http://lara.epfl.ch

## Compiler Construction 2011

CYK Algorithm and
Chomsky Normal Form

## Parsing an Input

$\mathrm{S}^{\prime} \rightarrow \mathrm{N}_{( } \mathrm{N}_{\mathrm{S})}\left|\mathrm{N}_{\mathrm{C}} \mathrm{N}_{\mathrm{s}}\right| \mathrm{S}^{\prime} \mathrm{S}^{\prime}$
$\mathrm{N}_{\mathrm{S})} \rightarrow \mathrm{S}^{\prime} \mathrm{N}_{\mathrm{s}}$,
$\mathrm{N}_{\mathrm{l}} \rightarrow$ (
$\mathrm{N}_{\mathrm{j}} \rightarrow$ )
substring
length
7

## Algorithm Idea



## Algorithm

INPUT: grammar G in Chomsky normal form word w to parse using G

OUTPUT: true iff (w in L(G))
$\mathrm{N}=|\mathrm{w}|$
var $d: \operatorname{Array[N][N]}$
for $p=1$ to $N\{$
$d(p)(p)=\{X \mid G$ contains $X->w(p)\}$
for q in $\{p+1 . . \mathrm{N}\} \mathrm{d}(\mathrm{p})(\mathrm{q})=\{ \}\}$
for $\mathrm{k}=2$ to $\mathrm{N} / /$ substring length
for $\mathrm{p}=0$ to $\mathrm{N}-\mathrm{k} / /$ initial position
for $\mathrm{j}=1$ to $\mathrm{k}-1 / / /$ length of first half
val $r=p+j-1 ;$ val $q=p+k-1$;
for ( $\mathrm{X}::=\mathrm{Y} \mathrm{Z}$ ) in G
if Y in $\mathrm{d}(\mathrm{p})(\mathrm{r})$ and Z in $\mathrm{d}(\mathrm{r}+1)(\mathrm{q})$ $\mathrm{d}(\mathrm{p})(\mathrm{q})=\mathrm{d}(\mathrm{p})(\mathrm{q})$ union $\{\mathrm{X}\}$
return S in $\mathrm{d}(0)(\mathrm{N}-1)$


## Parsing another Input




- Give a lower bound on number of parse trees of the word $w^{n} \quad$ ( n is positive integer) $w^{5}$ is the word ()()() ()()()()() ()()() ()() $2^{n}$
- CYK represents all parse trees compactly
- can re-run algorithm to extract first parse tree, or enumerate parse trees one by one


## Algorithm Idea



## Transforming to Chomsky Form

- Steps:

1. remove unproductive symbols
2. remove unreachable symbols
3. remove epsilons (no non-start nullable symbols)
4. remove single non-terminal productions $X::=Y$
5. transform productions of arity more than two
6. make terminals occur alone on right-hand side

$$
X \rightarrow S_{1} \ldots S_{n}
$$

## 1) Unproductive non-terminals How to compute them?

What is funny about this grammar:
stmt ::= identifier := identifier
while (expr) stmt if (expr) stmt else stmt
expr ::= term + term | term - term term ::= factor * factor factor ::= ( expr )

## 2 min

There is no derivation of a sequence of tokens from expr
Why? In every step will have at least one expr, term, or factor If it cannot derive sequence of tokens we call it unproductive

## 1) Unproductive non-terminals

- Productive symbols are obtained using these two rules (what remains is unproductive)
- Terminals are productive
- If $X::=s_{1} s_{2} \ldots s_{n}$ is rule and each $s_{i}$ is productive then X is productive



## 2) Unreachable non-terminals

What is funny about this grammar with starting terminal 'program'
program ::= stmt | stmt program
stmt ::= assignment | whileStmt
assignment ::= expr = expr
ifStmt ::= if (expr) stmt else stmt whileStmt ::= while (expr) stmt expr ::= identifier

No way to reach symbol 'ifStmt' from 'program'

## 2) Unreachable non-terminals

What is funny about this grammar with starting terminal 'program'
program $::=$ stmt | stmt program
stmt $::=$ assignment | whileStmt
assignment $::=$ expr $=$ expr
ifStmt ::= if (expr) stmt else stmt
whileStmt ::= while (expr) stmt
expr ::= identifier
What is the general algorithm?

## 2) Unreachable non-terminals

- Reachable terminals are obtained using the following rules (the rest are unreachable)
- starting non-terminal is reachable (program)
- If $X::=s_{1} s_{2} \ldots s_{n}$ is rule and $X$ is reachable then each non-terminal among $s_{1} s_{2} \ldots s_{n}$ is reachable

Delete unreachable symbols.

Will the meaning of top-level symbol (program) change?

## 2) Unreachable non-terminals

What is funny about this grammar with starting terminal 'program'
program ::= stmt | stmt program
stmt ::= assignment | whileStmt
assignment $::=$ expr $=$ expr
ifstmt:..-if ('expr) stmit else stmt-
whileStmt ::= while (expr) stmt
expr ::= identifier

## 3) Removing Empty Strings

Ensure only top-level symbol can be nullable
program ::= stmtSeq
stmtSeq ::= stmt | stmt ; stmtSeq stmt ::= "" | assignment | whileStmt | blockStmt
blockStmt ::= \{ stmtSeq \}
assignment ::= expr = expr
whileStmt ::= while (expr) stmt
expr ::= identifier
5 min
How to do it in this example?

## 3) Removing Empty Strings - Result

program ::= "" | stmtSeq
stmtSeq ::= stmt| stmt ; stmtSeq |
| ; stmtSeq | stmt ; | ;
stmt ::= assignment | whileStmt | blockStmt blockStmt ::= \{stmtSeq \}| \{ \}
assignment ::= expr = expr
whileStmt ::= while (expr) stmt
whileStmt :::= while (expr)
expr ::= identifier

## 3) Removing Empty Strings - Algorithm

- Compute the set of nullable non-terminals
- Add extra rules
- If $X::=s_{1} s_{2} \ldots s_{n}$ is rule then add new rules of form $X::=r_{1} r_{2} \ldots r_{n} \quad 2^{h}$
where $r_{i}$ is either $s_{i}$ or, if $s_{i}$ is nullable then $r_{i}$ can also be the empty string (so it disappears)
- Remove all empty right-hand sides
- If starting symbol S was nullable, then introduce a new start symbol S' instead, and add rule S' ::= S | ""


## 3) Removing Empty Strings

- Since stmtSeq is nullable, the rule
blockStmt ::= \{ stmtSeq \}
gives
blockStmt ::= \{ stmtSeq \}| \{ \}
- Since stmtSeq and stmt are nullable, the rule
stmtSeq ::= stmt | stmt ; stmtSeq
gives


## stmtSeq ::= stmt | stmt ; stmtSeq

| ; stmtSeq | stmt ; | ;

## 4) Eliminating single productions

- Single production is of the form X ::=Y
where $\mathbf{X}, \mathbf{Y}$ are non-terminals
program ::= stmtSeq
stmtSeq ::= stmt
| stmt ; stmtSeq
stmt ::= assignment | whileStmt
assignment ::= expr = expr
whileStmt ::= while (expr) stmt


## 4) Eliminate single productions - Result

- Generalizes removal of epsilon transitions from non-deterministic automata

$$
\begin{aligned}
& \text { program ::= expr = expr | while (expr) stmt } \\
& \text { | stmt ; stmtSeq } \\
& \text { stmtSeq ::= expr = expr | while (expr) stmt } \\
& \text { | stmt ; stmtSeq } \\
& \text { stmt ::= expr = expr | while (expr) stmt } \\
& \text { assignment ::= expr = expr } \\
& \text { now unreachable } \\
& \text { whileStmt ::= while (expr) stmt }
\end{aligned}
$$

## 4) "Single Production Terminator"

- If there is single production
$X::=Y \quad$ put an edge $(X, Y)$ into graph
- If there is a path from $X$ to $Z$ in the graph, and there is rule $Z::=s_{1} s_{2} \ldots s_{n}$ then add rule

$$
X::=s_{1} s_{2} \ldots s_{n}
$$

At the end, remove all single productions.

$$
\begin{gathered}
\text { program }::=\text { expr }=\text { expr | while (expr) stmt } \\
\text { | stmt ; stmtSeq }
\end{gathered}
$$

stmtSeq ::= expr = expr | while (expr) stmt
| stmt ; stmtSeq
stmt $::=$ expr $=$ expr | while (expr) stmt

## 5) No more than 2 symbols on RHS

stmt ::= while (expr) stmt
becomes
stmt $::=$ while stmt $_{1}$
stmt $_{1}::=$ ( stmt $_{2}$
stmt $_{2}::=$ expr stmt $_{3}$
stmt $_{3}::=$ ) stmt
6) A non-terminal for each terminal
stmt ::= while (expr) stmt
becomes

stmt $::=N_{\text {while }}$ stmt $_{1}$
stmt $_{1}::=\mathrm{N}_{1}$ stmt $_{2}$
stmt $_{2}::=$ expr stmt $_{3}$
stmt $_{3}::=N$, stmt
$N_{\text {while }}::=$ while
$N_{1}::=$ (
$\mathrm{N}_{\mathrm{f}}::=$ )

## Parsing using CYK Algorithm

- Transform grammar into Chomsky Form:

1. remove unproductive symbols
2. remove unreachable symbols
3. remove epsilons (no non-start nullable symbols)
4. remove single non-terminal productions $X::=Y$
5. transform productions of arity more than two
6. make terminals occur alone on right-hand side Have only rules X ::= Y Z, X ::= t, and possibly S ::= ""

- Apply CYK dynamic programming algorithm


## Algorithm Idea



## Earley's Algorithm

J. Earley, "An efficient context-free parsing algorithm", Communications of the Association for Computing Machinery, 13:2:94-102, 1970.

## CYK vs Earley's Parser Comparison

Z ::= X Y
$Z$ parses $\mathrm{w}_{\mathrm{pq}}$

- CYK: if $d_{p r}$ parses $X$ and $d_{(r+1) q}$ parses $Y$, then in $\mathrm{d}_{\mathrm{pq}}$ stores symbol Z
- Earley's parser: in set $\mathrm{S}_{\mathrm{q}}$ stores item ( $\mathrm{Z}::=\mathrm{XY}$. , p)
- Move forward, similar to top-down parsers
- Use dotted rules to avoid binary rules


