Compiler Construction
Lecture 16

Data-Flow Analysis

|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




Goal of Data-Flow Analysis

Automatically compute information about the
program

e Use it to report errors to user (like type errors)
* Use it to optimize the program
Works on control-flow graphs:

X - 1 )(:l <
while (x < 10) { p_L1x<ol] exit

X=X+2
} Y= X1+ 2 [)k(lO]
v

PYograw dls CFG

0 entry




How We Define It

e Abstract Domain D (Data-Flow Facts):
which information to compute?

— Example: interval for each variable x:[a,b], y:[a’,b’]

* Transfer Functions [[st]] for each statement st,
how this statement affects the facts

— Example: o x:{ab] y: L€ , 8 ]

ﬂ:xz X+2 :u (x:{Q,B]) )

= (% [q+2\b+2],...) X = X+2

\/4

o x.[atd, b2] y:[c,d]



Find Transfer Function: Plus

Suppose we have only two integer variables: x,y

If aﬁ)(éb Cﬁ‘-{éCl

o x:[ab]) y:[c,d]
and we execute X= x+y

X= X“'Y
o x:[a\0] y:[c Q'] then v =x+y
vy =Y
So -
< %' <
€y' <

So we can let

a=a+c b’ =b+d
c’=c d =d



Find Transfer Function: Minus

Suppose we have only two integer variables: x,y

. X [a.b] \‘("[CuA] If
4= X1 and we execute y= x-y
$pab] yindd'] then

So we can let
a’=a b'’=b
c=a-d d=b-c



Transfer Functions for Tests

w% : [-10,(0] )(;o[-\o,\o]
if (x> 1) { [x)l]/ \[s(wn
;;1/)( %L 1 s %[
}else { \le 1/‘1“'2
R ()
y=42
} o %:[a,b] yilcd]
[x> ‘1]

Q =
N



Merging Data-Flow Facts

% [-1010] v [-10 00,1000]

. [i"’/c ool
if (x > 0) { <oD110] o JX:[0,0]

X K

y=x+ 100

X: Y-
}else{ ¥y=x+loo

X: 'K

y=-x—50

X M
} .'
x: " join L 1

[a\B] U [C‘A] 2 [min (@)¢), way (\)ld\]



Handling Loops: Iterate Until Stabilizes

[1,1)u33]= LN 3]
Diju £35) ¢ (sl

Compiler learned
some facts! ©

Xx=1
)( € [ l\ |_j ? eVltTV
while (x < 10) { | |
xe[na] il [ (x<10)] exIt
(3] W . SR
X=X+2 7 o o [ 10,
(345]) L] 031 (5]
x€ 3] ST ol
} Dﬁ [x<l0]
xe[lo,u] (= X'f‘z
v

°U I3 ]
U



Data-Flow Analysis Algorithm

var facts : Map[Vertex,Domain] = Map.withDefault(empty)
facts(entry) = initialValues

while (there was change) [, ur33]= 3]
pick edge (v1,statmt,v2) from CFG Lo 0351 €05]
such that facts(vl) was changed
facts(v2)=facts(v2) join [[statmt]](facts(v1)) ewtry
} X=| ‘
Order does not matter for the SRR (x<i0)] ej"t
end result, as long as we do not (3.5] otm/} 1131 [1,5) ”
permanently neglect any edge (3.3}
whose source was changed. V= Zt2 [7‘ <lo}

v

oLk [1,3]




Handling Loops: Iterate Until Stabilizes

[1,1)u33]= LN 3]
Diju £35) ¢ (sl

Compiler learned
some facts! ©

Xx=1
)( € [ l\ |_j ? eVltTV
while (x < 10) { | |
xe[na] il [ (x<10)] exIt
(3] W . SR
X=X+2 7 o o [ 10,
(345]) L] 031 (5]
x€ 3] ST ol
} Dﬁ [x<l0]
xe[lo,u] (= X'f‘z
v

°U I3 ]
U



Handling Loops: Iterate Until Stabilizes

Compiler learns
some facts, but only after long time

x=1

n = 100000

while (x < n) {
X=X+2

}



Handling Loops: Iterate Until Stabilizes

For unknown program inputs it may be practically
impossible to know how long it takes
var x : Bigint =1
var n : Bigint = readinput()
while (x < n) {
X=X+ 2

}

Solutions
- smaller domain, e.g. only certain intervals
[a,b] where a,b in {-o=,-127,-1,0,1,127,°}
- widening techniques (make it less precise on demand)



Size of analysis domain

Interval analysis:

D,={[ab] | a<b,abe{-M,-127,-1,0,1,127,M-1}} U { L}

Constant propagation:

D, ={[a,a] | ae{-M,-(M-1),...,-2,-1,0,1,2,3,...,M-1}} U {1}

suppose M is 263

X=|
|D1| =

|D2|=

\(: XT?_

f

;

ewt“7
[1(x<i0)] exit
[ % <10}



How many steps does the analysis take

to finish (converge)?
Interval analysis:
D, ={[a,b] | a<bh,a,be{-M,-127,-1,0,1,127,M-1}} U {L}
Constant propagation:
D, ={[a,a] | ae{-M,(M-1),...,-2,-1,0,1,2,3,...,M-1}} U { L}

suppose M is 263 ?ewt“7
With D, takes at most ~ steps. 7 'w 1 (x<\0ﬂ it
With D, takes at most  steps. . 7
%= Xt2 [« <o)

;



Termination Given by Length of Chains

Interval analysis:
D,={[ab] | a<b,abe{-M,-127,-1,0,1,127,M-1}} U { L}

BRSO BN
-M, 123
[[_:,\1'(]] \\\—B
(-n,0}
Constant propagation: R R ['"V'ﬁ
D,={[a,a] | ae{-M,...,-2,-1,0,1,2,3,.... M-1}} U {1} U {T}
suppose M is 263 C-M, M-

-M, N-
[-M-M]) ... [2-2) (-1,-1] Co0) [n1] [22) ... [M-l,r’\-l‘l
)

Domain is a lattice. Maximal chain length = lattice height



Lattice for intervals [a,b] where
a,be{-M,-127,0,127,M-1}

[\M$ n-}
/ \
[-M,127] [-127, 71-1]
e ™~ e N
[-m, 0] [-121 123) [0, m-1T]
/ ~ 7\

[-n-123]  [~123, 0] (0,127  [123, n-1]

N\ \

(~m-n]  L-eds 127] [o,0] L\z? 127] [r-1, A-1]

I\

1




Lattice

Partially ordered set (D, <)

* Everya,b € D there exists
the least element c¢ s.t.
a<c,b < c(lub,join, L)

* [thasatop (T)element
and a bottom element (1)

Lattice for (o({x, v, z}), S)




Data-Flow Analysis Ingredients

Given some concrete domain D:
* Abstract Domain D, forming a lattice

— An Abstraction Function D, — Dy
— A Concretization Function D4 +— D,

* The program semantics within D,:
A transfer function [[ _]] : Stmts +— (D4 ¥— D,)



Transfer Function

Given a statement S and an Pre-state
abstract pre-state, compute the
abstract post-state.

Needs to be monotonous:
A; E A; = [[S]1(A1) E [[S]](A2)

Post-state



Abstraction/Concretization

Concrete D, Abstract D,




