ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Drawing Hands

http://lara,epﬂ.ch M.C. Escher, 1948

Compiler Construction 2010 (6 credits)
Staff:

* Viktor Kuncak — Lectupes

* Hossein Hojjat — Exercises

* Philippe Suter— {1labs}

e Etienne Kneuss, Ali Sinan Koksal — assistants

 Danielle Chamberlain — secretary

Today

e Compiler and its main phases
e Why we study compilers
e Course information

e Describing Syntax of Languages
e While language

Compiler

i=0
e source code -
while (i < 10) { Construction
(e.g. Scala, Java,C)
easy to write data-flow
graphs

i O tlmlzer
Compiler 2ssign P
(scalac, gcc) i 0
> — while & ‘
parser [
ali] g
type O
check code gen
characters words trees | MOVRL0
mov R2,#40
mov R3,#3
jmp +12
machine code mov (a+R1),R3
add R1, R1, #4
(e.g. x86, arm, JVM) | add R3, R3, #7

efficient to execute _

. 4:iload 1
Example: javac 5- bipush 10

7:if_icmpge 32

10:
13:
14.
17:
18:
19:

while (i < 10) {
System.out.printin(j); 20

getstatic #2; //System.out
iload_2

invokevirtual #3; //printIn
iload 1

iconst_1

iadd

:istore_1

i=i+1; /”/”/’,,,,/f/””/”’/—21:
j=]+2%i+1; javac Test.java 22:

\ iavap —c Test 23: iload 1 You will build

- imul a compiler that

: iadd generates such
iconst_1 ~pde

: iadd

:istore_2

: goto 4

: return

iload_2
iconst_2

Example: gcc

#include <stdio.h>
int main(void) {
inti=0;
intj=0;

while (i < 10) {
printf("%d\n", j);
=i+ 1;
j=j+2%i+1;

}

}

gcc test.c -S

L3:

L2:

jmp .L2

movl -8(%ebp), %eax
movl %eax, 4(%esp)
movl S.LCO, (%esp)
call printf

addl $1, -12(%ebp)
movl -12(%ebp), %eax
addl %eax, %eax
addl -8(%ebp), %eax
addl S1, %eax

movl %eax, -8(%ebp)

cmpl S9, -12(%ebp)
jle .L3

Compilers are Important

Source code (e.g. Scala, Java, C, C++, Python) —
designed to be easy for programmers to use
— should correspond to way programmers think

— help them be productive: avoid errors, write at a
higher level, use abstractions, interfaces

Target code (e.g. x86, arm, JVM, .NET) —
designed to efficiently run on hardware / VM
— fast, low-power, compact, low-level

Compilers bridge these two worlds, they are
essential for building complex software

Some of Topics You Learn in Course

e Develop a compiler for a Java-like language

— Write a compiler from start to end
— Generates Java Virtual Machine (JVM) code
(We provide you code stubs, libraries in Scala)

e Compiler generators — using and making them
e Analyze complex text
— Automata, regular expressions, grammars, parsing

e Automatically detecting errors in code

— name resolution, type checking, data-flow analysis

e Machine code generation, garbage collection

Potential Uses of Knowledge Gained

— understand how compilers work, use them better
— gain experience with building complex software
— build compiler for your next great language

— extend language with a new construct you need

— adapt existing compiler to new target platform
(e.g. embedded CPU or graphics processor)

— regular expression handling in editors, grep
— build an XML parsing library

— process complex input box in an application
(e.g. expression evaluator)

— parse simple natural language fragments

Schedule and Activities (6 credits)
e Mondays 10:15-12:00 - Lectures in INM 202

— Presentation of the material (ask questions!)
Viktor Kuncak

e Wednesday 08:15-10:00 — Labs in INF3

— Write code of your compiler, ask questions
Philippe Suter, with help of Etienne Kneuss

e Wednesday 10:15-11:45 — Exercises in CO123

— Do problems similar to homework and quizzes
Hossein Hojjat , with help of Ali Sinan Kéksal

e Home: homework, coding/debugging, review

For additional office hours, email us

http://plan.epfl.ch/?room=INM202
http://plan.epfl.ch/?room=INM202
http://plan.epfl.ch/?room=INF3

How We Compute Your Grade
— 55% : project (submit, explain if requested)
e submit through Moodle

e do them in groups of 2, exceptionally 1 or 3

— 20% : homework in the first part of the course
e do them individually!
e submit at the beginning of next exercise
e participate in exercise sessions
— 25% : quiz in the last week of classes
e will be on the last Wednesday of classes
e do it individually

e Must get > 60% from each category to get 4.0

Collaboration and Its Boundaries

For clarification questions, discuss them in the
moodle online forum, or ask us

Encouraged: work in groups of 2 for project

— everyone should know every part of code

— we may ask you to explain specific parts of code
Do not copy lab solutions from other groups!

— we use code plagarism detection tools

— we will check if you fully understand your code
Do the homework and quiz individually

You wouldn’t steal a car. You wouldn’t steal a
compiler or a homework!

=L source code Your
while (i < 10) { Compiler

_ simplified Java-like Construction

language

Your assign
Compiler i 0
— while
parser [
code gen
check
characters words trees | 2lLiiload_2
22:iconst_2
N Kk il add h 23:iload_1
Each two weeks you will add next phase JVM |F22timul
- keep same groups Code | 25:iadd
. . 26:iconst_1
- essential to not get behind =
- final addition to compiler - your choice _

EPFL Course Dependencies
e Theoretical Computer Science (CS-251)

— If have not taken it, check the book “Introduction
to the Theory of Computation” by Michael Sipser

e Knowledge of the Scala language

— you can learn it from www.scala-lang.org
(if you need to learn it, start now)

e Helpful general background
— Discrete structures (CS-150), Algorithms (CS-250)

e This course provides background for:
— Advanced Compilers (Spring 2011)
— Synthesis Analysis & Verification (Spring 2011)

Course Materials

Official Textbook:

Andrew W. Appel, Jens Palsberg:
Modern Compiler Implementation in Java
(2nd Edition). Cambridge University Press, 2002
We do not strictly follow it
— program in Scala instead of Java
— use pattern matching instead of visitors

— hand-written parsers in the project
(instead of using a parser generator)

Lectures in course wiki: http://lara.epfl.ch

More Course Materials

e Compilers: Principles, Techniques, and Tools
(2nd Edition) by Alfred V. Aho, Monica S. Lam,
Ravi Sethi, Jeffrey D. Ullman

— comprehensive

e Compiler Construction by Niklaus Wirth
— concise, has main ideas

e For the links to the books and more, see
http://lara.epfl.ch (the Courses section)

Today

Compiler and its main phases V

Why we study compilers V

I _

Describing Syntax of Languages

— While language

Describing the Syntax of Languages

Describing Syntax: Why

e Goal: document precisely a superset of
meaningful programs
— Programs outside the superset: meaningless
— We say programs inside make syntactic sense
(They may still be ‘wrong’ in a deeper sense)

e Describing syntactically valid programs

— There exist arbitrarily long valid programs, we
cannot list all of them explicitly

— Informal English descriptions are imprecise,
cannot use them as e.g. language reference

Describing Syntax: How

e Use theory of formal languages (from TCS)
— regular expressions & finite automata
— context-free grammars

e \We can use such precise descriptions to
— document what each compiler should support

— manually derive compiler phases (lexer, parser)

— automatically construct these phases using
compiler generating tools

e We illustrate this through an example

While Language — Idea

e Small language used to illustrate key concepts
e Also used in your first lab — interpreter

— later labs will use a more complex language
— we continue to use While in lectures

e ‘while’ and ‘if’ are the control statements

— NO procedures, Nno exceptions

e the only variables are of ‘int’ type
— no variable declarations, they are initially O
— no objects, pointers, arrays

While Language — Example Programs

while (i < 100) {
j=1+1;
while (j < 100) {
printin(“ “i);

o

printin(“",j);
j=j+1

}

i=i+1;

}

Nested loop

Xx=13;

while (x > 1) {
printin("x=", x);
if (x% 2==0){
X=x/2;

} else {
Xx=3%*x+1;
}

}

Does the program terminate
for every initial value of x?
(Collataz conjecture - open)

Reasons for Unbounded Program Length

nesting of
expressions

rconstants of 1 while (i < 100) {
any length j=i+5%(j+2*(k+ 7*(j+k) +1));
while (293847329 > j) {
while (k < 100) <A
someName42a = someNamed2a + k;
k=k+i+j;
printin(“Nice number”, k)

j
J
J

mvords : tokensu (sentences)

nesting of
statements

variable names
of any length

String constants
of any length

Tokens (Words) of the While Language

ldent ::= regular
letter (letter | digit)* expressions
iIntegerConst ::=
digit digit*

stringConst ::=
“ AnySymbolExceptQuote™ “

keywords
if else while printin

special symbols

() && < =+-* /%1 -{};,
letter::=a|b|c|..|z|A|B|C]|..|Z
digit::=0|1]..]18]|9

Reasons for Unbounded Program Length

constants of
any length

variable names
of any length

String constants
of any length

(words - tokens)

while (i < 100) {

j=i+5%(j+2*(k+ 7*(j+k) +1));

while (293847329847 > j) {
while (k < 100) <{

r

nesting of
expressions

1

4

nesting of
statements

someName42a = someName42a + k;

k=k+i+j;
printin(“Nice number”, k)

j
J
J

L(sentencesﬂ

Sentences of the While Language

We give it as a context-free grammar where terminal
symbols are tokens (words)

program ::= statmt*

statmt ::= printiIn(stringConst , ident)
ident = expr

if (expr) statmt (else statmt)’

while (expr) statmt nesting of
{ statmt* } statements
expr ::= intLiteral | ident gjztlensgsizfns
| expr(&& | <|==|+[-|*|/|%)expr

| | expr | - expr

EEN0 Compiler
while (id3 < 10) { source code Construction

Compiler assign
(scalac, gcc) i 0

— while

parser 2ssign

ali]
characters words trees
(tokens)

regular expressions context-free
for tokens grammar

Abstract Syntax - Trees

To get abstract syntax (trees, cases classes),
start from context-free grammar for tokens, then

— remove punctuation characters

— Interpret rules as tree descriptions, not string descriptions
program ::= statmt*
statmt ::= Bun’flﬁ(stringConsty, ident} Print (Sﬁv’mg,lcleuﬂ
ident # expr Assigwn (Ideut,Expr)
i expr)'statmt (else statmt)? |+ (Expv, S’cajtw\‘\:, \
whileA{ expr/ statmt \k/\,ile (Expr, Shabul) Optiou [tatud]
{statmt*} List [Statud]

Languages

e A word is a finite, possibly empty, sequence of
elements from some set 2

> —alphabet, 3" -set of all words over 2
e For lexer: for parser:
e UV denotes concatenation of words u and v

e A setof words L subsetis 2" is called language
— union, intersection, complement wrt. 2"

L,L,={uyu, |uyinl,u,inL,}
19 =¢
Lk+1 = | LK L" = U, L* (Kleene star)

Regular Expressions

e One way to denote (often infinite) languages

e Any expression built from
— empty language O
— {€} denoted just €
— {a} forain Z, denoted simply by a
— union, denoted | or, sometimes +
— concatenation, as multiplication or nothing
— Kleene star *

e |[dentifiers: letter (letter | digit)*
(letter,digit are shorthands from before)

Finite Automata

a A
| &%
Le,f:te.:: . Y
Letter O 219 %) 19 2 Z
O—0 i O
i‘e. . H
2
O—50

A';(E,Q)C‘o)5>‘:) SC‘:‘QXE%O‘

e |fLis asetof words, then itis a value of a
regular expression if and only if it is the set
accepted by some finite automaton

— We say L is a regular language

Numbers with Decimal Point

‘o)' A\Ca\‘k

Vo di 9'* O A“ﬂ'i ©

26 + 9 8239

digit digit* . digit digit™

What if the decimal part is optional?

Regular Expressions and Automata

e |f Lis asetof words, then itis a value of a
regular expression if and only if it is the set
accepted by some finite automaton

(review of construction)

More Examples

e Find automaton or regular expression for:
— as many digits before as after decimal point?

— Sequence of open and closed parantheses of even
length?

— Sequence of balanced parentheses
((()) () -balanced
())(() - not balanced

— Comment as a sequence of space,LF, TAB, and
comments from // until LF

— Nested comments like /* ... /* */ ... */

