
Integrating high-level constructs

into programming languages

Language extensions to make programming

more productive

Underspecified programs

– give assertions, get code that enforces them

– simplify programming, reasoning, testing

Pattern matching

– widely used construct in functional programs

– synthesis can make it more expressive

Synthesis as Scala-compiler plugin

Warning: solution not unique for: totsec=60

Given number of seconds, break it into hours, minutes, leftover

our synthesis procedurechoose:(A => Boolean) => A

Synthesis for Pattern Matching

Our Scala compiler plugin:

• generates code that does division and testing of reminder

• checks that all cases are covered

• can use any integer linear arithmetic expressions

F‟(x,y)

formula is valid
(true for all x,y)

formula has a
counterexample

(x1, y1)
for which it is false

formula
(bool-valued expression)

Starting point: counterexample-generating

decision procedures (validity)

Decision

Procedure

Effective in verification:
counterexample  error

Can we use it in synthesis?

Take negation of F‟…

F(x,y)

formula is unsatisfiable
(false for all x,y)

formula is true for
(x1, y1)

formula
(bool-valued expression)

Starting point: counterexample-generating

decision procedures (satisfiability)

Decision

Procedure

10 < y Æ x < 6 Æ y < 3*x

true for
x=4, y=11

formula F with integer
variables

Example: integer linear arithmetic

Decision

Procedure

No a-priori bounds on integers
(add e.g. 0 <= y < 264 if needed)

function g on integers
gx(y)=(y+1) div 3

formula F with integer
variables

Synthesis procedure for integers

Synthesis

Procedure

Two kinds of variables:
inputs – here y
outputs – here x precondition

P on y
10 < y < 14

- P describes precisely when solution exists.
- (gx(y),y) is solution whenever P(y)

10 < y Æ x < 6 Æ y < 3*x

How does it work?

Quantifier elimination

Take formula of the form
9 x. F(x,y)

replace it with an equivalent formula

G(y)

without introducing new variables

Repeat this process to eliminate all variables

Algorithms for quantifier elimination (QE) exist for:
– Presburger arithmetic (integer linear arithmetic)

– set algebra

– algebraic data types (term algebras)

– polynomials over real/complex numbers

– sequences of elements from structures with QE

Example: test-set method for QE

(e.g. Weispfenning‟97)
Take formula of the form
9 x. F(x,y)

replace it with an equivalent formula

Çi=1
n Fi(ti(y),y)

We can use it to generate a program:

x = if F1(t1(y),y) then t1(y)
else if F2(t2(y),y) then t2(y)

…

else if Fn(tn(y),y) then tn(y)

else throw new Exception(“No solution exists”)

Can do it more efficiently – generalizing decision procedures
and quantifier-elimination algorithms (use div, %, …)

Example: Omega-test for Presburger arithmetic – Pugh‟92

Presburger Arithmetic

T ::= k | C | T1 + T2 | T1 – T2 | C¢T

A ::= T1 = T2 | T1 < T2

F ::= A | F1 Æ F2 | F1 Ç F2 | :F | 9k.F

Presburger showed quantifier elimination for PA in 1929

• requires introducing divisibility predicates

• Tarski said this was not enough for a PhD thesis

Normal form for quantifier elimination step:

Parameterized Presburger arithmetic

Given a base, and number convert a number into this base

val base = read(…)

val x = read(…)

val (d2,d1,d0) = choose((x2,x1,x0) =>

x0 + base * (x1 + base * x2) == x &&

0 <= x0 < base &&

0 <= x1 < base)

This also works, using a similar algorithm

• This time essential to have „for’ loops

„for‟ loops are useful even for simple PA case

• reduce code size, preserve efficiency

Beyond numbers

Synthesizing sets

val s = …

val (a1,a2) = choose((a1:Set[O],a2:Set[O]) ⇒
a1 union a2 == s &&

a1 intersect a2 == empty &&

abs(a1.size − a2.size) ≤ 1)

Partition a set into two parts of almost-equal size

Boolean Algebra with Presburger Arithmetic

Our results related to BAPA
– complexity for full BAPA (like PA, has QE)

– polynomial-time fragments

– complexity for Q.F.BAPA

– generalized to multisets

– combined with function images

– used as a glue to combine expressive logics

– synthesize sets of objects from specifications

S ::= V | S1 [S2 | S1 Å S2 | S1 n S2

T ::= k | C | T1 + T2 | T1 – T2 | C¢T | card(S)

A ::= S1 = S2 | S1 µ S2 | T1 = T2 | T1 < T2

F ::= A | F1 Æ F2 | F1 Ç F2 | :F | 9S.F | 9k.F

Computational benefits of synthesis

Example: propositional formula F
var p = read(…); var q = read(…)

val (p0,q0) = choose((p,q) => F(p,q,u,v))

– SAT is NP-hard

– generate BDD circuit over input variables

• for leaf nodes compute one output, if exists

– running through this BDD is polynomial

Reduced NP problem to polynomial one

Also works for linear rational arithmetic

(build decision tree with comparisons)

new decision procedures



new synthesis algorithms

next0*(root0,n1)

x {data0(n) | next0*(root0,n)}

next=next0[n1:=root0]

data=data0[n1:=x] 

|{data(n) | next*(n1,n)}| =

|{data0(n) | next0*(root0,n)}| + 1

formula is valid

formula has a
counterexample

formula in an expressive
decidable logic

Combining decision procedures

decision

procedure A

decision

procedure B

decision

procedure C

Combining formulas with disjoint

signatures (current tools)

decision

procedure for

integer arithmetic

decision

procedure for

function symbols

x < y+1 & y < x+1 & x‟=f(x) & y‟=f(y) & x‟=y‟+1

x < y+1

y < x+1

x‟=y‟+1

x‟=f(x)

y‟=f(y)

x=y

x‟=y‟
0=1

Some research directions of LARA

(Lab for Automated Reasoning & Analysis)

• Program verification and analysis tools
both language-independent techniques, and
translations from Scala, Java, PHP to logical models

• Decision procedures for reasoning about:
algebraic data types, multisets, sets, graphs

• Techniques to combine decision procedures

• Program synthesis from specifications

• Dynamically deployed analysis, synthesis

• Specification-based systematic testing

• Collaboration on such activities within Europe

http://RichModels.org

http://richmodels.org/

