
Compiler Construction 2010, Lecture 7

Type Analysis

http://lara.epfl.ch

Compiler
(scalac, gcc)

Id3 = 0
while (id3 < 10) {
 println(“”,id3);
 id3 = id3 + 1 }

source code

Compiler

Construction

i
d
3

=

0
LF

w

id3
=
0

while
(

id3
<

10
)

lexer

characters words
(tokens)

trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

making sense of trees

Today

• Type Checking Idea

– Evaluation and Types

– Type Rules for Ground Expressions

– Type Environments

– Assignments

– Arrays

Evaluating an Expression

scala prompt:
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 }
min1: (x: Int,y: Int)Int
min1(10,5)
res1: Int = 6

How can we think about this evaluation?
x 10
y 5
if (x < y) x else y+1

Each Value has a Type

scala prompt:
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 }
min1: (x: Int,y: Int)Int
min1(10,5)
res1: Int = 6

How can we think about this evaluation?
x : Int 10
y : Int 5
if (x < y) x else y+1

We can compute types without values

scala prompt:
def min1(x : Int, y : Int) : Int = { if (x < y) x else y+1 }
min1: (x: Int,y: Int)Int
min1(10,5)
res1: Int = 6

How can we think about this evaluation?
x : Int
y : Int
if (x < y) x else y+1

We do not like trees upside-down

Leaves are Up

type rules move
from leaves to root

Type Rules as Local Tree Constraints

x : Int
y : Int

Type Rules

for every type T, if

then

b has type Boolean, and ...

Type Rules with Environment

x : Int
y : Int

Type Rules

if the free variables of e have types given by gamma,

then e (correctly) type checks and has type T

If e1 type checks in gamma and has type T1 and ...

and en type checks in gamma and has type Tn

then e type checks in gamma and has type T

Derivation Using Type Rules

x : Int
y : Int

Type Rule for Function Application

We can treat operators as variables that have function type

We can replace many previous rules with application rule:

Computing the Environment of a Class

object World {
 var data : Int
 var name : String
 def m(x : Int, y : Int) : Boolean { ... }
 def n(x : Int) : Int {
 if (x > 0) p(x – 1) else 3
 }
 def p(r : Int) : Int = {
 var k = r + 2
 m(k, n(k))
 }
}

Type check each function m,n,p in this global environment

Extending the Environment

class World {
 var data : Int
 var name : String
 def m(x : Int, y : Int) : Boolean { ... }
 def n(x : Int) : Int {
 if (x > 0) p(x – 1) else 3
 }
 def p(r : Int) : Int = {
 var k:Int = r + 2
 m(k, n(k))
 }
}

Type Checking Expression in a Body

class World {
 var data : Int
 var name : String
 def m(x : Int, y : Int) : Boolean { ... }
 def n(x : Int) : Int {
 if (x > 0) p(x – 1) else 3
 }
 def p(r : Int) : Int = {
 var k:Int = r + 2
 m(k, n(k))
 }
}

Remember Function Updates

{(x,T1),(y,T2)} ⊕ {(x,T3)} = {(x,T3),(y,T2)}

Type Rule for Method Bodies

Type Rule for Assignments

Type Rules for Block: { var x1:T1 ... var xn:Tn; s1; ... sm; e }

Blocks with Declarations in the Middle

just

expression
empty

declaration is first

statement is first

Rule for While Statement

Rule for Method Call

Example to Type Check

class World {
 var z : Boolean
 var u : Int
 def f(y : Boolean) : Int {
 z = y
 if (u > 0) {
 u = u – 1
 var z : Int
 z = f(!y) + 3
 z+z
 } else { 0 }

 }

}

Overloading of Operators

Not a problem for type checking from leaves to root

Arrays

Using array as an expression, on the right-hand side

Assigning to an array

Example with Arrays

def next(a : Array[Int], k : Int) : Int = {
 a[k] = a[a[k]]
}

Type Rules (1)

variable constant

function application

plus

if

assignment
while

Type Rules (2)

array use

array
assignment

Type Rules (3)

field use

field assignment

top-level environment of class C

method invocation

Type Rules (1)

variable constant

function application

plus

if

assignment
while

Type Rules (2)

array use

array
assignment

Type Rules (3)

field use

field assignment

top-level environment of class C

method invocation

Meaning of Types

• Types can be viewed as named entities

– explicitly declared classes, traits

– their meaning is given by methods they have

– constructs such as inheritance establishe
relationships between classes

• Types can be viewed as sets of values

– Int = { ..., -2, -1, 0, 1, 2, ... }

– Boolean = { false, true }

– Int Int = { f : Int -> Int | f is computable }

Types as Sets

• Sets so far were disjoint

• Sets can overlap

SUBTYPING

Subtyping

• Subtyping corresponds to subset

• Systems with subtyping have non-disjoint sets

• T1 <: T2 means T1 is a subtype of T2

– corresponds to T1 ⊆ T2 in sets of values

• Main rule for subtyping corresponds to

Types for Positive and Negative Ints
Int = { ... , -2, -1, 0, 1, 2, ... }
Pos = { 1, 2, ... }
Neg = { ..., -2, -1 }

More Rules

Making Rules Useful

• Let x be a variable

if (y > 0) {
 if (x > 0) {
 var z : Pos = x * y
 res = 10 / z
} }

Subtyping Example

Pos <: Int

def f(x:Int) : Pos = {
 if (x < 0) –x else x+1
}

var p : Pos
var q : Int

q = f(p)

 - type checks

Using Subtyping

Pos <: Int

def f(x:Pos) : Pos = {
 if (x < 0) –x else x+1
}

var p : Int
var q : Int

q = f(p)

 - does not type check

What Pos/Neg Types Can Do

def multiplyFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) {

 (p1*q1, q1*q2)

}

def addFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) {

 (p1*q2 + p2*q1, q1*q2)

}

def printApproxValue(p : Int, q : Pos) = {

 print(p/q) // no division by zero

}

More sophisticated types can track intervals of numbers and ensure
that a program does not crash with an array out of bounds error.

Subtyping and Product Types

Using Subtyping

Pos <: Int

def f(x:Pos) : Pos = {
 if (x < 0) –x else x+1
}

var p : Int
var q : Int

q = f(p)

 - does not type check

Subtyping for Products

Analogy with Cartesian Product

Subtyping and Function Types

Subtyping for Function Types

Consequence:

contravariance covariance

Function Space as Set

To get the appropriate behavior we need to
assign sets to function types like this:

T1 T2 = * f | ∀𝑥. (𝑥 ∈ 𝑇1 → 𝑓 𝑥 ∈ 𝑇2)+

We can prove

Proof

Subtyping for Classes

• Class C contains a collection of methods

• We view field var f: T as two methods

– getF(this:C): T C T

– setF(this:C, x:T): void C x T void

• For val f: T (immutable): we have only getF

• Class has all functionality of a pair of method

• We must require (at least) that methods
named the same are subtypes

• If type T is generic, it must be invariant

– as for mutable arrays

Example

class C {
 def m(x : T1) : T2 = {...}
}
class D extends C {
 override def m(x : T’1) : T’2 = {...}
}
D <: C Therefore, we need to have:

T1 <: T’1 (argument behaves opposite)

T’2 <: T2 (result behaves like class)

Today

• More Subtyping Rules

– product types (pairs)

– function types

– classes

• Soundness

– motivating example

– idea of proving soundness

– operational semantics

– a soundness proof

• Subtyping and generics

Example: Tootool 0.1 Language
Tootool rest area

Tootool is a rural community in the central east part of the Riverina

[New South Wales, Australia]. It is situated by road, about 4 kilometres east

from French Park and 16 kilometres west from The Rock.

Tootool Post Office opened on 1 August 1901 and closed in 1966. [Wikipedia]

Type System for Tootool 0.1

Pos <: Int
Neg <: Int

 does it type check?
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

Runtime error: intSqrt invoked
with a negative argument!

unsound

What went wrong in Tootool 0.1 ?

Pos <: Int
Neg <: Int

 does it type check?
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

Runtime error: intSqrt invoked
with a negative argument!

Recall Our Type Derivation

Pos <: Int
Neg <: Int

 does it type check?
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

Runtime error: intSqrt invoked
with a negative argument!

Corrected Type Rule for Assignment

Pos <: Int
Neg <: Int

 does it type check?
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

 stores declarations (promises)

How could we ensure that some
other programs will not break?

Type System Soundness

Today

• More Subtyping Rules

– product types (pairs)

– function types

– classes

• Soundness

– motivating example

– idea of proving soundness

– operational semantics

– a soundness proof

• Subtyping and generics

Proving Soundness of Type Systems

• Goal of a sound type system:

– if the program type checks, then it never “crashes”

– crash = some precisely specified bad behavior

 e.g. invoking an operation with a wrong type

• dividing one string by another string “cat” / “frog

• trying to multiply a Window object by a File object

 e.g. not dividing an integer by zero

• Never crashes: no matter how long it executes

– proof is done by induction on program execution

Proving Soundness by Induction

• Program moves from state to state

• Bad state = state where program is about to exhibit a bad
operation (“cat” / “frog”)

• Good state = state that is not bad

• To prove:
 program type checks states in all executions are good

• Usually need a stronger inductive hypothesis;
some notion of very good (VG) state such that:
 program type checks program’s initial state is very good
 state is very good next state is also very good
 state is very good state is good (not about to crash)

VG VG VG VG VG VG Good

A Simple Programming Language

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = 1
 z = 1

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 3
 y = 1
 z = 1

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 3
 y = -5
 z = 1

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 3
 y = -5
 z = 4

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 7
 y = -5
 z = 4

Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
 x = 7
 y = 1
 z = 4

formal description of such program execution
is called operational semantics

Definition of Simple Language

var x1 : Pos
var x2 : Int
...
var xn : Pos

xi = xj
xp = xq + xr

xa = xb / xc

...
xp = xq + xr

Programs: Type rules:

Bad State: About to Divide by Zero
(Crash)

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 0

Definition: state is bad if the next instruction is of the form
 xi = xj / xk and xk has value 0 in the current state.

Good State: Not (Yet) About to Divide by Zero

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 1

Definition: state is good if it is not bad.

Good

Definition: state is bad if the next instruction is of the form
 xi = xj / xk and xk has value 0 in the current state.

Good State: Not (Yet) About to Divide by Zero

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 0

Definition: state is good if it is not bad.

Good

Definition: state is bad if the next instruction is of the form
 xi = xj / xk and xk has value 0 in the current state.

Moved from Good to Bad in One Step!

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 0

Bad

Definition: state is good if it is not bad.

Being good is not preserved by one step, not inductive!
It is very local property, does not take future into account.

Definition: state is bad if the next instruction is of the form
 xi = xj / xk and xk has value 0 in the current state.

Being Very Good: A Stronger Inductive Property

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -1
 z = 0

Definition: state is good if it is not about to divide by zero.

Definition: state is very good if each variable belongs to the
domain determined by its type (if z:Pos, then z is strictly positive).

This state is already not very good.
We took future into account.

Pos = { 1, 2, 3, ... }

If you are a little typed program,
what will your parents teach you?

• If you type check and succeed:

– you will be very good from the start.

– if you are very good, then you will remain
very good in the next step

– If you are very good, you will not crash.

Hence, type check and you will never crash!

Soundnes proof = defining “very good” and
checking the properties above.

Definition of Simple Language

var x1 : Pos
var x2 : Int
...
var xn : Pos

xi = xj
xp = xq + xr

xa = xb / xc

...
xp = xq + xr

Programs: Type rules:

Checking Properties in Our Case

Definition: state is very good if each variable belongs to the
domain determined by its type (if z:Pos, then z is strictly positive).

Holds: in initial state, variables are =1

• If you type check and succeed:

– you will be very good from the start.

– if you are very good, then you will remain
very good in the next step

– If you are very good, you will not crash.

If next state is x / z, type rule ensures z has type Pos
Because state is very good, it means
so z is not 0, and there will be no crash.

Example Case 1

var x : Pos
var y : Pos
var z : Pos
y = 3
z = 2
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = 3
 z = 2

the next statement is: z=x+y
where x,y,z are declared Pos.

Goal: prove that again each variable belongs to its type.

Assume each variable belongs to its type.

- variables other than z did not change, so belong to their type
- z is sum of two positive values, so it will have positive value

Example Case 2

var x : Pos
var y : Int
var z : Pos
y = -5
z = 2
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
 x = 1
 y = -5
 z = 2

the next statement is: z=x+y
where x,z declared Pos, y declared Int

Goal: prove that again each variable belongs to its type.

Assume each variable belongs to its type.

- this case is impossible, because z=x+y would not type check
 How do we know it could not type check?

Must Carefully Check Our Type Rules

Type rules:

var x : Pos
var y : Int
var z : Pos
y = -5
z = 2
z = x + y
x = x + z
y = x / z
z = z + x

Conclude that the only
types we can derive are:
 x : Pos, x : Int
 y : Int
 x + y : Int

Cannot type check
 z = x + y in this environment.

We would need to check all cases
(there are many, but they are easy)

Remark

• We used in examples Pos <: Int

• Same examples work if we have

class Int { ... }
class Pos extends Int { ... }

and is therefore relevant for OO languages

Today

• More Subtyping Rules

– product types (pairs)

– function types

– classes

• Soundness

– motivating example

– idea of proving soundness

– operational semantics

– a soundness proof

• Subtyping and generics

Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

Analogously

class Ref[T](var content : T)

Can we use the converse subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
x = y
y.content = 0
z = z / x.content

Mutable Classes do not
Preserve Subtyping

class Ref[T](var content : T)

Even if T <: T’,

Ref[T] and Ref*T’+ are unrelated types

var x : Ref[T]
var y : Ref*T’+
...
x = y
...

Type checks only if T = T’

Same Holds for Arrays, Vectors,
all mutable containers

var x : Array[Pos](1)
var y : Array[Int](1)
var z : Int
x[0] = 1
y[0] = -1
y = x
y[0] = 0
z = z / x[0]

Even if T <: T’,

Array[T] and Array[T’+ are unrelated types

Case in Soundness Proof Attempt

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

prove each variable belongs to its type:

variables other than y did not change... (?!)

Mutable vs Immutable Containers

• Immutable container, Coll[T]
– has methods of form e.g. get(x:A) : T
– if T <: T’, then Coll*T’+ has get(x:A) : T’
– we have (A T) <: (A T’)

covariant rule for functions, so Coll[T] <: Coll*T’+

• Write-only data structure have
– setter-like methods, set(v:T) : B
– if T <: T’, then Container*T’+ has set(v:T) : B
– would need (T B) <: (T’ B)

contravariance for arguments, so Coll*T’+ <: Coll[T]

• Read-Write data structure need both,
so they are invariant, no subtype on Coll if T <: T’

