
Translation Validation: from Signal to C ? ??A. Pnueli O. Shtrichman M. SiegelWeizmann Institute of Science, Rehovot, IsraelAbstract. Translation validation is an alternative to the veri�cation oftranslators (compilers, code generators). Rather than proving in advancethat the compiler always produces a target code which correctly imple-ments the source code (compiler veri�cation), each individual translation(i.e. a run of the compiler) is followed by a validation phase which veri�esthat the target code produced on this run correctly implements the sub-mitted source program. In order to be a practical alternative to compilerveri�cation, a key feature of this validation is its full automation.Since the validation process attempts to \unravel" the transformatione�ected by the translators, its task becomes increasingly more di�cult(and necessary) with the increase of sophistication and variety of theoptimizations methods employed by the translator. In this paper we ad-dress the practicability of translation validation for highly optimizing,industrial code generators from Signal, a widely used synchronous lan-guage, to C. We introduce new abstraction techniques as part of theautomation of our approach.1 IntroductionA signi�cant number of embedded systems contain safety-critical aspects. Thereis an increasing industrial awareness of the fact that the application of for-mal speci�cation languages and their corresponding veri�cation/validation tech-niques may signi�cantly reduce the risk of design errors in the development ofsuch systems. However, if the validation e�orts are focused on the speci�ca-tion level, the question arises how can we ensure that the quality and integrityachieved at the speci�cation level is safely transferred to the implementationlevel. Today's process of the development of such systems consists of hand-codingfollowed by extensive unit and integration-testing.The highly desirable alternative, both from a safety and a productivity pointof view, to automatically generate code from veri�ed/validated speci�cations,has failed in the past due to the lack of technology which could convincinglydemonstrate to certi�cation authorities the correctness of the generated code.Although there are many examples of compiler veri�cation in the literature (see,? This research was done as part of the ESPRIT project SACRES and was supportedin part by the Minerva Foundation and an infra-structure grant from the IsraeliMinistry of Science and Art?? Preliminary versions of some parts of this paper were published before in [17], [19]and [20]

for-example, [5, 9, 10, 15, 12, 11, 14, 13]), the formal veri�cation of industrialcode generators is generally prohibitive due to their size. Another problem withcompiler veri�cation is that the formal veri�cation freezes the design and evolu-tion of the compiler, as each change to the code generators nulli�es their previouscorrectness proof.Alternately, code-validation suggests to construct a fully automatic toolwhich establishes the correctness of the generated code individually for eachrun of the code generator. In general, code-validation can be the key enablingtechnology to allow the usage of code generators in the development cycle ofsafety-critical and high-quality systems. The combination of automatic code gen-eration and validation improves the design ow of embedded systems in bothsafety and productivity by eliminating the need for hand-coding of the targetcode (and consequently coding-errors are less probable) and by considerablyreducing unit/integration test e�orts.Of course, it is not clear that every compiler and every source and targetlanguages can be veri�ed according to the code-validation paradigm. But the factthat the compiler we considered was highly optimized and the source and targetlanguages had completely di�erent structures (synchronous versus sequentialcode) indicates that this method has the potential of solving realistic, non-trivialcases.The work carried out in the SACRES project proves the feasibility of code-validation for the industrial code generator used in the project, and demonstratesthat industrial-size programs can be veri�ed fully automatically in a reasonableamount of time.1.1 Technical IntroductionIn this paper we consider translation validation for the synchronous languagesSignal [3]. This language is mainly used in industrial applications for the de-velopment of safety-critical, reactive systems. In particular, it is designed tobe translatable into code which is as time/space e�cient as handwritten code.This code is generated by sophisticated code generators which perform vari-ous analyses/calculations on the source code in order to derive highly e�cientimplementations in languages such as C, ADA, or JAVA.The presented translation validation approach addresses two industrial com-pilers from Signal to C. These compilers { which apply more than 100 op-timization rules during code generation [16] { were developed in the ESPRITproject SACRES by the French company TNI and by Inria (Rennes) and areused by Siemens, SNECMA and British Aerospace. Their formal veri�cation isprohibitive due to their size (more than 20,000 lines of code each) and the factthat they are constantly improved/extended.While developed in the context of code generators for synchronous languages,the proposed method has wider applicability. The main feature which enablesus to perform the validation task algorithmically is that the source languagehas a restricted explicit control structure. This is also represented by the fact

that the resulting C-code consists of a single main loop whose body is a loop-free program. Source languages with these features can bene�t from the methodproposed in this paper. For example, the language unity [6] which comes fromthe world of asynchronous distributed systems is another possible client of theproposed method.We present a common semantic model for Signal and C, introduce theapplied notion of being a correct implementation, formulate the correctness ofthe generated C code as proof obligations in �rst order logic, and present e�cientdecision procedures to check the correctness of the generated proof obligations.All translations and constructions which are presented in the course of the paperhave been implemented in a tool called CVT (Code Validation Tool) [19]. CVThas been used to validate the code generated from a 6000 lines Signal programwith more than 1000 variables. This program is a turbine-control system whichwas developed as an industrial case study by SNECMA in the SACRES project.A major advantage of a carefully designed translation validation tool is that itcan replace the need for correctness proofs for various compilers if these compilersare based on the same de�nition of \correct code generation". This is the casefor the TNI and the Inria compiler and, indeed, CVT is used to validate codeoriginating from either of these two compilers.1.2 Run Time Result Veri�cationThere is a growing interest in the concept of verifying run-time results, ratherthan programs or models. A recently held workshop entitled \run-time resultveri�cation" presented various applications of run-time veri�cation techniques.These applications, in most cases, had similar characteristics to compiler veri�-cation, although they come from a variety of domains: it is very hard, or evenimpossible to formally verify them in the `traditional', single-time proof on theone hand, and on the other hand, their design often changes while the systemis developed. Another motivation for this approach is that in some cases theprogram itself is not available for inspection due to commercial and intellectualproperty factors1. A good example of such a domain is the formal veri�cationof decision procedures. Implementations of Decision procedures are often exper-imental and not very robust. They are typically complex and keep evolving overtime. Being generic tools for verifying safety-critical systems, the correctness ofthe tools is at least as important as that of the applications they help to verify.In [21], the decision procedure generates proofs during run-time, in order to val-idate the decision process. An axiomatization of the proof system is presented inanother formal system, which is referred to as the `logical framework' in whichthe proof is carried out. The logical framework tool includes a proof checker ofits own, that can check proofs of any system that is axiomatized in the frame-work. This enables automatic validation of every run of the decision procedure1 this is also a common argument in the domain of testing, where often 'black-box'testing is used rather than 'white-box' testing simply because the code is not availablefor inspection

by producing a proof script for the run and applying to it the framework's proofchecker.The concept of validating translators/compilers by proving semantical equiv-alence between source and target code has been applied in various other projects.In [22] and [8] the veri�cation of the translator from a high level description lan-guage to executable code is carried out in two distinct stages: in the 'on-line'stage, each run of the translator is veri�ed by proving several simple conditionson the syntactical structure of the results, in comparison to the source code. Thisstage is fully automatic and implemented by a simple 'checker'. The reductionfrom full translation veri�cation to these simple rules is carried out manually ina one-time e�ort (the 'o�-line' stage) by an expert. This approach was applicablein their case due to the relatively structured translation scheme of the sourcecode. A declaration in the source code is translated into code which performsRNS transformations (it reduces arithmetical operations to a set of indepen-dent arithmetic operations on integers of limited size). Thus, the main task ofthe validation process is to verify that these transformations are correct. Af-ter computing a mapping between the input and output variables of the sourceand target programs, they prove that the correspondence between the 'semantic'states of the two programs is preserved by the execution steps. In this sense theremodel is similar to the model we will present in this paper. In [7], translationvalidation is done on a purely syntactic level. Their method is based on �nd-ing a bijection between abstract and concrete instruction sets (resp. variables)because they are considering a structural translation of one sequential programinto another sequential program. Since we are dealing with optimizing compilerswe have to employ a far more involved semantic approach.The rest of the paper is organized as follows. In Section 2 we give a briefintroduction to Signal and present a running example. After introducing syn-chronous transition systems as our model of computation in Section 3 we addressthe formal semantics of Signal. Section 4 presents the concepts which underlythe generation of the proof obligations. In Section 5 we present the decision pro-cedure to check the validity of these proof obligations. Finally, Section 7 containssome conclusions and future perspectives.2 An Illustrative ExampleIn this section we �rst illustrate details of the compilation process by meansof an example and then explain the principles which underly the translationvalidation process.A Signal program describes a reactive system whose behavior along time isan in�nite sequence of instants which represent reactions, triggered by externalor internal events. The main objects manipulated by a Signal program areows, which are sequences of values synchronized with a clock. A ow is a typedobject which holds a value at each instant of its clock. The fact that a ow iscurrently absent is represented by the bottom symbol ? (cf. [3]). Clocks areunary ows, assuming the values fT;?g. A clock has the value T if and only if

the ow associated with the clock holds a value at the present instant of time.Actually, any expression exp in the language has its corresponding clock clk(exp)which indicates whether the value of the expression at the current instant isdi�erent from ?.Besides external ows (input/output ows), which determine the interfaceof the Signal program with its environment, also internal ows are used andmanipulated by the program. Consider the following Signal program DEC:process DEC=(? integer FB! integer N) (| N:= FB default (ZN-1)| ZN:= N $ init 1| FB^=when (ZN<=1)|)whereinteger ZN init 1 ;endProgram DEC (standing for \decrement") has an input FB and an output N,both declared as integer variables. Now and then, the environment provides anew input via variable FB. Receiving a new positive input, the program startsan internal process which outputs the sequence of values FB, FB-1, : : :, 2, 1 viaoutput variable N. After outputting 1, the program is ready for the next input.This program illustrates the capability of a multi-clock synchronous language togenerate a new clock (the clock of the output N) which over-samples the inputclock associated with FB. The program uses the local variable ZN to record theprevious value of N.The body of DEC is composed of three statements which are executed con-currently as follows. An input FB is read and copied to N. If N is greater than 1it is successively decremented by referring to ZN, which holds the previous valueof N (using $ to denote the \previous value" operator) . No new input value forFB is accepted until ZN becomes (or is, in case of a previous non-positive inputvalue for FB) less than or equal to 1. This is achieved by the statementFB^=when (ZN<=1),which is read \the clock of FB is on when ZN � 1", and allows FB to be presentonly when ZN � 1. When the clock of FB is o�, the default action of assigningN the value of ZN-1 is activated. A possible computation of this program is:8>>>>>:FB : ?N : ?ZN : 1 9>>>>>;!8>>>>>:FB : 3N : 3ZN : 19>>>>>;!8>>>>>:FB : ?N : 2ZN : 39>>>>>;!8>>>>>:FB : ?N : 1ZN : 29>>>>>;!8>>>>>:FB : 5N : 5ZN : 19>>>>>;!8>>>>>:FB : ?N : 4ZN : 5 9>>>>>;! : : :Where ? denotes the absence of a signal. Note, that Signal programs arenot expected to terminate.

2.1 Compilation of Multi-clocked Synchronous LanguagesThe compilation scheme for Signal to an imperative, sequential languages(s.a. C, ADA) proceeds as follows. The statements of a Signal program P forma Set of Logical Equations (SLE) on the ows of P and their associated clocks.Solutions of SLE for a given set of input/register values determine the next stateof the system. The compiler derives from P an imperative program C which con-sists of one main loop whose task is to repeatedly compute such solutions of theSLE. In order to do so, the compiler computes from SLE a conditional depen-dency graph on ows and another linear equation system { the, so called, clockcalculus [3] { which records the dependencies amongst clocks. The producedcode contains statements originating from the clock calculus and assignments tovariables (representing the ows of P) whose order must be consistent with thedependency graph. These assignments are performed if the corresponding owis currently present in the source program, i.e. the clocks of ows determine thecontrol structure of the generated program.The C program which is generated by the compiler from the DEC programconsists of a main program containing two functions:{ An initialization function, which is called once to provide initial values tothe program variables.{ An iteration function which is called repeatedly in an in�nite loop. Thisfunction, whose body calculates the e�ect of one synchronous \step" of theabstract program, is the essential part of the concrete code.The iteration function obtained by compiling DEC is given by:logical DEC_iterate()fl0: h1c = TRUE;l1: h2c = ZNc <= 1;l2: if (h2c)l2.1: read(FBc);l3: if (h2c)l3.1: Nc = FBc;elsel3.2: Nc = ZNc � 1;l4: write(Nc);l5: ZNc = Nc;return TRUE;g The labels in function DEC iterate() are not generated by the compiler buthave been added for reference. We added 'c' as subscript for the program vari-ables, to distinguish them from the Signal variables.The C-code introduces explicit boolean variables to represent the clocks ofSignal variables. Variable h1c is the clock of Nc and ZNc, and h2c is the clockof FBc.

The C program works as follows. If h2c, the clock of FBc, has the value T,a new value for FB is read and assigned to the variable Nc. If h2c is F, Nc getsthe value ZNc � 1. In both cases the updated value of N is output (at l4) andalso copied into ZNc, for reference in the next step .A computation of this program is given below. We skip intermediate statesand consider complete iterations of the while loop. The notation X : � is usedto denote that variable X has an arbitrary value.8>>>>>>>>>>>>>>>>>:FB : �N : �ZN : 1h1 : �h2 : �� : l0
9>>>>>>>>>>>>>>>>>;�!8>>>>>>>>>>>>>>>>>:FB : 3N : 3ZN : 3h1 : Th2 : T� : l0

9>>>>>>>>>>>>>>>>>;�!8>>>>>>>>>>>>>>>>>:FB : 3N : 2ZN : 2h1 : Th2 : F� : l0
9>>>>>>>>>>>>>>>>>;�!8>>>>>>>>>>>>>>>>>:FB : 3N : 1ZN : 1h1 : Th2 : F� : l0

9>>>>>>>>>>>>>>>>>;�!8>>>>>>>>>>>>>>>>>:FB : 5N : 5ZN : 5h1 : Th2 : T� : l0
9>>>>>>>>>>>>>>>>>;�!8>>>>>>>>>>>>>>>>>:FB : 5N : 4ZN : 4h1 : Th2 : F� : l0

9>>>>>>>>>>>>>>>>>;�!� � �Taking into account that h1c is the clock of Nc and that h2c is the clockof FBc, we have an accurate state correspondence between the computation ofthe Signal program and the computation of the C-code, when we restrict ourobservations to subsequent visits at location l0.This state correspondence is a general pattern for programs generated bythe sacres compiler. Intuitively, the generated C-code correctly implements theoriginal Signal program if the sequence of states obtained at the designatedcontrol location l0 corresponds to a possible sequence of states in the abstractsystem.In the rest of the paper, we show how this approach can be formalized andyield a fully automatic translation validation process.3 Computational Model and Semantics of SignalIn order to present the formal semantics of Signal we introduce a variant ofsynchronous transition systems (sts) [20]. sts is the computational model of ourtranslation validation approach.Let V be a set of typed variables. A state s over V is a type-consistentinterpretation of the variables in V . Let �V denote the set of all states over V .A synchronous transition system A = (V;�; �) consists of a �nite set V of typedvariables, a satis�able assertion � characterizing the initial states of system A,and a transition relation �. This is an assertion �(V; V 0), which relates a states 2 �V to its possible successors s0 2 �V by referring to both unprimed andprimed versions of variables in V . Unprimed variables are interpreted accordingto s, primed variables according to s0. To the state space of an sts A we refer as�A. We will also use the term \system" to abbreviate \synchronous transitionsystem". Some of the variables in V are identi�ed as volatile while the others areidenti�ed as persistent . Volatile variables represent ows of Signal programs,thus their domains contain the designated element ? to indicate absence of therespective ow.

For a variable v 2 V we write clk(v) and clk(v0) to denote the inequalitiesv 6= ? and v0 6= ?, implying that the signal v or v0 is present.A computation of A = (V;�; �) is an in�nite sequence � = hs0; s1; s2; : : :i,with si 2 �V for each i 2 IN, which satis�es s0 j= � and 8i 2 IN: (si; si+1) j= �.Denote by kAk the set of computations of the sts A.Before we describe how to construct an sts �P corresponding to a givenSignal program P , let us �rst describe the primitives of a Signal program.3.1 A Sketch of Signal PrimitivesSignal supports the following primitives.1. v := f(u1; : : : ; un) function extended to sequences2. w := v $ initw0 shift register3. v := u when b data dependent down-sampling4. w := u default v merging with priority5. P jQ program compositionIn these primitives, u; v; w; b denote typed signals, i.e., sequences of values of theconsidered type extended with the special symbol ?. In the when expression,the b signal is assumed boolean. In the last instruction, both P and Q denoteSignal programs.The assignment v := f(u1; : : : ; un) can only be applied to signals u1; : : : ; unwhich share the same clock. It de�nes a new signal v with the same clock suchthat, for every i = 1; 2; : : : ; v[i] = f(u1[i]; : : : ; un[i]).The assignment w := v $ initw0 de�ned a signal w with the same clock asv and such that w[1] = w0 and, for every i > 1, w[i] = v[i� 1].The assignment v := u when b de�nes a signal whose values equal the valueof u at all instances in which u and b are both de�ned and b = true.The assignment w := u default v de�nes a signal w which equals u wheneveru is de�ned and equals v at all instance in which v is de�ned while u is absent.Finally, P jQ is the composition of the programs (set of statements) P andQ.3.2 System VariablesThe system variables of � are given by V = U [X , where U are the Signalsignals explicitly declared and manipulated in P , and X is a set of auxiliarymemorization variables , whose role is explained below.3.3 Initial ConditionThe initial condition for � is given by�: û2U u = ?By convention, the initial value of all declared signal variables is ?. The initial-ization of memorization variables is explained in the following subsection.

3.4 The Transition Relation and its PropertiesThe composition j of Signal programs corresponds to logical conjunction. Thus,the transition relation � will be a conjunction of assertions where each Signalstatement gives rise to a conjunct in �. Below, we list the statements of Signaland present for each of them the conjunct it contributes to the transition relation.� Consider the Signal statement v := f(u1; : : : ; un), where f is a state-function. This statement contributes to � the following conjunct:clk(u01) � : : : � clk(u0n)^ v0 = if clk(u01) then f(u01; : : : ; u0n) else ?This formula requires that the signals v; u1; : : : ; un are present at preciselythe same time instants, and that at these instants v = f(u1; : : : ; un).� The statement r := v $ initw0contributes to � the conjunct:m:r0 = if clk(v0) then v0 else m:r^ r0 = if clk(v0) then m:r else ?This de�nition introduces a memorization variable m:r which stores the last(including the present) non-bottom value of v. Variable m:r is initializedin the initial condition � to w0. From now on we refer to ows r that arede�ned by this type of statement as register ows. Variables in an sts whichrepresent register ows will typically be denoted by r, and the correspondingmemorization variables by m:r. Note that unlike the other system variablesin the constructed sts, memorization variables are persistent .� The statement v := u when bcontributes to � the conjunct:v0 = if b0 = T then u0 else ?:� The statement w := u default vcontributes to � the conjunct:w0 = if clk(u0) then u0 else v0:According to the above explanations, the Signal program DEC is representedby the following sts A = (Va; �a; �a).

V = fFB; N; ZN; m.ZNg� = (FB = ? ^ N = ? ^ ZN = ? ^ m.ZN = 1)�a =8>>>>>>>>>>>>>>>>>>>: N0 = if FB0 6= ? then FB0 else ZN0 � 1^ m.ZN0 = if N0 6= ? then N0 else m.ZN^ ZN0 = if N0 6= ? then m.ZN else ?^ ZN0 � 1 , FB0 6= ?
9>>>>>>>>>>>>>>>>>>>;In the following sections, we assume that the type de�nitions for variables alsospecify the \Signal type" of variables, i.e. whether they are input, output,register, memorization or local variables. The respective sets of variables aredenoted by I; O;R;M;L. Combinations of these letters stand for the union of therespective sets; e.g. IOR stands for the set of input/output/register variables ofsome system. Note that theM variables are not originally present in the Signalprogram, but are introduced by its translation into the sts notation.For the translation validation process, the generated C programs is also trans-lated into the sts formalism. Below, we present the sts representation of theDEC iterate() generated code, where the predicate pres-but(U) indicates that allvariables in the set V nU preserve their values during the respective transition.Thus, the values of all variables except, possibly, those in U are preserved.C = (Vc; �c; �c) whereV = fFBc; Nc; ZNc; h1c; h2cg� = (ZNc = 1 ^ pc = l0)

�c =
8>>>:

(pc = l0 ^ h10c = T ^ pc0 = l1 ^ pres-but(pc; h1c))_ (pc = l1 ^ h20c = (ZNc � 1) ^ pc0 = l2 ^ pres-but(pc; h2c))_ (pc = l2 ^ h2c ^ pc0 = l2:1 ^ pres-but(pc))_ (pc = l2 ^ :h2c ^ pc0 = l3 ^ pres-but(pc))_ (pc = l2:1 ^ pc0 = l3 ^ pres-but(pc;FBc))_ (pc = l3 ^ h2c ^ pc0 = l3:1 ^ pres-but(pc))_ (pc = l3 ^ :h2c ^ pc0 = l3:2 ^ pres-but(pc))_ (pc = l3:1 ^ N0c = FBc ^ pc0 = l4 ^ pres-but(pc;Nc))_ (pc = l3:2 ^ N0c = ZNc � 1 ^ pc0 = l4 ^ pres-but(pc;Nc))_ (pc = l4 ^ pc0 = l5 ^ pres-but(pc))_ (pc = l5 ^ ZN0c = Nc ^ pc0 = l0 ^ pres-but(pc;ZNc))

9>>>;

Note, that the C programs use persistent variables (i.e. variables which are neverabsent) to implement Signal programs which use volatile variables. This has tobe taken into account when de�ning the notion of \correct implementation" inthe next section.4 The \Correct Implementation" RelationThe notion of correct implementation used in this work is based on the generalconcept of re�nement between synchronous transition systems.Let A = (VA ; �A ; �A ;Oa) and C = (VC ; �C ; �C ;Oc) be an abstract and con-crete sts's, where Oa and Oc are observation functions, respectively mappingthe abstract and concrete states into a common data domain D.An observation of sts is any in�nite sequence of D-elements which can beobtained by applying the observation function Oa to each of the states in a com-putation of A. That is, a sequence which has the form Oa(s0);Oa(s1); : : : ; forsome � : s0; s1; : : : ; a computation of A. We denote by Obs(A) the set of obser-vations of system A. In a similar way, we de�ne Obs(C) the set of observationsof sts C.We say that system C re�nes system A, denotedC v A;if Obs(C) � Obs(A). That is, if every observation of system C is also an obser-vation of A.4.1 Adaptation to Signal CompilationTo adapt this general de�nition to the case at hand, there are several factorsthat need to be considered.A �rst observation is that whatever the Signal program can accomplish in asingle step takes the corresponding C program several steps of execution. In fact,it takes a single full execution of the loop's body in the C program to performa single abstract step. Consequently, we take for the sts representation of thecompared C program a system obtained by composing the transition relationsof the individual statements inside the loop's body. Since the body does notcontain any nested loops, the computation of the overall transition relation isstraightforward and can be achieved by successive substitutions. We refer to theresulting sts as the composite sts corresponding to the C program.A second consideration is the choice of the abstract and concrete observa-tion functions. For the abstract Signal program, the natural observation is thesnapshot of the values of the input and output variables. Thus, the abstractobservation will be the tuple of values for the IO variables. For example, for theDEC Signal program, the observation function is given by Oa = (FB;N).A major feature of all the Signal compilers we are treating is that all vari-ables in the IOR set are preserved in the translation and are represented by

identically named C variables. Therefore, the natural candidate for the concreteobservation is the tuple of values of the IO C variables.Unfortunately, there is a di�erence in the types of an IO Signal variable andits corresponding C variable. While any IO signal v 2 IO may also assume thevalue ?, signifying that the signal v is absent in the current step, all C variablesare persistent and can never assume the value ?. This implies that we have toidentify for every concrete step and every IO-variable v whether the abstractversion of v is present or absent in the current step.Our decision was that an input variable v should be considered present inthe current step i� a new value for v has been read during the current executionof the loop's body. Similarly, an output variable v is considered present i� thevariable v was written during the current step.To detect these events, we have instrumented the given C program by addinga boolean variable rd :v for each input variable v, and a boolean variable wr :vfor each output variable2. All these auxiliary variables are set to 0 (false) atthe beginning of the loop's body. After every read(v) operation, we add theassignment rd :v := 1, and after every write(v) operation, we add the assignmentwr :v := 1.In Fig. 1, we present the instrumented version of function DEC iterate().logical DEC iterate()f rd :FBc = F; wr :Nc = F;l0: h1c = TRUE;l1: h2c = ZNc <= 1;l2: if (h2c)l2.1: fread(FBc); rd :FBc = T;g;l3: if (h2c)l3.1: Nc = FBc;elsel3.2: Nc = ZNc � 1;l4: fwrite(Nc); wr :Nc = T;g;l5: ZNc = Nc;return TRUE;gFig. 1. Instrumented version of function DEC iterate().In Fig. 2, we present the composite sts corresponding to the instrumented Cprogram. This presentation of the composite sts identi�es the concrete obser-vation function as Oc = (OcFB ;OcN), where OcFB and OcN are de�ned in Fig. 2.As can be seen in Fig. 2, the instrumented variables rd :FBc and wr :Nc arede�ned within �C and then used in the de�nition of the observation functionOc. Therefore, it is possible to simplify the composite sts by substituting the2 Our �nal implementation does not really add these auxiliary variables but performsan equivalent derivation. Introducing these variables simpli�es the explanation.

VC : fFBc; Nc; ZNc; h1c; h2c; rd :FBc; wr :Ncg�C : ZNc = 1 ^ pc = l0
�C : 8>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(h10c = T)^ (h20c = (ZNc � 1))^ (h20c) (N0c = FB0c))^ (:h20c) (FB0c = FBc ^ N0c = ZNc � 1))^ (ZN0c = N0c)^ (rd :FB0c = h20c)^ (wr :N0c = T)
9>>>>>>>>>>>>>>>>>>>>>>>>>>>>;OcFB : if rd :FBc then FBc else ?OcN : if wr :Nc then Nc else ?Fig. 2. Composite sts corresponding to the instrumented C program.de�nition of the instrumented variables into Oc and removing their de�nitionfrom �C . The actual implementation of the presented techniques within the codevalidation tool CVT never explicitly generate the instrumented version of theprogram but computes directly the simpli�ed version as presented in Fig. 3.VC : fFBc; Nc; ZNc; h1c; h2cg�C : ZNc = 1 ^ pc = l0�C : 8>>>>>>>>>>>>>>>>>: (h10c = T)^ (h20c = (ZNc � 1))^ (h20c) (N0c = FB0c))^ (:h20c) (FB0c = FBc ^ N0c = ZNc � 1))^ (ZN0c = N0c)
9>>>>>>>>>>>>>>>>>;OcFB : if h2c then FBc else ?OcN : NcFig. 3. The actual (simpli�ed) stsdec as generated by the CVT tool.Before computing the composite sts corresponding to a given C program, theCVT tool performs some syntactic checks. For example, it checks that all refer-ences to an input variable i 2 I syntactically succeed the statement which readsthe external input into i. Symmetrically, the tool checks that all assignmentsto an output variable o 2 O syntactically precede the statement which exter-nally writes o. Failure in any of these checks will cause the tool to declare thetranslation as invalid.

In summary, we expect the abstract and concrete systems to be related asdepicted below:
C Oa = OcSignal �a�cOa = Oc Oa = Oc4.2 Proving Re�nement by Simulation plus Abstraction MappingLet A = (VA ; �A ; �A ;Oa) and C = (VC ; �C ; �C ;Oc) be a given abstract andconcrete systems. The standard way of proving that C re�nes A (cf. [1]) is basedon the identi�cation of an abstraction mapping VA = �(VC) mapping concretestates to abstract states, and establishing the premises of rule ref presentedin Fig. 4. In many places, the mapping � is referred to as re�nement mapping .Premise R1 of the rule ensures that the mapping � maps every initial concreteFor an abstraction mapping VA = �(VC),R1. �C ^ VA = �(VC) ! �A InitiationR2. VA = �(VC) ^ �C ^ V 0A = �(V 0C) ! �A PropagationR3. VA = �(VC) ! Oa = Oc Compatibility with observationsC v AFig. 4. Rule ref.state into an initial abstract state. Premise R2 requires that if the abstract statesA and the concrete state sC are �-related, and s0C is a �C -successor of sC ,then the abstract state s0A = �(s0C) is a �A -successor of sA . Together, R1 andR2 establish by induction that, for every concrete computation �C : s0C ; s1C ; : : : ;there exists a corresponding abstract computation �A : s0A ; s1A ; : : : ; such thatsjA = �(sjC) for every j = 0; 1; : : : . Applying premise R3, we obtain that theobservations obtained from �A and �C are equal. This shows that rule ref issound.Rule ref , in the form presented in Fig. 4, is often not complete. In manycases we need to add an auxiliary invariant to the premises. However, in the caseat hand, the relation VA = �(VC) is the only invariant we need.4.3 Construction of the Mapping �To complete the description of our veri�cation methodology, it only remains todescribe how we can construct automatically the abstraction mapping �.The range of the mapping � is a tuple of values over the domains of theabstract variables VA . In fact, for every abstract variable v 2 VA , the mapping �

contains a component �v(VC) which de�nes the value of v in the abstract state�-related to the concrete state represented by VC .For the abstract observable variables v 2 IO, premise R3 already constrainsus to choose �v(VC) = Ocv (VC). It therefore remains to describe the mappings�v for v 2 VC � IO =MRL.Recall that every variable v 2 R gives rise to an abstract register variable v,an abstract memorization variable m:v introduced into the sts corresponding toA, and a corresponding concrete variable vc. For example, the register ow ZNin the Signal program DEC, gave rise to a similarly named variable and to thememorization variable m.ZN in the sts DEC and to the concrete variable ZNcin function DEC iterate().Therefore, we de�ne for each register ow r the following two instances ofthe � mapping: �m:r = rc �0m:r = r0c:For example, the mapping into the abstract variable m.ZN will be given by theequation m.ZN = ZNc.It only remains to de�ne �v for v 2 RL. Since variables in L do not necessarilyhave counterparts in the C program, it may not be so easy to �nd an expressionover VC which will capture their values.Here we are helped by the fact that every compilable Signal program Ais determinate in the new values of I (the inputs) and R (the register ows).Equivalently, the corresponding stsA is determinate in the values of I 0 (newinputs) and M (old memorization values). Determinateness means that a set ofvalues for these variables uniquely de�ne the new values of all other variables(all variables in IORML). Determinateness is the necessary condition for beingable to compile the program into a deterministic running program. Input Signalprograms which are not determinate are rejected by all the Signal compilerswe worked with.We use the fact that every abstract variable v 2 RL has a unique equationof the form v0 = eqv within stsA . In principle, determinateness implies that wecould chase these equations applying successive substitutions until we �nd for va de�ning expression all in terms of the concrete variables VC . However, this isnot actually necessary. Instead, we transform premises R1{R3 into the followingtwo veri�cation conditions:W1. �C ^ r̂2R(m:r = rc) ^ ^v2IORL(v = ?) ! �AW2. r̂2R8>>: m:r = rc^ m:r0 = r0c9>>; ^ �C ^ ^v2IO(v0 = (Ocv)0) ^ ^v2RL(v0 = eqv)! �AObviously, we can dispense with premise R3 since Oa = Oc is automaticallyguaranteed by taking �v = Ocv for each v 2 IO. In veri�cation condition W1, wesimpli�ed the mapping � having the prior information that only the m:r 2 M

variables have non-bottom values and they are mapped by � into their concretecounterparts rc.In veri�cation condition W2 we used the fact that the only unprimed variablesto which �A refers are the memorization variables m:r. Therefore, it is su�cientto map them in the unprimed version of VA = �(VC). For the primed versionof �, we used Ocv for all v 2 IO, m:r0 = r0c for all r 2 R (m:r 2 M). and theoriginal stsA equations for each v 2 RL.Theorem 1. With the notation introduced above, if veri�cation conditions W1and W2 are valid, then C v A.4.4 Illustrate on the ExampleApplying these methods to the case of the Signal program DEC and its trans-lated C-program DEC iterate(), we obtain the following two veri�cation condi-tions:U1. ZNc = 1 ^ m.ZN = ZNc ^ 8>>>>>: FB = ?^ N = ?^ ZN = ?9>>>>>; ! 8>>>>>>>>>: FB = ?^ N = ?^ ZN = ?^ m.ZN = 1 9>>>>>>>>>;U2. �C ^ 8>>>>>>>>>>>>>: m.ZN = ZNc^ FB0 = if h20c then FB0c else ?^ N0 = N0c^ m.ZN0 = ZN0c^ ZN0 = if N0 6= ? then m.ZN else ?9>>>>>>>>>>>>>; ! �ANote that the �-mapping for the IO variables FB0 and N0, and for theM variablem.ZN is given directly in terms of the concrete variables, while the �-mappingof ZN0 is given in terms of the abstract variables N0 and m.ZN. In principle, itis possible to substitute the de�nitions of N0 and m.ZN in the right-hand sideof the de�nitions for ZN0 and obtain a mapping which expresses all the relevantabstract variables in terms of the concrete variables. Performing the substitutionand some simpli�cations concerning comparison to ?, we obtain the followingversion of U2:U2a. �C ^ 8>>>>>>>>>>>>>: m.ZN = ZNc^ FB0 = if h20c then FB0c else ?^ N0 = N0c^ m.ZN0 = ZN0c^ ZN0 = ZNc 9>>>>>>>>>>>>>; ! �AThe presented approach is immune against the optimizations performed by theindustrial code generators that we considered. The proof technique exploits, incontrast to our previous work [20], only minimal knowledge about the code gen-eration process. We only assume that IOM variables are reconstructible whichis the minimal requirement for the C-code to be a correct implementation of theSignal source [16].

5 Checking the Proof ObligationsAs shown in the previous section, the generated proof obligations are quanti�er-free implications referring to potentially in�nite data domains such as the inte-gers. Direct submission of these implications to a theorem prover such as PVSand invoking various proof procedures turned out to be far too slow.In this section we explain the theoretical basis for an e�cient BDD-basedevaluation of the proof obligations on the basis of uninterpreted functions.Typically, the veri�cation conditions involve various arithmetical functionsand predicates, tests for equality, boolean operations, and conditional (if-then-else) expressions. It has been our experience that the compiler performs veryfew arithmetical optimizations and leaves most of the arithmetical expressionsintact. This suggests that most of the implications will hold independently ofthe special features of the operations and will be valid even if we replace theoperations by uninterpreted functions .5.1 The Uninterpreted Functions Encoding SchemeUnder the uninterpreted functions abstraction, we follow the encoding procedureof [2]. For every operation f occurring in a formula ', which is not an equalitytest or a boolean operator, we perform the following:� Replace each occurrence of a term f(t1; : : : ; tk) in ' by a new variable vifof a type equal to that of the value returned by f . Occurrences f(t1; : : : ; tk)and f(u1; : : : ; uk) are replaced by the same vif i� tj is identical to uj forevery j = 1; : : : ; k .� Let t̂ denote the result of replacing all outer-most occurrences of the formf(t1; : : : ; tk) by the corresponding new variable vif in a sub-term t of '. Forevery pair of newly added variables vif and vjf , i 6= j, corresponding to thenon-identical occurrences f(t1; : : : ; tk) and f(u1; : : : ; uk), add the implication(t̂1 = û1^� � �^t̂k = ûk)) vif = vjf as antecedent to the transformed formula.Example 1. Following are �c and �a of program DEC, after performing the unin-terpreted functions abstraction. Note how the '-' function and the '�' predicatewere replaced by the new symbols vi� and vi� respectively, where i is a runningindex: �c =8>>>>>>>>>>>>>>>>>>>: (h10c = T)^ (h20c = (v1�))^ (h20c) N0c = FB0c)^ (:h20c) (FB0c = FBc ^ N0c = v1�))^ (ZN0c = N0c)
9>>>>>>>>>>>>>>>>>>>;

�a =8>>>>>>>>>>>>>>>>>>>: N0 = if FB0 6= ? then FB0 else v2�^ m.ZN0 = if N0 6= ? then N0 else m.ZN^ ZN0 = if N0 6= ? then m.ZN else ?^ v2� , FB0 6= ?
9>>>>>>>>>>>>>>>>>>>;After adding the functionality constraints, we obtain:' : (e� ^ (ZNc = ZN0 ^ 1 = 1! (v1� = v2� ^ v1� = v2�))! (�c ! �a))where e� stands for the conjunction8>>>>>>>>>>>>>: m.ZN = ZNc^ FB0 = if h20c then FB0c else ?^ N0 = N0c^ m.ZN0 = ZN0c^ ZN0 = ZNc 9>>>>>>>>>>>>>;as presented in the veri�cation condition U2a. We can use the substitution e�to replace all occurrences of abstract variables in ' by their corresponding con-crete expressions. After some simpli�cations, this yields the following implicationreferring only to the concrete variables and the newly added v's:e' : 8>>>: v1� = v2�^ v1� = v2�9>>>; ^ 8>>>>>>>>>>>>>>>>>>>: (h10c = T)^ (h20c = (v1�))^ (h20c) N0c = FB0c)^ (:h20c) (FB0c = FBc ^N0c = v1�))^ (ZN0c = N0c)
9>>>>>>>>>>>>>>>>>>>; !N0c = if h20c then FB0c else v2� ^ ZN0c = N0c ^ v2� , h20cNote that the third conjunct of �A , the one related to ZN0, has been simpli�edaway. The reason is that this conjunct was used to de�ne the � mapping for ZN0,so it would be trivially sati�ed after the substituition.The resulting equality formula belongs to a fragment of �rst order logic whichhas a small model property [4]. This means that the validity of these formulascan be established by solely inspecting models up to a certain �nite cardinality.In order to make these �nite domains as small as possible we apply anothertechnique called range allocation.The domain that can always be taken when using these kind of abstractions issimply a �nite set of integers whose size is the number of (originally) integer/oat

variables (e.g. if there are n integer/oat variables, then each of these variablesranges over [1::n]). It is not di�cult to see that this range is su�cient for provingthe invalidity of a formula if it was originally not valid. The invalidity of theformula implies that there is at least one assignment that makes the formulafalse. Any assignment that preserves the partitioning of the variables in thisfalsifying assignment will also falsify the formula (the absolute values are of noimportance). This is why the [1::n] range, which allows all possible partitions, issu�cient regardless of the formula's structure.5.2 Range AllocationThe size of the state-space imposed by the [1::n] range as suggested in the pre-vious section is nn. For most industrial-size programs this state-space is far toobig to handle. But apparently there is a lot of redundancy in this range thatcan be avoided. The [1::n] range is given without any analysis of the formula'sstructure. Note that our informal justi�cation of the soundness of this methodis independent of the structure of the formula we try to validate, and thus therange is su�cient for all formulas with n variables. This is probably the best wecan do when the only information we have about the formula is that it has nvariables. However, a more detailed analysis of the structure of the formula wewish to validate makes it possible to signi�cantly decrease the ranges, and con-sequently the state space can be drastically reduced. This analysis is performedby the 'Range Allocation' module, using the range allocation algorithm , whichsigni�cantly reduces the range of each of these (now enumerated type) variables,and enables the handling of larger programs. By applying the range-allocationtechnique, CVT decreases the state space of the veri�ed formulas typically byorders of magnitude. We have many examples of formulas containing 150 integervariables or more (which result in a state-space of 150150 if the [1::n] range istaken) which. after performing the range allocation algorithm, can be provedwith a state-space of less than 100, in less than a second.The range allocation algorithm is somewhat complex and its full descriptionis beyond the scope of this paper. We refer the reader to [17] for more details,and describe here only the general idea.The algorithm attempts to solve a satis�ability (validity) problem e�ciently,by determining a range allocation R : Vars(') 7! 2N , mapping each integervariable xi 2 ' into a small �nite set of integers, such that ' is satis�able(valid) i� it is satis�able (respectively, valid) over some R-interpretation. Aftereach variable xi is encoded as an enumerated type over its �nite domain R(xi),we use a standard bdd package, such as the one in TLV (see Section 5.5), toconstruct a bdd B'. Formula ' is satis�able i� B' is not identical to 0.Obviously, the success of our method depends on our ability to �nd rangeallocations with a small state-space.In theory, there always exists a singleton range allocation R�, satisfying theabove requirements, such that R� allocates each variable a domain consisting of asingle integer, i.e., jR�j = 1. This is supported by the following trivial argument:

If ' is satis�able, then there exists an assignment (x1; : : : ; xn) = (z1; : : : ; zn)satisfying '. It is su�cient to take R� : x1 7! fz1g; : : : ; xn 7! fzng as thesingleton allocation. If ' is unsatis�able, it is su�cient to take R� : x1; : : : ; xn 7!f0g.However, �nding the singleton allocation R� amounts to a head-on attackon the primary NP-complete problem. Instead, we generalize the problem andattempt to �nd a small range allocation which is adequate for a set of formulas� which are \structurally similar" to the formula ', and includes ' itself.Consequently, we say that the range allocation R is adequate for the formulaset � if, for every equality formula in the set ' 2 �, ' is satis�able i� ' issatis�able over R.5.3 An Approach Based on the Set of Atomic FormulasWe assume that ' has no constants or boolean variables, and is given in a positiveform, i.e. negations are only allowed within atomic formulas of the form xi 6= xj .Any equality formula can be brought into such positive form, by expressing allboolean operations such as !, � and the if-then-else construct in terms of thebasic boolean operations :, _, and ^, and pushing all negations inside.Let At(') be the set of all atomic formulas of the form xi = xj or xi 6= xjappearing in ', and let �(') be the family of all equality formulas which havethe same set of atomic formulas as '. Obviously ' 2 �('). Note that the familyde�ned by the atomic formula set fx1 = x2; x1 6= x2g includes both the satis�ableformula x1=x2 _ x1 6=x2 and the unsatis�able formula x1=x2 ^ x1 6=x2.For a set of atomic formulas A, we say that the subset B = f 1; : : : ; kg � Ais consistent if the conjunction 1^� � �^ k is satis�able. Note that a set B is con-sistent i� it does not contain a chain of the form x1 = x2; x2 = x3; : : : ; xr�1 = xrtogether with the formula x1 6= xr.Given a set of atomic formulas A, a range allocation R is de�ned to besatisfactory for A if every consistent subset B � A is R-satis�able.For example, the range allocation R:x1; x2; x3 7! f0g is satisfactory for theatomic formula set fx1 = x2; x2 = x3g, while the allocation R:x1 7! f1g; x2 7!f2g; x3 7! f3g is satisfactory for the formula set fx1 6= x2; x2 6= x3g. On theother hand, no singleton allocation is satisfactory for the set fx1 = x2; x1 6= x2g.A minimal satisfactory allocation for this set can be given by R:x1 7! f1g; x2 7!f1; 2g.Claim. The range allocation R is satisfactory for the atomic formula set A i� Ris adequate for �(A), the set of formulas ' such that At(') = A.Thus, we concentrate our e�orts on �nding a small range allocation which issatisfactory for A = At(') for a given equality formula '. In view of the claim,we will continue to use the terms satisfactory and adequate synonymously.We partition the set A into the two sets A = A= [A 6=, where A= containsall the equality formulas in A, while A 6= contains the inequalities.Note that the sets A=(') and A6=(') for a given formula ' can be computedwithout actually carrying out the transformation to positive form. All that is

required is to check whether a given atomic formula has a positive or negativepolarity within ', where the polarity of a sub-formula p is determined accordingto whether the number of negations enclosing p is even (positive polarity) or odd(negative polarity). Additional considerations apply to sub-formulas involvingthe if-then-else construct.Example 2. Let us illustrate these concepts on program DEC whose validity wewish to check.Since our main algorithm checks for satis�ability, we proceed by calculatingthe polarity of each comparison in :e':A= = f(FB0c = FBc); (N0c = FB0c); (N0c = v1�); (ZN0c = N0c);(v1� = v2�)gA6= = f(N0c 6= FB0c); (N0c 6= v2�); (ZN0c 6= N0cgFor example, the comparison (N0c = v1�) in ' is contained within one negation(implied by appearing on the left hand side of the implication). Since we areconsidering :', this amounts to 2 negations, and since 2 is even, we add (N0c =v1�) to A=.This example would require a state-space in the order of 105 if we used the full[1::n] range. The range allocation algorithm of [17] will �nd ranges adequate forthis formula, with a state space of 32.n0c fb0czn0c fbcv1�v2�Fig. 5. The Graph G : G6= [G= representing :'5.4 A Graph-Theoretic RepresentationThe sets A6= and A= can be represented by two graphs, G= and G6= de�ned asfollows:(xi; xj) is an edge on G=, the equalities graph , i� (xi = xj) 2 A=.(xi; xj) is an edge on G6=, the inequalities graph , i� (xi 6= xj) 2 A 6=.We refer to the joint graph as G.An inconsistent subset B � A will appear, graphically, as a cycle consistingof a single G6=-edge and any positive number of G=-edges. We refer to thesecycle as contradictory cycles.

In Fig. 5, we present the graph corresponding to the formula :', where G=-edges are represented by dashed lines and G6=-edges are represented by solidlines.The range allocation algorithm has several stages of traversing the graph,analyzing reachability, removing vertices etc. Without going into the details ofthe algorithm, we will present the ranges adequate for this graph, as computed bythe algorithm: R : ZN0c 7! f1; 2g; N0c 7! f1g; FB0c 7! f1; 3g; FBc 7! f1; 3g; v1� 7!f1; 4g; and v2� 7! f1; 4g:Indeed, every consistent subset of the edges in the graph can be satis-�ed with these ranges. For example, for the subset made of the dashed edgesf(FBc;FB0c); (FB0c;N0c); (v2�; v1�) and the solid edge f(v2�;N0c)g we can assignFBc = FB0c = N0c = 1, and v1� = v2� = 4. Clearly this assignment satis�esthe constraints that are represented by these edges.In this case we reduced the state space from 66 to 32. In many cases thegraphs are not as connected as this one, and therefore the reduction in thestate space is much more signi�cant. Often, 60 - 70% of the variables becomeconstants, in the same way that N0c became a constant in the example givenabove. We once more refer the reader to [17] for further details.5.5 The Veri�er module (TLV)The validity of the veri�cation conditions is checked by TLV [18], an SMV-basedtool which provides the capability of BDD-programming and has been developedmainly for �nite-state deductive proofs (and is thus convenient in our case forexpressing the re�nement rule). In the case that the equivalence proof fails, acounter example is displayed. Since it is possible to isolate the conjunct(s) thatfailed the proof, this information can be used by the compiler developer to checkwhat went wrong. A proof log is generated as part of this process, indicatingwhat was proved, at what level of abstraction and when.6 A case studyWe used CVT to validate an industrial size program, a code generated for thecase study of a turbine developed by SNECMA, which is one of the industrialcase studies in the SACRES project. The program was partitioned manually (bySNECMA) into 5 units which were separately compiled. Altogether the Signalspeci�cation is a few thousand lines long and contains more than 1000 variables.After the abstraction we had about 2000 variables (as explained in Section 5, theabstraction module replaces function symbols with new variables). Following isa summary of the results achieved by CVT:

Module Conjuncts Time (min.)M1 530 1:54M2 533 1:30M3 124 0:27M4 308 2:22M5 860 5:55Total : 2355 12:08Although it is hard to assess at this stage how strongly this particular ex-ample indicates the feasibility of the Translation Validation approach, the casestudy undoubtedly shows that a compilation process (of the type we consid-ered) of an industrial size program can be automatically veri�ed in a reasonableamount of time.7 ConclusionsWe have presented the theory which underlies our translation validation ap-proach for optimizing industrial compilers from Signal to C. We described thetranslation of Signal and C programs to STS, the generation of the substitu-tion � and the �nal assembling of the proof obligations according to Rule refas they are implemented in CVT (the Code Validation Tool). In addition, thedecision procedure, including the abstraction, the Range Allocation algorithmand various other optimizations that were not presented in this paper, are alsoimplemented in CVT. We believe that the case study that was presented in thepaper is a strong indication that translation validation is a viable alternative tofull compiler veri�cation.Dedication This paper is dedicated with friendship and appreciation to HansLangmaac, a pioneer in the area of compiler veri�cation, whose work proved thegreat value and feasibility of a seamless and fully veri�ed development path fromspeci�cation to implementation.Acknowledgment We wish to express our gratitude to Markus M�uller-Olmwho reviewed an earlier version of this article in record-time and yet managedto provide us with several signi�cant and insightful comments which led to ameaningful improvement in the quality and validity of this paper.References[1] M. Abadi and L. Lamport. The existence of re�nement mappings. TheoreticalComputer Science, 82(2):253{284, May 1991.[2] W. Ackerman. Solvable cases of the Decision Problem. Studies in Logic and theFoundations of Mathematics. North-Holland, Amsterdam, 1954.

[3] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programmingwith events and relations: the SIGNAL languages and its semantics. Science ofComputer Programming, 16:103{149, 1991.[4] E. B�orger, E. Gr�adel, and Y. Gurevich. The Classical Decision Problem. Springer-Verlag, 1996.[5] B. Buth, K.-H. Buth, M. Fr�anzle, B. von Karger, Y. Lakhneche, H. Langmaack,and M. M�uller-Olm. Provably correct compiler development and implementation.In U. Kastens and P. Pfahler, editors, Compiler Construction'92, 4th InternationalConference Paderborn, Germany, volume 641 of Lect. Notes in Comp. Sci., pages141{155. Springer-Verlag, 1992.[6] K.M. Chandy and J. Misra. Parallel Program Design: a Foundation. Addison-Wesley, 1988.[7] A. Cimatti, F. Giunchiglia, P. Pecchiari, B. Pietra, J. Profeta, D. Romano,P. Traverso, and B. Yu. A provably correct embedded veri�er for the certi�cationof safety critical software. In O. Grumberg, editor, Proc. 9th Intl. Conferenceon Computer Aided Veri�cation (CAV'97), volume 1254 of Lect. Notes in Comp.Sci., pages 202{213. Springer-Verlag, 1997.[8] A. Cimatti, F. Giunchiglia, P. Traverso, and A. Villa�orita. Run-time resultformal veri�cation of safety critical software: an industrial case study. In Run-Time Result Veri�cation. The 1999 Federated Logic Conference, 1999.[9] D.L. Clutterbuck and B.A. Carre. The veri�cation of low-level code. SoftwareEngineering Journal, pages 97{111, 1998.[10] P. Curzon. A veri�ed compiler for a structured assembly language. In interna-tional workshop on the HOL theorem Proving System and its applications. IEEEComputer Society Press, 1991.[11] J.D. Guttman, J.D. Ramsdell, and V. Swarup. The VLISP veri�ed Scheme system.Lisp and Symbolic Computation, 8:33{100, 1995.[12] J.D. Guttman, J.D. Ramsdell, and M. Wand. VLISP: A veri�ed implementationof Scheme. Lisp and Symbolic Computation, 8:5{32, 1995.[13] M. M�uller-Olm. Modular Compiler Veri�cation: A Re�nement-Algebraic Ap-proach Advocating Stepwise Abstraction, volume 1283 of Lect. Notes in Comp.Sci. Springer-Verlag, 1997.[14] D.P. Oliva, J.D. Ramsdell, and M. Wand. The VLISP veri�ed PreScheme com-piler. Lisp and Symbolic Computation, 8:111{182, 1995.[15] I.M. O'Neill, D.L. Clutterbuck, and P.F. Farrow. The formal veri�cation of safety-critical assembly code. In IFAC Symposium on safety of computer control systems,1988.[16] Private communications with TNI (BREST), Siemens (Munich) and Inria(Rennes).[17] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulasby small-domains instantiations. In N. Halbwachs and D. Peled, editors, Proc.11st Intl. Conference on Computer Aided Veri�cation (CAV'99), Lect. Notes inComp. Sci. Springer-Verlag, 1999. to appear.[18] A. Pnueli and E. Shahar. A platform for combining deductive with algorithmicveri�cation. In R. Alur and T. Henzinger, editors, Proc. 8th Intl. Conference onComputer Aided Veri�cation (CAV'96), Lect. Notes in Comp. Sci., pages 184{195.Springer-Verlag, 1996.[19] A. Pnueli, M. Siegel, and O. Shtrichman. The code validation tool (CVT)- auto-matic veri�cation of a compilation process. Software Tools for Technology Trans-fer, 2, 1999.

[20] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In B. Ste�en,editor, 4th Intl. Conf. TACAS'98, volume 1384 of Lect. Notes in Comp. Sci., pages151{166. Springer-Verlag, 1998.[21] A. Stump and D. Dill. Generating proofs from a decision procedure. In Run-TimeResult Veri�cation. The 1999 Federated Logic Conference, 1999.[22] P. Traverso and P. Bertoli. Mechanized result veri�cation: an industrial appli-cation. In Run-Time Result Veri�cation. The 1999 Federated Logic Conference,1999.

