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Goal of Data-Flow Analysis

Automatically compute information about the
program

e Use it to report errors to user (like type errors)
* Use it to optimize the program
Works on control-flow graphs:
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How We Define It

e Abstract Domain D (Data-Flow Facts):
which information to compute?

— Example: interval for each variable x:[a,b], y:[a’,b’]

* Transfer Functions [[st]] for each statement st,
how this statement affects the facts

— Example: o x:{ab] y: L€ , 8 ]
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Find Transfer Function: Plus

Suppose we have only two integer variables: x,y

If aﬁ)(éb Cﬁ‘-{éCl

o x:[ab]) y:[c,d]
and we execute X= x+y
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So we can let

a=a+c b’ =b+d
c’=c d =d



Find Transfer Function: Minus

Suppose we have only two integer variables: x,y
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So we can let
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Transfer Functions for Tests
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Merging Data-Flow Facts
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Handling Loops: Iterate Until Stabilizes
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Data-Flow Analysis Algorithm

var facts : Map[Vertex,Domain] = Map.withDefault(empty)
facts(entry) = initialValues

while (there was change) [, ur33]= 3]
pick edge (v1,statmt,v2) from CFG Lo 0351 €05]
such that facts(vl) was changed
facts(v2)=facts(v2) join [[statmt]](facts(v1)) ewtry
} X=| ‘
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Handling Loops: Iterate Until Stabilizes
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Handling Loops: Iterate Until Stabilizes

Compiler learns
some facts, but only after long time

x=1

n = 100000

while (x < n) {
X=X+2

}



Handling Loops: Iterate Until Stabilizes

For unknown program inputs it may be practically
impossible to know how long it takes
var x : Bigint =1
var n : Bigint = readinput()
while (x < n) {
X=X+ 2

}

Solutions
- smaller domain, e.g. only certain intervals
[a,b] where a,b in {-o=,-127,-1,0,1,127,°}
- widening techniques (make it less precise on demand)



Size of analysis domain

Interval analysis:

D,={[ab] | a<b,abe{-M,-127,-1,0,1,127,M-1}} U { L}

Constant propagation:

D, ={[a,a] | ae{-M,-(M-1),...,-2,-1,0,1,2,3,...,M-1}} U {1}

suppose M is 263
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How many steps does the analysis take

to finish (converge)?
Interval analysis:
D, ={[a,b] | a<bh,a,be{-M,-127,-1,0,1,127,M-1}} U {L}
Constant propagation:
D, ={[a,a] | ae{-M,(M-1),...,-2,-1,0,1,2,3,...,M-1}} U { L}

suppose M is 263 ?ewt“7
With D, takes at most ~ steps. 7 'w 1 (x<\0ﬂ it
With D, takes at most  steps. . 7
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Termination Given by Length of Chains

Interval analysis:
D,={[ab] | a<b,abe{-M,-127,-1,0,1,127,M-1}} U { L}
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Domain is a lattice. Maximal chain length = lattice height



Lattice for intervals [a,b] where
a,be{-M,-127,0,127,M-1}
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Lattice

Partially ordered set (D, <)

* Everya,b € D there exists
the least element c¢ s.t.
a<c,b < c(lub,join, L)

* [thasatop (T)element
and a bottom element (1)

Lattice for (o({x, v, z}), S)




Data-Flow Analysis Ingredients

Given some concrete domain D:
* Abstract Domain D, forming a lattice

— An Abstraction Function D, — Dy
— A Concretization Function D4 +— D,

* The program semantics within D,:
A transfer function [[ _]] : Stmts +— (D4 ¥— D,)



Transfer Function

Given a statement S and an Pre-state
abstract pre-state, compute the
abstract post-state.

Needs to be monotonous:
A; E A; = [[S]1(A1) E [[S]](A2)

Post-state



Abstraction/Concretization

Concrete D, Abstract D,




