


Simple Parametric Class



Analogously

class Ref[T](var content : T) Can we use the converse subtyping rule $\frac{T <: T'}{Ref[T] <: Ref[T]}$



Mutable Classes do not Preserve Subtyping class Ref[T](var content : T) Even if T <: T', Ref[T] and Ref[T'] are unrelated types

var x : Ref[T] var y : Ref[T']

x = y \leftarrow Type checks only if T = T'

. . .

Same Holds for Arrays, Vectors, all mutable containers

Even if T <: T', Array[T] and Array[T'] are unrelated types

```
var x : Array[Pos](1)
var y : Array[Int](1)
var z : Int
x[0] = 1
y[0] = -1
y = x
y[0] = 0
z = z / x[0]
```

Case in Soundness Proof Attempt class Ref[T](var content : T) Can we use the subtyping rule T <: T' Ref[T]<: Ref[T'] Ref [Pos] var x : Ref[Pos] var y : Ref[Int] var z : Int Ref [lut] x.content = 1y.content = -1prove each variable belongs to its type: $\mathbf{y} = \mathbf{x}$ variables other than y did not change... (?!) y.content = 0z = z / x.content

Mutable vs Immutable Containers

• Immutable container, Coll[T]

- has methods of form e.g. get(x:A) : T
- if T <: T', then Coll[T'] has get(x:A) : T'</pre>
- we have $(A \rightarrow T) <: (A \rightarrow T')$ covariant rule for functions, so Coll[T] <: Coll[T']
- Write-only data structure have
 - setter-like methods, set(v:T) : B
 - if T <: T', then Container[T'] has set(v:T) : B</pre>
 - would need $(T \rightarrow B) <: (T' \rightarrow B)$ contravariance for arguments, so Coll[T'] <: Coll[T]
- Read-Write data structure need both, so they are invariant, no subtype on Coll if T <: T'