
Constraint-Based Mode Analysis of Mercury

David Overton
∗ †

dmo@cs.mu.oz.au
Zoltan Somogyi

∗

zs@cs.mu.oz.au
Peter J. Stuckey

∗

pjs@cs.mu.oz.au

∗ Department of Computer Science and Software Engineering
The University of Melbourne, Victoria, 3010, Australia

† School of Computer Science and Software Engineering
Monash University, Victoria, 3800, Australia

ABSTRACT
Recent logic programming languages, such as Mercury and
HAL, require type, mode and determinism declarations for
predicates. This information allows the generation of effi-
cient target code and the detection of many errors at compile-
time. Unfortunately, mode checking in such languages is
difficult. One of the main reasons is that, for each predicate
mode declaration, the compiler is required to decide which
parts of the procedure bind which variables, and how con-
juncts in the predicate definition should be re-ordered to en-
force this behaviour. Current mode checking systems limit
the possible modes that may be used because they do not
keep track of aliasing information, and have only a limited
ability to infer modes, since inference does not perform re-
ordering. In this paper we develop a mode inference system
for Mercury based on mapping each predicate to a system
of Boolean constraints that describe where its variables can
be produced. This allows us handle programs that are not
supported by the existing system.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-

ers, optimization; D.3.2 [Programming Languages]:
Language Classifications—constraint and logic languages

General Terms
Algorithms, Languages

Keywords
modes, mode analysis, Boolean constraints

1. INTRODUCTION
Logic programming languages have traditionally been un-

typed and unmoded. In recent years, languages such as Mer-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’02, October 6–8, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1-58113-528-9/02/0010 ...$5.00.

cury [19] have shown that strong type and mode systems can
provide many advantages. The type, mode and determinism
declarations of a Mercury program not only provide useful
documentation for developers, they also enable compilers to
generate very efficient code, improve program robustness,
and facilitate integration with foreign languages. Informa-
tion gained from these declarations is also very useful in
many program analyses and optimisations.

The Mercury mode system, as described in the language
reference manual, is very expressive, allowing the program-
mer to describe very complex patterns of dataflow. How-
ever, the implementation of the mode analysis system in
the current release of the Melbourne Mercury compiler has
some limitations which remove much of this expressiveness
(see [8]). In particular, while the current mode analyser
allows the construction of partially instantiated data struc-
tures, in most cases it does not allow them to be filled in.
Another limitation is that mode inference prevents reorder-
ing in order to limit the number of possibilities examined.

The effect of these limitations is that it is hard to write
Mercury programs that use anything other than the most
basic modes and that it is just not possible to write programs
with certain types of data flow.

As well as being limited in the ways described above, the
current mode analysis algorithm is also very complicated. It
combines several conceptually distinct stages of mode anal-
ysis into a single pass. This makes modifications to the al-
gorithm (e.g. to include the missing functionality) quite dif-
ficult. The algorithm is also quite inefficient when analysing
code involving complex modes.

In this paper, we present a new approach to mode analysis
of Mercury programs which attempts to solve some of these
problems of the current system. We separate mode check-
ing into several distinct stages and use a constraint based
approach to naturally express the constraints that arise dur-
ing mode analysis. We believe that this approach makes it
easier to implement an extensible mode analysis system for
Mercury that can overcome the limitations of the current
system.

We associate with each program variable a set of “posi-
tions”, which correspond to nodes in its type graph. The key
idea to the new mode system is to identify, for each position

in the type of a variable, where that position is produced,
i.e. which goal binds that part of the variable to a function
symbol. We associate to each node in the type graph, and

each goal in which the program variable occurs, a Boolean
variable that indicates whether the node in the graph of
that program variable is bound within the goal. Given these
Boolean variables we can describe the constraints that arise
from correct moding in terms of Boolean constraints. We
can then represent and manipulate these descriptions us-
ing standard data structures such as reduced ordered binary
decisions diagrams (ROBDDs). By allowing constraints be-
tween individual positions in different data structures, we
obtain a much more precise analysis than the current Mer-
cury mode system.

Starting with [11] there has been considerable research
into mode inference and checking. However, most of this
work is based on assumptions that differ from ours in (at
least) one of two significant respects: types and reordering.

Almost all work on mode analysis in logic programming
has focused on untyped languages, mainly Prolog. As a
consequence, most papers use very simple analysis domains,
such as {ground, free, unknown}. One can use patterns from
the code to derive more detailed program-specific domains,
as in e.g. [3, 10, 12], but such analyses must sacrifice too
much precision to achieve acceptable analysis times. In [18],
we proposed fixing this problem by requiring type informa-
tion and using the types of variables as the domains of mode
analysis. Several papers since then (e.g. [14, 17]) have been
based on similar ideas. Like other papers on mode infer-
ence, these also assume that the program is to be analyzed
as is, without reordering. They therefore use modes to de-

scribe program executions, whereas we are interested in us-
ing modes to prescribe program execution order, and insist
that the compiler must have exact information about instan-
tiation states. The only other mode analysis systems that
do likewise work with much simpler domains (for example,
Ground Prolog [9] recognizes only two instantiation states,
free and ground).

Other related work has been on mode checking for con-
current logic programming languages and for logic program-
ming languages with coroutining [1, 5, 7]: there the em-
phasis has been on detecting communication patterns and
possible deadlocks. The only other constraint-based mode
analysis we are aware of is that of Moded Flat GHC [4].
Moded Flat GHC relies on position in the clause (in the
head or guard versus in the body) to determine if a unifi-
cation is allowed to bind any variables, which significantly
simplifies the problem. The constraints generated are equa-
tional, and rely on delaying the complex cases where there
are three or more occurrences of a variable in a goal.

There has been other work on constraint-based analysis
of Mercury. In particular, the work of [20] on a constraint-
based binding-time analysis is notable. It has a similar ba-
sic approach to ours of using constraints between the “po-
sitions” in the type trees of variables to express data flow
dependencies. However, binding-time analysis has different
objectives to mode analysis and, in fact, their analysis re-
quires the results of mode analysis to be available.

In Section 2 we give the background information the rest
of the paper depends on. In Section 3 we briefly outline the
current approach and some of its weaknesses. In Section 4
we give a simplified example of our constraint-based system
before presenting the full system in Section 5. In Section 6
we show how the results of the analysis are used to select an
execution order for goals in a conjunction. In Section 7 we
give some preliminary experimental results.

2. BACKGROUND
Mercury is a purely declarative logic programming lan-

guage designed for the construction of large, reliable and
efficient software systems by teams of programmers [19].
Mercury’s syntax is similar to the syntax of Prolog, but Mer-
cury also has strong module, type, mode and determinism
systems, which catch a large fraction of programmer errors
and enable the compiler to generate fast code. The rest of
this section explains the main features of Mercury that are
relevant for this paper.

2.1 Programs
The definition of a predicate in Mercury is a goal con-

taining atoms, conjunctions, disjunctions, negations and if-
then-elses. To simplify its algorithms, the compiler converts
the definition of each predicate into what we call superho-
mogeneous form [19]. In this form, each predicate is defined
by one clause, all variables appearing in a given atom (in-
cluding the clause head) are distinct, and all atoms are one
of the following three forms:

p(X1, ..., Xn) Y = X Y = f(X1, ..., Xn)

In this paper, we further assume that in all unifications,
neither side is a variable that does not appear outside the
unification itself. (Unifications that do not meet this re-
quirement cannot influence the execution of the program
and can thus be deleted.) For simplicity, we also assume
that all negations have been replaced by if-then-elses (one
can replace ¬G with (G→ fail ; true)). The abstract syntax
of the language we deal with can therefore be written as

atom A = x = y|x = f(y1, . . . , yn)|p(x1, . . . , xn)
goal G = A|(G1, · · · , Gn)|(G1; . . . ; Gn)|(Gc → Gt; Ge)
rule R = p(x1, . . . , xn)← G

In order to describe where a variable becomes bound, our
algorithms need to be able to uniquely identify each subgoal
of a predicate body. The code of a subgoal itself cannot
serve as its identifier, since a piece of code may appear more
than once in a predicate definition. We therefore use goal

paths for this purpose. A goal path consists of a sequence of
path components. We use λ to represent the path with zero
components, which denotes the entire procedure body.

• If the goal at path p is a conjunction, then the goal
path p.cn denotes its nth conjunct.
• If the goal at path p is a disjunction, then the goal

path p.dn denotes its nth disjunct.
• If the goal at path p is an if-then-else, then the goal

path p.c denotes its condition, p.t denotes its then-
part, and p.e denotes its else-part.

Definition 1. The parent of goal path p.cn, p.dn, p.c, p.t,
or p.e, is goal path p. The function parent(p) maps a goal
path to its parent.

Definition 2. Let ν(G) be the set of variables that oc-
cur within a goal, G. Let η(G) ⊆ ν(G) be the set of
variables that are nonlocal to goal G, i.e. occur both in-
side and outside G. For convenience, we also define ν and
η for a set of goals, S: ν(S) =

�
{ν(G) | G ∈ S}, and

η(S) =
�
{η(G) | G ∈ S}.

Since each goal path uniquely identifies a goal, we some-
times apply operations on goals to goal paths.

2.2 Deterministic Regular Tree Grammars
In order to be able to express all the different useful modes

on a program variable, we must be able to talk about each
of the individual parts of the terms which that program
variable will be able to take as values. To do so in a finite
manner, we use regular trees, expressed as tree grammars.

A signature Σ is a set of pairs f/n where f is a function

symbol and n ≥ 0 is the integer arity of f . A function symbol
with 0 arity is called a constant. Given a signature Σ, the
set of all trees (the Herbrand Universe), denoted τ (Σ), is
defined as the least set satisfying:

τ (Σ) = �
f/n∈Σ

{f(t1, . . . , tn) | {t1, . . . , tn} ⊆ τ (Σ)}.

For simplicity, we assume that Σ contains at least one con-
stant.

Let V be a set of symbols called variables. The set of all
terms over Σ and V , denoted τ (Σ, V), is similarly defined
as the least set satisfying:

τ (Σ, V) = V ∪ �
f/n∈Σ

{f(t1, . . . , tn) | {t1, . . . , tn} ⊆ τ (Σ, V)}

A tree grammar r over signature Σ and non-terminal set

NT is a finite sequence of production rules of the form x→ t
where x ∈ NT and t is of the form f(x1, . . . , xn) where
f/n ∈ Σ and {x1, . . . , xn} ⊆ NT . A tree grammar is deter-

ministic regular if for each x ∈ NT and f/n ∈ Σ, there can
be at most one rule of the form x→ f(x1, . . . , xn).

For brevity we shall often write tree grammars in a more
compressed form. We use x → t1; t2; · · · ; tn as shorthand
for the sequence of production rules: x → t1, x → t2, . . . ,
x→ tn.

2.3 Types
Types in Mercury are polymorphic Hindley-Milner types.

Type expressions (or types) are terms in the language
τ (Σtype, Vtype) where Σtype are type constructors and vari-
ables Vtype are type parameters. Each type constructor
f/n ∈ Σtype must have a definition.

Definition 3. A type definition for f/n is of the form

:- type f(v1 , . . . , vn) ---> f1(t11 , ..., t1m1
); · · ·; fk(tk1 , ..., tkmk

).

where v1, . . . , vn are distinct type parameters,
{f1/m1, . . . , fk/mk} ⊆ Σtree are distinct tree con-
structor/arity pairs, and t11, . . . , t

k
mk

are type expressions
involving at most parameters v1, . . . , vn.

Clearly, we can view the type definition for f as simply a
sequence of production rules over signature Σtree and non-
terminal set τ (Σtype, Vtype).

In order to avoid type expressions that depend on an in-
finite number of types, we restrict the type definitions to
be regular [13]. (Essentially regularity ensures that for any
type t, grammar (t), defined below, is finite.)

Example 1. Type definitions for lists, and a simple type
abc which includes constants a, b and c are

:- type list(T) ---> [] ; [T|list(T)].
:- type abc ---> a ; b ; c.

We can associate with each (non-parameter) type expres-
sion the production rules that define the topmost symbol of
the type. Let t be a type expression of the form f(t1, . . . , tn)
and let f/n have type definition of the form in Definition 3.
We define rules(t) to be the production rules:

θ(f(v1, . . . , vn)) → f1(θ(t11), . . . , θ(t1m1
))

...
θ(f(v1, . . . , vn)) → fk(θ(tk

1), . . . , θ(tk
mk

)))

where θ = {v1/t1, . . . , vn/tn} substitutes ti for vi. If t ∈
Vtype we define rules(t) to be the empty sequence.

We can extend this notation to associate a tree grammar
with a type expression. Let grammar (t) be the sequence of
production rules recursively defined by

rules(t) ++ grammar (θ(t11)) ++ · · · ++ grammar (θ(tk
mk

))

where the ++ operation concatenates sequences of produc-
tion rules, removing second and later occurrences of dupli-
cate production rules.

We call each nonterminal in a set of production rules a po-

sition, since we will use them to describe positions in terms;
each position is the root of one of the term’s subterms. We
also sometimes call positions nodes, since they correspond
to nodes in type trees.

Example 2. Consider the type list(abc), then the corre-
sponding grammar is

list(abc) → [] ; [abc|list(abc)]
abc → a ; b ; c

There are two nonterminals and thus two positions in the
grammar: list(abc) and abc.

Mode inference and checking takes place after type check-
ing, so we assume that we know the type of every variable
appearing in the program.

2.4 Instantiations and Modes
An instantiation describes the binding pattern of a vari-

able at a particular point in the execution of the program. A
mode is a mapping from one instantiation to another which
describes how the instantiation of a variable changes over
the execution of a goal.

Instantiations are also defined using tree grammars. The
differences are that no instantiation associated with a pred-
icate involves instantiation parameters (no polymorphic
modes—although these are a possible extension), and there
are two base instantiations: free and ground representing
completely uninitialized variables, and completely bound
terms. Instantiation expressions are terms in τ (Σinst, Vinst).

Definition 4. An instantiation definition for g ∈ Σinst is
of the form:

:- inst g(w1, ..., wn)==bound(g1(i11, ..., i1m1
); · · ·; gk(ik1 , ..., ikmk

)).

where w1, . . . , wn are distinct instantiation parameters,
{g1/m1, . . . , gk/mk} ⊆ Σtree are distinct tree constructors,
and i11, . . . , ikmk

are instantiation expressions in τ (Σinst ∪
{free, ground}, Vinst).

We can associate a set of production rules rules(i) with
an instantiation expression i just as we do for type expres-
sions. For the base instantiations we define rules(free) =
rules(ground) = ∅.

Example 3. For example the instantiation definition

:- inst list skel(I) == bound([] ; [I | list skel(I)]).

defines an instantiation list skel(I). A variable with this in-
stantiation must be bound, either to an empty list ([]), or
to a cons cell whose first argument has the instantiation
given by instantiation variable I and whose tail also has the
instantiation list skel(I). For example list skel(free) describes
a list in which the elements are all free.

Each instantiation is usually intended to be used with a
specific type, e.g. list skel(I) with list(T), and it normally
lists all the function symbols that variables of that type can
be bound to. Instantiations that do not do so, such as

:- inst non empty skel(I) == bound([I | list skel(I)]).

represent a kind of subtyping; a variable whose instantiation
is non empty skel(free) cannot be bound to [].

Definition 5. A mode i >> f is a mapping from an initial
instantiation i to a final instantiation f . Common modes
have shorthand expressions, e.g. in = ground >> ground and
out = free >> ground. A goal that changes the instantiation
state of a position from free to ground is said to produce or
bind that position; a goal that requires the initial instantia-
tion state of a position to be ground is said to consume that
position.

3. CURRENT MODE ANALYSIS SYSTEM
The mode analysis algorithm currently used by the Mer-

cury compiler is based on abstract interpretation. The ab-
stract domain maps each program variable to an instantia-
tion. Before mode analysis, the compiler creates a separate
procedure for each mode of usage of each predicate. It then
analyses each procedure separately.

Starting with the initial instantiation states for each argu-
ment given by the mode declaration, the analysis traverses
the procedure body goal determining the instantiation state
of each variable at each point in the goal. When travers-
ing conjunctions, if a conjunct is not able to be scheduled
because it needs as input a variable that is not sufficiently
bound, it is delayed and tried again later. Once the goal
has been analysed, if there are no unschedulable subgoals
and the computed final instantiation states of the arguments
match their final instantiation states in the mode declara-
tion, the procedure is determined to be mode correct. See [8,
18] for more details (although those papers talk about other
languages, the approach in Mercury is similar).

The system is also able to do mode inference for predicates
which are not exported from their defining module, using
a top down traversal of the module. However, to prevent
combinatorial explosion, the mode analysis algorithm does
not reorder conjunctions when performing inference; when
it arrives at a call, it assumes that the called predicate is
supposed to be able to run given only the variables that
have been bound to its left.

The mode analysis system has several tasks that it does
all at once. It must (1) determine the producer and the
consumers of each variable; (2) reorder conjunctions to en-
sure that all consumers of a variable are executed after its
producer; and (3) ensure that sub-typing constraints are
met. This leads to a very complicated implementation.
One of the aims of our constraint-based approach is to sim-
plify the analysis by splitting these tasks up into distinct
phases which can be done separately.

3.1 Limitations
There are two main problems with the above approach.
The first is that it does not keep track of aliasing informa-

tion. This has two consequences. First, without may-alias
information about bound nodes we cannot handle unique
data structures in a nontrivial manner; in particular, we
cannot implement compile-time garbage collection. Second,
without must-alias information about free nodes, we cannot
do accurate mode analysis of code that manipulates partially
instantiated data structures.

Partially instantiated data structures are data structures
that contain free variables. They are useful when one wants
different parts of a data structure to be filled in by different
parts of a program.

Example 4. Consider the following small program.

:- pred length(list(int), int).

:- mode length(free >> list_skel(free), in) is det.

length(L, N) :-

(L = [], N = 0

; L = [_ | K], M = N - 1, length(K, M)

).

:- pred iota(list(int), int).

:- mode iota(list_skel(free) >> ground, in) is det.

iota(L, X) :-

(L = []

; L = [H | T], H = X, Y = X + 1, iota(T, Y)

).

In the goal length(L, 10), iota(L, 3), length/2 con-
structs the skeleton of a list with a specified length and
iota/2 fills in the elements of the list. The current system
is unable to verify the mode correctness of the second dis-
junct of iota/2. One problem is that this disjunct sets up
an alias between the variable H and the first element of L

(which are both initially free variables), and then instanti-
ates H by unifying it with the second argument. Without
information about the aliasing between H and the first ele-
ment of L, the mode checker is unable to determine that this
also instantiates the first element of L.

The second problem is that the absence of reordering dur-
ing mode inference prevents many correct modes from being
detected.

Example 5. Consider mode inference for the predicate

:- pred append3(list(T), list(T), list(T), list(T)).

app3(A,B,C,ABC) :- append(A,B,AB), append(AB,C,ABC).

Inference will find only the mode app3(in,in,in,out); it
will not find the mode app3(out,out,out,in).

The reordering restriction cannot simply be lifted, because
without it, the current mode inference algorithm can explore
arbitrarily large numbers of modes, which will in fact be
useless, since it does not “look ahead” to see if the modes
inferred for a called predicate will be useful in constructing
the desired mode for the current predicate.

4. SIMPLIFIED EXAMPLE
The motivation for our constraint based mode analysis

system is to avoid the problems in the current system. In
order to do, so we break the mode analysis problem into

phases. The first phase determines which subgoals produce
which variables, while the second uses that information to
determine an execution order for the procedure. For now,
we will focus on the first task; we will return to the second
in Section 6.

For ease of explanation, we will first show a simplified form
of our approach. This simplified form requires variables to
be instantiated all at once, (i.e. the only two instantiation
states it recognizes are free and ground) and requires all vari-
ables to eventually reach the ground state. This avoids the
complexities that arise when different parts of variables are
bound at different times, or some parts are left unbound.
We will address those complexities when we give the full
algorithm in Section 5.

4.1 Constraint Generation
The algorithm associates several constraint variables with

each program variable. With every program variable V , we
associate a family of constraint variables of the form Vp; Vp

is true iff V is produced by the goal at path p in the predicate
body.

We explain the algorithm using append/3. The code below
is shown after transformation by the compiler into superho-
mogeneous form as described in Section 2.1. We also ensure
that each variable appears in at most one argument of one
functor by adding extra unifications if necessary.

:- pred append(list(T),list(T),list(T)).

append(A,B,C) :-

(A = [], B = C

; A = [AH | AT], C = [CH | CT], AH = CH,

append(AT, B, CT)

).

We examine the body and generate constraints from it.
The body is a disjunction, so the constraints we get simply
specify, for each variable nonlocal to the disjunction, that if
the disjunction produces a variable, then all disjuncts must
produce that variable, while if the disjunction does not pro-
duce a variable, then no disjunct may produce that variable.
For append, this is expressed by the constraints:

(Aλ ↔ Ad1) ∧ (Bλ ↔ Bd1) ∧ (Cλ ↔ Cd1) ∧
(Aλ ↔ Ad2) ∧ (Bλ ↔ Bd2) ∧ (Cλ ↔ Cd2)

We then process the disjuncts one after another. Both dis-
juncts are conjunctions. When processing a conjunction, our
algorithm considers each variable occurring in the conjunc-
tion that has more than one potential producer. If a variable
is nonlocal to the conjunction, then it may be produced ei-
ther inside or outside the conjunction; if a variable is shared
by two or more conjuncts, then it may be produced by any
one of those conjuncts. The algorithm generates constraints
that make sure that each variable has exactly one producer.
If the variable is local, the constraints say that exactly one
conjunct must produce the variable. If the variable is non-
local, the constraints say that at most one conjunct may
produce the variable.

In the first disjunct, there are no variables shared among
the conjuncts, so the only constraints we get are those ones
that say that each nonlocal is produced by the conjunction
iff it is produced by the only conjunct in which it appears:

(Ad1 ↔ Ad1.c1) ∧ (Bd1 ↔ Bd1.c2) ∧ (Cd1 ↔ Cd1.c2)

The first conjunct in the first disjunct yields no nontrivial
constraints. Intuitively, the lack of constraints from this goal

reflects the fact that A = [] can be used both to produce A

and to test its value.
The second conjunct in the first disjunct yields one con-

straint, which says that the goal B = C can be used to pro-
duce at most one of B and C:

¬(Bd1.c2 ∧ Cd1.c2)

For the second disjunct, we generate constraints analogous
to those for the first conjunct for the nonlocal variables. But
this disjunct, unlike the first, contains some shared local
variables: AH, CH, AT and CT, each of which appears in two
conjuncts. Constraints for these variables state that each
of these variables must be produced by exactly one of the
conjuncts in which it appears.

(Ad2 ↔ Ad2.c1) ∧ (Bd2 ↔ Bd2.c4) ∧ (Cd2 ↔ Cd2.c2) ∧
¬(AHd2.c1 ↔ AHd2.c3) ∧ ¬(CHd2.c2 ↔ CHd2.c3) ∧
¬(ATd2.c1 ↔ ATd2.c4) ∧ ¬(CTd2.c2 ↔ CTd2.c4)

The first conjunct in the second disjunct shows how we han-
dle unifications of the form X = f(Y1, ..., Yn) where n > 0.
The key to understanding the behavior of our algorithm in
this case is knowing that it is trying to decide between only
two alternatives: either this unification takes all the Yis as
input and produces X, or it takes X as input and produces
all the Yis. This is contrary to most people’s experience,
because in real programs, unifications of this form can also
be used in ways that make no bindings, or that produce
only a subset of the Yi. However, using this unification in
a way that requires both X and some or all of the Yi to
be input is possible only if those Yi have producers outside
this unification. When we transform the program into su-
perhomogeneous form, we make sure that each unification
of this form has fresh variables on the right hand side. So
if a Yi could have such a producer, it would be replaced on
the right hand side of the unification with a new variable
Y ′

i , with the addition of a new unification Yi = Y ′
i . That

is, we convert unifications that take both X and some or all
of the Yi to be input into unifications that take only X as
input, and produce all the variables on the right hand side.

If some of the variables on the right hand side appear only
once then those variables must be unbound, and using this
unification to produce X would create a nonground term.
Since the simplified approach does not consider nonground
terms, in such cases it generates an extra constraint that
requires X to be input to this goal.

In the case of A = [AH | AT], both AH and AT appear
elsewhere so we get the constraints:

(AHd2.c1 ↔ ATd2.c1) ∧ ¬(Ad2.c1 ∧ AHd2.c1)

The first says that either this goal produces all the variables
on the right hand side, or it produces none of them. In
conjunction with the first, the second constraint says that
the goal cannot produce both the variable on the left hand
side, and all the variables on the right hand side.

The constraints we get for C = [CH | CT] are analogous:

(CHd2.c2 ↔ CTd2.c2) ∧ ¬(Cd2.c2 ∧ CHd2.c2)

The equation AH = CH acts just as the equation in the first
disjunct, generating:

¬(AHd2.c3 ∧ CHd2.c3)

The last conjunct is a call, in this case a recursive call. We
assume that all calls to a predicate in the same SCC as the

caller have the same mode.1 This means that the call pro-
duces its ith argument iff the predicate body produces its ith
argument. This leads to one constraint for each argument
position:

(ATd2.c4 ↔ Aλ) ∧ (Bd2.c4 ↔ Bλ) ∧ (CTd2.c4 ↔ Cλ)

This concludes the set of constraints generated by our algo-
rithm for append.

4.2 Inference and Checking
The constraints we generate for a predicate can be used

to infer its modes. Projecting onto the head variables, the
constraint set we just built up has five different solutions, so
append has five modes:

¬Aλ ∧ ¬Bλ ∧ ¬Cλ append(in, in, in)

¬Aλ ∧Bλ ∧ ¬Cλ append(in, out, in)

Aλ ∧ ¬Bλ ∧ ¬Cλ append(out, in, in)

Aλ ∧Bλ ∧ ¬Cλ append(out, out, in)

¬Aλ ∧ ¬Bλ ∧ Cλ append(in, in, out)

Of these five modes, two (append(in, in, out) and
append(out, out, in)) are what we call principal modes.
The other three are implied modes, because their existence
is implied by the existence of the principal modes; chang-
ing the mode of an argument from out to in makes the
job of a predicate strictly easier. In the rest of the pa-
per, we assume that every predicate’s set of modes is down-

ward closed, which means that if it contains a mode pm,
it also contains all the modes implied by pm. In prac-
tice, the compiler generates code for a mode only if it is
declared or it is a principal mode, and synthesizes the other
modes in the caller by renaming variables and inserting ex-
tra unifications. This synthesis does the superhomogeneous
form equivalent of replacing append([1], [2], [3]) with
append([1], [2], X), X = [3].

Each solution also implicitly assign modes to the primi-
tive goals in the body, by specifying where each variable is
produced. For example, the solution that assigns true to the
constraint variables Cλ, Cd1 , Cd1.c2 , Cd2 , AHd2.c1 , ATd2.c1 ,
Cd2.c2 , CHd2.c3 , CTd2.c4 and false to all others, which cor-
responds to the mode append(in,in,out), also shows that
A = [AH|AT] is a deconstruction (i.e. uses the fields of A to
define AH and AT) while C = [CH|CT] is a construction (i.e.
it binds C to a new heap cell).

In most cases, the values of the constraint variables of
the head variables uniquely determine the values of all the
other constraint variables. Sometimes, there is more than
one set of value assignments to the constraint variables in
the body that is consistent with a given value assignment
for the constraint variables in the head. In such cases, the
compiler can choose the assignment it prefers.

5. FULL MODE INFERENCE

5.1 Expanded Grammars
We now consider the problem of handling programs in

which different parts of a variable may be instantiated by

1This assumption somewhat restricts the set of allowable
well-moded programs. However, we have not found this to
be an unreasonable restriction in practice. We have not
come across any cases in typical Mercury programs where
one would want to make a recursive call in a different mode.

different goals. We need to ensure that if two distinct po-
sitions in a variable may have different instantiation be-
haviour, then we have a way of referring to each separately.
Hence we need to expand the type grammar associated with
that variable.

We begin with an empty grammar and with the original
code of the predicate expressed in superhomogeneous normal
form. We modify both the grammar and the predicate body
during the first stage of mode analysis.

If the unification X = f(A1, . . . , An) appears in the defi-
nition of the predicate, then

• if X has no grammar rule for functor f/n, add a rule
X → f(A1, . . . , An), and for each Ai which already
occurs in a grammar rule or in the head of the clause,
replace each occurrence of Ai in the program by A′

i

and add an equation Ai = A′
i.

• if X has a grammar rule X → f(B1, . . . , Bn) re-
place the equation by X = f(B1, . . . , Bn), A1 =
B1, . . . , An = Bn.

This process may add equations of the form X = Y where
one of X and Y occurs nowhere else. Such equations can be
safely removed.

After processing all such unifications, add a copy of the
rules in rules(t) for each grammar variable V of type t which
does not have them all.

Example 6. The superhomogeneous form of the usual
source code for append has (some variant of)

A=[AH | AT], C=[AH | CT], append(AT,B,CT)

as its second clause, which our algorithm replaces with

A=[AH | AT], C=[CH | CT], AH = CH, append(AT,B,CT)

yielding the form we have shown in Section 4. The expanded
grammar I computed for append is

A → [] ; [AH|AT] AT → [] ; [AE|AT]
B → [] ; [BE|B]
C → [] ; [CH|CT] CT → [] ; [CE|CT]

The nonterminals of this grammar constitute the set of po-
sitions for which we will create constraint variables when we
generate constraints from the predicate body, so from now
we will use “nonterminal” and “position” (as well as “node”)
interchangeably. Note that there is a nonterminal denoting
the top-level functor of every variable, and that some vari-
ables (e.g. A) have other nonterminals denoting some of their
non-top-level functors as well. Note also that a nonterminal
can fulfill both these functions, when one variable is strictly

part of another. For example, the nonterminal AH stands
both for the variable AH and the first element in any list
bound to variable A, but the variables B and C, which are
unified on some computation paths, each have their own
nonterminal.

A predicate needs three Boolean variables for each posi-
tion V : (a) Vin is true if the position is produced outside the
predicate, (b) Vλ is true if the position is produced inside
the predicate, and (c) Vout is true if the position is produced
somewhere (either inside or outside the predicate). Note
that Vout ↔ Vin ∨ Vλ.

Definition 6. Let α(p/n) be the tuple 〈H1, . . . , Hn〉 of
head variables (i.e. formal parameters) for predicate p/n.

Definition 7. For an expanded grammar I and position
X, we define the immediate descendants of X as

δI (X) =
�

X→f(Y1,...,Yn) ∈ I{Y1, . . . Yn}

and the set of positions reachable from X as

ρI(X) = {X}∪ �
X→f(Y1,...,Yn) ∈ I

�
ρI(Y) �� Y ∈ {Y1, . . . , Yn} �

When we are generating constraints between two variables
(which will always be of the same type) we will need to be
able to refer to positions within the two variables which
correspond to each other, as e.g. AH and CH denote corre-
sponding positions inside A and C. The notion of correspon-
dence which we use allows for the two variables to have been
expanded to different extents in the expanded grammar. For
example, A has more descendant nonterminals in append’s
grammar than B, even though they have the same type. In
the unification A = B, the nonterminal B would correspond
to AT as well as A.

Definition 8. For expanded grammar I and positions X
and Y , we define the set of pairs of corresponding nodes in
X and Y as

χI(X, Y) =
�
〈X, Y 〉 � ∪ �

〈V,W 〉 ∈ χ′

I
(X,Y) χI(V, W)

where

χ′
I(X, Y) =

����������� ����������

�
X→f(V1,...,Vn) ∈ I

Y →f(W1,...,Wn) ∈ I

�
〈V1, W1〉, . . . , 〈Vn, Wn〉 �

if X ∈ lhs(I) and Y ∈ lhs(I),�
X→f(V1,...,Vn) ∈ I

�
〈V1, Y 〉, . . . , 〈Vn, Y 〉 �

if X ∈ lhs(I) and Y 6∈ lhs(I),�
Y →f(W1,...,Wn) ∈ I

�
〈X, W1〉, . . . , 〈X, Wn〉 �

if X 6∈ lhs(I) and Y ∈ lhs(I),
∅ otherwise

and lhs(I) = {X | ∃f/n ∈ Σtree.X → f(Y1, . . . , Yn) ∈ I}
For convenience, we also define χ for a pair of n-tuples:

χI (〈X1, . . . , Xn〉, 〈Y1, . . . , Yn〉) =
� n

i=1 χI(Xi, Yi)

Definition 9. Given an expanded grammar I and a rule
X → f(Y1, . . . , Yn) ∈ I we say that X is the parent node

of each of the nodes Y1, . . . , Yn.

5.2 Mode Inference Constraints
We ensure that no variable occurs in more than one pred-

icate, renaming them as necessary. We construct an ex-
panded grammar I for P , the program module being com-
piled. We next group the predicates in the module into
strongly-connected components (SCCs), and process these
SCCs bottom up, creating a function CSCC for each SCC.
This represents the Boolean constraints that we generate for
the predicates in that SCC. The remainder of this section
defines CSCC.

The constraint function CSCC(I, S) for an SCC S is the
conjunction of the constraint functions CPred(I, p/n) we gen-
erate for all predicates p/n in that SCC, i.e. CSCC(I, S) is�

p/n∈S,p(H1,... ,Hn):-G∈P CPred(I, p(H1, . . . , Hn):-G)

The constraint function we infer for a predicate p/n is the
constraint function of its SCC, i.e. CInf(I, p/n) = CSCC(I, S)
for each p/n ∈ S. CInf(I, p/n) may be stricter than
CPred(I, p/n) if p/n is not alone in its SCC. For predicates

defined in other modules, we derive their CInf from their
mode declarations using the mechanism we will describe in
Section 5.3.

CPred itself is the conjunction of two functions: CStruct,
the structural constraints relating in and out variables, and
CGoal, the constraints for the predicate body goal:

CPred(I, (p(H1, . . . , Hn) :-G)) =
CStruct(I, {H1, . . . , Hn}, ν(G)) ∧ CGoal(I, λ,G)

We define CStruct and CGoal below.

5.2.1 Structural Constraints
Vin is the proposition that V is bound at call. Vout is the

proposition that V is bound at return. Vλ is the proposition
that V is bound by this predicate. These constraints relate
the relationships between the above variables and relation-
ships of boundedness at different times.

If a node is not reachable from one of the predicate’s ar-
gument variables, then it cannot be bound at call.

A node is bound at return if it is bound at call or it is
produced within the predicate body. A node may not be
both bound at call and produced in the predicate body.

If a node is bound at call then its parent node must also
be bound at call. Similarly, if a node is bound at return
then its parent node must also be bound at return.

CStruct(I,HV, NL) =
�

V ∈ρI(NL)\ρI (HV) ¬Vin

∧
�

V ∈NL � (Vout ↔ Vin ∨ Vλ) ∧ ¬(Vin ∧ Vλ) 	
∧

�
V ∈ρI(NL)

�
D∈δI(V)

�
(Din → Vin) ∧ (Dout → Vout) �

Example 7. For append, the structural constraints are:

Aout ↔ Ain ∨ Aλ,¬(Ain ∧Aλ),
AHout ↔ AHin ∨ AHλ,¬(AHin ∧AHλ),
ATout ↔ ATin ∨ATλ,¬(ATin ∧ATλ),
AEout ↔ AEin ∨ AEλ,¬(AEin ∧AEλ),
Bout ↔ Bin ∨ Bλ,¬(Bin ∧Bλ),
BEout ↔ BEin ∨BEλ,¬(BEin ∧BEλ),
Cout ↔ Cin ∨ Cλ,¬(Cin ∧ Cλ),
CHout ↔ CHin ∨ CHλ,¬(CHin ∧ CHλ),
CTout ↔ CTin ∨ CTλ,¬(CTin ∧ CTλ),
CEout ↔ CEin ∨ CEλ,¬(CEin ∧ CEλ),
AHin → Ain, AHout → Aout,
ATin → Ain, ATout → Aout,
AEin → ATin, AEout → ATout,
BEin → Bin, BEout → Bout,
CHin → Cin, CHout → Cout,
CTin → Cin, CTout → Cout,
CEin → CTin, CEout → CTout

5.2.2 Goal Constraints
There is a Boolean variable Vp for each path p which con-

tains a program variable X such that V ∈ ρI(X). This vari-
able represents the proposition that position V is produced
in the goal referred to by the path p.

The constraints we generate for each goal fall into two
categories: general constraints that apply to all goal types
(CGen), and constraints specific to each goal type (CGoal).
The complete set of constraints for a goal (CComp) is the
conjunction of these two sets.

The general constraints have two components. The first,
CLocal, says that any node reachable from a variable that is
local to a goal will be bound at return iff it is produced

by that goal. The second, CExt, says that a node reachable
from a variable V that is external to the goal G (i.e. does
not occur in G) cannot be produced by G. The conjunction
in the definition of CExt could be over all the variables in the
predicate that do not occur in G. However, if a variable V
does not occur in G’s parent goal, then the parent’s CGoal

constraints won’t mention V , so there is no point in creating
constraint variables for V for G.

CComp(I, p, G) = CGen(I, p,G) ∧ CGoal(I, p, G)
CGen(I, p,G) = CLocal(I, P, G) ∧ CExt(I, p, G)
CLocal(I, p, G) =

�
V ∈ρI(ν(G)\η(G))(Vp ↔ Vout)

CExt(I, p,G) =
�

V ∈ρI(η(parent(p))\ν(G)) ¬Vp

5.2.3 Compound Goals
The constraints we generate for each kind of compound

goal (conjunction, disjunction and if-then-else) are shown in
Figure 1. In each case, the goal-type-specific constraints are
conjoined with the complete set of constraints from all the
subgoals.

In each conjunctive goal a position can be produced by at
most one conjunct.

In each disjunctive goal a node either must be produced
in each disjunct or not produced in each disjunct.

For an if-then-else goal a node is produced by the if-then-
else if and only if it is produced in either the condition, the
then branch or the else branch. A node may not be produced
by both the condition and the then branch. Nodes reachable
from variables that are nonlocal to the if-then-else must not
be produced by the condition. If a node reachable from a
nonlocal variable is produced by the then branch then it
must also be produced by the else branch, and vice versa.

5.2.4 Atomic Goals
Due to space considerations, we leave out discussion of

higher-order terms which may be handled by a simple ex-
tension to the mode-checking algorithm.

We consider three kinds of atomic goals:

1. Unifications of the form X = Y .
2. Unifications of the form X = f(Y1, . . . , Yn) where

X → f(Y1, . . . , Yn) ∈ I.
3. Calls of the form q(Y1, . . . , Yn).

A unification of the form X = Y may produce at most
one of each pair of corresponding nodes. Mercury does not
allow aliases to exist between unbound nodes so each node
reachable from a variable involved in a unification must be
produced somewhere.2 For a unification X = Y at goal path
p, the constraints CGoal(I, p, X = Y) are�

(V,W)∈χI (X,Y) � Vout ∧ Wout ∧ ¬(Vp ∧ Wp) 	
Example 8. For the unification B = C in append at goal

path d1.c2 the constraints generated are:

Bout ∧ Cout ∧ ¬(Bd1.c2 ∧ Cd1.c2) ∧
BEout ∧ CHout ∧ ¬(BEd1.c2 ∧ CHd1.c2) ∧
Bout ∧ CTout ∧ ¬(Bd1.c2 ∧ CTd1.c2) ∧
BEout ∧ CEout ∧ ¬(BEd1.c2 ∧ CEd1.c2)

2During the goal scheduling phase, we further require that
a node must be produced before it is aliased to another
node. These two restrictions together disallow most uses of
partially instantiated data structures. In the future, when
the Mercury implementation can handle the consequences,
we would like to lift both restrictions.

A unification of the form X = f(Y1, . . . , Yn) at path p
does not produce any of the arguments Y1, . . . , Yn. X must
be produced somewhere (either at p or somewhere else). The
constraints CGoal(I, p, X = f(Y1, . . . , Yn)) are

Xout ∧
�

V ∈ρI({Y1,...,Yn})\{X} ¬Vp

Example 9. For the unification A = [AH|AT] in append at
goal path d2.c1 the constraints generated are:

Aout ∧ ¬AHd2.c1 ∧ ¬ATd2.c1 ∧ ¬AEd2.c1

A call q(Y1, . . . , Yn) will constrain the nodes reachable
from the arguments of the call. For predicates in the current
SCC, we only allow recursive calls that are in the same mode
as the caller. The constraints CGoal(I, p, q(Y1, . . . , Yn)) are�

〈V,W 〉∈χI (α(q/n),〈Y1,...,Yn〉) � (Vλ ↔Wp) ∧ (Vin →Wout) 	
The first part ensures that the call produces the position if
the position is produced by the predicate in the SCC. The
second part ensures that call variable W is produced some-
where if it is required to be bound at call to the call (Vin).
Since if Vin is true Vλ will not be true, we can’t mistakenly
use this call site to produce W .

Example 10. For the recursive call append(AT,B,CT) at
goal path d2.c4 in append the constraints generated on the
first argument are:

(Aλ ↔ ATd2.c4) ∧ (Ain → ATout) ∧
(AHλ ↔ AEd2.c4) ∧ (AHin → AEout) ∧
(ATλ ↔ ATd2.c4) ∧ (ATin → ATout) ∧
(AEλ ↔ AEd2.c4) ∧ (AEin → AEout)

For calls to predicates in lower SCCs the constraints are
similar, but we must existentially quantify the head variables
so that it is possible to call the predicate in different modes
from different places within the current SCC:

CGoal(I, p, q(Y1, . . . , Yn)) = ∃ρI(α(q/n)) : CInf(I, q/n)
∧

�
〈V,W 〉∈χI (α(q/n),〈Y1,...,Yn〉) � (Vλ ↔ Wp) ∧ (Vin →Wout) 	

5.3 Mode Declaration Constraints
For any predicate which has modes declared, the mode

analysis system should check these declarations against the
inferred mode information. This involves generating a set
of constraints for the mode declarations and ensuring that
they are consistent with the constraints generated from the
predicate body.

The declaration constraint CDecls(I,D) for a predicate with
a set of mode declarations D is the disjunction of the con-
straints CDecl(I, d) for each mode declaration d:

CDecls(I,D) = � d∈D CDecl(I, d)

The constraint CDecl(I, d) for a mode declaration d =
p(m1, . . . , mn) for a predicate p(H1, . . . , Hn) is the conjunc-
tion of the constraints CArg(I,m, H) for each argument mode
m with corresponding head variable H:�

i=1,...,n

�
CArg(I, mi, Hi) � ∧ CStruct(I, {H1, . . . , Hn}, ∅)

The structural constraints are used to determine the Hλ

variables from Hin and Hout.
The constraint CArg(I,m, H) for an argument mode m =

i >> f of head variable H is the conjunction of the constraint

CGoal(I, p, (G1, . . . , Gn)) =
� n

i=1 CComp(I, p.ci, Gi) ∧ CConj(I, p, (G1, . . . , Gn))
CGoal(I, p, (G1; . . . ; Gn)) =

� n
i=1 CComp(I, p.di, Gi) ∧ CDisj(I, p, (G1; . . . ; Gn))

CGoal(I, p, (Gc → Gt; Ge)) = CComp(I, p.c, Gc) ∧ CComp(I, p.t, Gt) ∧ CComp(I, p.e, Ge) ∧ CIte(I, p, (Gc → Gt; Ge))

CConj(I, p, (G1, . . . , Gn)) =
�

V ∈ρI(ν({G1,...Gn})) � � Vp ↔ Vp.cj
∨ · · · ∨ Vp.cn 	 ∧

� n
i=1

� i−1
j=1 ¬ � Vp.ci

∧ Vp.cj
	��

CDisj(I, p, (G1; . . . ; Gn)) =
�

V ∈ρI(ν({G1,...Gn}))

� n
i=1 (Vp ↔ Vp.d1)

CIte(I, p, (Gc → Gt; Ge)) =
�

V ∈ρI(ν(G)) � (Vp ↔ Vp.c ∨ Vp.t ∨ Vp.e) ∧ ¬(Vp.c ∧ Vp.t) 	 ∧ �
V ∈ρI(η(G)) � ¬Vp.c ∧ (Vp.t ↔ Vp.e) 	

Figure 1: Constraints for conjunctions, disjunctions and if-then-elses.

CInit(I, i, H) for the initial instantiation state i, and the con-
straint CFin(I, f, H) for the final instantiation state f :

CArg(I, i >> f, H) = CInit(I, i, H) ∧ CFin(I, f, H)

The constraint CInit(I, i, H) for an initial instantiation
state i of a head variable H is given below:

CInit(I, free, H) = ¬Hin

CInit(I, ground, H) =
�

W∈ρI (H) Win

CInit(I, i, H) = Hin ∧�
i→f(i1,...,in)∈rules(i)

H→f(Y1,...,Yn)∈I
� CInit(I, i1, Y1) ∧ · · · ∧ CInit(I, in, Yn) 	

The constraint CFin(I, i, H) for a final instantiation state
i of a head variable H is given below:

CFin(I, free, H) = ¬Hout

CFin(I, ground, H) =
�

W∈ρI(H) Wout

CFin(I, i, H) = Hout ∧�
i→f(i1,...,in)∈rules(i)

H→f(Y1,...,Yn)∈I
� CFin(I, i1, Y1) ∧ · · · ∧ CFin(I, in, Yn) 	

Mode checking is simply determining if the declared
modes are at least as strong as the inferred modes. For
each declared mode d of predicate p/n we check whether
the implication

CDecl(I, d)→ CInf(I, p/n)

holds or not. If it doesn’t, the declared mode is incorrect.
If we are given declared modes D for a predicate p/n, they

can be used to shortcircuit the calculation of SCCs, since
we can use CDecls(I,D) in mode inference for predicates q/m
that call p/n.

Example 11. Given the mode definition:

:- mode lsg == (listskel(free) >> ground).

the mode declaration d1 = append(lsg,lsg,in) for append
gives CDecl(I, d1): (ignoring Vout variables)

Ain ∧ ¬AHin ∧ ATin ∧ ¬AEin ∧Bin ∧ ¬BEin ∧
Cin ∧ CHin ∧ CTin ∧ CEin ∧
¬Aλ ∧AHλ ∧ ¬ATλ ∧AEλ ∧ ¬Bλ ∧ BEλ ∧
¬Cλ ∧ ¬CHλ ∧ ¬CTλ ∧ ¬CEλ

We can show that CDecl(I, d1)→ CInf(I, append/3).

6. SELECTING PROCEDURES AND EXE-
CUTION ORDER

Once we have generated the constraints for an SCC, we
can solve those constraints. If the constraints have no solu-
tion, then some position has consumers but no producer, so
we report a mode error. If the constraints have some solu-
tions, then each solution gives a mode for each predicate in
the SCC; the set of solutions thus defines the set of modes

of each predicate. We then need to find a feasible execution
order for each mode of each predicate in the SCC. The algo-
rithm for finding feasible execution orders takes a solution
as its input. If a given mode of a predicate corresponds to
several solutions, it is sufficient for one of them to have a
feasible ordering.

The main problem in finding a feasible schedule is that the
mode analyser and the code generator have distinct views
of what it means to produce a (position in a) variable. In
the grammar we generate for append, for example, the non-
terminal AH represents both the value of the variable AH

and the value of the first element of the variable A. In the
forward mode of append, AHin is true, so the mode analyser
considers AH to have been produced by the caller even before

execution enters append. However, as far as the code gen-
erator is concerned, the producer of AH is the unification A

= [AH|AT]. It is to cater for these divergent views that we
separate the notion of a variable being produced from the
notion of a variable being visible.

Definition 10. Given an expanded grammar I, an assign-
ment M of boolean values to the constraint variables of a
predicate p/n that makes the constraint CInf(I, p/n) true is
a model of CInf(I, p/n). We write M |= CInf(I, p/n).

Definition 11. For a given model M |= CInf(I, p/n) we
define the set of nodes produced at a goal path p by

producedM (I, p) = {V | M(Vp) = 1}

Definition 12. For a given model M |= CInf(I, p/n) we
define the set of nodes consumed by the goal G at a goal
path p by the formula shown in Figure 2.

For a unification of the form X = Y , we say that a node
on one side of the equation is consumed iff a corresponding
node on the other side is produced. (Due to the symmetric
nature of this relationship, if V 1 and V 2 both correspond
to W , then V 1 is consumed iff V 2 is consumed, and V 1 is
produced iff V 2 is produced.) It is also possible for a pair of
corresponding nodes to be neither produced nor consumed
by the unification. This can mean one of two things. If the
subterms of X and Y at that node are already bound, then
the unification will test the equality of those subterms; if
they are still free, then it will create an alias between them.
Note that if the unification produces either of the top level
nodes X or Y , then we call it an assignment unification.

For a unification of the form X = f(Y1, . . . , Yn) we say
that the node X is consumed iff it is not produced, and
that no other nodes are ever consumed. The reason for
the latter half of that rule is that our grammar will use
the same nonterminal for e.g. Y1 as for the first subterm of
X. Since this unification merely creates aliases between the
Yi and the corresponding subterms of X, the nonterminals

consumedM (I, p, X = Y) =
�
V �� 〈V, W 〉 ∈ χI(X, Y) ∧W ∈ producedM (I, p) �
∪

�
W �� 〈V, W 〉 ∈ χI(X, Y) ∧ V ∈ producedM (I, p) �

consumedM (I, p,X = f(Y1, . . . , Yn)) = {X} \ producedM (I, p)
consumedM (I, p, q(Y1, . . . , Yn)) =

�
V �� 〈V, W 〉 ∈ χ ∧ M ′(Win) = 1 �

where χ = χI (〈Y1, . . . , Yn〉, α(q/n)) and M ′ |= CInf(I, q/n)
such that ∀〈V,W 〉 ∈ χ . M(Vd)↔M ′(Wλ)

consumedM (I, p, (G1, . . . , Gn)) =
� n

i=1 consumedM (I, p.ci, Gi) \ producedM (I, p)
consumedM (I, p, (G1; . . . ; Gn)) =

� n
i=1 consumedM (I, p.di, Gi) \ producedM (I, p)

consumedM (I, p, (Gc → Gt; Ge)) = � consumedM (I, p.c, Gc) ∪ consumedM (I, p.t,Gt)
∪ consumedM (I, p.e, Ge) 	 \ producedM (I, p)

Figure 2: Calculating which nodes are “consumed” at which positions.

of the Yi cannot be produced by this unification; if they
are produced at all, they have to be produced elsewhere.
Note that if the unification produces X, then we call it a
construction unification; if it consumes X, then we call it a
deconstruction unification.

For a call to a predicate q, we know which nodes of the
actual parameters of the call the model M of the predicate
we are analyzing says should be produced by the call. We
need to find a model M ′ of the constraints of q that causes
the corresponding nodes in the actual parameters of q to
be output. Since the first stage of the analysis succeeded
we know such a model M ′ exists. The consumed nodes of
the call are then the nodes of the actual parameters that
correspond to the nodes of the formal parameters of q that
M ′ requires to be input.

For compound goals, the consumed nodes are the union of
the consumed nodes of the subgoals, minus the nodes that
are produced within the compound goal.

Example 12. In the (in, in, out) mode of append, the
produced and consumed sets of the conjuncts are:

Path produced consumed
d1.c1 {} {A}
d1.c2 {C, CH, CT, CE} {B, BE}
d2.c1 {} {A}
d2.c2 {C} {}
d2.c3 {CH} {AH}
d2.c4 {CT, CE} {AT, AE,B, BE}

Neither disjunct produces any position that it also con-
sumes. Therefore, if our ordering algorithm only required
a node to be produced before it is consumed, it would find
any order acceptable. On the other hand, the code genera-
tor is more fussy; for example, before it can emit code for
the recursive call, it needs to know where variables AH and
AT are stored, even if they have not been bound yet. This is
why we need the concept of visibility.

Definition 13. A variable is visible at a goal path p if the
variable is a head variable or has appeared in the predicate
body somewhere to the left of p. The functions make visible
and need visible defined in Figure 3 respectively determine
whether a goal makes a variable visible or requires it to be
visible.

Example 13. Given the (in, in, out) mode of append

the make visible and need visible sets of the conjuncts are:

Path make visible need visible
d1.c1 {} {A}
d1.c2 {C} {B}
d2.c1 {AH,AT} {A}
d2.c2 {C, CH,CT} {}
d2.c3 {CH} {AH}
d2.c4 {CT} {AT, B}

Our algorithm needs to find, in each conjunction in the
body, an ordering of the conjuncts such that the producer
of each node comes before any of its consumers, and each
variable is made visible before any point where it needs to
be visible. We do this by traversing the predicate body top
down. At each conjunction, we construct a directed graph
whose nodes are the conjuncts. The initial graph has an
edge from ci to cj iff ci produces a node that cj consumes.
If this graph is cyclic, then mode ordering fails. If it isn’t,
we try to add more edges while keeping the graph acyclic.

We sort the variables that need to be visible anywhere in
the conjunction that are also made visible in the conjunc-
tion into two classes: those where it is clear which conjunct
should make them visible and those where it isn’t. A vari-
able falls into the first class iff it is made visible in only
one conjunct, or if a conjunct that makes it visible is also
the producer of its top level node. (In the forward mode of
append, all variables fall into the first class; the only variable
that is made visible in more than one conjunct, CH, does not
need to be visible in any conjunct in that conjunction.) For
each of these variables, we add an edge from the conjunct
that makes the variable visible to all the conjuncts cj need
it to be visible. If the graph is still acyclic, we then start
searching the space of mappings that map each variable in
the second class to a conjunct that makes that variable visi-
ble, looking for a map that results in an acyclic graph when
we add links from the selected make visible conjunct of each
variable to all the corresponding need visible conjuncts.

It can also happen that some of the conjuncts need a vari-
able visible that none of the goals in the conjunction make
visible. If this variable is made visible by a goal to the left of
the whole conjunction, by another conjunction that encloses
this one, then everything is fine. If it isn’t, then the order-
ing of the enclosing conjunction would have already failed,
because if no conjunct makes the variable visible, then the
conjunction as a whole needs it visible.

If no mapping yields an acyclic graph, the procedure has
a mode error. If some mappings do, then the algorithm in
general has two choices to make: it can pick any acyclic
graph, and it can pick any order for the conjuncts that is
consistent with that graph.

make visibleM (I, p, G) =

������� ������
ν(G) \ consumedM (I, p, G) if G is atomic;

� n
i=1 make visibleM (I, p.ci, Gi) if G = (G1, . . . , Gn);

� n
i=1 make visibleM (I, p.di, Gi) if G = (G1; . . . ; Gn);

(make visibleM (I, p.c, Gc) ∪make visibleM (I, p.t,Gt))

∩ make visibleM (I, p.e, Ge)

if G = (Gc → Gt; Ge).

need visibleM (I, p, G) =

����� ����
ν(G) ∩ consumedM (I, p, G) if G is atomic;

� n
i=1 need visibleM (I, p.ci, Gi) \make visibleM (I, p, G) if G = (G1, . . . , Gn);

� n
i=1 need visibleM (I, p.di, Gi) if G = (G1; . . . ; Gn);

�
pc∈{c,t,e} need visibleM (I, p.pc, Gpc) \make visibleM (I, p,G) if G = (Gc → Gt; Ge).

Figure 3: Calculating make visible and need visible.

All the nodes the forward mode of append consumes are
input to the predicate, so there are no ordering constraints
between producers and consumers. The first disjunct has
no visibility constraints either, so it can be given any or-
der. In the second disjunct, visibility requirements dic-
tate that A = [AH|AT] must occur before both AH = CH and
append(AT,B, CT), to make AH and AT visible where re-
quired. This leaves the compiler with this graph:

A=[AH|AT]
--

,,Y

Y

Y

Y

Y

Y

C=[CH|CT] AH=CH

append(AT,B, CT)

This graph does not completely fix the order of the con-
juncts. A parallel implementation may choose to execute
several conjuncts in parallel, although it this case that would
not be worth while. More likely, an implementation may
choose to schedule the recursive call last to ensure tail re-
cursion. (With the old mode analyser, we needed a program
transformation separate from mode analysis [15] to intro-
duce tail recursion in predicates like this.)

7. EXPERIMENTAL EVALUATION
Our analysis is implemented within the Melbourne Mer-

cury compiler. We represent the Boolean constraints as re-
duced ordered binary decision diagrams (ROBDDs) [2] using
a highly-optimised implementation by Schachte [16] who has
shown that ROBDDs provide a very efficient representation
for other logic program analyses based on Boolean domains.

ROBDDs are directed acyclic graphs with common-
subexpressions merged. They provide an efficient, canonical
representation for Boolean functions.

In the worst case, the size of an ROBDD can be exponen-
tial in the number of variables. In practice, however, with a
bit of care this worst-case behaviour can usually be avoided.
We use a number of techniques to keep the ROBDDs as
small and efficient as possible.

We now present some preliminary results to show the fea-
sibility of our analysis. The timings are all taken from tests
run on a Gateway Select 950 PC with a 950MHz AMD
Athlon CPU, 256KB of L2 cache and 256MB of memory,
running Linux kernel 2.4.16.

Table 7 compares times for mode checking some simple
benchmarks. The column labelled “simple” is the time for
the simple constraint-based system for ground variables pre-
sented in Section 4. The column labelled “full” is for the full

simple full old simple/old full/old
cqueens 407 405 17 23 23

crypt 1032 1335 38 27 35
deriv 13166 32541 59 223 551
nrev 520 569 42 12 13
poly 1348 5245 63 21 83

primes 356 358 12 29 29
qsort 847 1084 112 7 9

queens 386 381 9 42 42
query 270 282 11 24 25

tak 204 201 2 102 100

Table 1: Mode checking: ground.

constraint-based system presented in Section 5. The column
labelled “old” is the time for mode checking in the current
Mercury mode checker. The final two columns show the
ratios between the new and old systems. All times are in
milliseconds and are averaged over 10 runs.

The constraint-based analyses are significantly slower
than the current system. This is partly because they are
obtaining much more information about the program and
thus doing a lot more work. For example, the current sys-
tem selects a fixed sequential order for conjunctions during
the mode analysis — an order that disallows partially instan-
tiated data structures — whereas the constraint-based ap-
proaches allow all possible orderings to be considered while
building up the constraints. The most appropriate schedul-
ing can then be selected based on the execution model con-
sidering, for example, argument passing conventions (e.g.
for the possibility of introducing tail calls) and whether the
execution is sequential or parallel.

Profiling shows that much of the execution time is spent
in building and manipulating the ROBDDs. It may be
worth investigating different constraints solvers, such as
propagation-based solvers. Another possible method for im-
proving overall analysis time would be to run the old mode
analysis first and only use the new analysis for predicates
for which the old analysis fails.

It is interesting to observe the differences between the sim-
ple constraint system and the full system. None of these
benchmarks require partially instantiated data structures
so they are all able to be analysed by the simple system.
In some cases, the simple system is not very different to
the full system, but in others—particularly in the bigger
benchmarks—it is significantly faster. We speculate that

check infer infer/check
iota 384 472 1.22

append 327 488 1.49
copytree 150 6174 41.16

Table 2: Mode checking: partially instantiated.

this is because the bigger benchmarks benefit more from
the reduced number of constraint variables in the simple
analysis.

Table 7 shows some timings for programs that make use
of partially instantiated modes, which the current Mercury
system (and the simple constraint-based system) is unable
to analyse. Again the times are in milliseconds averaged
over 10 runs.

The “iota” benchmark is the program from Example 4.
The “append” benchmark is the classic append/3 (however,
the checking version has all valid combinations of in, out

and lsg modes declared). The “copytree” benchmark is
a small program that makes a structural copy of a binary
tree skeleton, with all elements in the copy being new free
variables.

The times in the “check” columns are for checking pro-
grams with mode declarations whereas the “infer” column
shows times for doing mode inference with all mode declara-
tions removed. It is interesting to note the saving in analysis
time achieved by adding mode declarations. This is partic-
ularly notable for the “copytree” benchmark where mode
inference is able to infer many more modes than the one we
have declared. (We can similarly declare only the (in, in,

out) mode of append and reduce the analysis time for that
to 210ms.)

8. CONCLUSION
We have defined a constraint based approach to mode

analysis of Mercury. While it is not as efficient as the cur-
rent system for mode checking, it is able to check and in-
fer more complex modes than the current system, and de-
couples reordering of conjuncts from determining producers.
Although not described here the implementation handles all
Mercury constructs such as higher-order.

The constraint-based mode analysis does not yet handle
subtyping or unique modes. We plan to extend it to handle
these features as well as explore more advanced mode sys-
tems: complicated uniqueness modes, where unique objects
are stored in and recovered from data structures; polymor-
phic modes, where Boolean variables represent a pattern of
mode usage; and the circular modes needed by client-server
programs, where client and server processes (modelled as
recursive loops) cooperate to instantiate different parts of a
data structure in a coroutining manner.

We would like to thank the Australian Research Council
for their support.

9. REFERENCES
[1] J. Boye and J. Ma luszyński. Directional types and the

annotation method. JLP, 33(3):179–220, 1997.

[2] R. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on

Computers, C-35(8):677–691, 1986.

[3] B. Le Charlier and P. Van Hentenryck. Experimental
evaluation of a generic abstract interpretation
algorithm for Prolog. ACM TOPLAS, 16(1):35–101,
1994.

[4] K. Cho and K. Ueda. Diagnosing non-well-moded
concurrent logic programs. In Procs. of ICLP96,
215–229. MIT Press, 1996.

[5] C. Codognet, P. Codognet, and M. Corsini. Abstract
interpretation of concurrent logic languages. In
Procs. of NACLP 1990, 215–232, MIT Press 1990.

[6] S. K. Debray. Static inference of modes and data
dependencies in logic programs. ACM TOPLAS,
11(3):418–450, 1989.

[7] S. Etalle and M. Gabbrielli. Layered Modes. JLP,
39:225–244, 1999.

[8] M. Garćıa de la Banda, P. Stuckey, W. Harvey, and
K. Marriott. Mode checking in HAL. In Procs. of

CL2000, LNCS 1861, 1270–1284, 2000.

[9] F. Kluzniak. Type synthesis for ground Prolog. In
Procs. of ICLP87. 788–816, MIT Press, 1987.

[10] G. Janssens and M. Bruynooghe. Deriving descriptions
of possible value of program variables by means of
abstract interpretation. JLP, 13:205–258, 1993.

[11] C. Mellish. The automatic derivation of mode
declarations for Prolog programs. Research paper 163,
Dept. of AI, University of Edinburgh, 1981.

[12] A. Mulkers, W. Simoens, G. Janssens, and
M. Bruynooghe. On the practicality of abstract
equation systems. In Procs. of ICLP95. 781–796, MIT
Press, 1995.

[13] A. Mycroft and R. A. O’Keefe. A polymorphic type
system for Prolog. AI, 23:295–307, 1984.

[14] O. Ridoux, P. Boizumault, and F. Malesieux. Typed
static analysis: Application to groundness analysis of
Prolog and lambda-Prolog. In Procs. of FLOPS99,
LNCS 1722, 267–283, 1999.

[15] P. Ross, D. Overton, and Z. Somogyi. Making
Mercury programs tail recursive. In Procs. of

LOPSTR99, LNCS 1817, 196–215, 1999.

[16] P. Schachte. Efficient ROBDD operations for program
analysis. In Procs. of the Nineteenth Australasian

Computer Science Conference, 347–356. Australian
Computer Science Communications, 1996.

[17] J.-G. Smaus, P. Hill, and A. King. Mode analysis
domains for typed logic programs. In Procs. of

LOPSTR99, LNCS 1817, 82–101, 2000.

[18] Z. Somogyi. A system of precise modes for logic
programs. In Procs. of ICLP87, 769–787, MIT Press,
1987.

[19] Z. Somogyi, F. Henderson, and T. Conway. The
execution algorithm of Mercury, an efficient purely
declarative logic programming language. JLP,
26(1-3):17–64, 1996.

[20] W. Vanhoof. Binding-time analysis by constraint
solving: A modular and higher-order approach for
Mercury. In Procs. of LPAR2000, LNAI 1955,
399–416. Springer-Verlag, 2000.

