
Compiler Construction 2011 
 

 

CYK Algorithm and  

Chomsky Normal Form 

http://lara.epfl.ch 



Parsing an Input 
S’  N( NS) | N(  N) | S’ S’  
NS)  S’ N) 
N(  ( 
N)  ) 

N( N( N) N( N) N( N) N) 1 

2 

3 

4 

5 

6 

7 
ambiguity 

( ( ) ( ) ( ) ) 



Algorithm Idea 
S’  S’ S’  

( ( ) ( ) ( ) ) 

N( N( N) N( N) N( N) N) 1 

2 

3 

4 

5 

6 

7 
wpq – substring from p to q 

dpq – all non-terminals that 
         could expand to wpq 

Initially  dpp has Nw(p,p) 

key step of the algorithm: 

if  X  Y Z  is a rule, 
    Y is in dp r  , and 
    Z is in d(r+1)q 

then put X into dpq 

 (p     r < q),  

in increasing value of (q-p) 



Algorithm 
INPUT:  grammar G in Chomsky normal form  
               word w to parse using G 
OUTPUT: true iff (w in L(G))  
N = |w|  
var d : Array[N][N]  
for p = 1 to N {  
   d(p)(p) = {X | G contains X->w(p)}  
   for q in {p + 1 .. N} d(p)(q) = {} }  
for k = 2 to N // substring length  
  for p = 0 to N-k // initial position 
    for j = 1 to k-1 // length of first half  
      val r = p+j-1; val q = p+k-1; 
      for (X::=Y Z) in G 
        if Y in d(p)(r) and Z in d(r+1)(q)  
           d(p)(q) = d(p)(q) union {X}  
return  S in d(0)(N-1) 

( ( ) ( ) ( ) ) 

What is the running time 
as a function of grammar 
size and the size of input? 

 
O(       ) 

http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/


Parsing another Input 
S’  N( NS) | N(  N) | S’ S’  
NS)  S’ N) 
N(  ( 
N)  ) 

( ) ( ) ( ) ( ) 

N( N) N( N) N( N) N( N) 1 

2 

3 

4 

5 

6 

7 



Number of Parse Trees 

• Let w denote word ()()() 

– it has two parse trees 

• Give a lower bound on number of parse trees 
of the word wn 

  (n is positive integer) 

w5  is the word 

 ()()() ()()() ()()() ()()() ()()() 

 

• CYK represents all parse trees compactly 

– can re-run algorithm to extract first parse tree, or 
enumerate parse trees one by one 



Algorithm Idea 
S’  S’ S’  

( ( ) ( ) ( ) ) 

N( N( N) N( N) N( N) N) 1 

2 

3 

4 

5 

6 

7 
wpq – substring from p to q 

dpq – all non-terminals that 
         could expand to wpq 

Initially  dpp has Nw(p,p) 

key step of the algorithm: 

if  X  Y Z  is a rule, 
    Y is in dp r  , and 
    Z is in d(r+1)q 

then put X into dpq 

 (p     r < q),  

in increasing value of (q-p) 



Transforming to Chomsky Form 

• Steps: 

1. remove unproductive symbols 

2. remove unreachable symbols 

3. remove epsilons (no non-start nullable symbols) 

4. remove single non-terminal productions X::=Y 

5. transform productions of arity more than two 

6. make terminals occur alone on right-hand side 



1) Unproductive non-terminals 

What is funny about this grammar: 

  stmt ::=  identifier := identifier 
              | while (expr) stmt 
              | if (expr) stmt else stmt 
  expr ::= term + term | term – term  
  term ::= factor * factor 
  factor ::= ( expr ) 
 
There is no derivation of a sequence of tokens from expr 

Why? In every step will have at least one expr, term, or factor 

2 min 

If it cannot derive sequence of tokens we call it unproductive 

How to compute them? 



1) Unproductive non-terminals 

• Productive symbols are obtained using these 
two rules (what remains is unproductive) 

– Terminals are productive 

– If X::= s1 s2 … sn is rule and each si is productive 
then X is productive 

  stmt ::=  identifier := identifier 
              | while (expr) stmt 
              | if (expr) stmt else stmt 
  expr ::= term + term | term – term  
  term ::= factor * factor 
  factor ::= ( expr ) 
  program ::= stmt | stmt program 

Delete unproductive 
symbols. 
 
Will the meaning of 
top-level symbol 
(program) change? 



2) Unreachable non-terminals 

What is funny about this grammar with starting 
terminal ‘program’ 

  program ::= stmt | stmt program 
  stmt ::= assignment | whileStmt 

  assignment ::= expr = expr 

  ifStmt ::= if (expr) stmt else stmt 
  whileStmt ::= while (expr) stmt 
  expr ::= identifier 

2 min 

No way to reach symbol ‘ifStmt’ from ‘program’ 



2) Unreachable non-terminals 

What is the general algorithm? 

What is funny about this grammar with starting 
terminal ‘program’ 

  program ::= stmt | stmt program 
  stmt ::= assignment | whileStmt 

  assignment ::= expr = expr 

  ifStmt ::= if (expr) stmt else stmt 
  whileStmt ::= while (expr) stmt 
  expr ::= identifier 



2) Unreachable non-terminals 

• Reachable terminals are obtained using the 
following rules (the rest are unreachable) 

– starting non-terminal is reachable (program) 

– If X::= s1 s2 … sn is rule and  X is reachable then 
each non-terminal among s1 s2 … sn is reachable 

Delete unreachable 
symbols. 
 
Will the meaning of 
top-level symbol 
(program) change? 



2) Unreachable non-terminals 

What is funny about this grammar with starting 
terminal ‘program’ 

  program ::= stmt | stmt program 
  stmt ::= assignment | whileStmt 

  assignment ::= expr = expr 

  ifStmt ::= if (expr) stmt else stmt 
  whileStmt ::= while (expr) stmt 
  expr ::= identifier 



3) Removing Empty Strings 

Ensure only top-level symbol can be nullable 

  program ::= stmtSeq 
  stmtSeq ::= stmt | stmt ; stmtSeq 
  stmt ::= “” | assignment | whileStmt | blockStmt 
  blockStmt ::= { stmtSeq } 
  assignment ::= expr = expr 
  whileStmt ::= while (expr) stmt 
  expr ::= identifier 

How to do it in this example? 
5 min 



3) Removing Empty Strings - Result 

  program ::= “” | stmtSeq  
  stmtSeq ::= stmt| stmt ; stmtSeq |  
                     | ; stmtSeq | stmt ; | ; 
  stmt ::= assignment | whileStmt | blockStmt 
  blockStmt ::= { stmtSeq } | { } 
  assignment ::= expr = expr 
  whileStmt ::= while (expr) stmt 
  whileStmt ::= while (expr) 
  expr ::= identifier 



3) Removing Empty Strings - Algorithm 

• Compute the set of nullable non-terminals 

• Add extra rules 

– If X::= s1 s2 … sn is rule then add new rules of form 
   X::=  r1 r2 … rn   

where ri is either si or, if 

 

• Remove all empty right-hand sides 

• If starting symbol S was nullable, then 
introduce a new start symbol S’ instead, and 
add rule  S’ ::= S | “”      

si is nullable then 

ri can also be the empty string (so it disappears) 



3) Removing Empty Strings 

• Since stmtSeq is nullable, the rule 
   blockStmt ::= { stmtSeq } 
gives 
   blockStmt ::=  { stmtSeq } | { } 

• Since stmtSeq and stmt are nullable, the rule 
   stmtSeq ::= stmt | stmt ; stmtSeq 
gives 
   stmtSeq ::= stmt | stmt ; stmtSeq   
        | ; stmtSeq | stmt ; | ; 



4) Eliminating single productions 

• Single production is of the form 

X ::=Y 

where X,Y are non-terminals 

  program ::= stmtSeq 
  stmtSeq ::= stmt  
                    | stmt ; stmtSeq 
  stmt ::= assignment | whileStmt 
  assignment ::= expr = expr 
  whileStmt ::= while (expr) stmt 



4) Eliminate single productions - Result 

• Generalizes removal of epsilon transitions 
from non-deterministic automata 

  program ::= expr = expr | while (expr) stmt  
                    | stmt ; stmtSeq 
  stmtSeq ::= expr = expr | while (expr) stmt  
                    | stmt ; stmtSeq 
  stmt ::= expr = expr | while (expr) stmt  
  assignment ::= expr = expr 
  whileStmt ::= while (expr) stmt   



4) “Single Production Terminator” 

• If there is single production 

X ::=Y  put an edge (X,Y) into graph 

• If there is a path from X to Z in the graph, and 
there is rule Z ::= s1 s2 … sn then add rule 

  program ::= expr = expr | while (expr) stmt  
                    | stmt ; stmtSeq 
  stmtSeq ::= expr = expr | while (expr) stmt  
                    | stmt ; stmtSeq 
  stmt ::= expr = expr | while (expr) stmt  

X ::= s1 s2 … sn 

At the end, remove all single productions. 

1 min 



5) No more than 2 symbols on RHS 

 stmt ::= while (expr) stmt 

becomes 

 stmt ::= while stmt1 
 stmt1 ::= ( stmt2 

 stmt2 ::= expr stmt3 
 stmt3 ::= ) stmt 



6) A non-terminal for each terminal 

 stmt ::= while (expr) stmt 

becomes 

 stmt ::= Nwhile stmt1 
 stmt1 ::= N( stmt2 

 stmt2 ::= expr stmt3 
 stmt3 ::= N) stmt 
 Nwhile ::= while 
 N( ::= ( 
 N) ::= ) 



Parsing using CYK Algorithm 

• Transform grammar into Chomsky Form: 

1. remove unproductive symbols 

2. remove unreachable symbols 

3. remove epsilons (no non-start nullable symbols) 

4. remove single non-terminal productions X::=Y 

5. transform productions of arity more than two 

6. make terminals occur alone on right-hand side 

Have only rules X ::= Y Z,  X ::= t, and possibly S ::= “” 

• Apply CYK dynamic programming algorithm 



Algorithm Idea 
S’  S’ S’  

( ( ) ( ) ( ) ) 

N( N( N) N( N) N( N) N) 1 

2 

3 

4 

5 

6 

7 
wpq – substring from p to q 

dpq – all non-terminals that 
         could expand to wpq 

Initially  dpp has Nw(p,p) 

key step of the algorithm: 

if  X  Y Z  is a rule, 
    Y is in dp r  , and 
    Z is in d(r+1)q 

then put X into dpq 

 (p     r < q),  

in increasing value of (q-p) 



Earley’s Algorithm 

J. Earley, "An efficient context-free parsing algorithm", Communications of the 

Association for Computing Machinery, 13:2:94-102, 1970. 

http://portal.acm.org/citation.cfm?doid=362007.362035
http://portal.acm.org/citation.cfm?doid=362007.362035
http://portal.acm.org/citation.cfm?doid=362007.362035


CYK vs Earley’s Parser Comparison 

Z ::= X Y  Z parses wpq 

• CYK: if dpr parses X and d(r+1)q parses Y, then 
in dpq stores symbol Z 

• Earley’s parser:  
in set Sq stores item (Z ::= XY. , p)  

• Move forward, similar to top-down parsers 

• Use dotted rules to avoid binary rules 

( ( ) ( ) ( ) ) 


