
Warren’s Abstract Machine

A TUTORIAL RECONSTRUCTION

HASSAN AÏT-KACI
hak@cs.sfu.ca

Intelligent Software Group
http://www.isg.sfu.ca/˜hak

School of Computing Science
Simon Fraser University

Burnaby, British Columbia
V5A 1S6, Canada

February 18, 1999

(REPRINTED FROM MIT PRESS VERSION)

Copyright c� Hassan AÏT-KACI

c� 1991, 1997, 1999 by Hassan Aı̈t-Kaci

No part of this book may be reproduced in any form by any electronic or me-
chanical means (including photocopying, recording, or information storage and
retrieval) without permission in writing from the author. All rights reserved.

WARREN’S ABSTRACT MACHINE

Because they have seen it grow from the start,
this modest work is dedicated to:

ELIÈS, JAYD, NASSIM, AND JULIETA

for much needed love
and trusting me, always

NANIE

for tranquil unconditional faith
and being there

FORÊT DES FLAMBERTINS

for peaceful mornings
and conniving whispers
giving me some answers

iv Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

Contents

1 Introduction 3

1.1 Existing literature . 3

1.2 This tutorial . 5

1.2.1 Disclaimer and motivation 5

1.2.2 Organization of presentation 6

2 Unification—Pure and Simple 9

2.1 Term representation . 10

2.2 Compiling L� queries . 11

2.3 Compiling L� programs . 13

2.4 Argument registers . 19

3 Flat Resolution 25

3.1 Facts . 26

3.2 Rules and queries . 27

4 Prolog 33

4.1 Environment protection . 34

4.2 What’s in a choice point . 36

5 Optimizing the Design 45

5.1 Heap representation . 46

5.2 Constants, lists, and anonymous variables 47

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press v

WARREN’S ABSTRACT MACHINE

5.3 A note on set instructions . 52

5.4 Register allocation . 54

5.5 Last call optimization . 56

5.6 Chain rules . 57

5.7 Environment trimming . 58

5.8 Stack variables . 60

5.8.1 Variable binding and memory layout 62

5.8.2 Unsafe variables . 64

5.8.3 Nested stack references 67

5.9 Variable classification revisited 69

5.10 Indexing . 75

5.11 Cut . 83

6 Conclusion 89

A Prolog in a Nutshell 91

B The WAM at a glance 97

B.1 WAM instructions . 97

B.2 WAM ancillary operations . 112

B.3 WAM memory layout and registers 117

vi Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

List of Figures

2.1 Heap representation of p�Z� h�Z�W �� f�W ��� 11

2.2 M� machine instructions for query terms 14

2.3 Compiled code for L� query ?-p�Z� h�Z�W �� f�W ��� 14

2.4 Compiled code for L� program p�f�X�� h�Y� f�a��� Y �� 16

2.5 The deref operation . 17

2.6 M� machine instructions for programs 18

2.7 The unify operation . 20

2.8 M� instructions for variable arguments 23

2.9 Argument registers for L� query ?-p�Z� h�Z�W �� f�W ��� 24

2.10 Argument registers for L� fact p�f�X�� h�Y� f�a��� Y �� 24

3.1 M� machine code for rule p�X�Y � :- q�X�Z�� r�Z� Y �� 31

4.1 M� choice point instruction try me else 41

4.2 M� choice point instruction retry me else 41

4.3 M� choice point instruction trust me 42

4.4 M� code for a multiple clause definition 43

5.1 Better heap representation for term p�Z� h�Z�W �� f�W �� 46

5.2 Specialized instructions for constants 49

5.3 Specialized instructions for lists 50

5.4 Specialized code for query ?-p�Z� �Z�W �� f�W ��� 51

5.5 Specialized code for fact p�f�X�� �Y� f�a��� Y �� 51

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press vii

WARREN’S ABSTRACT MACHINE

5.6 Anonymous variable instructions 53

5.7 Instructions for fact p� � g�X�� f� � Y� ��� 53

5.8 Better register use for p�X�Y � :- q�X�Z�� r�Z� Y �� 55

5.9 M� code for p�X�Y � :- q�X�Z�� r�Z� Y ��, with LCO 57

5.10 Environment trimming code . 61

5.11 Unsafe code for p�X� :- q�Y�X�� r�Y�X�� 64

5.12 Code for a :- b�X�X�� c�, by our classification 72

5.13 Code for a :- b�X�X�� c�, by Warren’s classification 72

5.14 Delayed trimming for a :- b�X�X�� c� 73

5.15 Useless delayed trimming for a :- b�X�X�� c� 74

5.16 Indexing code for subsequence S� 80

5.17 Indexing code for subsequence S� 81

5.18 Encoding of conc�� . 82

viii Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

Foreword to the reprinted edition

This document is a reprinted edition of the book bearing the same title that was
published by MIT Press, in 1991 under ISBN 0-262-51058-8 (paper) and ISBN 0-
262-01123-9 (cloth). The MIT Press edition is now out of print, and its copyright
has been transferred to the author. This version is available for free to anyone who
wants to use it for non-commercial purposes, from the author’s web site at:

http://www.isg.sfu.ca/˜hak/documents/wam.html

If you retrieve it, please let me know who you are, and for what purpose you
intend to use it.

Thank you very much.

H�A�–K�
Burnaby, BC, Canada

May 1997

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press ix

WARREN’S ABSTRACT MACHINE

x Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

Foreword

Prolog was conceived in the early 1970s by Alain Colmerauer and his colleagues
at the University of Marseille. It was the first practical embodiment of the con-
cept of logic programming, due to Robert Kowalski. The key idea behind logic
programming is that computation can be expressed as controlled deduction from
declarative statements. Although the field has developed considerably since those
early days, Prolog remains the most fundamental and widely used logic program-
ming language.

The first implementation of Prolog was an interpreter written in Fortran by mem-
bers of Colmerauer’s group. Although in some ways quite crude, this implemen-
tation was a milestone in several ways: it established the viability of Prolog, it
helped to disseminate the language, and it laid the foundations of Prolog imple-
mentation technology. A later milestone was perhaps the DEC-10 Prolog system
developed at the University of Edinburgh by myself and colleagues. This system
built on the Marseille implementation techniques by introducing the notion of
compiling Prolog into a low-level language (in this case DEC-10 machine code),
as well as various important space-saving measures. I later refined and abstracted
the principles of the DEC-10 Prolog implementation into what is now known as
the WAM (Warren Abstract Machine).

The WAM is an abstract machine consisting of a memory architecture and in-
struction set tailored to Prolog. It can be realised efficiently on a wide range of
hardware, and serves as a target for portable Prolog compilers. It has now become
accepted as a standard basis for implementing Prolog. This is personally gratify-
ing, but somewhat embarrassing in that the WAM is perhaps too readily accepted
as the standard. Although the WAM is a distillation of a long line of experience
in Prolog implementation, it is by no means the only possible point to consider
in the design space. For example, whereas the WAM adopts “structure copying”
to represent Prolog terms, the “structure sharing” representation used in the Mar-

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press xi

WARREN’S ABSTRACT MACHINE

seille and DEC-10 implementations still has much to recommend it. Be that as
it may, I believe the WAM is certainly a good starting point for studying Prolog
implementation technology.

Regrettably, until now, there has not been a good source for getting acquainted
with the WAM. My original technical report is not easily accessible, and contains
only a “bare bones” definition of the abstract machine, written for an expert reader.
Other works have discussed the WAM from various points of view, but there has
continued to be a lack of a good tutorial introduction.

It is therefore a great pleasure to see the emergence of this excellent tutorial by
Hassan Aı̈t-Kaci. The book is a delight to read. It explains the WAM with great
clarity and elegance. I believe readers with an interest in computer science will
find this book provides a stimulating introduction to the fascinating subject of Pro-
log implementation. I am most grateful to Hassan for making my work accessible
to a wider audience.

David H. D. Warren
Bristol, UK

February 1991

xii Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

Acknowledgments

First and foremost, David H. D. Warren is the person to whom I must express
not only my awe for having invented and described the WAM, but also my most
sincere gratitude for never minding my repeatedly pestering him with questions
about minute details he had to dredge out from the deeps of his memory. I am all
the more indebted to him as I know how busy he never ceases being, designing
better and faster architectures, way ahead of most of us, no longer worrying about
this prehistoric part of his research life. In addition, I am particularly flattered that
he spontaneously cared to judge this humble opus to be a contribution worth being
part of the prestigious MIT Press Logic Programming Series. Finally, let him be
again thanked for granting me the honor of introducing it with a foreword.

To be honest, it is rather ironical that I, slow-witted as I notoriously am, be credited
with explaining the WAM to the world at large. In truth, my own deciphering of
the WAM’s intricacies has been a painful and lengthy process. As a matter of
fact, I owe my basic understanding of it to two dear friends, specifically. Thus,
I would like to thank Roger Nasr for introducing the WAM to me and Manuel
Hermenegildo for patiently explaining it to me a hundred times over. They deserve
most of the credit bestowed on me as this monograph’s author, having given me
the foundations upon which I structured my presentation.

This tutorial was, in an earlier version, a technical report of the Digital Equip-
ment Corporation’s Paris Research Laboratory (PRL). Several people contributed
to improve on the form and contents of that report and thence of this ensuing
monograph. Thus, I am very much in debt to Manuel Hermenegildo, David
Barker-Plummer, and David H. D. Warren, for the precious favor of proofread-
ing a first draft, making some important corrections. Many thanks are due also
to Patrick Baudelaire, Michel Gangnet, Solange Karsenty, Richard Meyer, and
Ascánder Suárez, for suggesting several emendations, having gracefully volun-
teered to plow through the draft.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press xiii

WARREN’S ABSTRACT MACHINE

As the PRL report was being disseminated, I began receiving feedback from at-
tentive readers. Some of them caught a few serious bugs that remained in that
report making some material, as presented there, insidiously incorrect. Naturally,
all those mistakes have now been corrected in this monograph, and, where appro-
priate, mention is made of those who brought to my attention my erroneous ac-
count. Nevertheless, I would like to express here my gratitude to those who kindly
reported bugs, made insightful comments, gave disturbing counter-examples, or
proposed better explanations. They are: Christoph Beierle, André Bolle, Damian
Chu, William Clocksin, Maarten van Emden, Michael Hanus, Pascal van Hen-
tenryck, Juhani Jaakola, Stott Parker, Fernando Pereira, Frank Pfenning, Dave
Raggett, Dean Rosenzweig, David Russinoff, and two anonymous reviewers. All
remaining mistakes are to be blamed on my own incompetence and still imprecise
understanding.

Having been presumptuous enough to envisage elaborating the original tutorial
into book form, I have benefitted from the kind advice and efficient assistance
of Bob Prior, editor at MIT Press. I thank him for everything—his patience in
particular.

Finally, I gratefully acknowledge the benevolent agreement kindly given to me by
Patrick Baudelaire, director of PRL, and Sam Fuller, Digital’s vice-president for
Corporate Research and Architecture, to let me publish the work as a book. I am
quite obliged for their laissez-faire.

H�A�–K�
Rueil-Malmaison, France

January 1991

xiv Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

Nobody told them what it was. The thing was going very
slowly. I said that the first thing there has to be is that these
technical guys know what we’re doing. ... I could give a
nice lecture about what we were doing, and they were all
excited ... They understood everything; ... and all that had
to be done was to tell them what it was.

RICHARD P. FEYNMAN
Surely You’re Joking, Mr. Feynman

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 1 OF 129

WARREN’S ABSTRACT MACHINE

PAGE 2 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

Chapter 1

Introduction

In 1983, David H. D. Warren designed an abstract machine for the execution of
Prolog consisting of a memory architecture and an instruction set [War83]. This
design became known as the Warren Abstract Machine (WAM) and has become
the de facto standard for implementing Prolog compilers. In [War83], Warren
describes the WAM in a minimalist’s style, making understanding very difficult
for the average reader, even with a foreknowledge of Prolog’s operations. Too
much is left untold, and very little is justified in clear terms.1 This has resulted
in a very scant number of WAM aficionados who could boast understanding the
details of its workings. Typically, these have been Prolog implementors who de-
cided to invest the necessary time to learn by doing and to reach enlightenment
painstakingly.

1.1 Existing literature

Witness to this lack of understanding is the fact that in six years there has been
little published that would teach the WAM, let alone formally justify its correct-
ness. Indeed, besides Warren’s original hermetic report [War83], there has been
virtually no official publication on the WAM. A few years ago, one could come
across a draft authored by a group at Argonne National Laboratory [GLLO85].
But, to be honest, we found that manuscript even harder to understand than War-
ren’s report. The flaw was that it insisted in presenting the complete WAM as is,

1David H. D. Warren’s confides privately that he “felt [that the WAM] was important, but [its]
details unlikely to be of wide interest. Hence, [he used a] ‘personal notes’ style.”

3

WARREN’S ABSTRACT MACHINE

rather than as a gradually transformed and optimized design.

A gradual refinement style has in fact been used by David Maier and David S. War-
ren2 in [MW88]. There, one can find a description of techniques of Prolog com-
pilation akin to the WAM’s.3 However, we believe that this otherwise quite com-
mendable effort still suffers from a few drawbacks as a definitive tutorial. First,
it describes a close variant of the WAM rather than, strictly speaking, the WAM
itself. That is, not all of the WAM’s features are covered. Moreover, explanations
are limited to illustrative examples and seldom make explicitly and exhaustively
clear the specific context in which some optimizations apply. Second, the part
devoted to compilation of Prolog comes very late in the book—in the penulti-
mate chapter—relying, for implementation details, on overly detailed Pascal pro-
cedures and data structures incrementally refined over the previous chapters. We
feel that this sidetracks reading and obfuscates to-the-point learning of the ab-
stract machine. Finally, although it presents a series of gradually refined designs,
their tutorial does not separate orthogonal pieces of Prolog in the process. All the
versions presented are full Prolog machines. As a result, the reader interested in
picking and choosing partial techniques to adapt somewhere else cannot discrim-
inate among these easily. Now, in all fairness, Maier and Warren’s book has the
different ambition of being a first course in logic programming. Thus, it is actu-
ally a feat that its authors were able to cover so much material, both theoretical
and practical, and go so far as to include also Prolog compiling techniques. More
important, their book is the first available official publication to contain a (real)
tutorial on the WAM techniques.

After the preliminary version of this book had been completed, another recent
publication containing a tutorial on the WAM was brought to this author’s atten-
tion. It is a book due to Patrice Boizumault [Boi88] whose Chapter 9 is devoted to
explaining the WAM. There again, its author does not use a gradual presentation
of partial Prolog machines. Besides, it is written in French—a somewhat restric-
tive trait as far as its readership is concerned. Still, Boizumault’s book is very well
conceived, and contains a detailed discussion describing an explicit implementa-
tion technique for the freeze meta-predicate.4

2A different person than the WAM’s designer, for whose research the WAM has been of great
inspiration. In turn, interestingly enough, David H. D. Warren has lately been working on a parallel
architecture for Prolog whose abstract model shares its essence with some ideas independently
conceived by David S. Warren.

3Op. Cit., Chapter 11.
4Op. Cit., Chapter 10.

PAGE 4 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

Even more recently, a formal verification of the correctness of a slight simplifica-
tion of the WAM was carried out by David Russinoff [Rus89]. That work deserves
justified praise as it methodically certifies correctness of most of the WAM with
respect to Prolog’s SLD resolution semantics. However, it is definitely not a tu-
torial, although Russinoff defines most of the notions he uses in order to keep his
work self-contained. In spite of this effort, understanding the details is consid-
erably impeded without working familiarity with the WAM as a prerequisite. At
any rate, Russinoff’s contribution is nevertheless a première as he is the first to
establish rigorously something that had been taken for granted thus far. Needless
to say, that report is not for the fainthearted.

1.2 This tutorial

1.2.1 Disclaimer and motivation

The length of this monograph has been kept deliberately short. Indeed, this author
feels that the typical expected reader of a tutorial on the WAM would wish to
get to the heart of the matter quickly and obtain complete but short answers to
questions. Also, for reasons pertaining to the specificity of the topic covered,
it was purposefully decided not to structure it as a real textbook, with abundant
exercises and lengthy comments. Our point is to make the WAM explicit as it was
conceived by David H. D. Warren and to justify its workings to the reader with
convincing, albeit informal, explanations. The few proposed exercises are meant
more as an aid for understanding than as food for further thoughts.

The reader may find, at points, that some design decisions, clearly correct as they
may be, appear arbitrarily chosen among potentially many other alternatives, some
of which he or she might favor over what is described. Also, one may feel that this
or that detail could be “simplified” in some local or global way. Regarding this,
we wish to underscore two points: (1) we chose to follow Warren’s original design
and terminology, describing what he did as faithfully as possible; and, (2) we warn
against the casual thinking up of alterations that, although that may appear to be
“smarter” from a local standpoint, will generally bear subtle global consequences
interfering with other decisions or optimizations made elsewhere in the design.
This being said, we did depart in some marginal way from a few original WAM
details. However, where our deviations from the original conception are proposed,
an explicit mention will be made and a justification given.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 5 OF 129

WARREN’S ABSTRACT MACHINE

Our motivation to be so conservative is simple: our goal is not to teach the world
how to implement Prolog optimally, nor is it to provide a guide to the state of
the art on the subject. Indeed, having contributed little to the craft of Prolog
implementation, this author claims glaring incompetence for carrying out such
a task. Rather, this work’s intention is to explain in simpler terms, and justify
with informal discussions, David H. D. Warren’s abstract machine specifically
and exclusively. Our source is what he describes in [War83, War88]. The expected
achievement is merely the long overdue filling of a gap so far existing for whoever
may be curious to acquire basic knowledge of Prolog implementation techniques,
as well as to serve as a spring board for the expert eager to contribute further to
this field for which the WAM is, in fact, just the tip of an iceberg. As such, it
is hoped that this monograph would constitute an interesting and self-contained
complement to basic textbooks for general courses on logic programming, as well
as to those on compiler design for more conventional programming languages. As
a stand-alone work, it could be a quick reference for the computer professional in
need of direct access to WAM concepts.

1.2.2 Organization of presentation

Our style of teaching the WAM makes a special effort to consider carefully each
feature of the WAM design in isolation by introducing separately and incremen-
tally distinct aspects of Prolog. This allows us to explain as limpidly as pos-
sible specific principles proper to each. We then stitch and merge the different
patches into larger pieces, introducing independent optimizations one at a time,
converging eventually to the complete WAM design as described in [War83] or as
overviewed in [War88]. Thus, in Chapter 2, we consider unification alone. Then,
we look at flat resolution (that is, Prolog without backtracking) in Chapter 3. Fol-
lowing that, we turn to disjunctive definitions and backtracking in Chapter 4. At
that point, we will have a complete, albeit naı̈ve, design for pure Prolog. In Chap-
ter 5, this first-cut design will be subjected to a series of transformations aiming at
optimizing its performance, the end product of which is the full WAM. We have
also prepared an index for quick reference to most critical concepts used in the
WAM, something without which no (real) tutorial could possibly be complete.

It is expected that the reader already has a basic understanding of the operational
semantics of Prolog—in particular, of unification and backtracking. Nevertheless,
to make this work also profitable to readers lacking this background, we have
provided a quick summary of the necessary Prolog notions in Appendix A. As

PAGE 6 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

for notation, we implicitly use the syntax of so-called Edinburgh Prolog (see, for
instance, [CM84]), which we also recall in that appendix. Finally, Appendix B
contains a recapitulation of all explicit definitions implementing the full WAM
instruction set and its architecture so as to serve as a complete and concise sum-
mary.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 7 OF 129

WARREN’S ABSTRACT MACHINE

PAGE 8 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

Chapter 2

Unification—Pure and Simple

Recall that a (first-order) term is either a variable (denoted by a capitalized iden-
tifier), a constant (denoted by an identifier starting with a lower-case letter) or a
structure of the form f�t�� � � � � tn� where f is a symbol called a functor (denoted
as a constant), and the ti’s are first-order terms—the term’s subterms. The number
of subterms for a given functor symbol is predetermined and called its arity. In
order to allow a symbol to be used with possibly different arities, we shall use
the explicit notation ‘f�n’ when referring to the functor consisting of the symbol
f and arity n. Hence, two functors are equal if and only if they have the same
symbol and arity. Letting n � �, a constant is seen as a special case of a structure.
Thus, a constant c will be designated as the functor c��.

We consider here L�, a very simple language indeed. In this language, one can
specify only two sorts of entities: a program term and a query term. Both program
and query are first-order terms but not variables. The semantics of L� is simply
tantamount to computing the most general unifier of the program and the query.
As for syntax, L� will denote a program as t and a query as ?-t where t is a
term. The scope of variables is limited to a program (resp., a query) term. Thus,
the meaning of a program (resp., a query) is independent of its variables’ names.
An interpreter for L� will dispose of some data representation for terms and use
a unification algorithm for its operational semantics. We next describe M� �
hD� � I� i, an abstract machine design for L� consisting of a data representation
D� acted upon by a set I� of machine instructions.

The idea is quite simple: having defined a program term p, one can submit any
query ?-q and execution either fails if p and q do not unify, or succeeds with a

9

WARREN’S ABSTRACT MACHINE

binding of the variables in q obtained by unifying it with p.

2.1 Term representation

Let us first define an internal representation for terms in L�. We will use a global
block of storage in the form of an addressable heap called HEAP which is an array
of data cells. A heap cell’s address is its index in the array HEAP.

It will be sufficient, in order to represent arbitrary terms in HEAP, to encode vari-
ables and ‘structures’ of the form f���� � � � ��n� where f�n is a functor and the
�i’s are references to the heap addresses the n subterms. Thus, there are two sorts
of data to be stored in the array HEAP: variables and structures. Explicit tags,
appearing as part of the format of some heap cells, will be used to discriminate
between these two sorts of heap data.

A variable will be identified to a reference pointer and represented using a single
heap cell. Thus, we shall speak of variable cells. A variable cell will be identified
by the tag REF, as denoted as h REF � k i where k is a store address; i.e., an index
into HEAP. This convenience is meant to facilitate variable binding by establish-
ing a reference to the term the variable is to be bound to. Thus, upon binding
a variable, the address part of the REF cell that represents it will be set accord-
ingly. The convention for representing an unbound variable is to set the address
part of the REF cell to contain its own address. Therefore an unbound variable is
a self-referential REF cell.

Structures are non-variable terms. Thus, the heap format used for representing a
structure f�t�� � � � � tn� will consist of n�	 heap cells. The first two of these n�	
cells are not necessarily contiguous. In effect, the first of the two acts as a sorted
reference pointer to the second, itself used to represent the functor f�n. (The
reason for this apparently odd indirection is to accommodate structure sharing as
will become clear shortly.) The n other cells are destined to contain references to
the roots of the n subterms in proper order. More specifically, the first of the n�	
cells representing f�t�� � � � � tn� is formatted as a tagged structure cell, denoted as
h STR � k i, containing the tag STR and the address k where (the representation of)
the functor f�n is stored. This cell is called a functor cell and, quite importantly, it
is always immediately followed by a sequence of n contiguous cells, one for each
subterm ti, respectively. That is, if HEAP[k] � f�n then HEAP[k �
] will
refer to the first subterm �t��, ... HEAP[k � n] to the n-th (and last) subterm �tn�.

PAGE 10 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

� STR �
� h��
� REF �
� REF �
� STR �
� f��
� REF �
� STR �
� p��
	 REF �
�� STR �
�� STR �

Figure 2.1: Heap representation of p�Z� h�Z�W �� f�W ���

For example, a possible heap representation of the term p�Z� h�Z�W �� f�W ��
starts at address 7 in the heap shown in Figure 2.1. Note that only one occur-
rence of a given variable is represented by an unbound REF cell, whereas its other
occurrences are REF cells containing the heap address of the first occurrence. Ob-
serve also that, although it is true that the structure cells at addresses 0, 4, and 7
do contiguously precede their respective functor cells, such is not the case for the
structure cells at address 10, and 11.

2.2 Compiling L� queries

According to L�’s operational semantics, the processing of a query consists of
preparing one side of an equation to be solved. Namely, a query term q is trans-
lated into a sequence of instructions designed to build an exemplar of q on the
heap from q’s textual form. Hence, due to the tree structure of a term and multi-
ple occurrences of variables, it is necessary, while processing a part of the term,
to save temporarily someplace pieces of terms yet to be processed or a variable
that may occur again later in the term. For this purpose, M� is endowed with a
sufficient number of (variable) registers X
, X	, etc., to be used to store heap data
temporarily as terms are being built. Thus, the contents of such a register will
have the format of a heap cell. These variable registers are allocated to a term
on a least available index basis such that (1) register X
 is always allocated to the

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 11 OF 129

WARREN’S ABSTRACT MACHINE

outermost term, and (2) the same register is allocated to all the occurrences of a
given variable. For example, registers are allocated to the variables of the term
p�Z� h�Z�W �� f�W �� as follows:

X
 � p�X	�X��X��
X	 � Z
X� � h�X	�X��
X� � f�X��
X� � W�

This amounts to saying that a term is seen as a flattened conjunctive set of equa-
tions of the form Xi � X or Xi � f�Xi� � � � � �Xin�, �n � �� where the Xi’s are
all distinct new variable names. There are two consequences of register allocation:
(1) external variable names (such as Z andW in our example) can all be forgotten;
and, (2) a query term can then be transformed into its flattened form, a sequence of
register assignments only of the form Xi � f�Xi�� � � � �Xin�. This form is what is
to guide the building of the term’s heap representation. Thus, for left-to-right code
generation to be well-founded, it is necessary to order a flattened query term so as
to ensure that a register name may not be used in the right-hand side of an assign-
ment (viz., as a subterm) before its assignment, if it has one (viz., being the left-
hand side). For example, the flattened form of query term p�Z� h�Z�W �� f�W ��
is the sequence X� � h�X	�X��, X� � f�X��, X
 � p�X	�X��X��.

Scanning a flattened query term from left to right, each component of the form
Xi � f�Xi�� � � � �Xin� is tokenized as a sequence Xi � f�n, Xi�, � � �, Xin; that is,
a register associated with an n-ary functor followed by exactly n register names.
Therefore, in a stream of such tokens resulting from tokenizing a full flattened
term, there are three kinds of items to process:

1. a register associated with a structure functor;

2. a register argument not previously encountered anywhere in the stream;

3. a register argument seen before in the stream.

From this stream, a token-driven heap representation of the term is easy to ob-
tain. To build it, the actions to be taken for each of the three sorts of tokens are,
respectively:

1. push a new STR (and adjoining functor) cell onto the heap and copy that
cell into the allocated register address;

PAGE 12 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

2. push a new REF cell onto the heap containing its own address, and copy it
into the given register;

3. push a new cell onto the heap and copy into it the register’s value.

Each of these three actions specifies the effect of respective instructions of the
machine M� that we note:

1. put structure f�n�Xi

2. set variable Xi

3. set value Xi

respectively.

From the preceding considerations, it has become clear that the heap is implicitly
used as a stack for building terms. Namely, term parts being constructed are
incrementally piled on top of what already exists in the heap. Therefore, it is
necessary to keep the address of the next free cell in the heap somewhere, precisely
as for a stack.1 Adding to M� a global register H containing at all times the
next available address on the heap, these three instructions are given explicitly
in Figure 2.2. For example, given that registers are allocated as above, the
sequence of instructions to build the query term p�Z� h�Z�W �� f�W ��, is shown
in Figure 2.3.

Exercise 2.1 Verify that the effect of executing the sequence of instructions shown
in Figure 2.3 (starting with H
 �) does indeed yield a correct heap representation
for the term p�Z� h�Z�W �� f�W ��—the one shown earlier as Figure 2.1, in fact.

2.3 Compiling L� programs

Compiling a program term p is just a bit trickier, although not by much. Observe
that it assumes that a query ?-q will have built a term on the heap and set register
X
 to contain its address. Thus, unifying q to p can proceed by following the term
structure already present in X
 as long as it matches functor for functor the struc-
ture of p. The only complication is that when an unbound REF cell is encountered

1As a matter of fact, in [War83], Warren refers to the heap as the global stack.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 13 OF 129

WARREN’S ABSTRACT MACHINE

put structure f�n�Xi � HEAP[H]� hSTR � H � i�
HEAP[H �]� f�n�
Xi� HEAP[H]�
H� H ��

set variable Xi � HEAP[H]� hREF � H i�
Xi� HEAP[H]�
H� H ��

set value Xi � HEAP[H]� Xi�
H� H ��

Figure 2.2: M� machine instructions for query terms

put structure h���X� % ?-X�
 h
set variable X� % �Z�
set variable X� % W ��
put structure f���X� % X�
 f

set value X� % �W ��
put structure p���X� % X�
 p

set value X� % �Z�
set value X� % X��
set value X� % X���

Figure 2.3: Compiled code for L� query ?-p�Z� h�Z�W �� f�W ���

PAGE 14 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

in the query term in the heap, then it is to be bound to a new term that is built on
the heap as an exemplar of the corresponding subterm in p. Therefore, an L� pro-
gram functions in two modes: a read mode in which data on the heap is matched
against, and a write mode in which a term is built on the heap exactly as is a
query term.

As with queries, register allocation precedes translation of the textual form of a
program term into a machine instruction sequence. For example, the following
registers are allocated to program term p�f�X�� h�Y� f�a��� Y �:

X
 � p�X	�X��X��
X	 � f�X��
X� � h�X��X�
X� � Y
X� � X
X � f�X��
X� � a�

Recall that compiling a query necessitates ordering its flattened form in such a
way as to build a term once its subterms have been built. Here, the situation is
reversed because query data from the heap are assumed available, even if only in
the form of unbound REF cells. Hence, a program term’s flattened form follows
a top-down order. For example, the program term p�f�X�� h�Y� f�a��� Y � is put
into the flattened sequence: X
 � p�X	�X��X��, X	 � f�X��, X� � h�X��X�,
X � f�X��, X� � a.

As with query compiling, the flattened form of a program is tokenized for left-to-
right processing and generates three kinds of machine instructions depending on
whether is met:

1. a register associated with a structure functor;

2. a first-seen register argument; or,

3. an already-seen register argument.

These instructions are,

1. get structure f�n�Xi

2. unify variable Xi

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 15 OF 129

WARREN’S ABSTRACT MACHINE

get structure p���X� % X�
 p

unify variable X� % �X��
unify variable X� % X��
unify variable X� % Y ��
get structure f���X� % X�
 f
unify variable X� % �X��
get structure h���X� % X�
 h
unify value X� % �Y�
unify variable X� % X���
get structure f���X� % X�
 f

unify variable X� % �X���
get structure a���X� % X�
 a�

Figure 2.4: Compiled code for L� program p�f�X�� h�Y� f�a��� Y ��

3. unify value Xi

respectively.

Taking for example the program term p�f�X�� h�Y� f�a��� Y �, the M� machine
instructions shown in Figure 2.4 are generated. Each of the two unify in-
structions functions in two modes depending on whether a term is to be matched
from, or being built on, the heap. For building (write mode), the work to be
done is exactly that of the two set query instructions of Figure 2.2. For matching
(read mode), these instructions seek to recognize data from the heap as those
of the term at corresponding positions, proceeding if successful and failing other-
wise. In L�, failure aborts all further work. In read mode, these instructions set
a global register S to contain at all times the heap address of the next subterm to
be matched.

Variable binding creates the possibility that reference chains may be formed.
Therefore, dereferencing is performed by a function deref which, when applied
to a store address, follows a possible reference chain until it reaches either an un-
bound REF cell or a non-REF cell, the address of which it returns. The effect of
dereferencing is none other than composing variable substitutions. Its definition
is given in Figure 2.5. We shall use the generic notation STORE[a] to denote the

PAGE 16 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

function deref �a � address� � address�
begin
h tag � value i � STORE[a]�
if �tag
 REF� � �value �
 a�

then return deref �value�
else return a

end deref �

Figure 2.5: The deref operation

contents of a term data cell at address a (whether heap, X register, or any other
global structure, yet to be introduced, containing term data cells). We shall use
specific area notation (e.g., HEAP[a]) whenever we want to emphasize that the
address a must necessarily lie within that area.

Mode is set by get structure f�n�Xi as follows: if the dereferenced value
of Xi is an unbound REF cell, then it is bound to a new STR cell pointing to f�n
pushed onto the heap and mode is set to write; otherwise, if it is an STR cell
pointing to functor f�n, then register S is set to the heap address following that
functor cell’s and mode is set to read. If it is not an STR cell or if the functor
is not f�n, the program fails. Similarly, in read mode, unify variable Xi
sets register Xi to the contents of the heap at address S; in write mode, a new
unbound REF cell is pushed on the heap and copied into Xi. In both modes, S is
then incremented by one. As for unify value Xi, in read mode, the value of
Xi must be unified with the heap term at address S; in write mode, a new cell is
pushed onto the heap and set to the value of register Xi. Again, in either mode, S
is incremented. All three instructions are expressed explicitly in Figure 2.6.

In the definition of get structure f�n�Xi, we write bind�addr�H� to effec-
tuate the binding of the heap cell rather than HEAP[addr]� hREF � H i for rea-
sons that will become clear later. The bind operation is performed on two store
addresses, at least one of which is that of an unbound REF cell. Its effect, for
now, is to bind the unbound one to the other—i.e., change the data field of the
unbound REF cell to contain the address of the other cell. In the case where both
are unbound, the binding direction is chosen arbitrarily. Later, this will change

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 17 OF 129

WARREN’S ABSTRACT MACHINE

get structure f�n�Xi � addr � deref �Xi��
case STORE[addr] of

hREF � i � HEAP[H]� hSTR � H � i�
HEAP[H �]� f�n�
bind�addr�H��
H� H ��
mode � write�

hSTR � a i � if HEAP[a]
 f�n

then
begin
S� a ��
mode � read

end
else fail � true�

other � fail � true�
endcase�

unify variable Xi � case mode of
read � Xi� HEAP[S]�
write � HEAP[H]� h REF � H i�

Xi� HEAP[H]�
H� H ��

endcase�
S� S ��

unify value Xi � case mode of
read � unify�Xi�S��
write � HEAP[H]� Xi�

H� H ��
endcase�
S� S ��

Figure 2.6: M� machine instructions for programs

PAGE 18 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

as a correctness-preserving measure in order to accommodate an optimization.
Also, we will see that bind is the logical place, when backtracking needs to be
considered, for recording effects to be undone upon failure (see Chapter 4, and
appendix Section B.2 on Page 113). If wished, bind may also be made to perform
the occurs-check test in order to prevent formation of cyclic terms (by failing at
that point). However, the occurs-check test is omitted in most actual Prolog im-
plementations in order not to impede performance.

We must also explicate the unify operation used in the matching phase (in read
mode). It is a unification algorithm based on the UNION/FIND method [AHU74],
where variable substitutions are built, applied, and composed through dereference
pointers. In M� (and in all later machines that will be considered here), this
unification operation is performed on a pair of store addresses. It uses a global
dynamic structure, an array of store addresses, as a unification stack (called PDL,
for Push-Down List). The unification operation is defined as shown in Figure 2.7,
where empty, push, and pop are the expected stack operations.

Exercise 2.2 Give heap representations for the terms f�X� g�X� a�� and f�b� Y �.
Let a� and a� be their respective heap addresses, and let aX and aY be the heap
addresses corresponding to variables X and Y , respectively. Trace the effects of
executing unify�a�� a��, verifying that it terminates with the eventual dereferenced
bindings from aX and aY corresponding to X
 b and Y
 g�b� a�.

Exercise 2.3 Verify that the effect of executing the sequence of instructions shown
in Figure 2.4 right after that in Figure 2.3 produces the MGU of the terms p�Z� h�Z�W �� f�W ��
and p�f�X�� h�Y� f�a��� Y �. That is, the (dereferenced) bindings corresponding to
W
 f�a�, X
 f�a�, Y
 f�f�a��, Z
 f�f�a��.

Exercise 2.4 What are the respective sequences of M� instructions for L� query
term ?-p�f�X�� h�Y� f�a��� Y � and program term p�Z� h�Z�W �� f�W ��?

Exercise 2.5 After doing Exercise 2.4, verify that the effect of executing the se-
quence you produced yields the same solution as that of Exercise 2.3.

2.4 Argument registers

Since we have in mind to use unification in Prolog for procedure invocation, we
can introduce a distinction between atoms (terms whose functor is a predicate) and

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 19 OF 129

WARREN’S ABSTRACT MACHINE

procedure unify�a�� a� � address��
push�a�� PDL�� push�a�� PDL��
fail � false�
while ��empty�PDL� � fail� do

begin
d� � deref �pop�PDL��� d� � deref �pop�PDL���
if d� �
 d� then

begin
h t� � v� i � STORE[d�]� h t� � v� i � STORE[d�]�
if �t�
 REF� � �t�
 REF�

then bind�d�� d��
else

begin
f��n� � STORE[v�]� f��n� � STORE[v�]�
if �f�
 f��� �n�
 n��

then
for i� � to n� do

begin
push�v� i� PDL��
push�v� i� PDL�

end
else fail � true

end
end

end
end unify�

Figure 2.7: The unify operation

PAGE 20 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

terms (arguments to a predicate). We thus extend L� into a language L� similar
to L� but where a program may be a set of first-order atoms each defining at most
one fact per predicate name. Thus, in the context of such a program, execution of
a query connects to the appropriate definition to use for solving a given unification
equation, or fails if none exists for the predicate invoked.

The set of instructions I� contains all those in I�. InM�, compiled code is stored
in a code area (CODE), an addressable array of data words, each containing a
possibly labeled instruction over one or more memory words consisting of an op-
code followed by operands. For convenience, the size of an instruction stored
at address a (i.e., CODE[a]) will be assumed given by the expression instruc-
tion size�a�. Labels are symbolic entry points into the code area that may be used
as operands of instructions for transferring control to the code labeled accordingly.
Therefore, there is no need to store a procedure name in the heap as it denotes a
key into a compiled instruction sequence. Thus, a new instruction call p�n can
be used to pass control over to the instruction labeled with p�n, or fail if none
such exists.

A global register P is always set to contain the address of the next instruction to
execute (an instruction counter). The standard execution order of instructions is
sequential. Unless failure occurs, most machine instructions (like all those seen
before) are implicitly assumed, to increment P by an appropriate offset in the
code area as an ultimate action. This offset is the size of the instruction at address
P. However, some instructions have for purpose to break the sequential order of
execution or to connect to some other instruction at the end of a sequence. These
instructions are called control instructions as they typically set P in a non-standard
way. This is the case of call p�n, whose explicit effect, in the machineM�, is:

call p�n � P� ��p�n��

where the notation ��p�n� stands for the address in the code area of instruction
labeled p�n. If the procedure p�n is not defined (i.e., if that address is not allocated
in the code area), a unification failure occurs and overall execution aborts.

We also introduce another control instruction, proceed, which indicates the end
of a fact’s instruction sequence. These two new control instructions’ effects are
trivial for now, and they will be elaborated later. For our present purposes, it is
sufficient that proceed be construed as a no-op (i.e., just a code terminator),
and call p�n as an unconditional “jump” to the start address of the instruction
sequence for program term with functor p�n.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 21 OF 129

WARREN’S ABSTRACT MACHINE

Having eliminated predicate symbols from the heap, the unification problem be-
tween fact and query terms amounts to solving, not one, but many equations,
simultaneously. Namely, there are as many term roots in a given fact or query as
there are arguments to the corresponding predicate. Therefore, we must organize
registers quite specifically so as to reflect this situation. As we privileged X
 be-
fore to denote the (single) term root, we generalize the convention to registers X

to Xn which will now always refer to the first to n-th arguments of a fact or query
atom. In other words, registers X
� � � � �Xn are systematically allocated to term
roots of an n-ary predicate’s arguments. To emphasize this, we use a conspicuous
notation, writing a register Ai rather than Xi when it is being used as an argument
of an atom. In that case, we refer to that register as an argument register. Oth-
erwise, where register Xi is not used as an argument register, it is written Xi, as
usual. Note that this is just notation as the Ai’s are not new registers but the same
old Xi’s used thus far. For example, registers are now allocated for the variables
of the atom p�Z� h�Z�W �� f�W �� as follows:

A
 � Z
A	 � h�A
�X��
A� � f�X��
X� � W�

Observe also that a new situation arises now as variables can be arguments and
thus must be handled as roots. Therefore, provision must be made for variables
to be loaded into, or extracted from, argument registers for queries and facts,
respectively. As before, the necessary instructions correspond to when a variable
argument is a first or later occurrence, either in a query or a fact. In a query,

1. the first occurrence of a variable in i-th argument position pushes a new
unbound REF cell onto the heap and copies it into that variable’s register as
well as argument register Ai; and,

2. a later occurrence copies its value into argument register Ai. Whereas, in a
fact,

3. the first occurrence of a variable in i-th argument position sets it to the value
of argument register Ai; and,

4. a later occurrence unifies it with the value of Ai.

The corresponding instructions are, respectively:

PAGE 22 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

put variable Xn�Ai � HEAP[H]� hREF � H i�
Xn � HEAP[H]�
Ai� HEAP[H]�
H� H ��

put value Xn�Ai � Ai� Xn

get variable Xn�Ai � Xn � Ai

get value Xn�Ai � unify�Xn�Ai�

Figure 2.8: M� instructions for variable arguments

1. put variable Xn�Ai

2. put value Xn�Ai

3. get variable Xn�Ai

4. get value Xn�Ai

and are given explicitly in Figure 2.8. For example, Figure 2.9 shows code gener-
ated for query?- p�Z� h�Z�W �� f�W ���, and Figure 2.10 that for fact p�f�X�� h�Y� f�a��� Y �.

Exercise 2.6 Verify that the effect of executing the sequence of M� instructions
shown in Figure 2.9 produces the same heap representation as that produced by the
M� code of Figure 2.3 (see Exercise 2.1).

Exercise 2.7 Verify that the effect of executing the sequence of M� instruc-
tions shown in Figure 2.10 right after that in Figure 2.9 produces the MGU of
the terms p�Z� h�Z�W �� f�W �� and p�f�X�� h�Y� f�a��� Y �. That is, the binding
W
 f�a�, X
 f�a�, Y
 f�f�a��, Z
 f�f�a��.

Exercise 2.8 What are the respective sequences of M� instructions for L� query
term ?-p�f�X�� h�Y� f�a��� Y � and L� program term p�Z� h�Z�W �� f�W ��?

Exercise 2.9 After doing Exercise 2.8, verify that the effect of executing the se-
quence you produced yields the same solution as that of Exercise 2.7.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 23 OF 129

WARREN’S ABSTRACT MACHINE

put variable X��A� % ?-p�Z�
put structure h���A� % h

set value X� % �Z�
set variable X� % W ��
put structure f���A� % f
set value X� % �W �
call p�� % ��

Figure 2.9: Argument registers for L� query ?-p�Z� h�Z�W �� f�W ���

p�� � get structure f���A� % p�f
unify variable X� % �X��
get structure h���A� % h

unify variable X� % �Y�
unify variable X� % X���
get value X��A� % Y ��
get structure f���X� % X�
 f

unify variable X� % �X���
get structure a���X� % X�
 a

proceed % �

Figure 2.10: Argument registers for L� fact p�f�X�� h�Y� f�a��� Y ��

PAGE 24 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

Chapter 3

Flat Resolution

We now extend the language L� into a language L� where procedures are no
longer reduced only to facts but may also have bodies. A body defines a proce-
dure as a conjunctive sequence of atoms. Said otherwise, L� is Prolog without
backtracking.

An L� program is a set of procedure definitions or (definite) clauses, at most one
per predicate name, of the form ‘a� :- a�� � � � � an�’ where n � � and the ai’s are
atoms. As before, when n � �, the clause is called a fact and written without the
‘:-’ implication symbol. When n � �, the clause is called a rule, the atom a�
is called its head, the sequence of atoms a�� � � � � an is called its body and atoms
composing this body are called goals. A rule with exactly one body goal is called
a chain (rule). Other rules are called deep rules. L� queries are sequences of
goals, of the form ‘?-g�� � � � � gk�’ where k � �. When k � �, the query is called
the empty query. As in Prolog, the scope of variables is limited to the clause or
query in which they appear.

Executing a query ‘?-g�� � � � � gk�’ in the context of a program made up of a set of
procedure-defining clauses consists of repeated application of leftmost resolution
until the empty query, or failure, is obtained. Leftmost resolution amounts to
unifying the goal g� with its definition’s head (or failing if none exists) and, if
this succeeds, executing the query resulting from replacing g� by its definition
body, variables in scope bearing the binding side-effects of unification. Thus,
executing a query in L� either terminates with success (i.e., it simplifies into the
empty query), or terminates with failure, or never terminates. The “result” of an
L� query whose execution terminates with success is the (dereferenced) binding

25

WARREN’S ABSTRACT MACHINE

of its original variables after termination.

Note that a clause with a non-empty body can be viewed in fact as a conditional
query. That is, it behaves as a query provided that its head successfully unifies with
a predicate definition. Facts merely verify this condition, adding nothing new to
the query but a contingent binding constraint. Thus, as a first approximation, since
an L� query (resp., clause body) is a conjunctive sequence of atoms interpreted
as procedure calls with unification as argument passing, instructions for it may
simply be the concatenation of the compiled code of each goal as an L� query
making it up. As for a clause head, since the semantics requires that it retrieves
arguments by unification as did facts in L�, instructions for L�’s fact unification
are clearly sufficient.

Therefore, M� unification instructions can be used for L� clauses, but with two
measures of caution: one concerning continuation of execution of a goal sequence,
and one meant to avoid conflicting use of argument registers.

3.1 Facts

Let us first only consider L� facts. Note that L� is all contained in L�. Therefore,
it is natural to expect that the exact same compilation scheme for facts carries over
untouched from L� to L�. This is true up to a wee detail regarding the proceed
instruction. It must be made to continue execution, after successfully returning
from a call to a fact, back to the instruction in the goal sequence following the
call. To do this correctly, we will use another global register CP, along with P, set
to contain the address (in the code area) of the next instruction to follow up with
upon successful return from a call (i.e., set to P�instruction size�P� at procedure
call time). Then, having exited the called procedure’s code sequence, execution
could thus be resumed as indicated by CP. Thus, for L�’s facts, we need to alter
the effect of M�’s call p�n to:

call p�n � CP� P� instruction size�P��
P� ��p�n��

and that of proceed to:

proceed � P� CP�

As before, when the procedure p�n is not defined, execution fails.

PAGE 26 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

In summary, with the simple foregoing adjustment, L� facts are translated exactly
as were L� facts.

3.2 Rules and queries

We now must think about translating rules. A query is a particular case of a rule
in the sense that it is one with no head. It is translated exactly the same way,
but without the instructions for the missing head. The idea is to use L�’s instruc-
tions, treating the head as a fact, and each goal in the body as an L� query term
in sequence; that is, roughly translate a rule ‘p��� � �� :- p��� � ��� � � � � pn�� � ���’
following the pattern:

get arguments of p�
put arguments of p�
call p�

...
put arguments of pn
call pn

Here, in addition to ensuring correct continuation of execution, we must arrange
for correct use of argument registers. Indeed, since the same registers are used by
each goal in a query or body sequence to pass its arguments to the procedure it
invokes, variables that occur in many different goals in the scope of the sequence
need to be protected from the side effects of put instructions. For example, con-
sider the rule ‘p�X�Y � :- q�X�Z�� r�Z� Y ��’ If the variables Y�Z were allowed
to be accessible only from an argument register, no guarantee could be made that
they still would be after performing the unifications required in executing the body
of p.

Therefore, it is necessary that variables of this kind be saved in an environment
associated with each activation of the procedure they appear in. Variables which
occur in more than one body goal are dubbed permanent as they have to outlive
the procedure call where they first appear. All other variables in a scope that are
not permanent are called temporary. We shall denote a permanent variable as Yi,
and use Xi as before for temporary variables. To determine whether a variable is
permanent or temporary in a rule, the head atom is considered to be part of the
first body goal. This is because get and unify instructions do not load registers

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 27 OF 129

WARREN’S ABSTRACT MACHINE

for further processing. Thus, the variable X in the example above is temporary as
it does not occur in more than one goal in the body (i.e., it is not affected by more
than one goal’s put instructions).

Clearly, permanent variables behave like conventional local variables in a proce-
dure. The situation is therefore quite familiar. As is customary in programming
languages, we protect a procedure’s local variables by maintaining a run-time
stack of procedure activation frames in which to save information needed for the
correct execution of what remains to be done after returning from a procedure call.
We call such a frame an environment frame. We will keep the address of the latest
environment on top of the stack in a global register E.1

As for continuation of execution, the situation for rules is not as simple as that
for facts. Indeed, since a rule serves to invoke further procedures in its body, the
value of the program continuation register CP, which was saved at the point of
its call, will be overwritten. Therefore, it is necessary to preserve continuation
information by saving the value of CP along with permanent variables.

Let us recapitulate: M� is an augmentation ofM� with the addition of a new data
area, along with the heap (HEAP), the code area (CODE), and the push-down list
(PDL). It is called the stack (STACK) and will contain procedure activation frames.
Stack frames are called environments. An environment is pushed onto STACK
upon a (non-fact) procedure entry call, and popped from STACK upon return.
Thus, an allocate/deallocate pair of instructions must bracket the code
generated for a rule in order to create and discard, respectively, such environment
frames on the stack. In addition, deallocate being the ultimate instruction
of the rule, it must connect to the appropriate next instruction as indicated by
the continuation pointer that had been saved upon entry in the environment being
discarded.

Since the size of an environment varies with each procedure in function of its
number of permanent variables, the stack is organized as a linked list through a
continuation environment slot; i.e., a cell in each environment frame bearing the
stack index of the environment previously pushed onto the stack.

To sum up, two new I� instructions for M� are added to the ones we defined for
I�:

1. allocate

1 In [War83], this stack is called the local stack to distinguish it from the global stack (see
Footnote 1 at the bottom of Page 13).

PAGE 28 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

2. deallocate

with effect, respectively:

1. to allocate a new environment on the stack, setting its continuation environ-
ment field to the current value of E, and its continuation point field to that
of CP; and,

2. to remove the environment frame at stack location E from the stack and
proceed, resetting P to the value of its CP field and E to the value of its CE
field.

To have proper effect, an allocate instruction needs to have access to the size
of the current environment in order to increment the value of E by the right stack
offset. The necessary piece of information is a function of the calling clause (i.e.,
the number of permanent variables occurring in the calling clause). Therefore, it
is easily statically available at the time the code for the calling clause is generated.
Now, the problem is to transmit this information to the called procedure that, if
defined as a rule (i.e., starting with an allocate), will need it dynamically,
depending on which clause calls it. A simple solution is to save this offset in the
calling clause’s environment frame from where it can be retrieved by a callee that
needs it. Hence, inM�, an additional slot in an environment is set by allocate
to contain the number of permanent variables in the clause in question.

Summing up again, an M� stack environment frame contains:

1. the address in the code area of the next instruction to execute upon (suc-
cessful) return from the invoked procedure;

2. the stack address of the previous environment to reinstate upon return (i.e.,
where to pop the stack to);

3. the offset of this frame on the stack (the number of permanent variables);
and,

4. as many cells as there are permanent variables in the body of the invoked
procedure (possibly none).

Such an M� environment frame pushed on top of the stack looks thus:

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 29 OF 129

WARREN’S ABSTRACT MACHINE

E CE �continuation environment�
E�
 CP �continuation point�
E� 	 n �number of permanent variables�
E� � Y
 �permanent variable 1�

...
E� n� 	 Yn �permanent variable n�

This necessitates giving allocate an explicit argument that is the number of
permanent variables of the rule at hand, such that, in M�:

allocate N � newE � E� STACK[E�]� ��
STACK[newE]� E�
STACK[newE �
]� CP�
STACK[newE �]� N �
E� newE�
P� P� instruction size�P��

Similarly, the explicit definition of M�’s deallocate is:

deallocate � P� STACK[E�
]�
E� STACK[E]�

With this being set up, the general translation scheme intoM� instructions for an
L� rule ‘p��� � �� :- p��� � ��� � � � � pn�� � ���’ with N permanent variables will follow
the pattern:

p� � allocate N
get arguments of p�
put arguments of p�
call p�

...
put arguments of pn
call pn
deallocate

For example, for L� clause ‘p�X�Y � :- q�X�Z�� r�Z� Y ��’, the corresponding
M� code is shown in Figure 3.1.

PAGE 30 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

p�� � allocate � % p

get variable X��A� % �X�
get variable Y��A� % Y � :-
put value X��A� % q�X�
put variable Y��A� % Z
call q�� % ��
put value Y��A� % r�Z�
put value Y��A� % Y

call r�� % �
deallocate % �

Figure 3.1: M� machine code for rule p�X�Y � :- q�X�Z�� r�Z� Y ��

Exercise 3.1 GiveM� code forL� facts q�a� b� and r�b� c�andL� query ?-p�U� V �,
then trace the code shown in Figure 3.1 and verify that the solution produced is
U
 a� V
 c.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 31 OF 129

WARREN’S ABSTRACT MACHINE

PAGE 32 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

Chapter 4

Prolog

The language L� (resp., the machine M�) corresponds to pure Prolog, as it ex-
tends the language L� (resp., the machine M�) to allow disjunctive definitions.
As in L�, an L� program is a set of procedure definitions. In L�, a definition is
an ordered sequence of clauses (i.e., a sequence of facts or rules) consisting of
all and only those whose head atoms share the same predicate name. That name
is the name of the procedure specified by the definition. L� queries are the same
as those of L�. The semantics of L� operates using top-down leftmost resolu-
tion, an approximation of SLD resolution. Thus, in L�, a failure of unification no
longer yields irrevocable abortion of execution but considers alternative choices
of clauses in the order in which they appear in definitions. This is done by chrono-
logical backtracking; i.e., the latest choice at the moment of failure is reexamined
first.

It is necessary to alter M�’s design so as to save the state of computation at each
procedure call offering alternatives to restore upon backtracking to this point of
choice. We call such a state a choice point. We thus need to analyze what in-
formation must be saved as a choice point in order to create a record (a choice
point frame) wherefrom a correct state of computation can be restored to offer
another alternative, with all effects of the failed computation undone. Note that
choice point frames must be organized as a stack (just like environments) in order
to reflect the compounding of alternatives as each choice point spawns potentially
more alternatives to try in sequence.

To distinguish the two stacks, let us call the environment stack the AND-stack and
the choice point stack the OR-stack. As with the AND-stack, we organize the

33

WARREN’S ABSTRACT MACHINE

OR-stack as a linked list. The head of this list always corresponds to the latest
choice point, and will be kept in a new global register B, such that upon failure,
computation is made to resume from the state recovered from the choice point
frame indicated by B. When the latest frame offers no more alternatives, it is
popped off the OR-stack by resetting B to its predecessor if one exists, otherwise
computation fails terminally.

Clearly, if a definition contains only one clause, there is no need to create a choice
point frame, exactly as was the case in M�. For definitions with more than one
alternative, a choice point frame is created by the first alternative; then, it is up-
dated (as far as which alternative to try next) by intermediate (but non ultimate)
alternatives; finally, it is discarded by the last alternative.

4.1 Environment protection

Before we go into the details of what exactly constitutes a choice frame, we must
ponder carefully the interaction between the AND-stack and the OR-stack. As
long as we considered (deterministic) L� program definitions, it was clearly safe
to deallocate an environment frame allocated to a rule after successfully falling
off the end of the rule. Now, the situation is not quite so straightforward as later
failure may force reconsidering a choice from a computation state in the middle
of a rule whose environment has long been deallocated. This case is illustrated by
the following example program:

a :- b�X�� c�X��

b�X� :- e�X��

c�
��

e�X� :- f�X��
e�X� :- g�X��

f�	��

g�
��

Executing ‘?-a�’ allocates an environment for a, then calls b. Next, an envi-
ronment for b is allocated, and e is called. This creates a choice point on the
OR-stack, and an environment for e is pushed onto the AND-stack. At this point
the two stacks look thus:1

1In these diagrams, the stacks grow downwards; i.e., the stack top is the lower part.

PAGE 34 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

...
Environment for a
Environment for b

E� Environment for e

...
B� Choice point for e

The following call to f succeeds binding X to 	. The environment for e is deallo-
cated, then the environment for b is also deallocated. This leads to stacks looking
thus:

...
E� Environment for a

...
B� Choice point for e

Next, the continuation follows up with execution of a’s body, calling c, which
immediately hits failure. The choice point indicated by B shows an alternative
clause for e, but at this point b’s environment has been lost. Indeed, in a more
involved example where c proceeded deeper before failing, the old stack space for
b’s environment would have been overwritten by further calls in c’s body.

Therefore, to avoid this kind of misfortune, a setup must be found to prevent
unrecoverable deallocation of environment frames whose creation chronologically
precedes that of any existing choice point. The idea is that every choice point
must “protect” from deallocation all environment frames already existing before
its creation. Now, since a stack reflects chronological order, it makes sense to
use the same stack for both environments and choice points. A choice point now
caps all older environments. In effect, as long as it is active, it forces allocation of
further environments on top of it, preventing the older environments’ stack space
to be overwritten even though they may explicitly be deallocated. This allows
their safe resurrection if needed by coming back to an alternative from this choice
point. Moreover, this “protection” lasts just as long as it is needed since as soon as
the choice point disappears, all explicitly deallocated environments can be safely
overwritten.

Hence, there is no need to distinguish between the AND-stack from the OR-stack,
calling the single one the stack. Choice point frames are stored in the stack along
with environments, and thus B’s value is an address in the stack.

Going back to our example above, the snapshot of the single stack at the same first
instant looks thus:

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 35 OF 129

WARREN’S ABSTRACT MACHINE

...
Environment for a
Environment for b

B� Choice point for e
E� Environment for e

and at the same second instant as before, the stack is such that having pushed on
it the choice point for e protects b’s deallocated environment (which may still be
needed by future alternatives given by e’s choice point), looking thus:

...
E� Environment for a

Deallocated environment for b
B� Choice point for e

Now, the computation can safely recover the state from the choice point for e
indicated by B, in which the saved environment to restore is the one current at
the time of this choice point’s creation—i.e., that (still existing) of b. Having no
more alternative for e after the second one, this choice point is discarded upon
backtracking, (safely) ending the protection. Execution of the last alternative for
e proceeds with a stack looking thus:

B�
...

Environment for a
Environment for b

E� Environment for e

4.2 What’s in a choice point

When a chosen clause is attempted among those of a definition, it will create
side effects on the stack and the heap by binding variables residing there. These
effects must be undone when reconsidering the choice. A record must be kept of
those variables which need to be reset to ‘unbound’ upon backtracking. Hence,
we provide, along with the heap, the stack, the code area, and the PDL, a new
(and last!) data area called the trail (TRAIL). This trail is organized as an array

PAGE 36 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

of addresses of those (stack or heap) variables which must be reset to ‘unbound’
upon backtracking. Note that it also works as a stack, and we need a new global
register TR always set to contain the top of the trail.

It is important to remark that not all bindings need to be remembered in the trail.
Only conditional bindings do. A conditional binding is one affecting a variable
existing before creation of the current choice point. To determine this, we will use
a new global registerHB set to contain the value of H at the time of the latest choice
point.2 Hence only bindings of heap (resp., stack) variables whose addresses are
less than HB (resp., B) need be recorded in the trail. We shall write trail�a� when
that this operation is performed on store address a. As mentioned before, it is
done as part of the bind operation.

Let us now think about what constitutes a computation state to be saved in a choice
point frame. Upon backtracking, the following information is needed:

�The argument registers A
, ..., An, where n is the arity of the procedure offering
alternative choices of definitions. This is clearly needed as the argument registers,
loaded by put instructions with the values of arguments necessary for goal being
attempted, are overwritten by executing the chosen clause.
�The current environment (value of register E), to recover as a protected environ-
ment as explained above.
�The continuation pointer (value of register CP), as the current choice will over-
write it.
�The latest choice point (value of register B), where to backtrack in case all alter-
natives offered by the current choice point fail. This acts as the link connecting
choice points as a list. It is reinstated as the value of the B register upon discarding
the choice point.
�The next clause, to try in this definition in case the currently chosen one fails.
This slot is updated at each backtracking to this choice point if more alternatives
exist.
�The current trail pointer (value of register TR), which is needed as the boundary
where to unwind the trail upon backtracking. If computation comes back to this
choice point, this will be the address in the trail down to which all variables that
must be reset have been recorded.
�The current top of heap (value of registerH), which is needed to recover (garbage)
heap space of all the structures and variables constructed during the failed attempt

2Strictly speaking, register HB can in fact be dispensed with since, as we see next, its value is
that of H which will have been saved in the latest choice point frame.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 37 OF 129

WARREN’S ABSTRACT MACHINE

which will have resulted in coming back to this choice point.

In summary, a choice point frame is allocated on the stack looking thus:3

B n �number of arguments�
B�
 A
 �argument register
�

...
B� n An �argument register n�

B� n�
 CE �continuation environment�
B� n� 	 CP �continuation pointer�
B� n� � B �previous choice point�
B� n� � BP �next clause�
B� n� � TR �trail pointer�
B� n� H �heap pointer�

Note in passing thatM�’s explicit definition for allocate N must be altered in
order to work forM�. This is because the top of stack is now computed differently
depending on whether an environment or choice point is the latest frame on the
stack. Namely, in M�:

allocate N � if E � B
then newE � E� STACK[E�] � �
else newE � B� STACK[B]� ��

STACK[newE]� E�
STACK[newE �
]� CP�
STACK[newE �]� N �
E� newE�
P� P� instruction size�P��

To work with the foregoing choice point format, three new I� instructions are
added to those already in I�. They are to deal with the choice point manipulation

3In [War83], David Warren does not include the arity in a choice point, as we do here. He sets
up things slightly differently so that this number can always be quickly computed. He can do this
by making register B (and the pointers linking the choice point list) reference a choice point frame
at its end, rather than its start as is the case for environment frames. In other words, register B
contains the stack address immediately following the latest choice point frame, whereas register
E contains the address of the first slot in the environment. Thus, the arity of the latest choice
point predicate is always given by n � B � STACK[B� �] � �. For didactic reasons, we chose
to handle E and B identically, judging that saving one stack slot is not really worth the entailed
complication of the code implementing the instructions.

PAGE 38 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

needed for multiple clause definitions. As expected, these instructions correspond,
respectively, to (1) a first, (2) an intermediate (but non ultimate), and (3) a last,
clause of a definition. They are:

1. try me else L

2. retry me else L

3. trust me

where L is an instruction label (i.e., an address in the code area). They have for
effect, respectively:

1. to allocate a new choice point frame on the stack setting its next clause field
to L and the other fields according to the current context, and set B to point
to it;

2. having backtracked to the current choice point (indicated by the current
value of the B register), to reset all the necessary information from it and
update its next clause field to L; and,

3. having backtracked to the current choice point, to reset all the necessary
information from it, then discard it by resetting B to its predecessor (the
value of the link slot).

With this setup, backtracking is effectively handled quite easily. All instructions
in which failure may occur (i.e., some unification instructions and all procedure
calls) must ultimately test whether failure has indeed occurred. If such is the case,
they must then set the instruction counter accordingly. That is, they perform the
following operation:

backtrack � P� STACK[B� STACK[B]� �]�

as opposed to having P be unconditionally set to follow its normal (successful)
course. Naturally, if no more choice point exists on the stack, this is a terminal
failure and execution aborts. All the appropriate alterations of instructions regard-
ing this precaution are given in Appendix B.

The three choice point instructions are defined explicitly in Figures 4.1, 4.2, and 4.3,
respectively. In the definition of try me else L, we use a global variable

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 39 OF 129

WARREN’S ABSTRACT MACHINE

num of args giving the arity of the current procedure. This variable is set by
call that we must accordingly modify for M� from its M� form as follows:4

call p�n � CP� P� instruction size�P��
num of args � n�
P� ��p�n��

As we just explained, we omit treating the case of failure (and therefore of back-
tracking) where p�n is not defined in this explicit definition of call p�n. Its
obvious complete form is, as those of all instructions of the full WAM, given in
Appendix B.

Finally, the definitions of retry me else L and trust me, use an ancillary
operation, unwind trail, to reset all variables since the last choice point to an un-
bound state. Its explicit definition can be found in Appendix B.

In conclusion, there are three patterns of code translations for a procedure defini-
tion in L�, depending on whether it has one, two, or more than two clauses. The
code generated in the first case is identical to what is generated for an L� program
on M�. In the second case, the pattern for a procedure p�n is:

p�n : try me else L
code for first clause

L : trust me
code for second clause

and for the last case:

4As for num of args, it is legitimate to ask why this is not a global register like E, P, etc.,
in the design. In fact, the exact manner in which the number of arguments is retrieved at choice
point creation time is not at all explained in [War83, War88]. Moreover, upon private inquiry,
David H. D. Warren could not remember whether that was an incidental omission. So we chose to
introduce this global variable as opposed to a register as no such explicit register was specified for
the original WAM.

PAGE 40 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

try me else L � if E � B
then newB � E STACK[E �] �
else newB � B STACK[B] ��

STACK[newB]� num of args�
n� STACK[newB]�
for i� � to n do STACK[newB i]� Ai�
STACK[newB n �]� E�
STACK[newB n �]� CP�
STACK[newB n �]� B�
STACK[newB n �]� L�
STACK[newB n �]� TR�
STACK[newB n �]� H�
B� newB�
HB� H�
P� P instruction size�P��

Figure 4.1: M� choice point instruction try me else

retry me else L � n� STACK[B]�
for i� � to n do Ai� STACK[B i]�
E� STACK[B n �]�
CP� STACK[B n �]�
STACK[B n �]� L�
unwind trail�STACK[B n �]�TR��
TR� STACK[B n �]�
H� STACK[B n �]�
HB� H�
P� P instruction size�P��

Figure 4.2: M� choice point instruction retry me else

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 41 OF 129

WARREN’S ABSTRACT MACHINE

trust me � n� STACK[B]�
for i� � to n do Ai� STACK[B i]�
E� STACK[B n �]�
CP� STACK[B n �]�
unwind trail�STACK[B n �]�TR��
TR� STACK[B n �]�
H� STACK[B n �]�
B� STACK[B n �]�
HB� STACK[B n �]�
P� P instruction size�P��

Figure 4.3: M� choice point instruction trust me

p�n : try me else L�

code for first clause
L� : retry me else L�

code for second clause
...

Lk�� : retry me else Lk

code for penultimate clause
Lk : trust me

code for last clause

where each clause is translated as it would be as a single L� clause for M�. For
example, M� code for the definition:

p�X� a��
p�b�X��
p�X�Y � :- p�X� a�� p�b� Y ��

is given in Figure 4.4.

Exercise 4.1 Trace the execution of L� query ?-p�c� d� with code in Figure 4.4,
giving all the successive states of the stack, the heap, and the trail.

PAGE 42 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

p�� � try me else L� % p
get variable X��A� % �X�
get structure a���A� % a�
proceed % �

L� � retry me else L� % p
get structure b���A� % �b�
get variable X��A� % X�
proceed % �

L� � trust me %
allocate � % p
get variable X��A� % �X�
get variable Y��A� % Y � :-
put value X��A� % p�X�
put structure a���A� % a

call p�� % ��
put structure b���A� % p�b�
put value Y��A� % Y
call p�� % �
deallocate % �

Figure 4.4: M� code for a multiple clause definition

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 43 OF 129

WARREN’S ABSTRACT MACHINE

Exercise 4.2 It is possible to maintain separate AND-stack and OR-stack. Discuss
the alterations that would be needed to the foregoing setup to do so, ensuring a
correct management of environments and choice points.

PAGE 44 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

Chapter 5

Optimizing the Design

Now that the reader is hopefully convinced that the design we have reached forms
an adequate target language and architecture for compiling pure Prolog, we can
begin transforming it in order to recover Warren’s machine as an ultimate design.
Therefore, since all optimizations considered here are part of the definitive design,
we shall now refer to the abstract machine gradually being elaborated as the WAM.
In the process, we shall abide by a few principles of design pervasively motivating
all the conception features of the WAM. We will repeatedly invoke these principles
in design decisions as we progress toward the full WAM engine, as more evidence
justifying them accrues.

WAM PRINCIPLE 1 Heap space is to be used as sparingly as possible, as terms
built on the heap turn out to be relatively persistent.

WAM PRINCIPLE 2 Registers must be allocated in such a way as to avoid un-
necessary data movement, and minimize code size as well.

WAM PRINCIPLE 3 Particular situations that occur very often, even though cor-
rectly handled by general-case instructions, are to be accommodated by special
ones if space and/or time may be saved thanks to their specificity.

In the light of WAM Principles 1, 2, and 3, we may now improve on M�.

45

WARREN’S ABSTRACT MACHINE

� h��
� REF �
� REF �
� f��
� REF �
� p��
� REF �
� STR �
� STR �

Figure 5.1: Better heap representation for term p�Z� h�Z�W �� f�W ��

5.1 Heap representation

As many readers of [AK90] did, this reader may have wondered about the ne-
cessity of the extra level of indirection systematically introduced in the heap by
an STR cell for each functor symbol. In particular, Fernando Pereira [Per90]
suggested that instead of that shown in Figure 2.1 on Page 11, a more economical
heap representation for p�Z� h�Z�W �� f�W �� ought to be that of Figure 5.1, where
reference to the term from elsewhere must be from a store (or register) cell of the
form h STR � � i. In other words, there is actually no need to allot a systematic STR
cell before each functor cell.

As it turns out, only one tiny modification of one instruction is needed in order to
accommodate this more compact representation. Namely, the put structure
instruction is simplified to:

put structure f�n�Xi � HEAP[H]� f�n�
Xi� h STR � H i�
H� H�
�

Clearly, this is not only in complete congruence with WAM Principle 1, but it also
eliminates unnecessary levels of indirection and hence speeds up dereferencing.

The main reason for our not having used this better heap representation in Sec-
tion 2.1 was essentially didactic, wishing to avoid having to mention references
from outside the heap (e.g., from registers) before due time. In addition, we did
not bother bringing up this optimization in [AK90] as we are doing here, as we

PAGE 46 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

had not realized that so little was in fact needed to incorporate it.1

5.2 Constants, lists, and anonymous variables

To be fully consistent with the complete WAM unification instruction set and in
accordance with WAM Principle 3, we introduce special instructions for the spe-
cific handling of �-ary structures (i.e., constants), lists, and variables which appear
only once within a scope—so-called anonymous variables. These enhancements
will also be in the spirit of WAM Principles 1 and 2 as savings in heap space, code
size, and data movement will ensue.

Constants and lists are, of course, well handled by the structure oriented get,
put, and unify instructions. However, work and space are wasted in the pro-
cess, that need not really be. Consider the case of constants as, for instance, the
code in Figure 2.10, on Page 24. There, the sequence of instructions:

unify variable X�
get structure a���X�

simply binds a register and proceeds to check the presence of, or build, the con-
stant a on the heap. Clearly, one register can be saved and data movement opti-
mized with one specialized instruction: unify constant a. The same situa-

1After dire reflection seeded by discussions with Fernando Pereira, we eventually realized that
this optimization was indeed cheap—a fact that had escaped our attention. We are grateful to him
for pointing this out. However, he himself warns [Per90]:

“Now, this representation (which, I believe, is the one used by Quintus, SICStus
Prolog, etc.) has indeed some disadvantages:

1. If there aren’t enough tags to distinguish functor cells from the other cells,
garbage collection becomes trickier, because a pointed-to value does not in
general identify its own type (only the pointer does).

2. If you want to use [the Huet-Fages] circular term unification algorithm, redi-
recting pointers becomes messy, for the [same] reason...

In fact, what [the term representation in Section 2.1 is] doing is enforcing a con-
vention that makes every functor application tagged as such by the appearance of a
STR cell just before the functor word.”

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 47 OF 129

WARREN’S ABSTRACT MACHINE

tion in a query would simplify a sequence:

put structure c���Xi
set variable Xi

into one specialized instruction set constant c. Similarly, put and get in-
structions can thus be specialized from those of structures to deal specifically with
constants. Thus, we define a new sort of data cells tagged CON, indicating that the
cell’s datum is a constant. For example, a heap representation starting at address

� for the structure f�b� g�a�� could be:

� g��
	 CON a

�� f��
�� CON b
�� STR �

Exercise 5.1 Could the following (smaller) heap representation starting at ad-
dress �� be an alternative for the structure f�b� g�a��? Why?

�� f��
�� CON b
�� g��
�� CON a

Heap space for constants can also be saved when loading a register with, or bind-
ing a variable to, a constant. Rather than systematically occupying a heap cell
to reference, a constant can be simply assigned as a literal value. The following
instructions are thus added to I�:

1. put constant c�Xi

2. get constant c�Xi

3. set constant c

4. unify constant c

and are explicitly defined in Figure 5.2.

Programming with linear lists being so privileged in Prolog, it makes sense to
tailor the design for this specific structure. In particular, non-empty list functors

PAGE 48 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

put constant c�Xi � Xi� hCON � c i�

get constant c�Xi � addr � deref �Xi��
case STORE[addr] of

hREF � i � STORE[addr]� hCON � c i�
trail�addr��

hCON � c� i � fail � �c �
 c���
other � fail � true�

endcase�

set constant c � HEAP[H]� hCON � c i�
H� H ��

unify constant c � case mode of
read � addr � deref �S��

case STORE[addr] of
�� � ��endcase�

write � HEAP[H]� h CON � c i�
H� H ��

endcase�

Figure 5.2: Specialized instructions for constants

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 49 OF 129

WARREN’S ABSTRACT MACHINE

put list Xi � Xi� hLIS � H i�

get list Xi � addr � deref �Xi��
case STORE[addr] of

hREF � i � HEAP[H]� hLIS � H � i�
bind�addr�H��
H� H ��
mode � write�

hLIS � a i � S� a�
mode � read�

other � fail � true�
endcase�

Figure 5.3: Specialized instructions for lists

need not be represented explicitly on the heap. Thus again, we define a fourth sort
for heap cells tagged LIS, indicating that the cell’s datum is the heap address of
the first element of a list pair. Clearly, to respect the subterm contiguity conven-
tion, the second of the pair is always at the address following that of the first. The
following instructions (defined explicitly in Figure 5.3) are thus added to I�:

1. put list Xi

2. get list Xi

For example, the code generated for query ?-p�Z� �Z�W �� f�W ���, using Prolog’s
notation for lists, is shown in Figure 5.4 and that for fact p�f�X�� �Y� f�a��� Y ��,
in Figure 5.5. Note the hidden presence of the atom �� as list terminator.

Of course, having introduced specially tagged data cells for constants and non-
empty lists will require adapting accordingly the general-purpose unification algo-
rithm given in Figure 2.7. The reader will find the complete algorithm in appendix
Section B.2, on Page 117.

Exercise 5.2 In [War83], Warren also uses special instructionsput nil Xi, get nil Xi,
and to handle the list terminator constant ����. Define the effect of these instruc-

PAGE 50 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

put list X� % ?-X�
 �
set variable X� % W j
set constant �� % ����
put variable X��A� % p�Z�
put list A� % �
set value X� % Zj
set value X� % X���
put structure f���A� % f
set value X� % �W �
call p�� % ��

Figure 5.4: Specialized code for query ?-p�Z� �Z�W �� f�W ���

p�� � get structure f���A� % p�f
unify variable X� % �X��
get list A� % �
unify variable X� % Y j
unify variable X� % X���
get value X��A� % Y ��
get list X� % X�
 �
unify variable X� % X�j
unify constant �� % ����
get structure f���X� % X�
 f

unify constant a % �a�
proceed % �

Figure 5.5: Specialized code for fact p�f�X�� �Y� f�a��� Y ��

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 51 OF 129

WARREN’S ABSTRACT MACHINE

tions, and give explicit pseudo-code implementing them. Discuss their worth be-
ing provided as opposed to using put constant ���Xi, get constant ���Xi,
set constant ��, and unify constant ��.

Last in the rubric of specialized instructions is the case of single-occurrence vari-
ables in non-argument positions (e.g., X in Figure 2.4 on Page 16, Figure 2.10 on
Page 24, and Figure 5.5 on Page 51). This is worth giving specialized treatment
insofar as no register need be allocated for these. In addition, if many occur in
a row as in f� � � �, say, they can be all be processed in one swoop, saving in
generated code size and time. We introduce two new instructions:

1. set void n

2. unify void n

whose effect is, respectively:

1. to push n new unbound REF cells on the heap;

2. in write mode, to behave as set void n and, in readmode, to skip the
next n heap cells starting at location S.

These are given explicitly in Figure 5.6.

Note finally, that an anonymous variable occurring as an argument of the head of
a clause can be simply ignored. Then indeed, the corresponding instruction:

get variable Xi�Ai

is clearly vacuous. Thus, such instructions are simply eliminated. The code for
fact p� � g�X�� f� � Y� ���, for example, shown in Figure 5.7, illustrates this point.

Exercise 5.3 What is the machine code generated for the fact p� � � ��? What
about the query ?-p� � � ��?

5.3 A note on set instructions

Defining the simplistic language L� has allowed us to introduce, independently
of other Prolog considerations, all WAM instructions dealing with unification.

PAGE 52 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

set void n � for i� H to H n � � do
HEAP[i] � hREF � i i�

H� H n�

unify void n � case mode of
read � S� S n�
write � for i� H to H n� � do

HEAP[i] � hREF � i i�
H� H n�

endcase

Figure 5.6: Anonymous variable instructions

p�� � get structure g���A� % p� � g
unify void � % �X��
get structure f���A� % f

unify void � % � � Y� �
proceed % ��

Figure 5.7: Instructions for fact p� � g�X�� f� � Y� ���

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 53 OF 129

WARREN’S ABSTRACT MACHINE

Strictly speaking, the set instructions we have defined are not part of the WAM
as described in [War83] or in [War88]. There, one will find that the correspond-
ing unify instructions are systematically used where we use set instructions.
The reason is, as the reader may have noticed, that indeed this is possible pro-
vided that the put structure and put list instructions set mode towrite.
Then, clearly, all set instructions are equivalent to unify instructions in write
mode. We chose to keep these separate as using set instructions after put in-
structions is more efficient (it saves mode setting and testing) and makes the code
more perspicuous. Moreover, these instructions are more natural, easier to ex-
plain and motivate as the data building phase of unification before matching work
comes into play.

Incidentally, these instructions together with theirunify homologues, make “on-
the-fly” copying part of unification, resulting in improved space and time con-
sumption, as opposed to the more naı̈ve systematic copying of rules before using
them.

5.4 Register allocation

As in conventional compiler technology, the code generated from the source may
give rise to obviously unnecessary data movements. Such can be simplified away
by so-called “peep-hole” optimization. This applies to this design as well. Con-
sider for example the naı̈ve translation of the fact ‘conc���� L� L��’:

conc�� � get constant ���A
 % conc����
get variable X��A	 % L�
get value X��A� % L�
proceed % �

Now, there is clearly no need to allocate register X� for variable L since its only
use is to serve as temporary repository—but so canA	. Thus, theget variable
becomes get variable A	�A	, and can be eliminated altogether, yielding bet-
ter code:

conc�� � get constant ���A
 % conc����
get value A	�A� % L�L�
proceed % �

More generally, since argument and temporary variable registers are the same, the

PAGE 54 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

p�� � allocate � % p

get variable Y��A� % �X� Y � :-
put variable Y��A� % q�X�Z
call q�� % ��
put value Y��A� % r�Z�
put value Y��A� % Y

call r�� % �
deallocate % �

Figure 5.8: Better register use for p�X�Y � :- q�X�Z�� r�Z� Y ��

following instructions are vacuous operations:

get variable Xi�Ai
put value Xi�Ai

and can be eliminated. For example, looking back at the example shown in Fig-
ure 3.1 on Page 31, we realize that the temporary variable X is the first argument
in the head as well as the first atom in the body. Therefore, allocating register X�
to the variable X is clearly silly as it has for consequence the useless movement
of the contents of register A
 to X�, then back, as well as two more instructions
increasing the code size. Thus, with this observation, it makes sense to allocate
register A
 to X and apply the above vacuous operation elimination, resulting in
the obviously better instruction sequence shown in Figure 5.8.

Register allocation must try to take advantage of this fact by recognizing situations
when appropriate argument registers may also safely be used as temporary vari-
ables. Algorithms that do this well can be quite involved. A general method due
to Debray [Deb86] works well in reasonable time. A more sophisticated but more
(compile-time) expensive technique using Debray’s method combined with a re-
ordering of unification instructions can be found in [JDM88]. Register allocation
is really auxiliary to the WAM design and can be performed by an independent
module in the compiler.

In the sequel, we shall implicitly use this optimization whenever better than naı̈ve
register allocation can be obviously inferred by the reader.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 55 OF 129

WARREN’S ABSTRACT MACHINE

5.5 Last call optimization

The refinement that we introduce next is a generalization of tail-recursion opti-
mization, the effect of which is to turn some recursive procedures into equivalent
iterative forms. It is called here last call optimization (LCO), as it is applied sys-
tematically with or without recursion. If the last procedure call happens to be
recursive, then it does amount to tail recursion optimization. However, it is more
general as a stack frame recovery process.

The essence of LCO resides in the fact that permanent variables allocated to a rule
should no longer be needed by the time all the put instructions preceding the last
call in the body are passed. Hence, it is safe to discard the current environment
before calling the last procedure of the rule’s body. This could be achieved quite
simply by swapping the call, deallocate sequence that always conclude a
rule’s instruction sequence (i.e., into deallocate, call).

A consequence of this is that deallocate is never the last instruction in a rule’s
instruction sequence as it used to be for M� and M�. Therefore, it must be
modified accordingly. Namely, it must reset CP, rather than P, to the value of the
continuation slot of the current environment being discarded, and set P to continue
in sequence. Thus,

deallocate � CP� STACK[E�
]�
E� STACK[E]�
P� P� instruction size�P�

But then, call being now the last instruction, there is no need for it to set CP.
As a matter of fact, it would be wrong if it did since the right continuation will
now have been set a priori by deallocate. A simple setting of P to the callee’s
address is all that is needed. We shall not modify call, since it works correctly
for non-ultimate procedure calls. Rather, we introduce execute p�n, defined
as:

execute p�n � num of args � n�
P� ��p�n��

to be used systematically for the last call in a rule instead of call . To see
an example, consider the rule ‘p�X�Y � :- q�X�Z�� r�Z� Y ��’ whose “last call
optimized” code is shown in Figure 5.9.

The effect of LCO is subtler than it first appears due to the interleaving of envi-
ronment and choice point frames on the same stack. Thus, if the topmost frame

PAGE 56 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

p�� � allocate � % p

get variable Y��A� % �X� Y � :-
put variable Y��A� % q�X�Z
call q�� % ��
put value Y��A� % r�Z�
put value Y��A� % Y

deallocate % �
execute r�� % �

Figure 5.9: M� code for p�X�Y � :- q�X�Z�� r�Z� Y ��, with LCO

on the stack is the current environment and not the current choice point (i.e., if
E � B), its space can then be re-used in the next stack allocation (e.g., allocate
or try me else). This slows downs growth of the stack considerably. On the
other hand, if the top of the stack is a choice point, LCO does not have immediate
effect on the stack due to environment protection. In the case where the last call
of the last rule is a recursive call, the stack does not grow at all, re-using over and
over the exact same space for successive activation frames of the same procedure,
resulting in an iterative loop.2

5.6 Chain rules

A consequence of LCO is that the generated code translating chain rules can be
greatly simplified. Indeed, the generic translation of a chain rule of the form
‘p�� � �� :- q�� � ���’:

2In pure L�, this would of course be of little interest since any recursive program would always
either fail or loop indefinitely anyway—albeit with a small stack! At any rate, LCO is nonetheless
an interesting optimization of execution of (non-recursive) L� programs as it keeps stack space
well utilized.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 57 OF 129

WARREN’S ABSTRACT MACHINE

p � allocate N
get arguments of p
put arguments of q
call q
deallocate

is transformed by LCO into:

p � allocate N
get arguments of p
put arguments of q
deallocate
execute q

Now, note that all variables in a chain rule are necessarily temporary. Hence, the
only information which is saved on the stack by an initial allocate is the con-
tinuation register CP. But this effect of allocate is undone before execute
by deallocate. Therefore, this is totally wasted work, and both allocate
and deallocate can be eliminated. Thus, LCO allows translation of the chain
rule ‘p�� � �� :- q�� � ���’ simply into:

p � get arguments of p
put arguments of q
execute q

That is, chain rules need no run-time activation frame on the stack at all!

5.7 Environment trimming

The correctness of LCO hinges on having observed that permanent variables in
the current environment are needed only as long as all the put instructions for
the last call’s arguments are not yet done. This observation can be sharpened by
noticing that a permanent variable is in fact no longer needed after the arguments
of its ultimate occurrence’s goal have all been loaded by put instructions. This
entails a natural generalization of LCO to allow maximal reuse of stack space at
each (i.e., not only the last) call in the body of the rule. More specifically, each
permanent variable in the environment can be associated with the goal in which

PAGE 58 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

it is used last, and therefore can safely be disposed of before performing the call.
The intended effect of such a process is to make the current environment frame’s
size on the stack shrink gradually, until it eventually vanishes altogether by LCO,
this latter optimization being simply the special case of the last goal.

This gradual environment trimming can be made to work automatically by care-
fully ordering the variables in their environment so as to reflect the ordering of
their associated last occurrence goals. Namely, the later a permanent variable’s
last occurrence’s goal is in the body, the lower its offset in the current environ-
ment frame is. Thus, the call instruction is given a second argument counting
the number of variables still needed in the environment after the point of call. This
count allows later stack allocating instructions to compute a lower top of stack, if
possible. Namely, if the topmost frame on the stack is the current environment
(i.e., if E � B).

Note that the explicit definition of allocate again needs to be changed from
what it was forM�. In order to reflect a correct value at all times, the offset that it
gets from the preceding environment must be updated by each trimmingcall. In
fact, such updates are not needed. Since a more precise environment stack offset is
now explicitly passed as an argument to call’s, the argument of allocate be-
comes superfluous. Indeed, the offset can be dynamically retrieved byallocate
(and try me else) as a consequence of the following fact: the continuation slot
of the latest environment frame, STACK[E�
], always contains the address
of the instruction immediately following the appropriate call P�N instruction
where N is precisely the desired offset. Hence, allocate no longer takes an
argument, and an environment frame no longer needs an offset slot. Instead, the
right offset is calculated by allocate as CODE[STACK[E�
] �
].3

With this simplification, an environment frame on top of the stack now looks thus:

E CE (continuation environment)
E�
 CP (continuation point)
E� 	 Y
 (permanent variable
)

...

3Recall that by CODE[i], we mean the contents of STORE[i] in the code area at address i.
This works under the (reasonable) assumption that an integer occupies one memory word.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 59 OF 129

WARREN’S ABSTRACT MACHINE

and the (now definitive) definition of allocate is:4

allocate � if E � B
then newE � E� CODE[STACK[E�
] �
]� 	
else newE � B� STACK[B]� ��

STACK[newE]� E�
STACK[newE �
]� CP�
E� newE�
P� P� instruction size�P��

The rule ‘p�X�Y�Z� :- q�U� V�W �� r�Y�Z�U�� s�U�W �� t�X�V ��’, for example,
is one in which all variables are permanent. The last occurrence’s goal of each
variable is given in the following table, along with a consistent ordering assigning
to each a Yi indexed by its offset in the environment frame:

Variable Last goal Offset
X t Y

Y r Y�
Z r Y
U s Y�
V t Y	
W s Y�

That is, after the CE and CP slots, X�V�U�W� Y� Z come in this order in the envi-
ronment. Environment trimming code for this rule is shown in Figure 5.10.

5.8 Stack variables

Recall that, according to WAM Principle 1, allocation of heap space is to be
avoided whenever possible. Thus, we may go even farther in optimizing aus-
terity in the case of a permanent variable which first occurs in the body of a rule
as a goal argument. From what we have seen, such a variable Yn is initialized with
a put variable Yn�Ai which sets both the environment slot Yn and argument
register Ai to point to a newly allocated unbound REF heap cell (see Figure 2.8, on
Page 23). Now, since Yn is to be treated as a local variable, it has been allocated

4Note incidentally, that a similar alteration must be done for try me else. The definitive
version for that instruction is given in Appendix B.

PAGE 60 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

p�� � allocate % p
get variable Y��A� % �X�
get variable Y��A� % Y�
get variable Y��A� % Z� :-
put variable Y��A� % q�U�
put variable Y��A� % V�

put variable Y��A� % W
call q��� � % ��
put value Y��A� % r�Y�
put value Y��A� % Z�

put value Y��A� % U
call r��� � % ��
put value Y��A� % s�U�
put value Y��A� % W
call s��� � % ��
put value Y��A� % t�X�
put value Y��A� % V

deallocate % �
execute t�� % �

Figure 5.10: Environment trimming code

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 61 OF 129

WARREN’S ABSTRACT MACHINE

a cell in the environment which is to exist during this rule’s body execution—
assuming, for the time being, that environment trimming or LCO are not per-
formed. So why not save, rather than systematically waste, that (global) heap
cell? More specifically, a more appropriate semantics for the put variable
instruction, when used on a permanent variable, ought to be:

put variable Yn�Ai � addr � E� n �
�
STACK[addr]� h REF � addr i�
Ai� STACK[addr]�

That is, it should not allocate a heap cell as done for a temporary register.

Unfortunately, there are rather insidious consequences to this apparently innocu-
ous change as it interferes with environment trimming and LCO. The trouble then
is that environment variables may be disposed of while still unbound. Therefore,
any reference to an unbound stack variable runs the risk of potential catastrophe,
becoming a dangling reference upon careless discarding of the variable. As a re-
sult, it is no longer correct to let the bind operation set an arbitrary direction when
establishing a reference between two unbound variables. More pathologically, the
following instructions have now become incorrect if used blindly in some situa-
tions: put value and set value (thus also unify value in writemode).

The following three subsections treat each problem by (1) first giving a correct
binding convention, then (2) analyzing what may go wrong with put value, and
(3) with set value and unify value, explaining how to repair the trouble.

5.8.1 Variable binding and memory layout

Three cases of variable-variable bindings are possible: (1) heap-heap, (2) stack-
stack, and (3) heap-stack. In Case (1), as alluded to before on Page 17, when the
bind operation is performed on two unbound (heap) addresses, which of the two
is made to reference the other does not affect correctness. However, making an
arbitrary choice does affect performance as it may lead to much more work than
necessary by causing more variable trailing and resetting than may be needed.
Consider for example two heap variables, one before HB and the other after HB.
Making the first reference the second requires trailing it (and its potential subse-
quent resetting) while the contrary is unconditional and requires none.

In Cases (2) and (3), the symptoms are quite more serious as which direction
the binding occurs can be incorrect due to potential discarding of stack variables.

PAGE 62 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

For example, the rule ‘p�X�X� :- q�X�� r�X��’ invoked with ‘?-p�Y�Z��’ will
not work correctly if Y is bound to X since q�
 may leave the stack variable X
unbound. The other direction is the only correct one. As it turns out, most correct
bindings can be ensured following a simple chronological reference rule:

WAM BINDING RULE 1 Always make the variable of higher address reference
that of lower address.

In other words, an older (less recently created) variable cannot reference a younger
(more recently created) variable.

Let us examine what is gained. In Case (1), as explained above, unconditional
bindings are thus favored over conditional ones, avoiding unnecessary trailing
and resulting in swift heap space recovery upon backtracking.

In Case (2), WAM Binding Rule 1 rule is also clearly beneficial for the same rea-
sons as for Case (1). It happens to be also consistent with the ordering among
variables within a single environment set up to allow environment trimming. This
is all the better. Unfortunately, this rule is not sufficient to prevent dangling refer-
ences in a stack-stack binding as will be seen in the next subsection.

In Case (3), the problem (as exposed in the next two subsections) is that stack
space is volatile while heap space is persistent, making references to the stack
potentially dangerous. Clearly, it would be a source of complication ever to estab-
lish a binding from the heap toward the stack, whereas the contrary presents no
problem. Therefore, the WAM enforces the following:

WAM BINDING RULE 2 Heap variables must never be set to a reference into the
stack.

To suit this, the WAM organizes its memory layout specifically so that WAM
Binding Rule 1 is naturally consistent with:

WAM BINDING RULE 3 The stack must be allocated at higher addresses than
the heap, in the same global address space.

This must be done, of course, allowing sufficient slack for growth of the heap.
This rule entails forbidding the participation of stack variables in a reference chain
in any way other than grouped as a subchain prefix. That is, a reference chain
containing any stack variables at all will have them all appear contiguously and

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 63 OF 129

WARREN’S ABSTRACT MACHINE

h � i p�� � allocate % p

h � i get variable Y��A� % �X� :-
h � i put variable Y��A� % q�Y�
h � i put value Y��A� % X
h � i call q��� � % ��
h � i put value Y��A� % r�Y�
h � i put value Y��A� % X
h � i deallocate % �
h � i execute r�� % �

Figure 5.11: Unsafe code for p�X� :- q�Y�X�� r�Y�X��

early in the chain. Then, discarding a stack variable cannot break a chain. (This
is guaranteed in the subchain prefix of stack variables by WAM Binding Rule 1.)

However, we see next that this rule is violated by some instructions (put value,
set value, and unify value). We presently examine this and adapt the de-
sign so that no incorrect binding may ever occur.

5.8.2 Unsafe variables

A stack variable is discarded before calling the goal in which it last occurs al-
though it may still be unbound or bound to another unbound permanent variable in
the same (current) environment (i.e., one which is to be also disposed of). Clearly,
the danger is then that the call may refer to the discarded variables. For this rea-
son, a permanent variable which is initialized by a put variable (i.e., which
first occurs as the argument of a body goal) is called an unsafe variable.

Let us take an example with the rule ‘p�X� :- q�Y�X�� r�Y�X��’ in which both
X and Y are permanent variables, but only Y is unsafe. This is because Y is ini-
tialized with a put variable (since its first occurrence is in a body goal) while
X , first occurring in the head, is initialized with a get variable. Figure 5.11
shows the (incorrect) translation as it is done in our current setting. Let us trace
what happens when put value Y	�A
 is used on Line 5. Let us assume that p

PAGE 64 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

is called with an unbound variable; that is, with the sequence of the form:

put variable Xi�A

execute p�

Thus, at the point right before Line 0, A
 points to the heap address (say, 36)
of an unbound REF cell at the top of the heap. Then, allocate creates an
environment on the stack (where, say, Y
 is at address 77 and Y	 at address 78
in the stack). Line 1 sets STACK[��] to hREF � 36 i, and Line 2 sets A
 (and
STACK[��]) to hREF � 78 i. Line 3 sets A	 to the value of STACK[��]; that
is, h REF � 36 i. Let us assume that the call to q on Line 4 does not affect these
settings at all (e.g., the fact q� � � is defined). Then, (the wrong) Line 5 would set
A
 to hREF � 78 i, and Line 6 sets A	 to hREF � 36 i. Next, deallocate throws
away STACK[��] and STACK[��]. Suppose now that the code for r starts with
an allocate re-using stack space 77 and 78 then, lo!, the get instructions of r
will find nonsensical data in A
.

Note however that an unsafe variable’s binding can easily be checked at run-time
so that trouble may be averted on the fly by taking appropriate measures only if
needed. Let us reflect on the possible situations of a given unsafe variable Yn in
the last goal where it occurs. There are two cases that will need attention: (1) when
Yn appears only as an argument of its last goal; and, (2) when Yn appears in that
goal nested in a structure, whether or not it is also an argument. We will treat
later the second case, as it interacts with a more general source of unsafety that
we shall analyze after treating the first case.

So let us consider for now the case where all occurrences of unsafe Yn are ar-
guments of the last goal where Yn appears. That is, all these correspond to
put value Yn�Ai instructions. As explained, it is desirable to ensure that a
run-time check be carried out verifying that no reference chain leading to Yn
eventually points to an unbound slot in the environment. The solution is to use a
modification of the effect of put value Yn�Ai to ascertain this. More specif-
ically, let us call this modified instruction put unsafe value Yn�Ai. It be-
haves exactly like put value Yn�Ai if the reference chain from Yn does not
lead to an unbound variable in the current environment. Otherwise, this altered
instruction binds the referenced stack variable to a new unbound REF cell pushed

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 65 OF 129

WARREN’S ABSTRACT MACHINE

on the heap, and sets Ai to point to that cell. Explicitly,5

put unsafe value Yn�Ai � addr � deref �E� n�
��
if addr � E

then Ai� STORE[addr]
else

begin
HEAP[H]� h REF � H i�
bind�addr�H��
Ai� HEAP[H]�
H� H�

end�

Looking back at the example of Figure 5.11, if Line 5 is not as shown but re-
placed with put unsafe value Y	�A
, then HEAP[��] is created and set
to hREF � 37 i, STACK[��] and A
 are set to hREF � 37 i, then A	 is set to
hREF � 36 i (the value ofSTACK[��]) on the following line. DiscardingSTACK[��]
and STACK[��] is now quite safe as executing r will get correct values from A

and A	.

The question still remaining is to decide which among several occurrences of
put value Yn�Ai must be replaced with the safety check modification for a
given unsafe Yn. In fact, it is sufficient to replace only one of them, although not
an arbitrary one but, quite importantly, the first occurrence in this last goal. To

5Note incidentally that having a global address space with the relative memory layout of the
stack being allocated at higher addresses than the heap has as a nice consequence to make it quite
easy to test whether Yn’s value is an unbound variable in the current environment with a mere
comparison of memory addresses. Strictly speaking, this test is not quite correct because deref
may actually yield the address of an X register containing a literal constant. To prevent this trivial
point from complicating matters unnecessarily, we may assume thatX registers conveniently reside
at the highest end of the global store.

PAGE 66 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

see this on an example, consider the clause:6

p :- q�X�� r�X�X��

If the safety check is done last, as in:

p�� � allocate
put variable Y
�A

call q�
�

put value Y
�A

put unsafe value Y
�A	
deallocate
execute r�	

then argument register will still contain a reference to the discarded environment
when r�	 is called. Therefore, the following is the only possible correct code:

p�� � allocate
put variable Y
�A

call q�
�

put unsafe value Y
�A

put value Y
�A	
deallocate
execute r�	

It has the effect of “globalizing” the value of Y
 so as to guarantee that it may be
discarded without leaving a nonsensical reference in A
.

5.8.3 Nested stack references

When an unsafe variable occurs in its last goal nested in a structure (i.e., with a
corresponding set value or a unify value), the situation pertains to a more

6This example is due to Michael Hanus [Han90] and, independently, to Pascal van Henten-
ryck [vH90]. Both pointed out to this author the incorrect replacement rule described (as that of
the last occurrence of an unsafe variable) in [AK90]. In fact, the incorrect rule in [AK90] had
been simply inherited verbatim from Warren’s original report [War83] (Page 14, Line 3), and later
explained by him as follows [War90]:

“I agree that this is ambiguous or misleading. I think it may be partly explained
by the fact that the memo (tacitly?) assumes that goal arguments are compiled in
reverse order and therefore the last arguments will be compiled first!”

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 67 OF 129

WARREN’S ABSTRACT MACHINE

general pathology which may affect temporary variables as well. Consider the
rule ‘a�X� :- b�f�X���’ for example. As we have it, this is translated thus:

a�
 � get variable X	�A

put structure f�
�A

set value X	
execute b�

Let us consider now the query ‘?-a�X�� c�X��’ being translated as:

allocate
put variable Y
�A

call a�
�

...

and let us examine in detail what happens during execution. Before the call to a�
,
a stack frame containing the variable Y
 is allocated and initialized to unbound
by put variable Y
�A
. The code of a�
 begins by setting X	 to reference
that stack slot (the value of A
), and pushes the functor f�
 on the heap. Then,
behold!, set value X	 pushes the value of X	 onto the heap, establishing a
reference from the heap to the stack. This violates WAM Binding Rule 2 and
creates a source of disaster when Y
 is eventually discarded.

Of course, the same ill-fated behavior plagues unify value as its writemode
semantics is identical to set value’s. Then, the question is: When can it be
statically guaranteed that set value (resp., unify value) will not create an
unwanted heap-to-stack reference? The answer is: Any time its argument has not
been explicitly initialized to be on the heap in the given clause. Then indeed,
the first set value (resp., unify value) performed on it may cause potential
havoc. Specifically, set value Vn (resp., unify value Vn) is unsafe when-
ever the variable Vn has not been initialized in this clause with set variable
or unify variable, nor, if Vn is temporary, with put variable.

Again, the cure amounts to performing appropriate run-time checks which can
trigger dynamic globalizing of a guilty stack variable whenever needed. Namely,
the first set value (resp., unify value) instruction of the clause to be per-
formed on a variable which is not guaranteed to lead to the heap (i.e., meeting the
explicit conditions described in the previous paragraph), must be replaced with
a new one, set local value (resp., unify local value, behaving like

PAGE 68 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

unify value in read mode), which tests whether the dereferenced value re-
sides in the heap or in the stack. If the dereferenced value is an unbound heap
address, it behaves as set value (resp., as unify value in write mode);
i.e., it pushes it on the heap. If the dereferenced value is an unbound stack address,
it pushes a new unbound heap cell and binds the stack variable to it. Explicitly,7

set local value Vn � addr � deref �Vn��
if addr � H

then HEAP[H]� HEAP[addr]
else

begin
HEAP[H]� h REF � H i�
bind�addr�H�

end�
H� H�
�

An explicit expression for unify local value is readily derived from the
definition of unify value (given in Figure 2.6, on Page 18) by replacing the
body of the write mode case with the above code.

If set local value X	 replaces set value X	 in the example above, it will
realize that the value of X	 is a stack address and then bind it to a new unbound
cell on the heap. This maintains a stack-to-heap reference, and WAM Binding
Rule 2 is respected.

As a final observation, let us consider the particular case where an unsafe vari-
able Yn occurs both as an argument of its last goal and also nested in a structure
somewhere in the same clause. Then, it is only necessary to make the appropriate
change to whichever instruction comes first between the last goal’sput value Yn�Ai’s
and the clause’s set value Yn’s (resp., unify value Yn’s). This is because
changing the first such instruction will ensure that the variable is safely globalized
for the other, making the run-time check unnecessary at that later point.

5.9 Variable classification revisited

At this point, the time is ripe for setting things right about the definition of tem-
porary and permanent variables. In our opinion, the way the WAM classifies

7See Footnote 5 at the bottom of Page 66.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 69 OF 129

WARREN’S ABSTRACT MACHINE

variables is perhaps the most puzzling item to justify for the learning reader. In-
deed, although the definition we have used thus far is correct as given, it is not
exactly that given and used in [War83] or [War88]. We presently analyze this dis-
crepancy and discuss in particular the motivation, as well as some rather subtle
consequences, of the original WAM designer’s definition.

In fact, our definition and justification of variable classification take David H. D. War-
ren’s actual conception back to front. In his view, a permanent variable is simply
a conventional local variable. Therefore, all variables appearing in a clause are a
priori permanent variables; i.e., local variables to be allocated on the stack. This
is because a local variable’s lifetime ought to be that of the activation of the clause
in which it occurs. On the other hand, allocating a variable on the heap would
entail making it a global variable insofar as computation does not backtrack to a
previous choice point. However, some variables in a clause need not be allocated
on the stack, either because they are initialized with previously existing data or be-
cause they must be part of a structure on the heap. Obviously, these considerations
call for a careful reformulation of variable classification.

Warren’s original definition is as follows:

Warren’s variable classification A temporary variable is one which
does not occur in more than one body goal (counting the head as part
of the first body goal) and first occurs in the head, or in a structure, or
in the last goal. A permanent variable is one which is not temporary.

First of all, let us observe that both our and Warren’s classification consider per-
manent any variable occurring in more than one body goal. However, whereas this
criterion is a necessary and sufficient characterization of permanent variables by
our definition, it is only a sufficient one for Warren’s. Now, from our presentation,
let us try to recover and justify Warren’s variable classification.

The point is to restrict our definition of temporary variables (and thus broaden
that of permanent variables) to minimize heap allocation, and consequently the
size of global data. As we saw, local variables are quite thriftily managed by
environment trimming and LCO, and therefore offer a preferable alternative to
X registers whenever possible. Therefore, in order to abide by Warren’s view, we
must completely change our perspective and consider that a variable is permanent
by default unless it is required to be explicitly allocated on the heap.

The question now, is: When does a non-void variable originally deemed tempo-
rary in our definition (i.e., occurring in no more than one body goal) really require

PAGE 70 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

to be systematically allocated in the heap? Memory allocation for a variable hap-
pens, if at all, at its first occurrence in the clause. Let us now analyze all possible
situations of first occurrence.

If the first occurrence is in the head of the rule, then the variable is either an ar-
gument, and therefore bound to an already existing cell on the heap, or deeper in
the stack; or, it is nested in a structure and hence will necessarily be allocated on
the heap by the unification instructions. This is the case because the convention is
that a functor cell on the heap must be followed by as many cells as its arity dic-
tates. As a result, a head variable never requires stack space allocation. Therefore,
it is sufficient to manipulate it through an X register; i.e., treat it as a temporary
variable.

For the same reasons, if the first occurrence is nested inside a structure in the body,
then a heap cell will necessarily be allocated for it by the unification instructions.
So it might as well be treated as a temporary variable, saving a stack slot.

Another clear case is when the first occurrence of the variable is as an argument in
the last body goal. Then indeed, since performing LCO will require systematically
globalizing it anyway, it makes more sense to treat it as a temporary variable.

The foregoing situations cover all those in Warren’s definition of a temporary
variable. Therefore, the criteria for that part of the definition which characterizes
a temporary variable are justifiably sound. But is this true for Warren’s definition
of a permanent variable? Indeed, there is one last situation not covered by our
foregoing analysis; namely, the case of a variable occurring only in one body goal
which is neither the first nor the last goal. As it turns out, unfortunately, Warren’s
variable classification is inconsistent with environment trimming, even with the
setup of run-time checks that we have explained in the previous sections.

Let us argue with a specific example.8 Consider the rule ‘a :- b�X�X�� c�’.
According to our definition, X is treated as a temporary variable. This results
in the compiled code shown as Figure 5.12, where X is correctly handled as a
temporary variable, admittedly at the expense of systematically allocating a heap
slot for it.

On the other hand, according to Warren’s variable classification, the variable X is
a permanent variable. Therefore, following the compilation rules described in the
previous sections, the generated code would be that shown in Figure 5.13. Now,
observe what happens when calling awith the instruction sequence of Figure 5.13.

8The lame behavior of this example was pointed out to the author by Damian Chu [Chu90] and
Michael Hanus [Han90].

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 71 OF 129

WARREN’S ABSTRACT MACHINE

a�� � allocate % a :-
put variable A��A� % b�X�X
call b��� � % ��
deallocate % c

execute c�� % �

Figure 5.12: Code for a :- b�X�X�� c�, by our classification

a�� � allocate % a :-
put variable Y��A� % b�X�
put unsafe value Y��A� % X
call b��� � % ��
deallocate % c

execute c�� % �

Figure 5.13: Code for a :- b�X�X�� c�, by Warren’s classification

PAGE 72 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

a�� � allocate % a :-
put variable Y��A� % b�X�
put value Y��A� % X

call b��� � % ��
deallocate % c
execute c�� % �

Figure 5.14: Delayed trimming for a :- b�X�X�� c�

A stack slot is allocated forY
, then register A
 is made to point to that slot. Then,
a run-time check is carried out because Y
 is unsafe and it is found that Y
 must be
globalized. This is done, making both Y
 and A	 point to a new heap cell. Then,
b�	 is called after trimming Y
 out of the environment. However, register A
 still
points to the discarded slot! It is therefore clear that for Warren’s classification to
be correct, something must be done to prevent this particular ailment.

As far as this author could read, it has not been explained anywhere (includ-
ing in [War83, War88]) how to prevent incorrect code as that of Figure 5.13 to
be generated because of Warren’s classification, let alone what correct code to
produce with that classification. Upon private inquiry, this is what Warren pro-
poses [War90]:

“The general principle is that one should make variables permanent if at all
possible, and use put variable Xn�Ai only as a last resort. The prob-
lem is what to do about variables which occur in only one goal. If it is
the last call, one has no (real) option but to globalise the variable using
put variable Xn�Ai. If it is other than the last call, then one can either
globalise the variable in the same way, or avoid trimming the variable at the
immediately following call, but rather trim it at the next call, by which time
it is certainly safe to do so (provided variable-variable bindings always point
to the ‘last-to-die’ variable and the variable to be trimmed is allocated as the
‘first to die’ in the next call).”

Warren goes on to illustrate how, for our specific example, delayed trimming
would repair the code of Figure 5.13 to that of Figure 5.14 where Y
 is kept
in the environment until the time when execution returns from b�	, at which point

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 73 OF 129

WARREN’S ABSTRACT MACHINE

a�� � allocate % a :-
put variable Y��A� % b�X�
put unsafe value Y��A� % X

call b��� � % ��
deallocate % c
execute c�� % �

Figure 5.15: Useless delayed trimming for a :- b�X�X�� c�

it is discarded.9

Some comments are in order regarding this fix. First, Warren’s last (cryptic)
parenthetical comment simply recalls the proviso that is already ensured by our
variable-variable binding convention from higher to lower addresses (WAM Bind-
ing Rule 1) and the convention set up for environment trimming allocating perma-
nent variables in the environment so as to put the “last-to-die” first (i.e., at smaller
addresses)—as explained in Section 5.7.

Second, one must convince one’s self that delayed trimming is indeed safe so as to
warrant the simplerput value Y
�A	 instead of the expected put unsafe value Y
�A	,
as prescribed for unsafe variables. For clearly, if rather than the code of Fig-
ure 5.14, we had to generate that shown in Figure 5.15, then the whole compli-
cation would be useless. Indeed, Y
 would still be globalized on the heap, with
the additional penalty of the untrimmed stack slot—not to mention the run-time
check. The simpler code of Figure 5.12 would thus be clearly superior. Therefore,
for the code in Figure 5.14 to be of any value, it must be guaranteed that delay-
ing trimming Y
 makes it no longer unsafe, even though it has been initialized
with put variable Y
�A
. Such is the case, of course, as the unsafety of Y

would only be caused precisely by trimming it by the call to its last goal. That it
is safe to trim it at the following call is clear under the proviso of our binding and
stack-allocation conventions.

In view of the foregoing considerations, the reader may now understand why

9This solution using delayed trimming was also pointed out to this author by Michael
Hanus [Han90] who apparently figured it out for himself, probably like many others who worked
out a WAM implementation.

PAGE 74 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

we did not start out with Warren’s definition for variable classification. Our
reasons are quite deliberate. Firstly, in the gradual construction of our partial
machines, Warren’s definition is unjustifiable before the environment stack or
LCO are considered. Secondly, although historically, David H. D. Warren made
put variable Xn�Ai systematically allocate a heap cell as a patch to accom-
modate LCO,10 this instruction can be justified otherwise, as we have indeed
shown, as evolved from the simple unification machine M�. Lastly, we favor our
a posteriori approach rather than Warren’s since starting with a suboptimal, but
simpler to understand, variable classification constitutes a greater tutorial value as
it focuses the reader’s attention on mechanisms that are not affected by the fine
points of this issue.

In conclusion, although Warren’s variable classification is historically the origi-
nal definition used in the WAM as it was conceived, and can be explained as an
optimization—with the need of delayed environment trimming to be correct—this
author finds his own variable classification somewhat less contrived and surely
much easier to justify.

5.10 Indexing

The three choice point manipulation instructions impose a strictly sequential search
over the list of clauses making up a definition. If all the arguments of a calling
predicate are unbound variables, then there is clearly no better manner to proceed.
On the other hand, when some of the arguments are at least partially instantiated,
that information can be used to access unifiable clause heads more directly. In the
cases where the number of clauses constituting a definition is large (as is not so

10He states [War89]:

“The put variable Xn�Ai instruction is a kind of hack which exists only to
take care of the problems of a variable that is bound to be unsafe at LCO, namely
a variable which has its first occurrence in the last call and isn’t otherwise bound.
This special instruction should NOT be used for any other purpose.

Variables occurring only as arguments to the last goal cannot be treated as [perma-
nent variables] since they are bound to be unsafe, and would necessarily be glob-
alised by the put unsafe value Yn�Ai instruction if they were treated this way.
To avoid this round-about approach of creating a permanent variable only to then
globalise it, the put variable Xn�Ai instruction is introduced, and these vari-
ables are instead treated as [temporary variables].”

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 75 OF 129

WARREN’S ABSTRACT MACHINE

rarely the case for facts), this is clearly desirable. Ideally, this requires a technique
for partially interleaving unification with search. Indeed, if it can be decided at
the outset that a clause head will unify exclusively with a category of data, all the
more selective the search code will be. On the other hand, it may be impossi-
ble in general, or very costly at best, to generate an optimal discrimination filter
based on the patterns of all arguments. Fortunately, a suboptimal compromise
turns out to be quite reasonable in practice. Since Prolog programmers have a
natural tendency to write code in a data structure-directed manner using discrimi-
nating patterns as first argument, it is quite acceptable to limit indexing to key on
the first argument only. The WAM uses this idea as a basis for optimizing clause
selection. Naturally, this applies only to procedure definitions that contain more
than one clauses. In what follows, we refer to a clause head’s first argument as its
(indexing) key.

First, note that any clause head whose key is a variable creates a search bottleneck
in a procedure definition in which it appears. Indeed, that key will unify with
anything and thus its clause must be explored in all cases. For this reason, a
procedure p defined by the sequence of clauses C�� � � � � Cn is partitioned as a
sequence of subsequences S�� � � � � Sm, where each Si is either a single clause
with a variable key, or a maximal subsequence of contiguous clauses whose keys
are not variables. For example, the following definition is partitioned into the four
subsequences S�, S�, S�, and S�, as shown:11

S�

��������
�������

call�XorY � :- call�X��
call�trace� :- trace�
call�XorY � :- call�Y ��
call�notrace� :- notrace�
call�nl� :- nl�

S�
n

call�X� :- builtin�X��

S�
n

call�X� :- extern�X��

S�

�����
����

call�call�X�� :- call�X��
call�repeat��
call�repeat� :- call�repeat��
call�true��

As expected, the general translating scheme for a procedure p with a definition
thus partitioned into subsequences S�� � � � �Sm, where m �
, is:

11This example is a slight modification of that given in [War83]. The (admittedly silly) splitting
of the two or�� clauses is only to illustrate that this will not affect performance thanks to indexing.

PAGE 76 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

p : try me else S�
code for subsequence S�

S� : retry me else S�
code for subsequence S�

...
Sm : trust me

code for subsequence Sm

where retry me else is necessary only if m � 	. If m �
, none of the
above is needed and the translation boils down only to the code necessary for the
single subsequence chunk. Furthermore, the simpler case where the subsequence
is reduced to a single variable-key clause degenerates into the expected simpler
translation pattern requiring nothing more than we had before. Thus, the code for
call�
 above looks like:

call�
 : try me else S� %
indexed code for S� %

S� : retry me else S� % call�X�
execute builtin�
 % :- builtin�X��

S� : retry me else S� % call�X�
execute extern�
 % :- extern�X��

S� : trust me %
indexed code for S� %

Let us then focus on indexing within a non variable-key subsequence.

The technique of clause indexing for a subsequence uses one or two levels of dis-
patching according to the run-time sort of the calling procedure’s first argument,
and possibly a third level consisting of sequential threading together some prese-
lected clauses. A first level of dispatching is performed depending on whether the
dereferenced value of A
 is a variable, a constant, a (non-empty) list, or a general
structure. In each case, control is to jump to a (possibly void) bucket of clauses.
Respectively, the code bucket of a variable corresponds to full sequential search
through the subsequence (thus, it is never void), that of a constant (resp., of a
structure) corresponds to a further dispatching level discriminating among differ-
ent constants (resp., different structures), and that of a list corresponds either to
the single clause with a list key or to a linked list of all those clauses in the sub-
sequence whose keys are lists. For those constants (or structures) having multiple

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 77 OF 129

WARREN’S ABSTRACT MACHINE

clauses, a possible third level bucket corresponds to the linked list of these clauses
(just like the possible second level for lists).

Hence, the general indexing code pattern for a subsequence is of the form:

first level indexing;
second level indexing;
third level indexing;
code of clauses in subsequence order;

where second and third levels are only necessary as dictated by what sort of keys
are present in the subsequence and in what number. In particular, they may be al-
together eliminated as appropriate in the degenerate cases. The last part following
the dispatching code is simply the regular sequential choice control construction.
For example, the subsequence S� of call�
 is translated thus:

first level indexing for S�
second level indexing for S�
third level indexing for S�

S�� : try me else S��
code for ‘call�XorY � :- call�X��’

S�� : retry me else S��
code for ‘call�trace� :- trace�’

S�� : retry me else S��
code for ‘call�XorY � :- call�Y ��’

S�� : retry me else S��
code for ‘call�notrace� :- notrace�’

S�� : trust me
code for ‘call�nl� :- nl�’

Therefore, we need instructions for each dispatching level in the general case.

First level dispatching is done with the switch on term V�C�L� S instruction
whose effect is to make control jump to the instruction labeled, respectively, V ,
C , L, or S, depending on whether the dereferenced value of A
 is a variable, a
constant, a non-empty list, or a structure, respectively.

Second level dispatching forN distinct constants (having realized that A
 derefer-
ences to one) is done withswitch on constant N�T , where T is a hash-table
of size N of the form fci � Lcig

N
i�� associating to each distinct constant ci used as

a key in the subsequence a label Lci where control must jump when ci is passed

PAGE 78 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

as first argument. If the constant found in A
 is not one in the table, backtracking
occurs. The similar instruction switch on structure N�T does the same
for all distinct (non-constant non-list) functors in the subsequence. Second level
list indexing is really third level indexing on list structures, the second level being
skipped by special handling of lists in the spirit of WAM Principle 3.

Third level indexing corresponds to threading together multiple (but not neces-
sarily contiguous) clauses whose keys are lists, or a same constant or structure.
Since the code of all clauses in the subsequence are already so-threaded by a
try me else, (retry me else) trust me choice control construction, its
clause code subsequence relevant only to the recognized key at hand (be it list,
constant, or structure) must be accessed explicitly with an alternative choice con-
trol construction. This is achieved by using three instructions, try L, retry L,
trust L. These are almost identical to try me else L, retry me else L,
and trust me, respectively. The only difference is that they use the specified
label L for the instruction to jump to, saving the next one in sequence as the next
clause alternative in the choice point (except for trust, of course).

The complete indexing code for subsequence S� of the call�
 example is given
in Figure 5.16, and that for subsequence S� is given in Figure 5.17. The
complete indexing code for call�
 can thus be patched together from these and
the partitioned scheme for S�, S�, S�, and S� given earlier. An illustration of a
degenerate case where all three levels of indexing are not necessary is given in
Figure 5.18 for the familiar conc definition for concatenating two lists:

conc���� L� L��
conc��HjT �� L� �HjR�� :- conc�T�L�R��

It is interesting to observe that when the conc�� procedure is called with an in-
stantiated first argument, no choice point frame for it is ever needed. As a matter
of fact, using indexing has a major incidental benefit as it substantially reduces the
creation and manipulation of choice point frames on the stack. This has as corol-
lary that it also reduces the effects of environment protection, and thus magnifies
the gain of LCO and environment trimming. For example, let us assume that a list
processing procedure lp is defined as:

lp��HjT �� :- process�H�� lp�T ��
lp�����

Some programmers have indeed taken the habit of specifying the ��-clause last us-
ing Prolog interpreters. They reason that since there are many more � j �’s in a list

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 79 OF 129

WARREN’S ABSTRACT MACHINE

switch on term S��� C�� fail� F� % �st level dispatch for S�

C� � switch on constant �� f trace � S�b�
notrace � S�d�
nl � S�e g

% �nd level for constants

F� � switch on structure �� f or�� � F�� g % �nd level for structures

F�� � try S�a % �rd level for or��
trust S�c %

S�� � try me else S�� % call
S�a � get structure or���A� % �or

unify variable A� % �X�
unify void � % Y ��
execute call�� % :- call�X��

S�� � retry me else S�� % call
S�b � get constant trace�A� % �trace�

execute trace�� % :- trace�

S�� � retry me else S�� % call
S�c � get structure or���A� % �or

unify void � % �X�
unify variable A� % Y ��
execute call�� % :- call�Y ��

S�� � retry me else S�� % call
S�d � get constant notrace�A� % �notrace�

execute notrace�� % :- notrace�

S�� � trust me % call
S�e � get constant nl�A� % �nl�

execute nl�� % :- nl�

Figure 5.16: Indexing code for subsequence S�

PAGE 80 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

S� switch on term S��� C�� fail� F� % �st level dispatch for S�

C� � switch on constant �� f repeat � C���
true � S�d g

% �nd level for constants

F� � switch on structure �� f call�� � S�� g % �nd level for structures

C�� � try S�b % �rd level for ‘repeat’
trust S�c %

S�� � try me else S�� % call
S�a � get structure call���A� % �call

unify variable A� % �X��
execute call�� % :- call�X��

S�� � retry me else S�� % call
S�b � get constant repeat�A� % �repeat�

proceed % �

S�� � retry me else S�� % call
S�c � get constant repeat�A� % �repeat�

put constant repeat�A� % :- call�repeat�
execute call�� % �

S�� � trust me % call
S�d � get constant true�A� % �true�

proceed % �

Figure 5.17: Indexing code for subsequence S�

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 81 OF 129

WARREN’S ABSTRACT MACHINE

conc�� � switch on term C�a� C�� C�� fail %

C�a � try me else C�a % conc
C� � get constant ���A� % ����

get value A��A� % L� L�
proceed % �

C�a � trust me % conc
C� � get list A� % ��

unify variable X� % H j
unify variable A� % T �� L�
get list A� % �
unify value X� % H j
unify variable A� % R��
execute conc�� % :- conc�T� L�R��

Figure 5.18: Encoding of conc��

than the single final ��, this procedure, when invoked with an instantiated first ar-
gument, will backtrack only once at the end of list before reaching initial success.
However, with a compiler using LCO but no clause indexing, this will annihilate
all effects of LCO because a choice point will systematically cover every recur-
sive call’s environment to lp with a non-empty list in the key position. Whereas,
for such calls clause indexing will eliminate all choice points and transform either
ordering of the two clauses into fast iterative code.

All explicit definitions for the indexing instructions are given in Appendix B.

Exercise 5.4 The effect of the switch on constant instruction described above
is that given originally by Warren in [War83]. However, it does useless work as
it eventually leads to a get constant instruction that redundantly tests whether
register A� contains that very same constant that was seen inA� byswitch on constant.
Can you propose a simple optimization to avoid this redundancy? [Hint: Beware
of intermediate levels of indexing.]

Exercise 5.5 If you could figure out a solution for Exercise 5.4, can it also work or
be adapted to avoid a redundantA� check byget structure afterswitch on structure?
[Hint: Beware of the setting of the S register and that of read/write mode.]

PAGE 82 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

5.11 Cut

In this last section, we explain how the design obtained after the compounding of
all the foregoing optimizations can be augmented to accommodate implementa-
tion of the Prolog cut. The treatment of cut was not part of the original WAM
report [War83]. The material we present here is extrapolated from what was
sketched in [War88] and suggestions from Dean Rosenzweig [Ros91].

As is well-known, the cut predicate (noted ‘�’) is an extra-logical control anno-
tation that helps the Prolog programmer trim the search space. The operational
semantics of ‘�’ is simply to succeed with a side effect on backtracking informa-
tion; namely, once passed, it makes control forget any other potential alternative
for the procedure in whose clause it appears as well as any other arising from
preceding body goals.

In terms of the machine architecture at hand, this effect is obtained by discarding
all choice point frames that were created after the choice point frame that was
current right before the call of the procedure containing the cut. Let us assume
that the appropriate choice point where to return upon backtracking over a cut is
maintained in a global register called the cut register and noted B0. Clearly, the
value of B0 must be set to the address of the choice point that is current at the time
a procedure call is made. This is achieved by altering the call and execute
instructions to set B0 to the value of the current value of B. In this way, executing
a cut amounts essentially to resetting B to the value of B0.

There are really two sorts of cuts to consider: shallow and deep cuts. A shallow
cut is one located between the head and the body of the rule immediately after the
‘:-’ symbol (thus also called neck cut—somewhat euphemistically), as in:

h :- �� b�� � � � � bn�

while a deep cut is any other, of the form:

h :- � � � � bi� �� � � � � bn� �
 � i � n��

Before looking at each case in detail, let us first make an important observation
regarding the creation of choice points. While it is easy to see that clause index-
ing may bypass creating a choice point for a multiple-clause procedure, it is per-
haps less immediate to realize that indexing may also cause creating an additional
choice point for such a procedure. For instance, refer to the call�
 procedure given

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 83 OF 129

WARREN’S ABSTRACT MACHINE

on Page 76. Its instruction sequence (Page 77) starts with:

call�
 � try me else S�

which creates one choice point for call�
. Further down in that procedure’s in-
struction sequence, what constitutes subsequence S� (given as Figure 5.16 on
Page 80) contains the instruction:

F�� � try S�a

that will create a second choice point for call�
 if executed.12

Let us first consider the simpler case where the clause containing the cut, be it shal-
low or deep, is the first (not necessarily in sequence thanks to indexing) among
those of the called procedure’s to be executed upon entering the procedure with
call or execute. We shall see later what to do in the other case where back-
tracking occurred since the original call.

Upon starting executing the instruction sequence of the clause containing a shal-
low cut, B0 is either equal to B (since indexing could have bypassed creating a
choice point for the procedure containing the rule), or equal to one of the two
previous choice points preceding B. If B0 and B are equal, there is no action to
be taken by the cut since this call does not have alternatives anyway. Otherwise
(B � B0), the shallow cut must discard any (one or two) choice points following
B. This action is the same in either case (i.e., B� B0�HB� B�H). This is the
main effect of the new instruction neck cut into which a shallow cut occurrence
is translated. For instance, the body of:

a :- �� b�

is compiled into:
neck cut
execute b��

The resetting of B and HB is not quite all that may be done upon a cut. Indeed,
discarding a choice point may change the status of some bindings recorded as con-
ditional in the trail which will have become unconditional for those heap (resp.,

12This fact was brought to our attention by Dean Rosenzweig [Ros91] who noticed that the
scheme given in [AK90] was erroneous. We gratefully acknowledge his suggesting the corrected
scheme we describe next.

PAGE 84 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

stack) variables whose addresses will now be greater than HB (resp., B). There-
fore, this calls for a clean-up of the trail up to the trail address indicated by the re-
instated choice point frame. This amounts to removing the appropriate addresses
from the trail and tamping it down to eliminate the holes this may have created
in it. (This operation is given as an ancillary operation called tidy trail in Ap-
pendix B.)

Regarding deep cuts, the complication is that the calls to intervening body goals
will overwrite the cut register B0 between the time the clause containing the cut
is entered and the time the cut is executed. However, all choice points created be-
tween the setting of B0 upon calling this clause’s procedure and this deep cut must
be discarded. Therefore, in exactly the same way as for CP, it will be necessary to
save B0 further as part of the cut clause’s environment. Fortunately, it is not nec-
essary to do so systematically for all clauses since most do not contain deep cuts.
Thus, rather than extending the format of an environment frame with a special slot
for B0 as we did for CP, it is preferable to save it as a pseudo permanent variable.
The situation then is to assimilate a deep cut occurrence as ��Y �, where Y is a
permanent variable distinct from all other variables in the clause. This variable is
allocated in the current environment to accommodate environment trimming just
like the other real permanent variables (i.e., its offset is greater than the subse-
quent goal’s and less that the preceding goal’s). With this, we only need two new
instructions:

�
� get level Yn
�	� cut Yn

such that (1) get level Yn always appear immediately after allocate in the
clause, having for effect to set Yn to contain the current value of B0; whereas,
(2) cut Y n discards all (if any) choice points after that indicated by Yn, and
cleans up new unconditional bindings from the trail up to that point. For example,

a :- b� �� c�

is compiled into:

allocate
get level Y

call b���

cut Y

deallocate
execute c��

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 85 OF 129

WARREN’S ABSTRACT MACHINE

Note now that the presence of a deep cut in a rule that would otherwise be a
chain rule (e.g., a :- b� ��) makes it a deep rule requiring environment allocation.
However, this not the case when a shallow cut occurs in rule that would otherwise
be a chain rule. A neck cut does not make such a rule a deep rule, even though it
might be construed as having two body goals.

The scheme just described deals correctly with cuts in the case where the clause
in question is the first executed among those of the called procedure. However, it
is not quite complete as given to be correct if the clause is executed after back-
tracking within the same procedure. Then, there is yet the problem of restoring a
correct value for B0. For example, consider the following pattern:

a :- b� c�
a :- �� d�
a :- � � �

At the time a is called, B0 is set to the current choice point. When the clause
a :- b� c� is executed, the call to b overwrites B0. Now, if the call to b fails,
backtracking to the following clause will execute the shallow cut and reset B to
the spurious value left in B0 by the failed call to b.

This simple example illustrates the need for restoring B0 to a correct value upon
backtracking. But what (and where) is this correct value? It would not be correct
to reset B0 to the choice point preceding the current B since, as observed before,
indexing may have created two choice points for the procedure and there is no
simple way to detect this. The solution that we adopt here is simple. (More
efficient but more complicated alternatives can be devised—e.g., see Exercise 5.6.)
Namely, the value of the cut register B0 is systematically saved as part of a choice
point at its creation and restored upon backtracking from that information saved
in the current choice point. Accordingly, the format of a choice point frame given
on Page 38 is extended with an additional slot for this purpose (as shown in the
complete layout on Page 117) and the try me else and try instructions are
modified appropriately. (So is allocate since it must account for this additional
slot space when B is the top of the stack.)

We now have a complete and correct scheme for handling cut. All the machinery
we just presented is taken into account in the explicit definitions of the complete
WAM instructions given in Appendix B.

Exercise 5.6 The following is suggested by [Ros91]. The problem of knowing to
which value B0 must be restored upon backtracking may be solved in a better way

PAGE 86 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

than systematically saving it as part of a choice point. It is possible to use two
slightly different versions for retry me else (resp., retry) depending on the
level of indexing they are used for. An “outer” version, say retry me else 1
(resp., retry 1) would reset B0 to the previous choice point, and an inner version
, say retry me else 2 (resp., retry 2) would reset B0 to the choice point
preceding the previous one. Give a correct translation scheme and all appropriate
modifications needed in the explicit definitions of Appendix B to implement this
solution.

Exercise 5.7 Refer to the remark made in Footnote 3 on Page 38. Give all appro-
priate modifications needed in the pseudo-code given in Appendix B defining the
WAM instructions and ancillary operations in order to eliminate the arity slot from
choice point frames.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 87 OF 129

WARREN’S ABSTRACT MACHINE

PAGE 88 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

Chapter 6

Conclusion

In this tutorial, we have conducted an exhaustive reconstruction of an abstract
machine architecture for Prolog as completely as it has been conceived by David
H. D. Warren. Starting from a mere first-order term unification machine, we have
elaborated its design gradually, introducing each needed concept as didactically
as we thought possible. Doing so, we have striven to justify every single design
decision, explicating often subtle interplays as they arose.

Obviously, the design that we have attained necessarily does not contain all the
tools needed for constructing a complete Prolog compiler and run-time envi-
ronment. Namely, many details regarding other interesting Prolog control con-
structs (e.g., conditional, freeze, etc.), extra-logical and built-in procedures (e.g.,
assert/retract, setof, etc.), input/output facilities, etc., are yet to be spelled out.
However, all this is clearly beyond the scope of this tutorial. These additional
features, as well as any other operationally well-defined interesting extensions,
can be integrated into the pure WAM design we have presented without excessive
labor.

For those interested in more advanced material using WAM ideas, some works are
worth mentioning for further reading. In particular, the manner in which the WAM
regards unification has a strong relation with partial evaluation techniques as ex-
plained in particular in [Kur87]. Also, since compilation as done by the WAM
treats each procedure independently of the rest of the program, global analysis
techniques can therefore be considered as in [Mel85, DW86a, DW86b, Deb89,
DW89, vR90, vRD90]. Finally, one will find copious material about improving
backtracking in Prolog in [PP82, BP84, Cox84, CCF88, ZTU90, Zho90].

89

WARREN’S ABSTRACT MACHINE

At any rate, we hope to have contributed to give the reader a rapid and clear
understanding with thorough, if not formal, justification of all the details of the
essential abstract machine. Our aim has been to leave as little unexplained as
possible, opening up Warren’s original design. Seen thus decomposed and recon-
structed from its logical components, the WAM’s organization and workings lose
all mystery. Yet, far from lessening its designer’s credit, understanding the WAM
can make one appreciate all the more David H. D. Warren’s feat, as he conceived
this architecture in his mind as one whole. We are pleased to have shared with the
reader our admiration for his contribution’s adequacy and elegance.

PAGE 90 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

Appendix A

Prolog in a Nutshell

We first present basic notions for first-order terms and substitutions. Then, we
describe a non-deterministic unification algorithm as a set of solution-preserving
transformations on a set of equations due to Herbrand [Her71] (cf., Page 148) and
rediscovered by Martelli-Montanari [MM82]. Then, we summarize the essence
of Prolog’s operational semantics.

Terms and substitutions

Let f�ngn�� be an indexed family of mutually disjoint sets of (function) symbols
of arity n. Let � �

S
n���n be the set of all function symbols. Let V be a

countably infinite set of variables. By convention, variables will be capitalized
not to confuse them with constants in ��.

Let T be the set of (first-order) terms defined as the smallest set such that:

�if X � V then X � T ;
�if a � �� then a � T ;
�if f � �n, �n �
�, and ti � T � �
 � i � n�, then f�t�� � � � � tn� � T .

For example, given the signature � such that p � ��, h � ��, f � ��,
and a � ��, and given that W , X , Y , and Z are variables in V , the terms
p�Z� h�Z�W �� f�W �� and p�f�X�� h�Y� f�a��� Y � are in T .

A substitution is a finitely non-identical assignment of terms to variables; i.e., a
function � from V to T such that the set fX � V j X 	� ��X�g is finite. This

91

WARREN’S ABSTRACT MACHINE

set is called the domain of � and denoted by dom���. Such a substitution is also
written as a set such as � � fti�Xigni�� where dom���� fXigni�� and ��Xi� � ti
for i �
 to n.

A substitution � is uniquely extended to a function � from T to T as follows:

���X� � ��X�, if X � V;
���a� � a, if a � ��;
���f�t�� � � � � tn�� � f���t��� � � � � ��tn��, if f � �n, ti � T � �
 � i � n�.

Since they coincide on V , and for notation convenience, we deliberately confuse a
substitution � and its extension �. Also, rather than writing��t�, we shall write t�.
Given two substitutions � � fti�Xigni�� and � � fsj�Yjgmj��, their composition
�� is the substitution which yields the same result on all terms as first applying �
then applying � on the result. One computes such a composition as the set:

�� � � ft��X j t�X � �g � fX�X j X � dom���g �

 � � � fs�Y j Y � dom���g ��

For example, if � � ff�Y ��X�U�V g and � � fb�X� f�a��Y� V�Ug, then com-
posing � and � yields �� � ff�f�a���X� f�a��Y� V�Ug, while composing � and
� gives �� � fb�X� f�a��Y� U�V g.

Composition defines a preorder (i.e., a reflexive and transitive relation) on substi-
tutions. A substitution � is more general than a substitution � iff there exists a
substitution � such that � � ��. For example, ff�Y ��Xg is more general than
ff�f�a���X� f�a��Y g.

Unification algorithm

An equation is a pair of terms, written s � t. A substitution � is a solution (or a
unifier) of a set of equations fsi � tigni�� iff si� � ti� for all i �
� � � � � n. Two
sets of equations are equivalent iff they both admit all and only the same solutions.
Following [MM82], we define two transformations on sets of equations—term
decomposition and variable elimination. They both preserve solutions of sets of
equations.

Term Decomposition If a set E of equations contains an equation of the form
f�s�� � � � � sn� � f�t�� � � � � tn�, where f � �n� �n � ��, then the set E� �

PAGE 92 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

E � ff�s�� � � � � sn� � f�t�� � � � � tn�g
 fsi � tigni�� is equivalent to E.1

Variable Elimination If a set E of equations contains an equation of the form
X � t where t 	� X , then the set E� � �E � fX � tg��
 fX � tg where
� � ft�Xg, is equivalent to E.

A set of equationsE is partitioned into two subsets: its solved part and its unsolved
part. The solved part is its maximal subset of equations of the form X � t such
that X occurs nowhere in the full set of equations except as the left-hand side of
this equation alone. The unsolved part is the complement of the solved part. A set
of equations is said to be fully solved iff its unsolved part is empty.

Following is a unification algorithm. It is a non-deterministic normalization pro-
cedure for a given set E of equations which repeatedly chooses and performs one
of the following transformations until none applies or failure is encountered.

�u�
� Select any equation of the form t � X where t is not a variable, and
rewrite it as X � t.

�u�	� Select any equation of the form X � X and erase it.

�u��� Select any equation of the form f�s�� � � � � sn� � g�t�� � � � � tm� where
f � �n and g � �m� �n�m � ��; if f 	� g or n 	� m, stop
with failure; otherwise, if n � � erase the equation, else �n �
� replace
it with n equations si � ti� �i �
� � � � � n�.

�u��� Select any equation of the form X � t where X is a variable which
occurs somewhere else in the set of equations and such that t 	� X .
If t is of the form f�t�� � � � � tn�, where f � �n, and if X occurs in t,
then stop with failure; otherwise, let � � ft�Xg and replace every other
equation l � r by l� � r�.

If this procedure terminates with success, the set of equations which emerges as
the outcome is fully solved. Its solved part defines a substitution called the most
general unifier (MGU) of all the terms participating as sides of equations in E. If
it terminates with failure, the set of equations E is unsatisfiable and no unifier for
it exists.

The set E � fp�Z� h�Z�W �� f�W �� � p�f�X�� h�Y� f�a��� Y �g, for example,
is normalized as follows:

1If n � �, the equation is simply deleted.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 93 OF 129

WARREN’S ABSTRACT MACHINE

fZ � f�X� � h�Z�W � � h�Y� f�a�� � f�W � � Y g [by �u���]

fZ � f�X� � h�f�X��W � � h�Y� f�a�� � f�W � � Y g [by �u���]

fZ � f�X� � f�X� � Y � W � f�a� � f�W � � Y g [by �u���]

fZ � f�X� � Y � f�X� � W � f�a� � f�W � � Y g [by �u�
�]

fZ � f�X� � Y � f�X� � W � f�a� � f�W � � f�X�g [by �u���]

fZ � f�X� � Y � f�X� � W � f�a� � f�f�a�� � f�X�g [by �u���]

fZ � f�X� � Y � f�X� � W � f�a� � f�a� � Xg [by �u���]

fZ � f�X� � Y � f�X� � W � f�a� � X � f�a�g [by �u�
�]

fZ � f�f�a�� � Y � f�f�a�� � W � f�a� � X � f�a�g [by �u���]

producing the substitution � � ff�f�a���Z� f�a��W� f�f�a���Y� f�a��Xg which
is the MGU of p�Z� h�Z�W �� f�W �� and p�f�X�� h�Y� f�a��� Y � and both yield
the same term p�f�f�a��� h�f�f�a��� f�a��� f�f�a��� when applied the substitu-
tion �.

Prolog

Logic programming, of which Prolog is the canonical language, expresses pro-
grams as relational rules of the form:

r���t�� :- r���t��� � � � � rn��tn��

where the ri’s are relationals symbols and the �ti’s are tuples of first-order terms.
One reads such a rule as: “For all bindings of their variables, the terms�t� are in
relation r� if the terms �t� are in relation r� and ... the terms �tn are in relation rn.”
In the case where n � �, the rule reduces to the simple unconditional assertion,
or fact, r���t�� that the terms �t� are in relation r�. A fact will be written omitting
the :- symbol. These rules are called definite clauses; expressions such as ri��ti�
are called atoms; the head of a definite clause is the atom on the left of the :-
symbol, and its body is the conjunction of atoms on its right.

For example, the following are two definite clauses, the first one being a fact:

conc���� L� L��
conc�H�T�L�H�R� :- conc�T�L�R��

PAGE 94 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

where ‘��’ � �� is a constant and the function symbol ‘�’ � �� is written in infix
notation. This may be used as a program to concatenate two lists where �� is used
as a list terminator.2

A query is a clause of the form:

:- q���s��� � � � � qm��sm��

A query as shown above may be read: “Does there exist some binding of variables
such that the terms �s� are in relation q� and ... �sm are in relation qm?” To em-
phasize that this is interpreted as a question, the symbol :- is then written ?- as
in:

?- q���s��� � � � � qm��sm��

SLD resolution is a non-deterministic deduction rule by which queries are trans-
formed. It owes its origins to Automatic Theorem Proving based on the Res-
olution Principle discovered by J. A. Robinson [Rob65] and was proposed by
R. A. Kowalski [Kow79] as a computation rule. Technically, it is characterized as
linear resolution over definite clauses, using a selection function. Linear resolu-
tion is a particular restriction of the non-deterministic application of the general
deduction rule defined in [Rob65] so that one single fixed clause keeps being
transformed by resolving it against other clauses in a given set. SLD resolution
is a further restriction of linear resolution where (1) the fixed clause is a query,
(2) clauses in the set are definite, and (3) an oracular function selects which atom
in the query to resolve on and which definite clause in the set to resolve against.
Thus, the letters “SLD” stand respectively for “Selection,” “Linear,” and “Defi-
nite.”

More specifically, using the above Prolog notation for queries and rules, SLD
resolution consists in choosing an atom qi��si� in the query’s body and a definite
clause in the given set whose head r���t�� unifies with qi��si� thanks to a variable
substitution � (i.e., qi��si�� � r���t���), then replacing it by the body of that clause
in the query, applying substitution � to all the new query. That is,

?- q���s���� � � � � qi����si����� r���t���� � � � � rn��tn��� qi����si����� � � � � qm��sm���

The process is repeated and stops when and if the query’s body is empty (suc-
cess) or no rule head unifies with the selected atom (failure). There are two non-
deterministic choices made in the process: one of an atom to rewrite in the query

2For example, �������� is a list. Edinburgh Prolog syntax uses �XjY � instead ofX�Y ; it also uses
a simplified variant to express a list in extenso, allowing writing [1,2,3] rather than ��j��j��j�����.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 95 OF 129

WARREN’S ABSTRACT MACHINE

and one among the potentially many rules whose head to unify with this atom. In
any case, SLD resolution is sound (i.e., it does not derive wrong solutions) and,
provided these choices are made by a fair non-deterministic selection function, it
is also complete (i.e., it derives all solutions).

Prolog’s computation rule is a particular deterministic approximation of SLD res-
olution. Specifically, it is a flattening of SLD resolution emulating a depth-first
search. It sees a program as an ordered set of definite clauses, and a query or
definite clause body as an ordered set of atoms. These orders are meant to pro-
vide a rigid guide for the two choices made by the selection function of SLD
resolution. Thus, Prolog’s particular computation strategy transforms a query by
rewriting the query attempting to unify its leftmost atom with the head of the first
rule according to the order in which they are specified. If failure is encountered,
a backtracking step to the latest rule choice point is made, and computation re-
sumed there with the next alternative given by the following rule. For example,
if the two clauses for predicate conc are given as above, then the Prolog query
‘?- conc�
�	�T� ������� L��’ succeeds with the substitution T � ��� L �
�	�������,
while the query ‘?- conc�
�	����X� ��Y ��’ fails.

Strategies for choice of where to apply linear resolution are all logically consistent
in the sense that if computation terminates, the variable binding exhibited is a
legitimate solution to the original query. In particular, like non-deterministic SLD
resolution, Prolog resolution is sound. However, unlike non-deterministic SLD
resolution, it is incomplete. Indeed, Prolog’s particular strategy of doing linear
resolution may diverge although finitely derivable solutions to a query may exist.
For example, if the definite clauses for conc are given in a different order (i.e.,
first the rule, then the fact), then the query ‘?- conc�X�Y�Z��’ never terminates
although it has (infinitely many) finitely derivable solutions!

PAGE 96 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

Appendix B

The WAM at a glance

B.1 WAM instructions

We summarize here for quick reference all the instructions of the WAM. In some
instructions, we use the notation Vn to denote a variable that may be indifferently
temporary or permanent.

97

WARREN’S ABSTRACT MACHINE

The complete set:

Put instructions

put variable Xn�Ai
put variable Yn�Ai
put value Vn�Ai
put unsafe value Yn�Ai
put structure f�Ai
put list Ai
put constant c�Ai

Get instructions

get variable Vn�Ai
get value Vn�Ai
get structure f�Ai
get list Ai
get constant c�Ai

Set instructions

set variable Vn
set value Vn
set local value Vn
set constant c
set void n

Unify instructions

unify variable Vn
unify value Vn
unify local value Vn
unify constant c
unify void n

Control instructions

allocate
deallocate
call P�N

execute P
proceed

Choice instructions

try me else L

retry me else L
trust me
try L
retry L

trust L

Indexing instructions

switch on term V� C�L� S
switch on constant N� T

switch on structure N� T

Cut instructions

neck cut
get level Yn
cut Yn

PAGE 98 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

Put instructions

put variable Xn�Ai

Push a new unbound REF cell onto the
heap and copy it into both register Xn
and register Ai. Continue execution with
the following instruction.

HEAP[H]� hREF � H i�
Xn� HEAP[H]�
Ai� HEAP[H]�
H� H ��
P� P instruction size�P��

put variable Yn�Ai

Initialize the n-th stack variable in the
current environment to ‘unbound’ and
let Ai point to it. Continue execution
with the following instruction.

addr � E n ��
STACK[addr]� hREF � addr i�
Ai� STACK[addr]�
P� P instruction size�P��

put value Vn�Ai

Place the contents of Vn into register Ai.
Continue execution with the following
instruction.

Ai� Vn�
P� P instruction size�P��

put unsafe value Yn�Ai

If the dereferenced value of Yn is not an
unbound stack variable in the current en-
vironment, set Ai to that value. Other-
wise, bind the referenced stack variable
to a new unbound variable cell pushed
on the heap, and set Ai to point to that
cell. Continue execution with the fol-
lowing instruction.

addr � deref �E n ���
if addr � E
then Ai� STORE[addr]
else

begin

HEAP[H]� hREF � H i�
bind�addr �H��
Ai� HEAP[H]�
H� H �

end�
P� P instruction size�P��

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 99 OF 129

WARREN’S ABSTRACT MACHINE

put structure f�Ai

Push a new functor cell containing f
onto the heap and set register Ai to an
STR cell pointing to that functor cell.
Continue execution with the following
instruction.

HEAP[H]� f�n�
Ai� hSTR � H i�
H� H ��
P� P instruction size�P��

put list Ai

Set register Ai to contain a LIS cell
pointing to the current top of the heap.
Continue execution with the following
instruction.

Ai� hLIS � H i�
P� P instruction size�P��

put constant c�Ai

Place a constant cell containing c into
register Ai. Continue execution with the
following instruction.

Ai� hCON � c i�
P� P instruction size�P��

Get instructions

get variable Vn�Ai

Place the contents of register Ai into
variable Vn. Continue execution with
the following instruction.

Vn � Ai�
P� P instruction size�P��

get value Vn�Ai

Unify variable Vn and register Ai.
Backtrack on failure, otherwise con-
tinue execution with following in-
struction.

unify�Vn�Ai��
if fail

then backtrack
else P� P instruction size�P��

PAGE 100 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

get structure f�Ai

If the dereferenced value
of register Ai is an un-
bound variable, then bind
that variable to a new STR
cell pointing to f pushed
on the heap and set mode
to write; otherwise, if it
is a STR cell pointing to
functor f , then set register
S to the heap address fol-
lowing that functor cell’s
and set mode to read.
If it is not a STR cell or
if the functor is different
than f , fail. Backtrack
on failure, otherwise con-
tinue execution with fol-
lowing instruction.

addr � deref �Ai��
case STORE[addr] of

hREF � i � HEAP[H]� hSTR � H � i�
HEAP[H �]� f �
bind�addr �H��
H� H ��
mode � write�

hSTR � a i � if HEAP[a]
 f
then

begin

S� a ��
mode � read

end

else fail � true�
other � fail � true�

endcase�
if fail

then backtrack
else P� P instruction size�P��

get list Ai

If the dereferenced value
of register Ai is an un-
bound variable, then bind
that variable to a new LIS
cell pushed on the heap
and set mode to write;
otherwise, if it is a LIS
cell, then set register S to
the heap address it con-
tains and set mode to
read. If it is not a
LIS cell, fail. Backtrack
on failure, otherwise con-
tinue execution with fol-
lowing instruction.

addr � deref �Ai��
case STORE[addr] of

hREF � i � HEAP[H]� hLIS � H � i�
bind�addr �H��
H� H ��
mode � write�

hLIS � a i � S� a�
mode � read�

other � fail � true�
endcase�
if fail

then backtrack
else P� P instruction size�P��

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 101 OF 129

WARREN’S ABSTRACT MACHINE

get constant c�Ai

If the dereferenced value
of register Ai is an un-
bound variable, bind that
variable to constant c.
Otherwise, fail if it is not
the constant c. Backtrack
on failure, otherwise con-
tinue execution with fol-
lowing instruction.

addr � deref �Ai��
case STORE[addr] of

h REF � i � STORE[addr]� hCON � c i�
trail�addr��

h CON � c� i � fail � �c �
 c���
other � fail � true�

endcase�
if fail

then backtrack
else P� P instruction size�P��

Set instructions

set variable Vn

Push a new unbound REF cell onto the
heap and copy it into variable Vn. Con-
tinue execution with the following in-
struction.

HEAP[H]� hREF � H i�
Vn � HEAP[H]�
H� H ��
P� P instruction size�P��

set value Vn

Push Vn’s value onto the heap. Continue
execution with the following instruction.

HEAP[H]� Vn�
H� H ��
P� P instruction size�P��

PAGE 102 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

set local value Vn

If the dereferenced value of Vn is an
unbound heap variable, push a copy
of it onto the heap. If the derefer-
enced value is an unbound stack ad-
dress, push a new unbound REF cell
onto the heap and bind the stack vari-
able to it. Continue execution with the
following instruction.

addr � deref �Vn��
if addr � H
then HEAP[H]� HEAP[addr]
else

begin

HEAP[H]� hREF � H i�
bind�addr �H�

end�
H� H ��
P� P instruction size�P��

set constant c

Push the constant c onto the heap. Con-
tinue execution with the following in-
struction.

HEAP[H]� hCON � c i�
H� H ��
P� P instruction size�P��

set void n

Push n new unbound REF cells onto the
heap. Continue execution with the fol-
lowing instruction.

for i� H to H n� � do
HEAP[i] � hREF � i i�

H� H n�
P� P instruction size�P��

Unify instructions

unify variable Vn

In read mode, place the contents of
heap address S into variable Vn; in
write mode, push a new unbound
REF cell onto the heap and copy it
into Xi. In either mode, increment S
by one. Continue execution with the
following instruction.

case mode of

read � Vn� HEAP[S]�
write � HEAP[H]� hREF � H i�

Vn� HEAP[H]�
H� H ��

endcase�
S� S ��
P� P instruction size�P��

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 103 OF 129

WARREN’S ABSTRACT MACHINE

unify value Vn

In read mode, unify variable Vn and
heap address S; in write mode, push
the value of Vn onto the heap. In either
mode, increment S by one. Backtrack
on failure, otherwise continue execu-
tion with following instruction.

case mode of

read � unify�Vn�S��
write � HEAP[H]� Vn�

H� H ��
endcase�
S� S ��
if fail

then backtrack
else P� P instruction size�P��

unify local value Vn

In read mode, unify
variable Vn and heap
address S. In write
mode, if the derefer-
enced value of Vn is an
unbound heap variable,
push a copy of it onto
the heap. If the deref-
erenced value is an un-
bound stack address,
push a new unbound
REF cell onto the heap
and bind the stack vari-
able to it. In either
mode, increment S by
one. Backtrack on fail-
ure, otherwise continue
execution with follow-
ing instruction.

case mode of

read � unify�Vn�S��
write � addr � deref �Vn��

if addr � H
then HEAP[H]� HEAP[addr]
else

begin

HEAP[H]� hREF � H i�
bind�addr �H�

end�
H� H ��

endcase�
S� S ��
if fail

then backtrack
else P� P instruction size�P��

PAGE 104 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

unify constant c

In read mode, dereference the heap address S. If the result is an unbound vari-
able, bind that variable to the constant c; otherwise, fail if the result is different
than constant c. In write mode, push the constant c onto the heap. Backtrack
on failure, otherwise continue execution with following instruction.

case mode of

read � addr � deref �S��
case STORE[addr] of

hREF � i � STORE[addr]� h CON � c i�
trail�addr��

hCON � c� i � fail � �c �
 c���
other � fail � true�

endcase�
write � HEAP[H]� hCON � c i�

H� H ��
endcase�
if fail

then backtrack
else P� P instruction size�P��

unify void n

In write mode, push n new
unbound REF cells onto the
heap. In read mode, skip the
next n heap cells starting at lo-
cation S. Continue execution
with the following instruction.

case mode of

read � S� S n�
write � for i� H to H n� � do

HEAP[i] � hREF � i i�
H� H n�

endcase�
P� P instruction size�P��

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 105 OF 129

WARREN’S ABSTRACT MACHINE

Control instructions

allocate

Allocate a new environment on the stack, setting its continuation environment
and continuation point fields to current E and CP, respectively. Continue execu-
tion with the following instruction.

if E � B
then newE � E CODE[STACK[E �]� �] �
else newE � B STACK[B] ��

STACK[newE]� E�
STACK[newE �]� CP�
E� newE�
P� P instruction size�P��

deallocate

Remove the environment frame at stack
location E from the stack by resetting E
to the value of its CE field and the con-
tinuation pointer CP to the value of its
CP field. Continue execution with the
following instruction.

CP � STACK[E �]�
E� STACK[E]�
P� P instruction size�P��

call P�N

If P is defined, then save the cur-
rent choice point’s address in B0
and the value of current continua-
tion in CP, and continue execution
with instruction labeled P , with N
stack variables remaining in the cur-
rent environment; otherwise, back-
track.

if de�ned�P �
then

begin

CP� P instruction size�P��
num of args � arity�P ��
B0� B�
P� ��P �

end

else backtrack�

PAGE 106 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

execute P

If P s defined, then save the current
choice point’s address in B0 and con-
tinue execution with instruction labeled
P ; otherwise, backtrack.

if de�ned�P �
then

begin

num of args � arity�P ��
B0� B�
P� ��P �

end

else backtrack�

proceed

Continue execution at instruction whose
address is indicated by the continuation
register CP.

P� CP�

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 107 OF 129

WARREN’S ABSTRACT MACHINE

Choice instructions

try me else L

Allocate a new choice point frame on the stack setting its next clause field to L
and the other fields according to the current context, and set B to point to it.
Continue execution with following instruction.

if E � B
then newB � E CODE[STACK[E �]� �] �
else newB � B STACK[B] ��

STACK[newB]� num of args�
n� STACK[newB]�
for i� � to n do STACK[newB i]� Ai�
STACK[newB n �]� E�
STACK[newB n �]� CP�
STACK[newB n �]� B�
STACK[newB n �]� L�
STACK[newB n �]� TR�
STACK[newB n �]� H�
STACK[newB n �]� B0�
B� newB�
HB� H�
P� P instruction size�P��

retry me else L

Having backtracked to the cur-
rent choice point, reset all the
necessary information from it
and update its next clause field
to L. Continue execution with
following instruction.

n� STACK[B]�
for i� � to n do Ai� STACK[B i]�
E� STACK[B n �]�
CP� STACK[B n �]�
STACK[B n �]� L�
unwind trail�STACK[B n �]�TR��
TR� STACK[B n �]�
H� STACK[B n �]�
HB� H�
P� P instruction size�P��

PAGE 108 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

trust me

Having backtracked to the cur-
rent choice point, reset all the
necessary information from it,
then discard it by resetting B to
its predecessor. Continue exe-
cution with following instruc-
tion.

n� STACK[B]�
for i� � to n do Ai� STACK[B i]�
E� STACK[B n �]�
CP � STACK[B n �]�
unwind trail�STACK[B n �]�TR��
TR � STACK[B n �]�
H� STACK[B n �]�
B� STACK[B n �]�
HB � STACK[B n �]�
P� P instruction size�P��

try L

Allocate a new choice point frame on the stack setting its next clause field to the
following instruction and the other fields according to the current context, and
set B to point to it. Continue execution with instruction labeled L.

if E � B
then newB � E CODE[STACK[E �]� �] �
else newB � B STACK[B] ��

STACK[newB]� num of args�
n� STACK[newB]�
for i� � to n do STACK[newB i]� Ai�
STACK[newB n �]� E�
STACK[newB n �]� CP�
STACK[newB n �]� B�
STACK[newB n �]� P instruction size�P��
STACK[newB n �]� TR�
STACK[newB n �]� H�
STACK[newB n �]� B0�
B� newB�
HB� H�
P� L�

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 109 OF 129

WARREN’S ABSTRACT MACHINE

retry L

Having backtracked
to the current choice
point, reset all the
necessary information
from it and update its
next clause field to
following instruction.
Continue execu-
tion with instruction
labeled L.

n� STACK[B]�
for i� � to n � � do Ai� STACK[B i]�
E� STACK[B n �]�
CP� STACK[B n �]�
STACK[B n �]� P instruction size�P��
unwind trail�STACK[B n �]�TR��
TR� STACK[B n �]�
H� STACK[B n �]�
HB� H�
P� L�

trust L

Having backtracked to the cur-
rent choice point, reset all nec-
essary information from it, then
discard it by resetting B to its
predecessor. Continue execu-
tion with instruction labeled L.

n� STACK[B]�
for i� � to n do Ai� STACK[B i]�
E� STACK[B n �]�
CP� STACK[B n �]�
unwind trail�STACK[B n �]�TR��
TR� STACK[B n �]�
H� STACK[B n �]�
B� STACK[B n �]�
HB� STACK[B n �]�
P� L�

Indexing instructions

switch on term V� C� L�S

Jump to the instruction labeled, respec-
tively, V , C, L, or S, depending on
whether the dereferenced value of argu-
ment registerA� is a variable, a constant,
a non-empty list, or a structure, respec-
tively.

case STORE[deref �A��] of

hREF � i � P� V �
hCON � i � P� C�
hLIS � i � P� L�
hSTR � i � P� S�

endcase�

PAGE 110 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

switch on constant N� T

The dereferenced value of register
A� being a constant, jump to the
instruction associated to it in hash-
table T of size N . If the constant
found in A� is not one in the table,
backtrack.

h tag � val i � STORE[deref �A��]�
h found � inst i � get hash�val � T�N��
if found

then P� inst

else backtrack�

switch on structure N� T

The dereferenced value of register
A� being a structure, jump to the
instruction associated to it in hash-
table T of sizeN . If the functor of
the structure found inA� is not one
in the table, backtrack.

h tag � val i � STORE[deref �A��]�
h found � inst i � get hash�val � T�N��
if found

then P� inst

else backtrack�

Cut instructions

neck cut

If there is a choice point after that in-
dicated by B0, discard it and tidy the
trail up to that point. Continue execu-
tion with following instruction.

if B � B0
then

begin

B� B0�
tidy trail

end�
P� P instruction size�P��

get level Yn

Set Yn to the current value of B0. Con-
tinue execution with following instruc-
tion.

STACK[E � n]� B0�
P� P instruction size�P��

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 111 OF 129

WARREN’S ABSTRACT MACHINE

cut Yn

Discard all (if any) choice points after
that indicated byYn, and tidy the trail up
to that point. Continue execution with
following instruction.

if B � STACK[E � n]
then

begin

B� STACK[E � n]�
tidy trail

end�
P� P instruction size�P��

B.2 WAM ancillary operations

procedure backtrack �
begin

if B
 bottom of stack

then fail and exit program

else

begin

B0� STACK[B STACK[B] �]�
P� STACK[B STACK[B] �]

end

endbacktrack �

The backtrack operation

PAGE 112 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

function deref �a � address� � address�
begin

h tag � value i � STORE[a]�
if �tag
 REF� � �value �
 a�
thenreturn deref �value�
elsereturn a

endderef �

The deref operation

procedure bind�a�� a� � address��
h t� � i � STORE[a�]� h t� � i � STORE[a�]�
if �t�
 REF� � ��t� �
 REF� � �a� � a���
then

begin

STORE[a�]� STORE[a�]� trail�a��
end

else

begin

STORE[a�]� STORE[a�]� trail�a��
end

endbind �

The bind operation

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 113 OF 129

WARREN’S ABSTRACT MACHINE

procedure trail�a � address��
if �a � HB� � ��H � a� � �a � B��
then

begin

TRAIL[TR]� a�
TR� TR �

end

endtrail �

The trail operation

procedure unwind trail�a�� a� � address��
for i� a� to a� � � do
STORE[TRAIL[i]]� h REF � TRAIL[i] i�

endunwind trail �

The unwind trail operation

PAGE 114 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

procedure tidy trail �
i� STACK[B STACK[B] �]�
while i � TR do

if �TRAIL[i] � HB� � ��H � TRAIL[i]� � �TRAIL[i] � B��
then i� i �
else

begin

TRAIL[i] � TRAIL[TR � �]�
TR� TR � �

end

endtidy trail �

The tidy trail operation

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 115 OF 129

WARREN’S ABSTRACT MACHINE

procedure unify�a�� a� � address��
push�a�� PDL�� push�a�� PDL��
fail � false�
while ��empty�PDL� � fail� do
begin

d� � deref �pop�PDL��� d� � deref �pop�PDL���
if d� �
 d� then
begin

h t� � v� i � STORE[d�]� h t� � v� i � STORE[d�]�
if t�
 REF then bind�d�� d��
else

case t� of

REF � bind�d�� d���
CON � fail � �t� �
 CON� � �v� �
 v���
LIS � if t� �
 LIS then fail � true

else

begin

push�v�� PDL�� push�v�� PDL��
push�v� �� PDL�� push�v� �� PDL�

end�
STR � if t� �
 STR then fail � true

else

begin

f��n� � STORE[v�]� f��n� � STORE[v�]�
if �f� �
 f�� � �n� �
 n�� then fail � true

else

for i� � to n� do
begin

push�v� i� PDL�� push�v� i� PDL�
end

end

endcase

end

end

endunify �

The complete unify operation

PAGE 116 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

B.3 WAM memory layout and registers

Argument Registers:

A��A�� � � � �An� � � �

Registers:

P
CP

S

HB

H

B0

B

E

TR

(low)

Code Area

Heap

Stack

choice point

environment

Trail

PDL
(high)

Yn nth local variable

...

Y� �st local variable

CP cont. code

CE cont. environment

Environment frame:

B0 cut pointer

H heap pointer

TR trail pointer
BP next clause

B previous choice pt.
CP cont. code

CE cont. environment

An nth argument

...

A� �st argument

n arity

Choice point frame:

�
�
�
�
�
�
�

hhhhhhh

����
����

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�

�

�

�

�

�
�

��

�

�

�

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 117 OF 129

WARREN’S ABSTRACT MACHINE

PAGE 118 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

Bibliography

[AHU74] Alfred Aho, John Hopcroft, and Jeffrey Ullmann. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading, MA,
1974.

[AK90] Hassan Aı̈t-Kaci. The WAM: a (real) tutorial. PRL Research Report
Number 5, Digital Equipment Corporation, Paris Research Labora-
tory, Rueil-Malmaison, France, 1990.

[Boi88] Patrice Boizumault. Prolog: l’implantation. Etudes et recherches en
informatique. Masson, Paris, France, 1988.

[BP84] Maurice Bruynooghe and Luis M. Pereira. Deduction revision by
intelligent backtracking. In John A. Campbell, editor, Implementa-
tions of Prolog, pages 194–215. Ellis Horwood, Ltd., Chichester, UK,
1984.

[CCF88] Christian Codognet, Philippe Codognet, and Gilberto Filè. Yet an-
other intelligent backtracking method. In Robert Kowalski and Ken-
neth Bowen, editors, Logic Programming: Proceedings of the Fifth
International Conference and Symposium, pages 447–465, Cam-
bridge, MA, 1988. MIT Press.

[Chu90] Damian Chu. Private communicatiion. Electronic Mail, August 1990.

[CM84] William F. Clocksin and Christopher S. Mellish. Programming in
Prolog. Springer-Verlag, Berlin, Germany, 2nd edition, 1984.

[Cox84] Peter T. Cox. Finding backtrack points for intelligent backtracking. In
John A. Campbell, editor, Implementations of Prolog, pages 216–133.
Ellis Horwood, Ltd., Chichester, UK, 1984.

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 119 OF 129

WARREN’S ABSTRACT MACHINE

[Deb86] Saumya K. Debray. Register allocation in a Prolog machine. In Pro-
ceedings of the Symposium on Logic Programming, pages 267–275.
IEEE Computer Society, September 1986.

[Deb89] Saumya K. Debray. Static inference of modes and data dependencies
in logic programs. ACM Transactions on Programming Languages
and Systems, 11(3):418–450, July 1989.

[DW86a] Saumya K. Debray and David S. Warren. Automatic mode inference
for Prolog programs. In Proceedings of the Symposium on Logic Pro-
gramming, pages 78–88. IEEE Computer Society, September 1986.

[DW86b] Saumya K. Debray and David S. Warren. Detection and optimiza-
tion of functional computations in Prolog. In Ehud Shapiro, edi-
tor, Proceedings of the Third International Conference on Logic Pro-
gramming, Berlin, Germany, 1986. Springer-Verlag. Lecture Notes in
Computer Science 225.

[DW89] Saumya K. Debray and David S. Warren. Functional computations in
logic programs. ACM Transactions on Programming Languages and
Systems, 11(3):451–481, July 1989.

[GLLO85] John Gabriel, Tim Lindholm, Ewing Lusk, and Ross Overbeek. A
tutorial on the Warren abstract machine. Privately circulated draft,
Argonne National Laboratory, Mathematics and Computer Science
Division, Argonne, IL 60439., 1985.

[Han90] Michael Hanus. Private communication. Technical correspondence,
December 1990.

[Her71] Jacques Herbrand. Logical Writings. Harvard University Press, Cam-
bridge, MA, 1971. Edited by Warren D. Goldfarb.

[JDM88] Gerda Janssens, Bart Demoen, and Andre Mariën. Improving the reg-
ister allocation in WAM by reordering unification. In Robert Kowal-
ski and Kenneth Bowen, editors, Logic Programming: Proceedings of
the Fifth International Conference and Symposium, pages 1388–1402,
Cambridge, MA, 1988. MIT Press.

[Kow79] Robert A. Kowalski. Logic for Problem Solving, volume 7 of Artificial
Intelligence Series. North Holland, New York, NY, 1979.

PAGE 120 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

[Kur87] Peter Kursawe. How to invent a Prolog machine. New Generation
Computing, 5:97–114, 1987.

[Mel85] Christopher S. Mellish. Some global optimizations for a Prolog com-
piler. Journal of Logic Programming, 1:143–166, 1985.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification algo-
rithm. ACM Transactions on Programming Languages and Systems,
4(2):258–282, April 1982.

[MW88] David Maier and David S. Warren. Computing with Logic: Logic
Programming with Prolog. Benjamin/Cummings, Menlo Park, CA,
1988.

[Per90] Fernando Pereira. Personal communication. Electronic mail, April
1990.

[PP82] Luis M. Pereira and Antonio Porto. Selective backtracking. In
Keith L. Clark and Sten-Åke Tärnlund, editors, Logic Programming,
pages 107–114. Academic Press, New York, NY, 1982.

[Rob65] John A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12:23–41, January 1965.

[Ros91] Dean Rosenzweig. Personal communication. Electronic mail, March
1991.

[Rus89] David M. Russinoff. A verified Prolog compiler for the Warren ab-
stract machine. MCC Technical Report Number ACT-ST-292-89, Mi-
croelectronics and Computer Technology Corporation, Austin, TX,
July 1989.

[vH90] Pascal van Hentenryck. Private communication. Electronic mail,
September 1990.

[vR90] Peter L. van Roy. Can Logic Programming Execute as Fast as Imper-
ative Programming? PhD thesis, University of California at Berkeley,
Berkeley, CA, December 1990.

[vRD90] Peter L. van Roy and Alvin Despain. The benefits of global dataflow
analysis for an optimizing Prolog compiler. In Saumya Debray and

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 121 OF 129

WARREN’S ABSTRACT MACHINE

Manuel Hermenegildo, editors, Logic Programming: Proceedings of
the 1990 North American Conference, pages 491–515, Cambridge,
MA, 1990. MIT Press.

[War83] David H. D. Warren. An abstract Prolog instruction set. Technical
Note 309, SRI International, Menlo Park, CA, October 1983.

[War88] David H. D. Warren. Implementation of Prolog. Lecture notes, Tu-
torial No. 3, 5th International Conference and Symposium on Logic
Programming, Seattle, WA, August 1988.

[War89] David H. D. Warren. Private communication. Electronic mail, Octo-
ber 1989.

[War90] David H. D. Warren. Private communication. Electronic mail,
September 1990.

[Zho90] Neng-Fa Zhou. Backtracking Optimizations in Compiled Prolog. PhD
thesis, Kyushu University, Fukuoka, Japan, November 1990.

[ZTU90] Neng-Fa Zhou, T. Takagi, and K. Ushijima. A matching tree ori-
ented abstract machine for prolog. In David H. D. Warren and Peter
Szeredi, editors, Logic Programming: Proceedings of the Seventh In-
ternational Conference, pages 159–173, Cambridge, MA, 1990. MIT
Press.

PAGE 122 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

Index

A register, 22
allocate, 28

example, 31, 43, 55, 57, 61, 64,
72–74

explicit definition
for M�, 30
for M�, 38
for WAM, 60, 106

AND-stack, 33
argument registers, 19, 22
arity, 9

B register, 34
backtrack operation, 39
backtrack operation, 112
backtracking, 6, 19, 25, 36

chronological, 33
bind operation, 113
binding, 10, 16, 17

conditional, 37, 63
convention, 62
rule, 63, 64, 68, 69
side-effect, 25, 36
trailing, 37
unconditional, 63

B0 register, 83
Boizumault, Patrice, 4

call, 21, 59
example

with environment trimming, 61,
64, 68, 72–74, 85

without environment trimming,
24, 31, 43, 51, 55, 57

explicit definition
for M�, 21
for M�, 26
for M�, 40
for WAM, 106

chain
reference, 16, 63, 65
rule, 25, 57, 86

choice point, 33
contents, 36
discarding, 34, 36, 37, 39, 83–85

Chu, Damian, 71
code area, 21, 26, 28, 36, 39
constant, 9

cell, 48
CP register, 26
cut, 83

deep, 83, 85
neck, 84
semantics, 83
shallow, 83, 84

cut, 85
explicit definition, 112

cut register, 83

deallocate, 29

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 123 OF 129

WARREN’S ABSTRACT MACHINE

example, 31, 43, 55, 57, 61, 64,
72–74

explicit definition
forM�, 30
for WAM, 56, 106

deep
cut, 83, 85
rule, 25, 86

delayed trimming, 73
deref operation, 113
dereferencing, 16

E register, 28
environment, 27

allocation, 29
discarding, 56
frame, 28
protection, 34, 35, 57, 79
trimming, 58–62, 64, 68, 70–74,

85
magnification of, 79

execute, 56
example, 57, 61, 64, 72–74, 80–

82
explicit definition, 56

for WAM, 107

fact, 21
compilation, 22, 26

failure, 16, 19, 25, 33–35
flattened form, 12

of program, 15
of query, 12
tokenized, 12, 15

functor, 9

get constant, 48
example, 80–82
explicit definition, 49

for WAM, 102
get level, 85

explicit definition
for WAM, 111

get list, 50
example, 51, 82
explicit definition, 50

for WAM, 102
get nil, 50
get structure, 15

example, 16, 24, 43, 51, 53, 80,
81

explicit definition, 18
for WAM, 101

get value, 23
example, 24, 51
explicit definition, 23

for WAM, 101
get variable, 23

example, 31, 43, 53, 55, 57, 61,
64

explicit definition, 23
for WAM, 100

H register, 13
Hanus, Michael, 67
HB register, 37
heap, 10

pointer, 38

I�, 9, 48, 50
I�, 28
I�, 28, 38
I�, 38

Kowalski, Robert A., 95

L�, 9, 21
abstract machine, 9

PAGE 124 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

interpreter, 9
program, 9

compiling, 13, 16
query, 9

compiling, 11, 14
semantics, 9, 11
syntax, 9
term representation, 10

L�, 21, 24, 25
L�, 25

program, 25
query, 25
semantics, 25

L�, 33
program, 33
query, 33
semantics, 33

last call optimization, 56
LCO, 56, 57, 62, 70, 71

correctness, 58
effect, 56, 57, 82
generalization, 58
interference, 62
magnification, 79
patch, 75

list, 50

M�, 9, 11, 19, 75
instructions, 13, 16

for programs, 18
for queries, 14

M�, 21
augmentation, 28
instructions

for variable arguments, 23
M�, 28, 40, 42

extension, 33
M�, 33, 42

improvement, 45
instructions

for choice point, 41, 42
Maier, David, 4
mode, 15, 16

x read, 15
x write, 15
setting, 17

neck cut, 84
explicit definition

for WAM, 111

OR-stack, 33

P register, 21
partial evaluation, 89
PDL, 19, 36
Pereira, Fernando, 46
permanent variable, 27, 28
proceed, 21

example, 24, 43, 51, 53, 81, 82
explicit definition, 26

for WAM, 107
push-down list, 19
put constant, 48

example, 81
explicit definition, 49

for WAM, 100
put list, 50

example, 51
explicit definition, 50

for WAM, 100
put nil, 50
put structure, 13

example, 14, 24, 43, 51
explicit definition, 14, 46

for WAM, 100
put unsafe value, 65

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 125 OF 129

WARREN’S ABSTRACT MACHINE

example, 72–74
explicit definition, 66

for WAM, 100
put value, 23

example, 31, 43, 55, 57, 61, 64,
72

explicit definition, 23
for WAM, 99

put variable, 23
example, 24, 31, 51, 55, 57, 61,

64, 72–74
explicit definition, 62

for WAM, 99
for a temporary variable, 23

query, 9
compilation, 11, 22, 27
empty, 25

reference
chain, 16, 63, 65
chronological, 63
dangling, 62, 63
stack, 62, 63, 65, 67, 68

register allocation, 12, 54
resolution

flat, 6, 25
leftmost, 25, 33
SLD, 5, 33
top-down, 33

retry, 79
explicit definition

for WAM, 110
retry me else, 39

example, 43, 80–82
explicit definition, 41

for WAM, 108
Robinson, John Alan, 95

Rosenzweig, Dean, 83, 84, 86
rule, 25

binding, 64, 68, 69
chain, 25, 57, 86
compilation, 27
deep, 25, 86

Russinoff, David, 5

S register, 16
set constant, 48

example, 51
explicit definition, 49

for WAM, 103
set local value, 68

explicit definition, 69
for WAM, 103

set value, 13
example, 14, 24, 51
explicit definition, 14

for WAM, 102
set variable, 13

example, 14, 24, 51
explicit definition, 14

for WAM, 102
set void, 52

explicit definition, 53
for WAM, 103

shallow cut, 83, 84
signature, 91
stack, 28

frame, 28
global, 13
local, 28

structure, 9
cell, 10

substitution, 19, 91
application, 19, 94
composition, 19, 92

PAGE 126 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

switch on constant, 78
example, 80, 81
explicit definition

for WAM, 111
switch on structure, 79

example, 80, 81
explicit definition

for WAM, 111
switch on term, 78

example, 80–82
explicit definition

for WAM, 110

term
L� program, 9
L� query, 9
first-order, 9, 91
representation, 10

tidy trail operation, 85
tidy trail operation, 115
TR register, 37
trail, 36

cleanup, 85
pointer, 37
tamping, 85
unwinding, 40

trail operation, 114
trailing

unnecessary, 62
variable, 37, 62

trimming
delayed, 73
environment, 58, 59, 61, 64, 68,

71–74, 85
trust, 79

example, 80, 81
explicit definition

for WAM, 110

trust me, 39
example, 43, 80–82
explicit definition, 42

for WAM, 109
try, 79

example, 80, 81
explicit definition

for WAM, 109
try me else, 39

example, 43, 80–82
explicit definition

for M�, 41
for WAM, 108

unbound variable, 10
unification, 9, 92

algorithm, 19, 93
unify operation

forM�, 20
for WAM, 116

unify constant, 47
example, 51
explicit definition, 49

for WAM, 105
unify local value, 68

explicit definition, 69
for WAM, 104

unify value, 16
example, 16, 82
explicit definition, 18

for WAM, 104
unify variable, 15

example, 16, 24, 51, 80–82
explicit definition, 18

for WAM, 104
unify void, 52

example, 53, 80
explicit definition, 53

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 127 OF 129

WARREN’S ABSTRACT MACHINE

for WAM, 105
unwind trail operation, 114

van Hentenryck, Pascal, 67
variable, 9

anonymous, 47
instructions, 53

binding, 10, 16, 62
cell, 10
classification, 69

Warren’s, 70
cut, 85
global, 70
globalizing, 67–69, 71
local, 28, 60, 70
permanent, 27, 28, 69

discarding, 62, 64, 66–68
ordering, 63

register, 11
temporary, 27, 69
unsafe, 64

WAM, 3
clause treatment, 89
complete, 3, 6
correctness, 5
designer, 4
features, 4
publication, 3
simplification, 5
techniques, 4
unification, 89
variant, 4

WAM Binding Rule, 63, 64, 68, 69
WAM Principle, 45, 47, 60, 79
Warren

Abstract Machine, 3
David H. D., 3, 45, 89, 90

David S., 4

X register, 11

PAGE 128 OF 129 Reprinted from MIT Press Copyright c� Hassan AÏT-KACI

A TUTORIAL RECONSTRUCTION

Copyright c� Hassan AÏT-KACI Reprinted from MIT Press PAGE 129 OF 129

