
Compiler Construction 2010, Lecture 7

Type Analysis

http://lara.epfl.ch

Compiler
(scalac, gcc)

Id3 = 0
while (id3 < 10) {
 println(“”,id3);
 id3 = id3 + 1 }

source code

Compiler

Construction

i
d
3

=

0
LF

w

id3
=
0

while
(

id3
<

10
)

lexer

characters words
(tokens)

trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

making sense of trees

Today

• Type Checking Idea

– Evaluation and Types

– Type Rules for Ground Expressions

– Type Environments

– Assignments

– Arrays

Evaluating an Expression

scala prompt:
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 }
min1: (x: Int,y: Int)Int
min1(10,5)
res1: Int = 6

How can we think about this evaluation?
x  10
y  5
if (x < y) x else y+1

Each Value has a Type

scala prompt:
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 }
min1: (x: Int,y: Int)Int
min1(10,5)
res1: Int = 6

How can we think about this evaluation?
x : Int  10
y : Int  5
if (x < y) x else y+1

We can compute types without values

scala prompt:
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 }
min1: (x: Int,y: Int)Int
min1(10,5)
res1: Int = 6

How can we think about this evaluation?
x : Int
y : Int
if (x < y) x else y+1

We do not like trees upside-down

Leaves are Up

type rules move
from leaves to root

Type Rules as Local Tree Constraints

x : Int
y : Int

Type Rules

for every type T, if

then

b has type Boolean, and ...

Type Rules with Environment

x : Int
y : Int

Type Rules

if the free variables of e have types given by gamma,

then e (correctly) type checks and has type T

If e1 type checks in gamma and has type T1 and ...

and en type checks in gamma and has type Tn

then e type checks in gamma and has type T

Derivation Using Type Rules

x : Int
y : Int

Type Rule for Function Application

We can treat operators as variables that have function type

We can replace many previous rules with application rule:

Computing the Environment of a Class

object World {
 var data : Int
 var name : String
 def m(x : Int, y : Int) : Boolean { ... }
 def n(x : Int) : Int {
 if (x > 0) p(x – 1) else 3
 }
 def p(r : Int) : Int = {
 var k = r + 2
 m(k, n(k))
 }
}

Type check each function m,n,p in this global environment

Extending the Environment

class World {
 var data : Int
 var name : String
 def m(x : Int, y : Int) : Boolean { ... }
 def n(x : Int) : Int {
 if (x > 0) p(x – 1) else 3
 }
 def p(r : Int) : Int = {
 var k:Int = r + 2
 m(k, n(k))
 }
}

Type Checking Expression in a Body

class World {
 var data : Int
 var name : String
 def m(x : Int, y : Int) : Boolean { ... }
 def n(x : Int) : Int {
 if (x > 0) p(x – 1) else 3
 }
 def p(r : Int) : Int = {
 var k:Int = r + 2
 m(k, n(k))
 }
}

Remember Function Updates

{(x,T1),(y,T2)} ⊕ {(x,T3)} = {(x,T3),(y,T2)}

Type Rule for Method Bodies

Type Rule for Assignments

Type Rules for Block: { var x1:T1 ... var xn:Tn; s1; ... sm; e }

Blocks with Declarations in the Middle

just

expression
empty

declaration is first

statement is first

Rule for While Statement

Rule for Method Call

Example to Type Check

class World {
 var z : Boolean
 var u : Int
 def f(y : Boolean) : Int {
 z = y
 if (u > 0) {
 u = u – 1
 var z : Int
 z = f(!y) + 3
 z+z
 } else { 0 }

 }

}

Overloading of Operators

Not a problem for type checking from leaves to root

Arrays

Using array as an expression, on the right-hand side

Assigning to an array

Example with Arrays

def next(a : Array[Int], k : Int) : Int = {
 a[k] = a[a[k]]
}

Type Rules (1)

variable constant

function application

plus

if

assignment
while

Type Rules (2)

array use

array
assignment

Type Rules (3)

field use

field assignment

top-level environment of class C

method invocation

Type Rules (1)

variable constant

function application

plus

if

assignment
while

Type Rules (2)

array use

array
assignment

Type Rules (3)

field use

field assignment

top-level environment of class C

method invocation

Meaning of Types

• Types can be viewed as named entities

– explicitly declared classes, traits

– their meaning is given by methods they have

– constructs such as inheritance establishe
relationships between classes

• Types can be viewed as sets of values

– Int = { ..., -2, -1, 0, 1, 2, ... }

– Boolean = { false, true }

– Int  Int = { f : Int -> Int | f is computable }

Types as Sets

• Sets so far were disjoint

• Sets can overlap

SUBTYPING

Subtyping

• Subtyping corresponds to subset

• Systems with subtyping have non-disjoint sets

• T1 <: T2 means T1 is a subtype of T2

– corresponds to T1 ⊆ T2 in sets of values

• Main rule for subtyping corresponds to

Types for Positive and Negative Ints
Int = { ... , -2, -1, 0, 1, 2, ... }
Pos = { 1, 2, ... }
Neg = { ..., -2, -1 }

More Rules

Making Rules Useful

• Let x be a variable

if (y > 0) {
 if (x > 0) {
 var z : Pos = x * y
 res = 10 / z
} }

Subtyping Example

Pos <: Int

def f(x:Int) : Pos = {
 if (x < 0) –x else x+1
}

var p : Pos
var q : Int

q = f(p)

 - type checks

Using Subtyping

Pos <: Int

def f(x:Pos) : Pos = {
 if (x < 0) –x else x+1
}

var p : Int
var q : Int

q = f(p)

 - does not type check

What Pos/Neg Types Can Do

def multiplyFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) {

 (p1*q1, q1*q2)

}

def addFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) {

 (p1*q2 + p2*q1, q1*q2)

}

def printApproxValue(p : Int, q : Pos) = {

 print(p/q) // no division by zero

}

More sophisticated types can track intervals of numbers and ensure
that a program does not crash with an array out of bounds error.

Subtyping and Product Types

Using Subtyping

Pos <: Int

def f(x:Pos) : Pos = {
 if (x < 0) –x else x+1
}

var p : Int
var q : Int

q = f(p)

 - does not type check

Subtyping for Products

Analogy with Cartesian Product

Subtyping and Function Types

Subtyping for Function Types

Consequence:

contravariance covariance

Function Space as Set

To get the appropriate behavior we need to
assign sets to function types like this:

T1  T2 = * f | ∀𝑥. (𝑥 ∈ 𝑇1 → 𝑓 𝑥 ∈ 𝑇2)+

We can prove

Proof

Subtyping for Classes

• Class C contains a collection of methods

• We view field var f: T as two methods

– getF(this:C): T C  T

– setF(this:C, x:T): void C x T  void

• For val f: T (immutable): we have only getF

• Class has all functionality of a pair of method

• We must require (at least) that methods
named the same are subtypes

• If type T is generic, it must be invariant

– as for mutable arrays

Example

class C {
 def m(x : T1) : T2 = {...}
}
class D extends C {
 override def m(x : T’1) : T’2 = {...}
}
D <: C Therefore, we need to have:

T1 <: T’1 (argument behaves opposite)

T’2 <: T2 (result behaves like class)

Today

• More Subtyping Rules

– product types (pairs)

– function types

– classes

• Soundness

– motivating example

– idea of proving soundness

– operational semantics

– a soundness proof

• Subtyping and generics

Example: Tootool 0.1 Language
Tootool rest area

Tootool is a rural community in the central east part of the Riverina

[New South Wales, Australia]. It is situated by road, about 4 kilometres east

from French Park and 16 kilometres west from The Rock.

Tootool Post Office opened on 1 August 1901 and closed in 1966. [Wikipedia]

Type System for Tootool 0.1

Pos <: Int
Neg <: Int

 does it type check?
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

Runtime error: intSqrt invoked
with a negative argument!

unsound

What went wrong in Tootool 0.1 ?

Pos <: Int
Neg <: Int

 does it type check?
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

Runtime error: intSqrt invoked
with a negative argument!

Recall Our Type Derivation

Pos <: Int
Neg <: Int

 does it type check?
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

Runtime error: intSqrt invoked
with a negative argument!

Corrected Type Rule for Assignment

Pos <: Int
Neg <: Int

 does it type check?
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

 stores declarations (promises)

How could we ensure that some
other programs will not break?

Type System Soundness

Today

• More Subtyping Rules

– product types (pairs)

– function types

– classes

• Soundness

– motivating example

– idea of proving soundness

– operational semantics

– a soundness proof

• Subtyping and generics

Proving Soundness of Type Systems

• Goal of a sound type system:

– if the program type checks, then it never “crashes”

– crash = some precisely specified bad behavior

 e.g. invoking an operation with a wrong type

• dividing one string by another string “cat” / “frog

• trying to multiply a Window object by a File object

 e.g. not dividing an integer by zero

• Never crashes: no matter how long it executes

– proof is done by induction on program execution

Proving Soundness by Induction

• Program moves from state to state

• Bad state = state where program is about to exhibit a bad
operation (“cat” / “frog”)

• Good state = state that is not bad

• To prove:
 program type checks  states in all executions are good

• Usually need a stronger inductive hypothesis;
some notion of very good (VG) state such that:
 program type checks  program’s initial state is very good
 state is very good  next state is also very good
 state is very good  state is good (not about to crash)

VG VG VG VG VG VG Good

A Simple Programming Language

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = 1
 z = 1

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 3
 y = 1
 z = 1

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 3
 y = -5
 z = 1

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 3
 y = -5
 z = 4

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 7
 y = -5
 z = 4

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 7
 y = 1
 z = 4

formal description of such program execution
is called operational semantics

Definition of Simple Language

var x1 : Pos
var x2 : Int
...
var xn : Pos

xi = xj
xp = xq + xr

xa = xb / xc

...
xp = xq + xr

Programs: Type rules:

Bad State: About to Divide by Zero
(Crash)

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 0

Definition: state is bad if the next instruction is of the form
 xi = xj / xk and xk has value 0 in the current state.

Good State: Not (Yet) About to Divide by Zero

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 1

Definition: state is good if it is not bad.

Good

Definition: state is bad if the next instruction is of the form
 xi = xj / xk and xk has value 0 in the current state.

Good State: Not (Yet) About to Divide by Zero

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 0

Definition: state is good if it is not bad.

Good

Definition: state is bad if the next instruction is of the form
 xi = xj / xk and xk has value 0 in the current state.

Moved from Good to Bad in One Step!

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 0

Bad

Definition: state is good if it is not bad.

Being good is not preserved by one step, not inductive!
It is very local property, does not take future into account.

Definition: state is bad if the next instruction is of the form
 xi = xj / xk and xk has value 0 in the current state.

Being Very Good: A Stronger Inductive Property

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 0

Definition: state is good if it is not about to divide by zero.

Definition: state is very good if each variable belongs to the
domain determined by its type (if z:Pos, then z is strictly positive).

This state is already not very good.
We took future into account.

Pos = { 1, 2, 3, ... }

If you are a little typed program,
what will your parents teach you?

• If you type check and succeed:

– you will be very good from the start.

– if you are very good, then you will remain
very good in the next step

– If you are very good, you will not crash.

Hence, type check and you will never crash!

Soundnes proof = defining “very good” and
checking the properties above.

Definition of Simple Language

var x1 : Pos
var x2 : Int
...
var xn : Pos

xi = xj
xp = xq + xr

xa = xb / xc

...
xp = xq + xr

Programs: Type rules:

Checking Properties in Our Case

Definition: state is very good if each variable belongs to the
domain determined by its type (if z:Pos, then z is strictly positive).

Holds: in initial state, variables are =1

• If you type check and succeed:

– you will be very good from the start.

– if you are very good, then you will remain
very good in the next step

– If you are very good, you will not crash.

If next state is x / z, type rule ensures z has type Pos
Because state is very good, it means
so z is not 0, and there will be no crash.

Example Case 1

var x : Pos
var y : Pos
var z : Pos
y = 3
z = 2
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = 3
 z = 2

the next statement is: z=x+y
where x,y,z are declared Pos.

Goal: prove that again each variable belongs to its type.

Assume each variable belongs to its type.

- variables other than z did not change, so belong to their type
- z is sum of two positive values, so it will have positive value

Example Case 2

var x : Pos
var y : Int
var z : Pos
y = -5
z = 2
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -5
 z = 2

the next statement is: z=x+y
where x,z declared Pos, y declared Int

Goal: prove that again each variable belongs to its type.

Assume each variable belongs to its type.

- this case is impossible, because z=x+y would not type check
 How do we know it could not type check?

Must Carefully Check Our Type Rules

Type rules:

var x : Pos
var y : Int
var z : Pos
y = -5
z = 2
z = x + y
x = x + z
y = x / z
z = z + x

Conclude that the only
types we can derive are:
 x : Pos, x : Int
 y : Int
 x + y : Int

Cannot type check
 z = x + y in this environment.

We would need to check all cases
(there are many, but they are easy)

Remark

• We used in examples Pos <: Int

• Same examples work if we have

class Int { ... }
class Pos extends Int { ... }

and is therefore relevant for OO languages

Today

• More Subtyping Rules

– product types (pairs)

– function types

– classes

• Soundness

– motivating example

– idea of proving soundness

– operational semantics

– a soundness proof

• Subtyping and generics

Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

Analogously

class Ref[T](var content : T)

Can we use the converse subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
x = y
y.content = 0
z = z / x.content

Mutable Classes do not
Preserve Subtyping

class Ref[T](var content : T)

Even if T <: T’,

Ref[T] and Ref*T’+ are unrelated types

var x : Ref[T]
var y : Ref*T’+
...
x = y
...

Type checks only if T = T’

Same Holds for Arrays, Vectors,
all mutable containers

var x : Array[Pos](1)
var y : Array[Int](1)
var z : Int
x[0] = 1
y[0] = -1
y = x
y[0] = 0
z = z / x[0]

Even if T <: T’,

Array[T] and Array[T’+ are unrelated types

Case in Soundness Proof Attempt

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

prove each variable belongs to its type:

variables other than y did not change... (?!)

Mutable vs Immutable Containers

• Immutable container, Coll[T]
– has methods of form e.g. get(x:A) : T
– if T <: T’, then Coll*T’+ has get(x:A) : T’
– we have (A  T) <: (A T’)

covariant rule for functions, so Coll[T] <: Coll*T’+

• Write-only data structure have
– setter-like methods, set(v:T) : B
– if T <: T’, then Container*T’+ has set(v:T) : B
– would need (T  B) <: (T’  B)

contravariance for arguments, so Coll*T’+ <: Coll[T]

• Read-Write data structure need both,
so they are invariant, no subtype on Coll if T <: T’

