
Compiler Construction 2010 (6 credits) 
Staff: 

• Viktor Kuncak – Lectures 

• Hossein Hojjat – Exercises 

• Philippe Suter – {labs} 

• Étienne Kneuss, Ali Sinan Köksal – assistants  

• Danielle Chamberlain – secretary 

http://lara.epfl.ch 
Drawing Hands 

M.C. Escher, 1948 



Today 

 

• Compiler and its main phases 

• Why we study compilers 

• Course information 

 

• Describing Syntax of Languages 

• While language 



Compiler              
(scalac, gcc)                   

 
 
 
 
 

machine code 
(e.g. x86, arm, JVM) 
efficient to execute 

i=0 
while (i < 10) { 
  a[i] = 7*i+3 
  i = i + 1 } 

source code 
(e.g. Scala, Java,C) 
easy to write 

mov R1,#0 
mov R2,#40 
mov R3,#3 
jmp +12 
mov (a+R1),R3 
add R1, R1, #4 
add R3, R3, #7 
cmp R1, R2 
blt -16 

Compiler 

Construction 

i 
= 
0 
LF 

w 
h 
i 
l 
e 

i 
= 
0 

while 
( 
i 
< 

10 
) 

lexer 

characters words trees 

data-flow 
graphs 

parser 

assign 

while 

i  0 

+ 

* 
3 

7 i 

assign 
a[i] 

< 

i 10 

 
 
 
 
 
 

code gen 

optimizer 

type  
check 

web 4.0 



Example: javac 

    while (i < 10) {  
      System.out.println(j);  
      i = i + 1;  
      j = j + 2*i+1;  
    }  

  4: iload_1  
  5: bipush 10  
  7: if_icmpge 32  
  10: getstatic #2; //System.out 
  13: iload_2  
  14: invokevirtual #3; //println 
  17: iload_1  
  18: iconst_1  
  19: iadd  
  20: istore_1  
  21: iload_2  
  22: iconst_2  
  23: iload_1  
  24: imul  
  25: iadd  
  26: iconst_1  
  27: iadd  
  28: istore_2  
  29: goto 4  
  32: return 

javac Test.java 
javap –c Test  

You will build  
a compiler that 
generates such 
code 



Example: gcc 

#include <stdio.h>  
int main(void) {  
  int i = 0;  
  int j = 0;  
  while (i < 10) {  
    printf("%d\n", j);  
    i = i + 1;  
    j = j + 2*i+1;  
  }  
}  

 jmp .L2  
.L3:  movl -8(%ebp), %eax 
 movl %eax, 4(%esp) 
 movl $.LC0, (%esp)  
 call printf  
 addl $1, -12(%ebp)  
 movl -12(%ebp), %eax 
 addl %eax, %eax  
 addl -8(%ebp), %eax 
 addl $1, %eax  
 movl %eax, -8(%ebp)  
.L2: 
 cmpl $9, -12(%ebp)  
 jle .L3  

gcc test.c -S  



Compilers are Important 

Source code (e.g. Scala, Java, C, C++, Python) – 
designed to be easy for programmers to use 

– should correspond to way programmers think 

– help them be productive: avoid errors, write at a 
higher level, use abstractions, interfaces 

Target code (e.g. x86, arm, JVM, .NET) –  
designed to efficiently run on hardware / VM 

– fast, low-power, compact, low-level 

Compilers bridge these two worlds, they are 
essential for building complex software 



Some of Topics You Learn in Course 

• Develop a compiler for a Java-like language 

– Write a compiler from start to end 

– Generates Java Virtual Machine (JVM) code 

 (We provide you code stubs, libraries in Scala) 

• Compiler generators – using and making them 

• Analyze complex text 

– Automata, regular expressions, grammars, parsing 

• Automatically detecting errors in code 

– name resolution, type checking, data-flow analysis 

• Machine code generation, garbage collection 



Potential Uses of Knowledge Gained 
– understand how compilers work, use them better 

– gain experience with building complex software 

– build compiler for your next great language 

– extend language with a new construct you need 

– adapt existing compiler to new target platform 
(e.g. embedded CPU or graphics processor) 

– regular expression handling in editors, grep  

– build an XML parsing library 

– process complex input box in an application  
(e.g. expression evaluator) 

– parse simple natural language fragments 



Schedule and Activities (6 credits) 

• Mondays 10:15-12:00 - Lectures in INM 202 

– Presentation of the material (ask questions!) 
Viktor Kuncak 

• Wednesday 08:15-10:00 – Labs in INF3 

– Write code of your compiler, ask questions 
Philippe Suter, with help of Étienne Kneuss 

• Wednesday 10:15-11:45 – Exercises in CO123 

– Do problems similar to homework and quizzes 
Hossein Hojjat , with help of Ali Sinan Köksal 

• Home: homework, coding/debugging, review 

For additional office hours, email us 

http://plan.epfl.ch/?room=INM202
http://plan.epfl.ch/?room=INM202
http://plan.epfl.ch/?room=INF3


How We Compute Your Grade 
– 55% : project (submit, explain if requested) 

• submit through Moodle 

• do them in groups of 2, exceptionally 1 or 3 

– 20% : homework in the first part of the course 

• do them individually! 

• submit at the beginning of next exercise 

• participate in exercise sessions 

– 25% : quiz in the last week of classes 

• will be on the last Wednesday of classes 

• do it individually 

• Must get > 60% from each category to get 4.0 



Collaboration and Its Boundaries 

• For clarification questions, discuss them in the 
moodle online forum, or ask us 

• Encouraged: work in groups of 2 for project 

– everyone should know every part of code 

– we may ask you to explain specific parts of code 

• Do not copy lab solutions from other groups! 

– we use code plagarism detection tools 

– we will check if you fully understand your code 

• Do the homework and quiz individually 

• You wouldn’t steal a car. You wouldn’t steal a 
compiler or a homework! 



 
Your           

Compiler              
                   

 
 
 
 
 

JVM 
Code 

i=0 
while (i < 10) { 
  a[i] = 7*i+3 
  i = i + 1 } 

source code 
simplified Java-like 
language 

 21: iload_2  
  22: iconst_2  
  23: iload_1  
  24: imul  
  25: iadd  
  26: iconst_1  
  27: iadd  
  28: istore_2  

Your  
Compiler 

Construction 

i 
= 
0 
LF 

w 
h 
i 
l 
e 

i 
= 
0 

while 
( 
i 
< 

10 
) 

lexer 

characters words trees 

parser 

assign 

while 

i  0 

+ 

* 
3 

7 i 

assign 
a[i] 

< 

i 10 

code gen 
type  
check 

Each two weeks you will add next phase 
   - keep same groups 
   - essential to not get behind 
   - final addition to compiler - your choice 



EPFL Course Dependencies 
• Theoretical Computer Science (CS-251) 

– If have not taken it, check the book “Introduction 
to the Theory of Computation” by Michael Sipser 

• Knowledge of the Scala language 

– you can learn it from  www.scala-lang.org  
(if you need to learn it, start now) 

• Helpful general background 

– Discrete structures (CS-150), Algorithms (CS-250) 

• This course provides background for:  

– Advanced Compilers (Spring 2011) 

– Synthesis Analysis & Verification (Spring 2011) 



Course Materials 

Official Textbook: 

Andrew W. Appel, Jens Palsberg: 
Modern Compiler Implementation in Java  
(2nd Edition). Cambridge University Press, 2002 
We do not strictly follow it 

– program in Scala instead of Java 

– use pattern matching instead of visitors 

– hand-written parsers in the project  
(instead of using a parser generator) 

Lectures in course wiki:  http://lara.epfl.ch 

 



More Course Materials 

• Compilers: Principles, Techniques, and Tools 
(2nd Edition) by Alfred V. Aho, Monica S. Lam, 
Ravi Sethi, Jeffrey D. Ullman 

– comprehensive 

• Compiler Construction by Niklaus Wirth 

– concise, has main ideas 

 

• For the links to the books and more, see 
 http://lara.epfl.ch    (the Courses section) 



Today 

 

• Compiler and its main phases √ 

• Why we study compilers  √ 

• Course information   √ 
 

• Describing Syntax of Languages 

– While language 



Describing the Syntax of Languages 



Describing Syntax: Why 

• Goal: document precisely a superset of 
meaningful programs 

– Programs outside the superset: meaningless 

– We say programs inside make syntactic sense 

 (They may still be ‘wrong’ in a deeper sense) 

• Describing syntactically valid programs 

– There exist arbitrarily long valid programs, we 
cannot list all of them explicitly 

– Informal English descriptions are imprecise, 
cannot use them as e.g. language reference 



Describing Syntax: How 

• Use theory of formal languages (from TCS) 

– regular expressions & finite automata 

– context-free grammars 

• We can use such precise descriptions to 

– document what each compiler should support 

– manually derive compiler phases (lexer, parser) 

– automatically construct these phases using 
compiler generating tools 

• We illustrate this through an example 



While Language – Idea 

• Small language used to illustrate key concepts 

• Also used in your first lab – interpreter 

– later labs will use a more complex language 

– we continue to use While in lectures 

• ‘while’ and ‘if’ are the control statements 

– no procedures, no exceptions 

• the only variables are of ‘int’ type 

– no variable declarations, they are initially 0 

– no objects, pointers, arrays 



While Language – Example Programs 

x = 13;  
while (x > 1) {  
  println("x=", x);  
  if (x % 2 == 0) {  
    x = x / 2;  
  } else {  
    x = 3 * x + 1;  
  }  
}  

Does the program terminate  

for every initial value of x?  

(Collataz conjecture - open) 

while (i < 100) { 
  j = i + 1; 
  while (j < 100) { 
    println(“ “,i); 
    println(“,”,j); 
    j = j + 1; 
  } 
  i = i + 1; 
} 

Nested loop 



Reasons for Unbounded Program Length 

 
while (i < 100) { 
  j = i + 5*(j + 2*(k + 7*(j+k) + i)); 
  while (293847329 > j) { 
     while (k < 100)    { 
       someName42a = someName42a + k; 
       k = k + i + j; 
       println(“Nice number”, k) 
     } 
   } 
} 

constants of  
any length 

variable names  
of any length 

nesting of  
expressions 

nesting of  
statements 

(words - tokens) (sentences) 

String constants 
of any length 



Tokens (Words) of the While Language 

Ident ::= 
 letter (letter | digit)* 

integerConst ::= 
 digit digit* 

stringConst ::= 
 “ AnySymbolExceptQuote* “ 

keywords 
 if  else  while  println 

special symbols 
 (  )   &&  <   ==  +  -  *  /  %  !  - {  }  ;  ,   

letter ::= a | b | c | … | z | A | B | C | … | Z 
digit ::= 0 | 1 | … | 8 | 9 

regular 
expressions 



Reasons for Unbounded Program Length 

 
while (i < 100) { 
  j = i + 5*(j + 2*(k + 7*(j+k) + i)); 
  while (293847329847 > j) { 
     while (k < 100)    { 
       someName42a = someName42a + k; 
       k = k + i + j; 
       println(“Nice number”, k) 
     } 
   } 
} 

constants of  
any length 

variable names  
of any length 

nesting of  
expressions 

nesting of  
statements 

(words - tokens) (sentences) 

String constants 
of any length 



Sentences of the While Language 

We give it as a context-free grammar where terminal 
symbols are tokens (words) 

program ::= statmt*  

statmt ::= println( stringConst , ident ) 

             | ident = expr 

             | if ( expr ) statmt (else statmt)? 

             | while ( expr ) statmt 
             | { statmt* }  

expr ::= intLiteral | ident 

          | expr (&& | < | == | + | - | * | / | % ) expr 
          | ! expr | - expr  

nesting of  
statements 

nesting of  
expressions 



Compiler              
(scalac, gcc)                   

 
 
 
 
 

Id3 = 0 
while (id3 < 10) { 
  println(“”,id3); 
  id3 = id3 + 1 } 

source code 

 
 
 
 
 
 
 
 
 

Compiler 

Construction 

i 
d
3 
 

= 
 

0 
LF 

w 

id3 
= 
0 

while 
( 

id3 
< 

10 
) 

lexer 

characters words 
(tokens) 

trees 

parser 

assign 

while 

i  0 

+ 

* 
3 

7 i 

assign 
a[i] 

< 

i 10 

 
 
 
 
 
 

regular expressions 
for tokens 

context-free 
grammar 



Abstract Syntax - Trees 

To get abstract syntax (trees, cases classes),  
start from context-free grammar for tokens, then 

– remove punctuation characters 

– Interpret rules as tree descriptions, not string descriptions 

program ::= statmt*  

statmt ::= println( stringConst , ident ) 

             | ident = expr 

             | if ( expr ) statmt (else statmt)? 

             | while ( expr ) statmt 
             | { statmt* }  



Languages 

• A word is a finite, possibly empty, sequence of 
elements from some set Σ 

Σ – alphabet,  Σ*  - set of all words over Σ 

• For lexer:   for parser:  

• uv denotes concatenation of words u and v 

• A set of words L subset is Σ* is called language 

– union, intersection, complement wrt. Σ* 

L1 L2 = { u1 u2 | u1 in L1 , u2 in L2 } 
L0   = ε  
Lk+1 = L Lk

   L* = Uk L
k    (Kleene star) 



Regular Expressions 

• One way to denote (often infinite) languages 

• Any expression built from 

– empty language  

– {ε}  denoted just ε 

– {a} for a in Σ, denoted simply by a 

– union, denoted | or, sometimes + 

– concatenation, as multiplication or nothing 

– Kleene star * 

• Identifiers: letter (letter | digit)* 
 (letter,digit are shorthands from before) 



Finite Automata 

 

 

 

 

 

• If L is a set of words, then it is a value of a 
regular expression if and only if it is the set 
accepted by some finite automaton 

– We say L is a regular language 



Numbers with Decimal Point 

digit digit* . digit digit* 

What if the decimal part is optional? 



Regular Expressions and Automata 

• If L is a set of words, then it is a value of a 
regular expression if and only if it is the set 
accepted by some finite automaton 

 

(review of construction) 



More Examples 

• Find automaton or regular expression for: 

– as many digits  before as after decimal point? 

– Sequence of open and closed parantheses of even 
length? 

– Sequence of balanced parentheses 
 ( ( () )  ()) - balanced 
  ( ) ) ( ( )   - not balanced 

– Comment as a sequence of space,LF,TAB, and 
comments from // until LF 

– Nested comments like     /*  ... /*   */  … */ 


