Compiler Construction 2011, Lecture 12

Type inference

Subset of Scala

- Int, Boolean (unless otherwise specified)
- arithmetic operations (+, -, ...), Int x Int => Int
- boolean operators
- functions
- if-then-else statements

Example

```
object Main {
                                Does it type-check?
  val a = 2 * 3
  val b = a < 2
  val c = sumOfSquares(a)
  val d = if(b) c(3) else square(a)
def square(x) = x * x
def sumOfSquares(x) = {
  (y) => square(x) + square(y)
```

The idea

```
Find assignment
object Main {
                          {TA -> Int, TB -> Boolean ...}
  val a: TA = 2 * 3
  val b: TB = a < 2
  val c: TC = sumOfSquares(a)
  val d: TD = if(b) c(3) else square(a)
def square (x: TE): TF = x * x
def sumOfSquares(x: TG): TH = {
  (y: TI) => square(x) + square(y)
```

Hindley-Milner algorithm, intuitively

1. Record type constraints

```
val a: A = 3 constraints:
val b: B = a {A = Int, A = B}
```

2. Solve type constraints

- obvious in the case above: {A= Int, B = Int}
- in general use unification algorithm

3. Return assignment to type variables or failure

Type inference/reconstruction

Given partial type information, recover missing types such that program type checks.

vs. dynamically typed languages:

- compiler still has to assign some static type to each variable

vs. implicit type conversion:

- want to assign one type to each variable
- conversion is an additional technique

e.g. val
$$x = 2 + 3.4$$

Some definitions

Definition 1 (Type substitution):

A *type substitution* σ is a finite mapping from type variables to types.

e.g. [A -> Int, B -> Bool] and we write σX for applying this mapping to a particular type expression X

Definition 2 (Constraint set, Unification):

A constraint set C is a set of equations $\{Si = Ti\}, i \in 1...n$. A substitution σ unifies an equation A = B, if $\sigma A = \sigma B$. It unifies C, if it unifies all equation.

Definition 3 (Most general unifier):

A substitution σ is more general than a substitution σ' , $\sigma \sqsubseteq \sigma'$, if $\sigma' = \gamma \circ \sigma$, for some substitution γ . The *most general unifier* for a constraint set C is a substitution σ that unifies C such that $\sigma \sqsubseteq \sigma'$ for every substitution σ' unifying C.

 \rightarrow We want to find the most general substitution σ such that it unifies the constraint set C we obtain from the program.

Some definitions

Definition 3 (Most general unifier):

A substitution σ is more general than a substitution σ' , $\sigma \sqsubseteq \sigma'$, if $\sigma' = \gamma \circ \sigma$, for some substitution γ . The *most general unifier* for a constraint set C is a substitution σ that unifies C such that $\sigma \sqsubseteq \sigma'$ for every substitution σ' unifying C.

Example:

$$f: Y$$
 a: X

What is the most general type substitution such that the expression

Recording type constraints

$$\frac{\Gamma \vdash b : T_1 \quad \Gamma \vdash e_1 : T_2 \quad \Gamma \vdash e_2 : T_3}{\Gamma \vdash (\text{if (b) } e_1 \text{ else } e_2) : T_4}$$

$$T1 = Boolean$$

 $T2 = T3 = T4$

$$\frac{\Gamma \vdash e_1 : T_1 \quad \Gamma \vdash e_2 : T_2}{\Gamma \vdash (e_1 + e_2) : T_3}$$

$$T1 = T2 = T3$$

 $T3 = Int$

$$\frac{\Gamma \vdash e_1 : T_1 ... \Gamma \vdash e_n : T_n \quad \Gamma \vdash f : (S_1 \times ... \times S_n \to S)}{\Gamma \vdash f(e_1, ..., e_n) : T}$$

Recording type constraints

```
\Gamma = \{2: Int, 3: Int\}
object Main {
                                               TA = Int
  val a: TA = 2 * 3
                                               TB = Boolean
  val b: TB = a < 2
                                            TC = TH
  val c: TC = sumOfSquares(a)
                                            TA = TG
  val d: TD =
                                                      S1 = S2
   if(b) c(3): S1 else square(a): S2
                                                      TD = S2
                                                      TD = S1
                                            TF = Int
def square (x: TE): TF = x * x
                                            TE = TF TE = TG
                                                    TI = TE
def sumOfSquares(x: TG): TH = {
                                                    TH = TI -> S3
  (y: TI) => (square(x) + square(y)): S3
                                                    S3 = Int
                                                    S3 = TF
```

Unification algorithm (Robinson '71)

Finds a solution (substitution) to a set of equational constraints.

- works for any constraint set of equalities between first-order expressions
- finds the most general solution

Definition

A set of equations is in *solved form* if it is of the form

```
\{x1 = t1, ..., xn = tn\} iff variables xi do not appear in terms ti, that is \{x1, ..., xn\} \cap (FV(t1) \cup U... FV(tn)) = \emptyset
```

In what follows,

- x denotes a type variable (like TA, TB before)
- t, ti, si denote terms, that contain type variables but are not equal to them (e.g. TA -> TB)

Unification

We obtain a solved form in finite time using the non-deterministic algorithm that applies the following rules as long as no clash is reported and as long as the equations are not in solved form.

Orient: Select t = x, $t \neq x$ and replace it with x = t.

Delete: Select x = x, remove it.

Eliminate: Select x = t where x does not occur in t, substitute x with t in

all remaining equations.

Occurs Check: Select x = t, where x occurs in t, report crash.

Decomposition: Select f(t1, ..., tn) = f(s1, ..., sn,

replace with t1 = s1, ..., tn = sn.

Decomposition Clash: $f(t1, ..., tn) = g(s1, ..., sn), f \neq g$,

report clash.

Here, f and g can be function as in our examples, but also for example polymorphic types

Map[A, B] = Map[C, D] will be replaced by A = B and C = D

Solving constraints

On the board...

Compute all the types...

Example 1:

```
def foo(s: String) = s.length
def bar(x, y) = foo(x) + y
```

Example 2:

```
def baz(a, b) = a(b) :: b
```

The operator :: concatenates a list (type List[A]) with an element of the appropriate type A.

Example 3:

```
def twice(f) = (x) \Rightarrow f(f(x))
def succ(x) = x + 1
twice(succ)(5)
```

Example 4

a) Compute the types for the following function:

```
def count(f) ={
    (1) => {
        var c = 0
        var i = 0
        while(i < l.length) {
            if(f(l(i))) c = c + 1
            i = i + 1
        }
        c
    }
}</pre>
```

b) Now consider applying this function in the following two ways: Does the algorithm as we have it still work?

```
val list1 = List(0, 1, 2, 3, 4, 5, 7, 8)

val c1 = count((x) => x % 2 == 0)(list1)

val list2 = List(true, false, true, false)

val c2 = count((x) => x)(list2)
```