Compiler Construction 2011,
Lecture 12

Type inference

Subset of Scala

Int, Boolean (unless otherwise specified)
arithmetic operations (+, -, ...), Int x Int => Int
boolean operators

functions

if-then-else statements

Example

object Main {

val a = 2 * 3 Does it type-check?
val b = a < 2
val ¢ = sumOfSquares (a)
val d = 1f(b) c(3) else square(a)
}
def square(x) = x * X
def sumOfSquares (x) = {

(y) => square(x) + square(y)

The idea

object Main { Find assignment
val a: TA = 2 * 3 {TA->Int, TB -> Boolean ...}
val b: TB = a < 2
val c: TC = sumOfSquares (a)

val d: TD = 1f(b) c(3) else square(a)

def square(x: TE): TF = x * X

def sumOfSquares(x: TG): TH = {
(y: TI) => square(x) + square(y)

Hindley-Milner algorithm, intuitively

1. Record type constraints

val a: A = 3 constraints:
val b: B = = {A=Int, A=B}

2. Solve type constraints
— obvious in the case above: {A=Int, B = Int}
— in general use unification algorithm

3. Return assignment to type variables or failure

Type infe rence/reconstruction

Given partial type information, recover missing types such
that program type checks.

vs. dynamically typed languages:
— compiler still has to assign some static type to each variable

vs. implicit type conversion:
— want to assign one type to each variable
— conversion is an additional technique
eg.val x = 2 + 3.4

Some definitions

Definition 1 (Type substitution):
A type substitution o is a finite mapping from type variables to types.

e.g. [A ->Int, B -> Bool] and we write oX for applying this mapping to a particular
type expression X

Definition 2 (Constraint set, Unification):

A constraint set C is a set of equations {Si = Ti}, i€ 1...n. A substitution o unifies an
equation A =B, if 6A = 6B. It unifies C, if it unifies all equation.

Definition 3 (Most general unifier):

A substitution o is more general than a substitution 6’, 6 L 0/, if 6" =y O ©, for
some substitution y. The most general unifier for a constraint set C is a substitution
o that unifies C such that o C ¢’ for every substitution 6’ unifying C.

= We want to find the most general substitution ¢ such that it
unifies the constraint set C we obtain from the program.

Some definitions

Definition 3 (Most general unifier):

A substitution o is more general than a substitution 6’, 6 L 0/, if 6" =y O ©, for
some substitution y. The most general unifier for a constraint set C is a substitution
o that unifies C such that o C ¢’ for every substitution 6’ unifying C.

Example:
f: Y a: X
What is the most general type substitution such that the expression

f(£(a)) type-checks?

Recording type constraints

CHb:Ty The:Ty The:T; 11=Boolean

I' = (1f (b) €1 else 62):T4 T2=T3=T4
I'Fey: 17 T'leg:Ts T1=T2=T3
' (e1 +e2) : T3 T3 = Int

F'te:Ty..I'Fe,: T, T'Ff:(5 %x..x8,—59)
' f(er,...,en): T

S=T
T1=S51..

Recording type constraints

_ | I' ={2: Int, 3: Int}
object Main {

val a: TA = 2 * 3 TA = Int

val b: TB = g < 2 TB = Boolean

val c: TC = sumOfSquares (a) TC=TH

val d: TD = TA=TG 1<

if(b) c(3): S1 else square(a): S2 TD=S2
} TD=S51
def square(x: TE): TF = x * x TF =Int

TE=TF 1e-16

def sumOfSquares(x: TG): TH = { TI=TE

(y: TI) => (square(x) + square(y)): S3 TH=TI->S3
} S3 = Int

S3=TF

Unification algorithm (Robinson ‘71)

Finds a solution (substitution) to a set of equational

constraints.

* works for any constraint set of equalities between first-order
expressions

e finds the most general solution

Definition

A set of equations is in solved form if it is of the form

{x1 = tl, .. xn = tn} iffvariables xi do not appearinterms ti, thatis
{x1, .., xn} N (Fv(tl) U.. FV(tn)) = Y

In what follows,
 x denotes a type variable (like TA, TB before)

 t, ti, si denoteterms, that contain type variables but are not equal to
them (e.g. TA->TB)

Unification
We obtain a solved form in finite time using the non-deterministic algorithm that

applies the following rules as long as no clash is reported and as long as the
equations are not in solved form.

Orient: Selectt = x, t # x andreplaceitwithx = t.
Delete: Select x = x, remove it.
Eliminate: Select x = t where x does not occur in t, substitute x with t in

all remaining equations.
Occurs Check: Select x = t, where x occurs in t, report crash.
Decomposition: Select £ (t1, .., tn) = f(sl, .., sn,

replace withtl = s1, .., tn = sn.
Decomposition Clash: £ (t1, .., tn) = g(sl, .., sn), f # g,

report clash.

Here, f and g can be function as in our examples, but also for example polymorphic
types
Map[A, B] = Map[C, D] willbereplacedbyA = B andC = D

Solving constraints

On the board...

Compute all the types...

Example 1:
def foo(s: String) = s.length
def bar(x, y) = foo(x) + vy
Example 2:
def baz(a, b) = a(b) :: Db

The operator :: concatenates a list (type List[A]) with an element of the
appropriate type A.

Example 3:
def twice(f) = (x) => f(f(x))
x + 1

def succ (x)

twice (succ) (5)

Example 4
a) Compute the types for the following function:

def count (f) =({

(L) => |
var ¢ = 0
var i = 0
while (1 < 1l.length) {
if(£(1(1i))) ¢ =c¢c + 1

}

b) Now consider applying this function in the following two ways:
Does the algorithm as we have it still work?

val listl = List (O, 1, 2, 3, 4, 5, 7, 8)

val cl = count((x) => x % 2 == 0) (1listl)
val list?2 = List (true, false, true, false)

val c2 = count((x) => x) (list?2)

