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making sense of trees 



Today 

• Type Checking Idea 

– Evaluation and Types 

– Type Rules for Ground Expressions 

– Type Environments 

– Assignments 

– Arrays 



Evaluating an Expression 

scala prompt: 
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 } 
min1: (x: Int,y: Int)Int  
min1(10,5) 
res1: Int = 6  

How can we think about this evaluation? 
x  10 
y  5 
if (x < y) x else y+1 



Each Value has a Type 

scala prompt: 
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 } 
min1: (x: Int,y: Int)Int  
min1(10,5) 
res1: Int = 6  

How can we think about this evaluation? 
x : Int  10 
y : Int  5 
if (x < y) x else y+1 



We can compute types without values 

scala prompt: 
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 } 
min1: (x: Int,y: Int)Int  
min1(10,5) 
res1: Int = 6  

How can we think about this evaluation? 
x : Int 
y : Int 
if (x < y) x else y+1 



We do not like trees upside-down 



Leaves are Up 

type rules move  
from leaves to root 





Type Rules as Local Tree Constraints 

x : Int 
y : Int 

Type Rules 

for every type T, if 

then 

b has type Boolean, and ... 



Type Rules with Environment 

x : Int 
y : Int 

Type Rules 



if the free variables of e have types given by gamma, 

then e (correctly) type checks and has type T 

If e1 type checks in gamma and has type T1  and ... 

and en  type checks in gamma and has type Tn 

then e type checks in gamma and has type T 



Derivation Using Type Rules 

x : Int 
y : Int 



Type Rule for Function Application 

We can treat operators as variables that have function type 

We can replace many previous rules with application rule: 



Computing the Environment of a Class 

object World { 
  var data : Int 
  var name : String 
  def m(x : Int, y : Int) : Boolean { ... } 
  def n(x : Int) : Int { 
    if (x > 0) p(x – 1) else 3 
  } 
  def p(r : Int) : Int = { 
     var k = r + 2 
     m(k, n(k)) 
  } 
} 

Type check each function m,n,p in this global environment 



Extending the Environment 

class World { 
  var data : Int 
  var name : String 
  def m(x : Int, y : Int) : Boolean { ... } 
  def n(x : Int) : Int { 
    if (x > 0) p(x – 1) else 3 
  } 
  def p(r : Int) : Int = { 
     var k:Int = r + 2 
     m(k, n(k)) 
  } 
} 



Type Checking Expression in a Body 

class World { 
  var data : Int 
  var name : String 
  def m(x : Int, y : Int) : Boolean { ... } 
  def n(x : Int) : Int { 
    if (x > 0) p(x – 1) else 3 
  } 
  def p(r : Int) : Int = { 
     var k:Int = r + 2 
     m(k, n(k)) 
  } 
} 



Remember Function Updates 

 

{(x,T1),(y,T2)} ⊕ {(x,T3)}  =  {(x,T3),(y,T2)} 



Type Rule for Method Bodies 

Type Rule for Assignments 

Type Rules for Block: { var x1:T1 ... var xn:Tn; s1; ... sm; e } 



Blocks with Declarations in the Middle 

just 

expression 
empty 

declaration is first 

statement is first 



Rule for While Statement 



Rule for Method Call 



Example to Type Check 

class World { 
  var z : Boolean 
  var u : Int 
  def f(y : Boolean) : Int { 
    z = y 
    if (u > 0) { 
      u = u – 1 
      var z : Int 
      z = f(!y) + 3 
      z+z 
    } else { 0 } 

  } 

} 



Overloading of Operators 

Not a problem for type checking from leaves to root 



Arrays 

Using array as an expression, on the right-hand side 

Assigning to an array 



Example with Arrays 

def next(a : Array[Int], k : Int) : Int = { 
   a[k] = a[a[k]] 
} 



Type Rules (1) 

variable constant 

function application 

plus 

if 

assignment 
while 



Type Rules (2) 

array use 

array 
assignment 



Type Rules (3) 

field use 

field assignment 

top-level environment of class C 

method invocation 



Type Rules (1) 

variable constant 

function application 

plus 

if 

assignment 
while 



Type Rules (2) 

array use 

array 
assignment 



Type Rules (3) 

field use 

field assignment 

top-level environment of class C 

method invocation 



Meaning of Types 

• Types can be viewed as named entities 

– explicitly declared classes, traits 

– their meaning is given by methods they have 

– constructs such as inheritance establishe 
relationships between classes 

• Types can be viewed as sets of values 

– Int = { ..., -2, -1, 0, 1, 2, ... } 

– Boolean = { false, true } 

– Int  Int = { f : Int -> Int | f is computable } 



Types as Sets 

• Sets so far were disjoint 

• Sets can overlap 



SUBTYPING 



Subtyping 

• Subtyping corresponds to subset 

• Systems with subtyping have non-disjoint sets 

• T1 <: T2    means    T1  is a subtype of T2 

– corresponds to T1 ⊆ T2 in sets of values 

• Main rule for subtyping     corresponds to 

 

 



Types for Positive and Negative Ints 
Int = { ... , -2, -1, 0, 1, 2, ... } 
Pos = { 1, 2, ... } 
Neg = { ..., -2, -1 } 



More Rules 



Making Rules Useful 

• Let x be a variable 

if (y > 0) { 
  if (x > 0) { 
    var z : Pos = x * y 
    res = 10 / z 
} } 



Subtyping Example 

Pos <: Int 
 
def f(x:Int) : Pos = {  
  if (x < 0) –x else x+1 
} 
 
var p : Pos 
var q : Int 
 
q = f(p) 

 - type checks 



Using Subtyping 

Pos <: Int 
 
def f(x:Pos) : Pos = {  
  if (x < 0) –x else x+1 
} 
 
var p : Int 
var q : Int 
 
q = f(p) 

 - does not type check 



What Pos/Neg Types Can Do 

def multiplyFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) { 

  (p1*q1, q1*q2) 

} 

def addFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) { 

  (p1*q2 + p2*q1, q1*q2) 

} 

def printApproxValue(p : Int, q : Pos) = { 

  print(p/q) // no division by zero 

} 

 

More sophisticated types can track intervals of numbers and ensure 
that a program does not crash with an array out of bounds error.  



Subtyping and Product Types 



Using Subtyping 

Pos <: Int 
 
def f(x:Pos) : Pos = {  
  if (x < 0) –x else x+1 
} 
 
var p : Int 
var q : Int 
 
q = f(p) 

 - does not type check 



Subtyping for Products 



Analogy with Cartesian Product 



Subtyping and Function Types 



Subtyping for Function Types 

Consequence: 

contravariance covariance 



Function Space as Set 

To get the appropriate behavior we need to 
assign sets to function types like this: 
 
T1  T2  = * f | ∀𝑥. (𝑥 ∈ 𝑇1 →  𝑓 𝑥 ∈ 𝑇2)+ 

 

We can prove 



Proof 



Subtyping for Classes 

• Class C contains a collection of methods 

• We view field var f: T as two methods 

– getF(this:C): T                   C  T 

– setF(this:C, x:T): void      C x T  void 

• For val f: T (immutable): we have only getF 

• Class has all functionality of a pair of method 

• We must require (at least) that methods 
named the same are subtypes 

• If type T is generic, it must be invariant 

– as for mutable arrays 



Example  

class C { 
  def m(x : T1) : T2 = {...} 
} 
class D extends C { 
  override def m(x : T’1) : T’2  = {...} 
} 
D <: C   Therefore, we need to have: 

T1 <: T’1  (argument behaves opposite) 

T’2 <: T2  (result behaves like class) 



Today 

• More Subtyping Rules 

– product types (pairs) 

– function types 

– classes 

• Soundness 

– motivating example 

– idea of proving soundness 

– operational semantics 

– a soundness proof 

• Subtyping and generics 



Example: Tootool 0.1 Language 
Tootool rest area  

Tootool is a rural community in the central east part of the Riverina  

[New South Wales, Australia]. It is situated by road, about 4 kilometres east 

from French Park and 16 kilometres west from The Rock. 

Tootool Post Office opened on 1 August 1901 and closed in 1966.  [Wikipedia] 



Type System for Tootool 0.1 

Pos <: Int 
Neg <: Int 

      does it type check? 
def intSqrt(x:Pos) : Pos = { ...} 
var p : Pos 
var q : Neg 
var r : Pos 
q = -5 
p = q 
r = intSqrt(p) 

Runtime error: intSqrt invoked  
with a negative argument! 

unsound 



What went wrong in Tootool 0.1 ? 

Pos <: Int 
Neg <: Int 

      does it type check? 
def intSqrt(x:Pos) : Pos = { ...} 
var p : Pos 
var q : Neg 
var r : Pos 
q = -5 
p = q 
r = intSqrt(p) 

Runtime error: intSqrt invoked  
with a negative argument! 



Recall Our Type Derivation 

Pos <: Int 
Neg <: Int 

      does it type check? 
def intSqrt(x:Pos) : Pos = { ...} 
var p : Pos 
var q : Neg 
var r : Pos 
q = -5 
p = q 
r = intSqrt(p) 

Runtime error: intSqrt invoked  
with a negative argument! 



Corrected Type Rule for Assignment 

Pos <: Int 
Neg <: Int 

      does it type check? 
def intSqrt(x:Pos) : Pos = { ...} 
var p : Pos 
var q : Neg 
var r : Pos 
q = -5 
p = q 
r = intSqrt(p) 

     stores declarations (promises) 



How could we ensure that some 
other programs will not break? 

Type System Soundness 



Today 

• More Subtyping Rules 

– product types (pairs) 

– function types 

– classes 

• Soundness 

– motivating example 

– idea of proving soundness 

– operational semantics 

– a soundness proof 

• Subtyping and generics 



Proving Soundness of Type Systems 

• Goal of a sound type system: 

– if the program type checks, then it never “crashes” 

– crash = some precisely specified bad behavior 

 e.g. invoking an operation with a wrong type 

• dividing one string by another string    “cat” / “frog 

• trying to multiply a Window object by a File object 

 e.g. not dividing an integer by zero 

• Never crashes: no matter how long it executes 

– proof is done by induction on program execution 



Proving Soundness by Induction 

• Program moves from state to state 

• Bad state = state where program is about to exhibit a bad 
operation ( “cat” / “frog” ) 

• Good state = state that is not bad 

• To prove: 
  program type checks  states in all executions are good 

• Usually need a stronger inductive hypothesis;  
some notion of very good (VG) state such that: 
  program type checks  program’s initial state is very good 
  state is very good  next state is also very good 
  state is very good  state is good (not about to crash) 

VG VG VG VG VG VG Good 



A Simple Programming Language 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = 1 
  z = 1 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 3 
  y = 1 
  z = 1 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 3 
  y = -5 
  z = 1 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 3 
  y = -5 
  z = 4 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 7 
  y = -5 
  z = 4 



Program State 

var x : Pos 
var y : Int 
var z : Pos 
x = 3 
y = -5 
z = 4 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 7 
  y = 1 
  z = 4 

formal description of such program execution 
is called operational semantics  



Definition of Simple Language 

var x1 : Pos 
var x2 : Int 
... 
var xn : Pos 
 
xi = xj 
xp = xq + xr 

xa = xb / xc 

... 
xp = xq + xr 

Programs: Type rules: 



Bad State: About to Divide by Zero 
(Crash) 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 0 

Definition: state is bad if the next instruction is of the form 
  xi = xj / xk   and xk has value 0 in the current state. 



Good State: Not (Yet) About to Divide by Zero 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 1 

Definition: state is good if it is not bad. 

Good 

Definition: state is bad if the next instruction is of the form 
  xi = xj / xk   and xk has value 0 in the current state. 



Good State: Not (Yet) About to Divide by Zero 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 0 

Definition: state is good if it is not bad. 

Good 

Definition: state is bad if the next instruction is of the form 
  xi = xj / xk   and xk has value 0 in the current state. 



Moved from Good to Bad in One Step! 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 0 

Bad 

Definition: state is good if it is not bad. 

Being good is not preserved by one step, not inductive! 
It is very local property, does not take future into account. 

Definition: state is bad if the next instruction is of the form 
  xi = xj / xk   and xk has value 0 in the current state. 



Being Very Good: A Stronger Inductive Property 

var x : Pos 
var y : Int 
var z : Pos 
x = 1 
y = -1 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -1 
  z = 0 

Definition: state is good if it is not about to divide by zero. 

Definition: state is very good if each variable belongs to the 
domain determined by its type (if z:Pos, then z is strictly positive). 

This state is already not very good. 
We took future into account. 

Pos = { 1, 2, 3, ... } 



If you are a little typed program, 
what will your parents teach you? 

• If you type check and succeed: 

– you will be very good from the start. 

– if you are very good, then you will remain  
very good in the next step 

– If you are very good, you will not crash. 

 
Hence, type check and you will never crash! 

Soundnes proof = defining “very good” and 
checking the properties above. 



Definition of Simple Language 

var x1 : Pos 
var x2 : Int 
... 
var xn : Pos 
 
xi = xj 
xp = xq + xr 

xa = xb / xc 

... 
xp = xq + xr 

Programs: Type rules: 



Checking Properties in Our Case 

Definition: state is very good if each variable belongs to the 
domain determined by its type (if z:Pos, then z is strictly positive). 

Holds: in initial state, variables are =1 

• If you type check and succeed:  

– you will be very good from the start. 

– if you are very good, then you will remain  
very good in the next step 

– If you are very good, you will not crash. 

If next state is x / z, type rule ensures z has type Pos 
Because state is very good, it means 
so z is not 0, and there will be no crash. 



Example Case 1 

var x : Pos 
var y : Pos 
var z : Pos 
y = 3 
z = 2 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = 3 
  z = 2 

the next statement is: z=x+y 
where x,y,z are declared Pos. 

Goal: prove that again each variable belongs to its type. 

Assume each variable belongs to its type. 

- variables other than z did not change, so belong to their type 
- z is sum of two positive values, so it will have positive value 



Example Case 2 

var x : Pos 
var y : Int 
var z : Pos 
y = -5 
z = 2 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

values of variables: 
  x = 1 
  y = -5 
  z = 2 

the next statement is: z=x+y 
where x,z declared Pos, y declared Int 

Goal: prove that again each variable belongs to its type. 

Assume each variable belongs to its type. 

- this case is impossible, because z=x+y would not type check 
  How do we know it could not type check? 



Must Carefully Check Our Type Rules 

Type rules: 

var x : Pos 
var y : Int 
var z : Pos 
y = -5 
z = 2 
z = x + y 
x = x + z 
y = x / z 
z = z + x 

Conclude that the only 
types we can derive are: 
   x : Pos, x : Int 
   y : Int 
   x + y : Int 

Cannot type check 
 z = x + y in this environment. 



We would need to check all cases 
(there are many, but they are easy) 



Remark 

• We used in examples  Pos <: Int 

 

• Same examples work if we have 

 

class Int { ... } 
class Pos extends Int { ... } 

 

and is therefore relevant for OO languages 



Today 

• More Subtyping Rules 

– product types (pairs) 

– function types 

– classes 

• Soundness 

– motivating example 

– idea of proving soundness 

– operational semantics 

– a soundness proof 

• Subtyping and generics 



Simple Parametric Class 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 



Simple Parametric Class 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 



Simple Parametric Class 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 



Simple Parametric Class 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 



Analogously 

class Ref[T](var content : T) 

Can we use the converse subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
x = y 
y.content = 0 
z = z / x.content 



Mutable Classes do not  
Preserve Subtyping 

class Ref[T](var content : T) 

Even if T <: T’,  

Ref[T] and Ref*T’+ are unrelated types 

var x : Ref[T] 
var y : Ref*T’+ 
... 
x = y 
... 

Type checks only if T = T’ 



Same Holds for Arrays, Vectors,  
all mutable containers 

var x : Array[Pos](1) 
var y : Array[Int](1) 
var z : Int 
x[0] = 1 
y[0] = -1 
y = x 
y[0] = 0 
z = z / x[0] 

Even if T <: T’,  

Array[T] and Array[T’+ are unrelated types 



Case in Soundness Proof Attempt 

class Ref[T](var content : T) 

Can we use the subtyping rule 

var x : Ref[Pos] 
var y : Ref[Int] 
var z : Int 
x.content = 1 
y.content = -1 
y = x 
y.content = 0 
z = z / x.content 

prove each variable belongs to its type: 

variables other than y did not change... (?!) 



Mutable vs Immutable Containers 

• Immutable container, Coll[T] 
– has methods of form e.g.     get(x:A) : T 
– if T <: T’, then Coll*T’+ has  get(x:A) : T’ 
– we have   (A  T) <: (A T’)   

covariant rule for functions, so Coll[T] <: Coll*T’+ 

• Write-only data structure have 
– setter-like methods,    set(v:T) : B 
– if T <: T’, then Container*T’+ has set(v:T) : B 
– would need (T  B) <: (T’  B) 

contravariance for arguments, so Coll*T’+ <: Coll[T] 

• Read-Write data structure need both,  
so they are invariant, no subtype on Coll if T <: T’ 


