Integrating high-level constructs into programming languages

Language extensions to make programming more productive
Underspecified programs

- give assertions, get code that enforces them
- simplify programming, reasoning, testing

Pattern matching

- widely used construct in functional programs
- synthesis can make it more expressive

Synthesis as Scala-compiler plugin

Given number of seconds, break it into hours, minutes, leftover val (hours, minutes, seconds $)=\operatorname{choose}((\mathrm{h}: \operatorname{Int}, \mathrm{m}: \operatorname{Int}, \mathrm{s}: \operatorname{Int}) \Rightarrow($ $? \mathrm{~h} * 3600+? \mathrm{~m} * 60+? \mathrm{~s}==$ totsec
\&\& $0 \leq ? \mathrm{~m} \& \& ? \mathrm{~m} \leq 60 \quad$ parameter-variable in scope
$\& \& 0 \leq$? $s \& \& ? s \leq 60)$)
choose: (A => Boolean) => A \square our synthesis procedure

```
val (hours, minutes, seconds) \(=\{\)
    val loc1 \(=\) totsec div 3600
    val num \(2=\) totsec \(+((-3600) *\) loc 1\()\)
    val loc \(2=\min (\) num \(2 \operatorname{div} 60,59)\)
    val loc3 \(=\) totsec \(+((-3600) *\) loc1 \()+(-60 * \operatorname{loc} 2)\)
    (loc1, loc2, loc3)
\}
```

Warning: solution not unique for: totsec=60

Synthesis for Pattern Matching

```
def pow(base: Int, p:Int) ={
    def fp(m:Int, b:Int, i: Int) = i match {
    case 0=>m
    case 2*j => fp(m,b*b, j)
    case 2*j+1 =>fp(m*b,b*b,j)
    }
    fp(1,base,p)
}
```

Our Scala compiler plugin:

- generates code that does division and testing of reminder
- checks that all cases are covered
- can use any integer linear arithmetic expressions

Starting point: counterexample-generating decision procedures (validity)

formula
(bool-valued expression)

$$
F^{\prime}(x, y)
$$

Effective in verification: counterexample \rightarrow error Can we use it in synthesis?

Take negation of F^{\prime}...
formula is valid
(true for all x, y)

Decision
 Procedure

formula has a counterexample ($\mathrm{x} 1, \mathrm{y} 1$)
for which it is false

Starting point: counterexample-generating decision procedures (satisfiability)

formula is unsatisfiable

formula
(bool-valued expression)

(false for all x, y)
$\stackrel{1}{\wedge}$
Decision Procedure
formula is true for
(x1, y1)

Example: integer linear arithmetic

formula F with integer variables

$$
10<y \wedge x<6 \wedge y<3^{*} x
$$

No a-priori bounds on integers (add e.g. $0<=\mathrm{y}<2^{64}$ if needed)

Decision Procedure

true for
$x=4, y=11$

Synthesis procedure for integers

formula F with integer variables

$$
10<y \wedge x<6 \wedge y<3^{*} x
$$

Two kinds of variables: inputs - here y outputs - here x
function g on integers

$$
g_{x}(y)=(y+1) \operatorname{div} 3
$$

Synthesis
Procedure

- P describes precisely when solution exists.
- $\left(g_{x}(y), y\right)$ is solution whenever $P(y)$

How does it work?

Quantifier elimination

Take formula of the form
$\exists x . F(x, y)$
replace it with an equivalent formula G(y)
without introducing new variables
Repeat this process to eliminate all variables
Algorithms for quantifier elimination (QE) exist for:

- Presburger arithmetic (integer linear arithmetic)
- set algebra
- algebraic data types (term algebras)
- polynomials over real/complex numbers
- sequences of elements from structures with QE

Example: test-set method for QE (e.g. Weispfenning'97)

Take formula of the form
$\exists \mathrm{x}$. $\mathrm{F}(\mathrm{x}, \mathrm{y})$
replace it with an equivalent formula
$V_{i=1}{ }^{n} F_{i}\left(t_{i}(y), y\right)$
We can use it to generate a program:

```
x = if F
    else if F}\mp@subsup{F}{2}{}(\mp@subsup{\textrm{t}}{2}{}(\textrm{y}),\textrm{y})\mathrm{ then }\mp@subsup{\textrm{t}}{2}{}(\textrm{y}
```

else if $F_{n}\left(t_{n}(y), y\right)$ then $t_{n}(y)$ else throw new Exception("No solution exists")

Can do it more efficiently - generalizing decision procedures and quantifier-elimination algorithms (use div, \%, ...)
Example: Omega-test for Presburger arithmetic - Pugh'92

Presburger Arithmetic

$$
\begin{aligned}
& \mathrm{T}::=\mathrm{k}|\mathrm{C}| \mathrm{T}_{1}+\mathrm{T}_{2}\left|\mathrm{~T}_{1}-\mathrm{T}_{2}\right| \mathrm{C} \cdot \mathrm{~T} \\
& \mathrm{~A}::=\mathrm{T}_{1}=\mathrm{T}_{2} \mid \mathrm{T}_{1}<\mathrm{T}_{2} \\
& \mathrm{~F}::=\mathrm{A}\left|\mathrm{~F}_{1} \wedge \mathrm{~F}_{2}\right| \mathrm{F}_{1} \vee \mathrm{~F}_{2}|\neg \mathrm{~F}| \exists \mathrm{k} . \mathrm{F}
\end{aligned}
$$

Presburger showed quantifier elimination for PA in 1929

- requires introducing divisibility predicates
- Tarski said this was not enough for a PhD thesis

Normal form for quantifier elimination step:

Parameterized Presburger arithmetic

Given a base, and number convert a number into this base

```
val base = read(...)
val x = read(...)
val (d2,d1,d0) = choose((x2,x1,x0) =>
    x0 + base * (x1 + base * x2) == x &&
    0 <= x0 < base &&
    0<= x1 < base)
```

This also works, using a similar algorithm

- This time essential to have 'for' loops
'for' loops are useful even for simple PA case
- reduce code size, preserve efficiency

Beyond numbers

Synthesizing sets

Partition a set into two parts of almost-equal size

```
val s = ...
val (a1,a2) = choose((a1:Set[0],a2:Set[O]) =
    a1 union a2 == s &&
    a1 intersect a2 == empty &&
    abs(a1.size - a2.size) \leq 1)
```


Boolean Algebra with Presburger Arithmetic

$$
\begin{aligned}
& \mathbf{S}::=\mathbf{V}\left|S_{1} \cup S_{2}\right| S_{1} \cap S_{2} \mid S_{1} \backslash S_{2} \\
& \text { T::=k|C| } \mathrm{T}_{1}+\mathrm{T}_{2}\left|\mathrm{~T}_{1}-\mathrm{T}_{2}\right| \mathrm{C} \cdot \mathrm{~T} \mid \operatorname{card}(\mathbf{S}) \\
& A::=S_{1}=S_{2}\left|S_{1} \subseteq S_{2}\right| T_{1}=T_{2} \mid T_{1}<T_{2} \\
& F::=A\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2}|\neg F| \exists \text { S.F } \mid \exists k \text {.F }
\end{aligned}
$$

Our results related to BAPA

- complexity for full BAPA (like PA, has QE)
- polynomial-time fragments
- complexity for Q.F.BAPA
- generalized to multisets
- combined with function images
- used as a glue to combine expressive logics
- synthesize sets of objects from specifications

Computational benefits of synthesis

Example: propositional formula F
$\operatorname{var} p=\operatorname{read}(\ldots) ; \operatorname{var} q=\operatorname{read}(\ldots)$
$\operatorname{val}(p 0, q 0)=\operatorname{choose}((p, q)=>(p, q, u, v))$

- SAT is NP-hard
- generate BDD circuit over input variables
- for leaf nodes compute one output, if exists
- running through this BDD is polynomial

Reduced NP problem to polynomial one
Also works for linear rational arithmetic
(build decision tree with comparisons)
new decision procedures
\rightarrow
new synthesis algorithms

Combining decision procedures

formula is valid
formula in an expressive decidable logic

```
\negnext0*(root0,n1)^
x}\not\in{d\operatorname{data0(n)| next0*(root0,n)} ^
next=next0[n1:=root0]^
data=data0[n1:=x] }
|{data(n)| next*(n1,n)}| =
|{data0(n)| next0*(root0,n)}| + 1
```


formula has a counterexample

Combining formulas with disjoint signatures (current tools)

$$
x<y+1 \& y<x+1 \& x^{\prime}=f(x) \& y^{\prime}=f(y) \& x^{\prime}=y^{\prime}+1
$$

$$
\begin{aligned}
& x<y+1 \\
& y<x+1 \\
& x^{\prime}=y^{\prime}+1 \\
& 0=1
\end{aligned}
$$

Some research directions of LARA (Lab for Automated Reasoning \& Analysis)

- Program verification and analysis tools both language-independent techniques, and translations from Scala, Java, PHP to logical models
- Decision procedures for reasoning about: algebraic data types, multisets, sets, graphs
- Techniques to combine decision procedures Program synthesis from specifications
- Dynamically deployed analysis, synthesis
- Specification-based systematic testing
- Collaboration on such activities within Europe http://RichModels.org

