
Towards Efficient Satisfiability Checking for Boolean
Algebra with Presburger Arithmetic

Viktor Kuncak and Martin Rinard

Abstract. Boolean Algebra with Presburger Arithmetic (BAPA) is a decidable logic that
combines 1) Boolean algebras of sets of uninterpreted elements (BA) and 2) Presburger
arithmetic operations (PA). BAPA can express relationships between integer variables and
cardinalities of unbounded sets. In combination with otherdecision procedures and theorem
provers, BAPA is useful for verifying quantitative properties of data structures. Motivated
by the observation that many queries in program analysis andverification are quantifier-free
formulas, this paper examines QFBAPA, the quantifier-free fragment of BAPA. The compu-
tational complexity of QFBAPA satisfiability was previously unknown. Previous QFBAPA
algorithms have non-deterministic exponential time complexity due to an explosion in the
number of introduced integer variables.
This paper shows, for the first time, how to avoid such exponential explosion. We present
an algorithm for checking satisfiability of QFBAPA formulasby reducing them to formulas
of quantifier-free Presburger arithmetic, with only O(n log(n)) increase in formula size. We
prove the correctness of our algorithm using a theorem aboutsparse solutions of integer
linear programming problems. This proves that QFBAPA satisfiability is in NP and there-
fore NP-complete. We implemented our algorithm; we describe its initial deployment in the
Jahob verification system and discuss its performance.

1 Introduction

This paper considers the satisfiability problem for a logic that allows reasoning about
sets and their cardinalities. We call this logic quantifier-free Boolean Algebra with Pres-
burger Arithmetic and denote itQFBAPA. Our motivation forQFBAPA is proving the
validity of formulas arising from program verification [15, 16, 17], but QFBAPA con-
straints also occur in mechanized set theory [9], constraint data bases [28,29], as a frag-
ment of other logics [23, 25, 1] and in the semantic analysis of natural language [20].
Figure1 shows the syntax ofQFBAPA. The logic contains 1) arbitrary boolean alge-
bra (BA) expressions denoting sets, supporting operations such asunion, intersection
and complement, 2) arbitrary quantifier-free Presburger arithmetic (PA) expressions,
supporting addition of integers and multiplication by constants, and 3) a cardinality
operator|B| for computing the the size of aBA expressionB and treating it as a
PA expression. The constantMAXC denotes the size of the finite universal setU , so
|U| = MAXC. The expressionK dvdT means that an integer constantK divides an
integer expressionT , whereasBc denotes the complement of the setB.

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | K dvdT

B ::= x | ∅ | U | B1 ∪ B2 | B1 ∩ B2 | Bc

T ::= k | K | MAXC | T1 + T2 | K · T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 1.Quantifier-Free Boolean Algebra with Presburger Arithmetic (QFBAPA)

1.1 UsingQFBAPA in Software Verification

We implemented the algorithm described in this paper in the Jahob data structure ver-
ification system [15]. Figure2 shows some of the verification conditions expressible
in QFBAPA that we encountered and proved using our decision procedure. (For more
examples, see [17, Chapters 2 and 7].) The formulas in Figure2 are in HOL syntax,
where cardinality of a set is denoted bycard. Jahob soundly maps such formulas into
strongerBAPA, using a simple syntactic translation that represents individual variables
as singleton sets and approximates constructs unsupportedby BAPA.

Section7 describes our preliminary experience, which suggests that, for the more
complex examples, our newQFBAPA decision procedure generates smaller formulas
than the originalBAPA decision procedure. When proving formula validity, this reduc-
tion does not yet translate to smaller running times. However, our decision procedure
seems to have advantage for finding counterexamples of largeformulas. We believe that
the underlying results are interesting in their own right, and, given the exponential re-
duction in formula size for larger formulas, they can be viewed as a first step towards
future scalable decision procedures forQFBAPA.

verification condition property being checked
1 x /∈ content ∧ size = card content −→

(size = 0 ↔ content = ∅)
using invariant on size to
prove correctness of an
efficient emptiness check

2 x /∈ content ∧ size = card content −→
size+ 1 = card({x} ∪ content)

maintaining correct size when
inserting fresh element

3 size = card content ∧
size1 = card({x} ∪ content) −→

size ≤ size1 ∧ size1 ≤ size+ 1

maintaining size after
inserting any element

4 content ⊆ alloc ∧
x1 /∈ alloc ∧
x2 /∈ alloc ∪ {x1} ∧
x3 /∈ alloc ∪ {x1} ∪ {x2} −→
card (content ∪ {x1} ∪ {x2} ∪ {x3}) =
cardcontent+ 3

allocating and inserting three
objects into a countainer

5 content ⊆ alloc0 ∧ x1 /∈ alloc ∧
alloc0 ∪ {x1} ⊆ alloc1 ∧ x2 /∈ alloc1 ∧
alloc1 ∪ {x2} ⊆ alloc2 ∧ x3 /∈ alloc2 −→
card (content ∪ {x1} ∪ {x2} ∪ {x3}) =
cardcontent+ 3

allocating and inserting three
objects into a countainer while
potentially performing other
allocations

6 x ∈ C ∧ C1 = (C \ {x}) ∧
card(alloc1 \ alloc0) ≤ 1 ∧
card(alloc2 \ alloc1) ≤ cardC1 −→

card (alloc2 \ alloc0) ≤ cardC

bound on the number of allocated
objects in a recursive function
that incorporates containerC into
another container

Fig. 2. Example verification conditions proved using theQFBAPA decision procedure

1.2 QFBAPA and BAPA

The logicQFBAPA is the quantifier-free fragment of Boolean Algebra with Presburger
Arithmetic (BAPA). In addition to the constructs in Figure1, full BAPA supports arbi-
trary set and integer quantifiers. Feferman and Vaught [12, Section 8, Page 90] showed
the decidability of a variant ofBAPA and used it to show the decidability of general-

2

ized products of first-order structures. In [16,17] we formalize a decision procedure for
BAPA and show thatBAPA has the same complexity asPA, namely alternating dou-

bly exponential time with a linear number of alternations, denotedSTA(∗, 22nO(1)

, n)
in [4], [14, Lecture 24].

BAPA admits quantifier elimination, which implies thatQFBAPA formulas define
the same class of relations on sets and integers asBAPA formulas, so they essentially
have the same expressive power. Quantifier elimination alsomakesBAPA interesting
as a potential shared language for combining multiple reasoning procedures [13]. In
general,QFBAPA formulas may be exponentially larger than the equivalent quantified
BAPA formulas with same free variables. However, it is often the case that the proof
obligation (or other problem of interest) is already expressed in quantifier-free form.
It is therefore interesting to consider the complexity of the satisfiability problem for
QFBAPA.

1.3 Challenges in checkingQFBAPA satisfiability

QFBAPA satisfiability is clearly NP-hard, becauseQFBAPA supports arbitrary propo-
sitional operators. Moreover,QFBAPA contains Boolean algebra of sets, which has its
own propositional structure, so even the satisfiability of individual atomic formulas is
NP-hard. The challenge is therefore proving the membershipin NP. Membership in NP
means that there are short certificates for satisfiability ofQFBAPA formulas, or, dually,
that invalidQFBAPA formulas have short counterexamples. Despite the widespread oc-
currence of QFBAPA constraints, this result was not known until now. To understand
why existing approaches fail to establish membership in NP,consider the following
exampleQFBAPA formula:

|U| = 100 ∧
∧

0≤i<j≤10

|xi ∪ xj | = 30 ∧
∧

0≤i≤10

|xi| = 20 (E)

Explicitly specifying set contents.The formula(E) has 10 set variables. Each of these
variables represents a subset of the universe of 100 elements. Therefore, a straightfor-
ward certificate of satisfiability of thisQFBAPA formula would require 100 bits indi-
cating whether each element is in the set, which is a certificate exponential in the size of
the formula because we assume that 100 is represented usinglog 100 bits. Such certifi-
cates therefore yield merely a membership ofQFBAPA in NEXPTIME. Note that, even
if we restrict the constantsK in QFBAPA language to be0 and1, Presburger arithmetic
expressions such ask1 = 1, ki+1 = ki +ki can efficiently encode large constants. Fun-
damentally, the reason we are interested in large set cardinalities is because they arise
from small model theorem for Presburger arithmetic; supporting them is necessary for
verifying symbolic cardinality bounds and constraints such as|x ∩ y| = |z|.

Abstraction using sizes of partitions. An alternative approach to examining set in-
terpretations up to a certain size is to consider a complete partitioning of sets into
disjoint Venn regionsxc

1 ∩ . . . ∩ xc
10, xc

1 ∩ . . . ∩ x10, . . . , x1 ∩ . . . ∩ x10, and intro-
duce one non-negative integer variable for the size each of these partitions, yielding210

variablesl0,...,0, l0,...,1, . . . , l1,...,1. We can then represent cardinality of any set expres-
sion as a sum of finitely many of of these integer variables. This approach is widely
known [23], [9, Chapter 11] and is often used to illustrate the very idea of Venn dia-
grams [34]. It has the advantage of not being exponential in the cardinalities of sets,
because it reasons about these cardinalities symbolically. It also naturally integrates

3

with thePA structure ofQFBAPA and allows reducingQFBAPA to quantifier-freePA,
as we explain below. Unfortunately, its direct use introduces a number of non-negative
integer variables that is exponential in the number of sets.This approach is the essence
of previous algorithms for forQFBAPA [36,28,23] and appears as a special case of our
algorithm for quantifiedBAPA [16,17]. All these algorithms would yield exponentially
large certificates for satisfiability ofQFBAPA, specifying the values of exponentially
many non-negative integer variables.

1.4 Our Results

We can summarize the results of this paper as follows:

1. The key contribution of this paper is an encoding ofQFBAPA formulas into
polynomially-sized quantifier-freePA formulas. Instead of using exponentially
many Venn region cardinality variablesl0,...,0, l0,...,1, . . . , l1,...,1, we use polyno-
mially many “generic” variables along with polynomially many indices that deter-
mine the region that each generic variable represents. In the example(E) above,
we would use introduceN = 502 of generic integer variableslpi

1,...,pi
10

for
1 ≤ i ≤ N that are a function of propositional variables(pi

1, . . . , p
i
10) ∈ {0, 1}10

for 1 ≤ i ≤ N . We assume that the remaining Venn regions are all empty, which al-
lows us to express any set expressionb as a sum of those of theN integer variables
lpi

1,...,pi
10

whose indicespi
1, . . . , p

i
10 identify Venn regions that belong tob.

2. The computation of a sufficient polynomial value forN is the second contributions
of this paper. We start with the result [11] that if an element is in an integer cone
generated by a set of vectorsX of dimensiond, then it is also in an integer cone
generated by a “small” subset ofX of sizeN(d). This result implies that a system
of equations with bounded coefficients, if satisfiable, has asparse solutionwith
only polynomially many non-zero variables, even if the number of variables in the
system is exponential. As a consequence, every satisfiableQFBAPA formula has
a witness of polynomial size, which indicates the values of integer variables in the
originalQFBAPA formula, lists the Venn regions that are non-empty, and indicates
the cardinalities of these non-empty regions.
This application of [11] gives the memership ofQFBAPA in NP, but, given the NP-
hardness of satisfiability of the generated formulas, it is desirable to obtain as tight
bound onN(d) as possible. We make the following steps towards the computation
of a precise bound:
(a) we compute the exact boundN(d) = d for d ≤ 3;
(b) we identify a lower boundN(d) ≥ d +

⌊

d
4

⌋

for d ≥ 4;
(c) we provide several equivalent characterizations of vectors that achieve the op-

timal bound for anyd, introducing the notion of a “non-redundant integer code
generator” (NICG);

(d) we provide a more precise bound in the presence of cardinality constraints of
the form|b| ≤ c and|b| = c for a small constantc.

3. We also describe the implemention of our algorithm in the context of the Jahob
verification system. We evaluate the algorithm on the examples in Figure2 and
their variations.

Our previously reported results. We suggested the possibility of the existence of
sparse solutions in the final version of [17], where we also established the complexity of
quantifiedBAPA. In a previous technical report [21] we identified a PSPACE algorithm

4

for QFBAPA, but the techniques used there are different and not needed for the results
of this paper. We became aware of the result [11] in November 2006. A preliminary
version of the current result is described in [15, Section 7.9].

2 Constructing Small Presburger Arithmetic Formulas
Given aQFBAPA formula, this section shows how to construct an associated poly-
nomially larger quantifier-freePA formula. Section3 then proves that the constructed
formula is equisatisfiable with the original one.

Consider an arbitraryQFBAPA formula in the syntax of Figure1. To analyze the
problem, we first separatePA andBA parts of the formula by replacingb1 = b2 with
b1 ⊆ b2 ∧ b2 ⊆ b1, replacingb1 ⊆ b2 with |b1 ∩ bc

2| = 0, and then introducing integer
variableski for all cardinality expressions|bi| occurring in the formula. With a constant
increase in size, we obtain an equisatisfiableQFBAPA formula of the formG∧F where
G is a quantifier-freePA formula andF is of the form

p
∧

i=0

|bi| = ki (1)

We assumeb0 = U andk0 = MAXC, i.e., the first constraint is|U| = MAXC.
Let y1, . . . , ye be the set variables inb1, . . . , bp. If we view each Boolean algebra

formulabi as a propositional formula, then forβ = (p1, . . . , pe) wherepi ∈ {0, 1} let
JbiKβ ∈ {0, 1} denote the truth value ofbi under the propositional valuation assigning
the truth valuepi to the variableyi. Let furthersβ denote the Venn region associated
with β, given bysβ = ∩e

j=1y
pj

j wherey0
j = yc

j is set complement andy1
j = yj . Because

bi is a disjoint union of its corresponding Venn regions, we have |bi| =
∑

β|=bi
|sβ |. For

the sake of analysis, for eachβ ∈ {0, 1}e introduce a non-negative integer variablelβ
denoting|sβ |. Then (1) is equisatisfiable with the exponentially largerPA formula

p
∧

i=0

∑

{

lβ | β ∈ {0, 1}e ∧ JbiKβ=1
}

= ki (2)

Instead of this exponentially large formula whereβ ranges over all2e propositional
assignments, the idea of our paper is to check the satisfiability of an asymptotically
smaller formula

p
∧

i=0

∑

{

lβ | β ∈ {β1, . . . , βN} ∧ JbiKβ=1
}

= ki (3)

whereβ ranges over a set ofN assignmentsβ1, . . . , βN for βi = (pi1, . . . , pie) andpij

are fresh free variables ranging over{0, 1}. Letd = p + 1. We are interested in the best
upper boundN(d) on the number of non-zero Venn regions over all possible systems of
equations. In the sequel we show thatN(d) is polynomial ind and therefore polynomial
in the size of the originalQFBAPA formula. This result implies thatQFBAPA is in
NP and gives an effective bound on how to construct a quantifier-freePA formula for
checking the satisfiability of a givenQFBAPA formula.

Encoding generic cardinality variables inPA. Formula (3) uses somePA constructs
along with some meta-notation. We next explain how to write (3) as a polynomially

5

large quantifier-freePA formula. Because there are onlyN distinct assignmentsβj

considered, we introduce one variablelj for each1 ≤ j ≤ N , for a total ofN integer
variables. Letcij = JbiKβj

for 1 ≤ i ≤ p and1 ≤ j ≤ N . Then each conjunct of (3)

becomes
∑N

j=1 cij lj = ki. It therefore suffices to show how to efficiently express sums
with boolean variable (as opposed to constant) coefficients. For this we can use the
standard conditional expressionite(p, t1, t2), wherep is a propositional formula and
t1, t2 are integer terms. Theite(p, t1, t2) expression evaluates tot1 whenp evaluates
to true, and evaluates tot2 whenp evaluates to false. It can be efficiently eliminated by
flattening the formula to contain no nested terms and then replacingt = ite(p, t1, t2)
with the formula(p → t = t1) ∧ (¬p → t = t2). (It is also directly available in the
SMT-LIB format [27] and in the UCLID [19] decision procedure.) Usingite, we can
expresscij lj asite(cij , lj , 0). Then (3) becomes

∧p

i=0

∑N

j=1 ite(JbiKβj
, lj , 0) = ki.

Note that we can substitute the valueski back into the originalPA formulaG, so there
is no need to peform the separation intoG ∧ F in practice. We obtain the following
simple summary of our algorithm:

substitute each expression|bi| with
N
∑

j=1

ite(JbiKβj
, lj, 0)

Note that this translation ofQFBAPA into PA is parameterized byN . Sufficiently large
values ofN guarantee soundness and are the subject of the following sections, which
show that a polynomial value suffices. However, any value ofN can be used to try
to prove the existence of a satisfying assignment forQFBAPA formulas, because a
satisfying assignment forN0 implies the existence of satisfying assignments for all
N ≥ N0, letting lj = 0 for N0 + 1 ≤ j ≤ N .

3 Upper Bound on the Number of Non-Zero Venn Regions

We next prove that the numberN(d) of non-zero Venn regions can be assumed to be
polynomial ind. LetZ denote the set of integers andZ≥0 denote the set of non-negative
integers. We write

∑

X for
∑

y∈X

y.

Definition 1. For X ⊆ Z
d a set of integer vectors, let

int cone(X) = {λ1x1 + . . . + λtxt | t ≥ 0 ∧ x1, . . . , xt ∈ X ∧ λ1, . . . , λn ∈ Z≥0}

denote the set of all non-negative integer linear combination of vectors fromX .

To prove the bound on the numberN of non-empty Venn regions from Section2,
we use a variation of the following result, established as Theorem 1(ii) in [11].

Fact 1 (Eisenbrand, Shmonina (2005))Let X ⊆ Z
d be a finite set of integer vectors

andM = max{(maxd
i=1 |x

i
j |) | (x1

j , . . . , x
d
j) ∈ X} be the bound on the coordinates

of vectors inX . If b ∈ int cone(X), then there exists a subset̃X ⊆ X such that
b ∈ int cone(X̃) and|X̃| ≤ 2d log(4dM).

To apply Fact1 to formula (2), let X = {xβ | β ∈ {0, 1}e} wherexβ ∈ {0, 1}e is
given by

xβ = (Jb0Kβ , Jb1Kβ , . . . , JbeKβ).

6

Fact1 implies is that if(k0, k1, . . . , kp) ∈ int cone(X) whereki are as in formula (2),
then(k0, k1, . . . , kp) ∈ int cone(X̃) where|X̃| = 2d log(4d) (note thatM = 1 be-
causexβ are{0, 1}-vectors). The subset̃X corresponds to selecting a polynomial sub-
set ofN Venn region cardinality variableslβ and assuming that the remaining ones are
zero. This implies that formulas (2) and (3) are equisatisfiable.

A direct application of Fact1 yieldsN = 2d log(4d) bound, which is sufficient to
prove thatQFBAPA is in NP. However, because this bound is not tight, in the sequel
we prove results that slightly strengthen the bound and provide additional insight into
the problem.

4 Nonredundant Integer Cone Generators and Upper Bound

Definition 2. LetX be a set of integer vectors. We say thatX is anonredundant integer
cone generatorfor b, and write NICG(X, b), if b ∈ int cone(X), and for everyy ∈ X ,
b /∈ int cone(X \ {y}).

Lemma1 says that if NICG(X, b) for someb, then the sums of vectors
∑

Y for Y ⊆ X
are uniquely generated elements ofint cone(X).

Lemma 1. Suppose NICG(X, b). If λ1, λ2 : X → Z≥0 are non-negative integer coef-
ficients for vectors inX such that

∑

x∈X

λ1(x)x =
∑

x∈X

λ2(x)x (4)

andλ1(x) ∈ {0, 1} for all x ∈ X , thenλ2 = λ1.

Proof. Suppose NICG(X, b), λ1, λ2 : X → Z≥0 are such that (4) holds andλ1(x) ∈
{0, 1} for all x ∈ X , butλ2 6= λ1. If there are vectorsx on the left-hand side of (4) that
also appear on the right-hand side, we can cancel them. We obtain an equality of the
form (4) for distinctλ′

1, λ
′
2 with the additional property thatλ′

1(x) = 1 impliesλ′
2(x) =

0. Moreover, not allλ′
1(x) are equal to zero. Byb ∈ int cone(X), let λ : X → Z≥0 be

such thatb =
∑

x∈X λ(x)x. Let x0 be such thatλ′
1(x0) = min{λ(x) | λ′

1(x) = 1}.
By construction,λ′

1(x0) = 1 andλ′
2(x0) = 0. We then have, withx in sums ranging

overX :

b =
∑

λ′

1(x)=1

λ(x)x +
∑

λ′

1(x)=0

λ(x)x

=
∑

λ′

1(x)=1

(λ(x) − λ(x0))x + λ(x0)
∑

λ′

1(x)=1

x +
∑

λ′

1(x)=0

λ(x)x

=
∑

λ′

1(x)=1

(λ(x) − λ(x0))x + λ(x0)
∑

λ′
2(x)x +

∑

λ′

1(x)=0

λ(x)x

In the last sum, the coefficient next tox0 is zero in all three terms. We concludeb ∈
int cone(X \ {x0}), contradicting NICG(X, b).

We write NICG(X) as a shorthand for NICG(X,
∑

X). Theorem1 gives several
equivalent characterizations of NICG(X). The equivalence of 1) and 4) is interesting
because it justifies the use of NICG(X) independently of the generated vectorb.

Theorem 1. LetX ⊆ {0, 1}d. The following statements are equivalent:

7

1) there exists a vectorb ∈ Z
d
≥0 such that NICG(X, b);

2) If λ1, λ2 : X → Z≥0 are non-negative integer coefficients for vectors inX such
that

∑

x∈X

λ1(x)x =
∑

x∈X

λ2(x)x

andλ1(x) ∈ {0, 1} for all x ∈ X , thenλ2 = λ1.
3) For {x1, . . . , xn} = X (for x1, . . . , xn distinct), the system ofd equations ex-

pressed in vector form as

λ(x1)x1 + . . . + λ(xn)xn =
∑

X (5)

has(λ(x1), . . . , λ(xn)) = (1, . . . , 1) as the unique solution inZn
≥0.

4) NICG(X).

Proof. 1) → 2): This is Lemma1.
2) → 3): Assume2) and letλ1(xi) = 1 for 1 ≤ i ≤ n. For any solutionλ2 we

then have
∑

x∈X λ1(x)x =
∑

x∈X λ2(x)x, soλ2 = λ1. Therefore,λ1 is the unique
solution.

3) → 4): Assume3). Clearly
∑

X ∈ int cone(X); it remains to prove thatX is
minimal. Lety ∈ X . For the sake of contradiction, suppose

∑

X ∈ int cone(X \{y}).
Then there exists a solutionλ(x) for (5) with λ(y) = 0 6= 1, a contradiction with the
uniqueness of the solution.

4) → 1): Takeb =
∑

X .

Corollary1 is used in [11] to establish the bound on the size ofX with NICG(X).
We obtain it directly from Lemma1 takingλ2(x) ∈ {0, 1}.

Corollary 1. If NICG(X) then forY1, Y2 ⊆ X , Y1 6= Y2 we have
∑

Y1 6=
∑

Y2.

The following lemma says that it suffices to establish boundson the cardinality of
X such that NICG(X), because they give bounds on allX .

Lemma 2. If b ∈ int cone(X), then there exists a subset̃X ⊆ X such thatb ∈
int cone(X̃) and NICG(X̃, b).

Proof. If b ∈ int cone(X) then by definitionb ∈ int cone(X0) for a finite X0 ⊆
X . If not NICG(X0, b), thenb ∈ int cone(X1) whereX1 is a proper subset ofX0.
Continuing in this fashion we obtain a sequenceX0 ⊃ X1 ⊃ . . . ⊃ Xk wherek ≤
|X0|. The last elementXk satisfies NICG(Xk, b).

Moreover, the property NICG(X) is hereditary, i.e. it applies to all subsets of a set
that has it. (The reader familiar with matroids [35] might be interested to know that,
for d ≥ 4, the family of sets{X ⊆ {0, 1}d | NICG(X)} is not a matroid, because it
contains multiple subset-maximal elements of different cardinality.)

Lemma 3. If NICG(X) andY ⊆ X , then NICG(Y).

Proof. Suppose that NICG(X) andY ⊆ X but not NICG(Y,
∑

Y). Because
∑

Y ∈
int cone(X), there isz ∈ Y such that

∑

Y ∈ int cone(Y \ {z}). Then also
∑

Y ∈
int cone(X \ {z}), contradicting Lemma1.

8

The following theorem gives our bounds on|X |. As in [11], we only use Corollary1
instead of the stronger Lemma1, suggesting that the bound is not tight.

Theorem 2. LetX ⊆ {0, 1}d and NICG(X). Then2N ≤ (N +1)d, and, consequently,

|X | ≤ (1 + ε(d))(d log d) (6)

whereε(d) ≤ 1 for all d ≥ 1, and lim
d→∞

ε(d) = 0.

Proof. Let X ⊆ {0, 1}d, NICG(X) andN = |X |. We prove2N ≤ (N + 1)d. Suppose
that, on the contrary,2N > (N + 1)d. If

∑

Y = (x1, . . . , xd) for Y ⊆ X , then
0 ≤ xj ≤ N becauseY ⊆ {0, 1}d and|Y | ≤ N . Therefore, there are only(N + 1)d

possible sums
∑

Y . Because there are2N subsetsY ⊆ X , there exist two distinct
subsetsU, V ∈ 2X such that

∑

U =
∑

V . This contradicts Corollary1. Therefore,
2N ≤ (N + 1)d, so N ≤ d log(N + 1). From here we use elementary reasoning
with inequalities to obtainN ≤ 2d log(2d) (see [11] or [17, Section 7.9.3] for details).
Substituting this bound onN back intoN ≤ d log(N + 1) we obtain

N ≤ d log(N + 1) ≤ d log(2d log(2d) + 1) = d log(2d(log(2d) + 1
2d

))

= d(1 + log d + log(log(2d) + 1
2d

)) = d log d(1 +
1+log(log(2d)+ 1

2d
)

log d
)

so we can letε(d) = (1 + log(log d + 1 + 1
2d

))/ log d.

We can now define the function whose bounds we are interested in computing.

Definition 3. N(d) = max{|X | | X ⊆ {0, 1}d ∧ NICG(X)}

Theorem2 implies N(d) ≤ (1 + ε(d))(d log d). However, because the function
N/ log(N + 1) on integers is monotonic, we can efficiently compute its exact inverse
by binary search.

5 Lower Bounds and Reals
Although we currently do not have tight bounds forN(d), in this section we show, in
sequence, the following observations about lower bounds for N(d):
1. d ≤ N(d) for all d;
2. NR(d) = d if we use real variables instead of integer variables;
3. N(d) = d for d ∈ {1, 2, 3};
4. for d +

⌊

d
4

⌋

≤ N(d) for 4 ≤ d;

We first showd ≤ N(d).

Lemma 4. LetX = {(x1
i , . . . , x

d
i) | 1 ≤ i ≤ n} and

X+ = {(x1
i , . . . , x

d
i , 0) | 1 ≤ i ≤ n} ∪ {(0, . . . , 0, 1)}

Then NICG(X) if and only if NICG(X+).

Corollary 2. N(d) + 1 ≤ N(d + 1) for all d ≥ 1.

Proof. Let X ⊆ {0, 1}d, NICG(X), and|X | = N(d). Then NICG(X+) by Lemma4
and|X+| = N(d) + 1, which impliesN(d + 1) ≥ N(d) + 1.

9

Note that we haveN(1) = 1 because there is only one non-zero{0, 1} vector in
one dimension. From Corollary2 we obtain our lower bound, with standard basis as
NICG.

Lemma 5. d ≤ N(d). Specifically, NICG({e1, . . . , ed}) whereei are unit vectors.

Note that forX = {e1, . . . , ed} we haveint cone(X) = Z
d
≥0, which implies thatX

is a maximalNICG, in the sense that no proper supersetW ⊃ X has the property
NICG(W).

Real-valued relaxation ofQFBAPA. In AppendixB we show that, if we use real or
rational measure of set size instead of integer arithmetic,we obtain a nicer-behaved
problem and the boundN ′(d) = d follows using well-known results in linear program-
ming. We can use this technique as a sound (but incomplete) method for proving the
absence of solutions of aQFBAPA formula. This approach is attractive both because
the boundN ′(d) = d is smaller than the bound for integers, and because the decision
procedure for real linear arithmetic is more efficient than for quantifier-freePA.

N(d) = d for d ∈ {1, 2, 3}. We next show that ford ∈ {1, 2, 3} not onlyd ≤ N(d)
but alsoN(d) ≤ d.

Lemma 6. N(d) = d for d ∈ {1, 2, 3}.

Proof. By Corollary2, if N(d + 1) = d + 1, thenN(d) + 1 ≤ d + 1 soN(d) ≤ n.
Therefore,N(d) = 3 impliesN(2) = 2 as well, so we can taked = 3.

If N(d) > d, then there exists a setX with NICG(X) and|X | > d. From Lemma3,
a subsetX0 ⊆ X with |X | = d + 1 also satisfies NICG(X0). Therefore,N(3) = 3 is
equivalent to showing that there is no setX ⊆ {0, 1}3 with NICG(X) and|X | = 4.

Consider a possible counterexampleX = {x1, x2, x3, x4} ⊆ {0, 1}3 with b ∈ X .
By previous argument on real-value relaxation,N ′(3) = 3, so b is in convex cone
of some three vectors fromX , say b ∈ cone({x1, x3, x3}). On the other hand,
b /∈ int cone({x1, x3, x3}). If we consider a systemλ1x1 + λ2x2 + λ3x3 = b this im-
plies that such system has solution over non-negative reals, but not over non-negative
integers. This can only happen if in the process of Gaussian elimination we obtain
coefficients whose absolute value is more than 1. The only setof three vectors for
which this can occur isX1 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} We then consider all pos-
sibilities for the fourth vector inX , which, modulo permutations of coordinates, are
(0, 0, 0), (1, 1, 1), (1, 1, 0), and(1, 0, 0). However, adding any of these vectors violates
the uniqueness of the solution toλ1x1 + λ2x2 + λ3x3 + λ4x4 =

∑

X , so NICG(X)
does not hold by Theorem1, condition 3).

N = 5

4
d − 3

4
lower bound. We next show that there exists an exampleX5 ⊆ {0, 1}4

with NICG(X5) and|X5| = 5. From this it follows thatN(d) > d for all d ≥ 4.
Consider the following system of 4 equations with 5 variables, where all variable

coefficients are in{0, 1}. (We found this example by narrowing down the search using
the observations on minimal counterexamples in the proof ofLemma6.)

λ1 + λ2 + λ3 = 3

λ2 + λ3 + λ4 = 3

λ1 + λ3 + λ4 + λ5 = 4

λ1 + λ2 + λ4 + λ5 = 4

(7)

10

Performing Gaussian elimination yields an equivalent system

λ1 + λ2 + λ3 = 3

λ2 + λ3 + λ4 = 3

λ3 + 2λ4 + λ5 = 4

3λ4 + 2λ5 = 5

From this form it easy to see that the system has(λ1, λ2, λ3, λ4, λ5) = (1, 1, 1, 1, 1)
as the only solutionin the space of non-negative integers. Note that all variables
are non-zero in this solution. (In contrast, as discussed above, because the sys-
tem is satisfiable, it must have a solution in non-negative reals where at most 4
coordinates are non-zero; an example of such solution is(λ1, λ2, λ3, λ4, λ5) =
(0, 1.5, 1.5, 0, 2.5).) The five columns of the system (7) correspond to the set of vectors
X5 = {(1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), (0, 1, 1, 1), (0, 0, 1, 1)} such that NICG(X5).
The setX5 is also a maximal NICG, because adding any of the remaining 9 non-zero
vectors in{0, 1}4 \ X5 results in a set that is not NICG.

This argument shows that there exist maximal NICG of size larger thand for d ≥ 4.
As we have remarked before, the set ofd unit vectors is a maximal NICG for every
d, which means that, unlike linearly independent sets of vectors over a field or other
independent sets in a matroid [35], there are maximal NICG sets of different cardinality.

Note also thatX5 is not a Hilbert basis [31]. Namely, we have that(1, 1, 1, 1) ∈
cone(X5) \ int cone(X5) because(1, 1, 1, 1) = 1/3((1, 0, 1, 1) + (1, 1, 0, 1) +
(1, 1, 1, 0) + (0, 1, 1, 1)). This illustrates why previous results on Hilbert bases do not
directly apply to the notion of NICG.

Usingk identical copies ofX5 (with 4 equations in a group mentioning a disjoint
set of 5 variables) we obtain systems of4k equations with5k variables such that the
only solution is a vector(1, . . . , 1) of all ones. By addingp unit vector columns for
1 ≤ p ≤ 3, we also obtain systems of4k + p equations with5k + p variables, with
N = 5

4d− p

4 = d+
⌊

d
4

⌋

≥ 5
4d− 3

4 , which, in particular, shows thatN = d upper bound
is invalid for alld ≥ 4.

6 Better Upper Bounds for Small Cardinalities

Consider aQFBAPA formula in separated formG ∧ F as in Section2, whereG is a
PA formula andF is given by (2). Our bounds onN so far a function ofd alone. For
many formulas arising in practice we can reduceN using bounds on the values thatki

can take, as explained in this section. In our experience, this improvement significantly
reduced the overall running time of our algorithm.

Improved bound. Suppose that we can conclude that if the formulaF∧G is satisfiable,
then there exists a satisfying assignments for variables where0 ≤ ki ≤ ci (if we do
not have a bound for somei, we letci = ∞). We can often obtain such a boundci by
transformingG to negation-normal form and checking ifki occurs in literals such as
ki = 0 or ki < ci. (It may also be possible to adapt the techniques forPA formulas
from [32].) Given the boundsci, we have the following inequality that generalizes the
one in Theorem2:

2N ≤
d

∏

i=1

(1 + min(ci, N)) (8)

11

The reasoning follows the proof of Theorem2 and we sketch it below. By construction
of ci, consider a satisfying assignment withki ≤ ci, fix the values ofki and consider a
satisfying assignment for (2) that has a minimal numberN of non-zero values forlβ, for
someN . Consider a sum

∑

Y = (t1, . . . , td) of a subsetY of vectorsX corresponding
to N non-zerolβ . From

∑

X = (k1, . . . , kd) andY ⊆ X we haveti ≤ ki ≤ ci. On
the other hand,|Y | ≤ N , so ti ≤ N . Therefore,ti ≤ min(ci, N). As in Theorem2,
the inequality (8) then follows from the requirement that all2N subsetsY have distinct
sums with coordinates from 0 tomin(ci, N).

Consequences for common cases.Two common cases that we can easily take ad-
vantage of are boundsci = 0 andci = 1. Suppose that fori ∈ I0 we haveci = 0
and for i ∈ I1 (whereI1 ∩ I0 = ∅) we haveci = 1. Let |I0| = s0 and |I1| = s1.
Letting ci = ∞ for i /∈ I0 ∪ I1, from (8) we obtain2N ≤ 2s1(N + 1)d−s0−s1 . For
ci = 0 andci = 1 we can in fact obtain a slightly stronger bound from the condition
2N ≤ 2s1(N − s1 +1)d−s0−s1 , which can be justified as follows. Consider a satisfying
assignment forG ∧ F . Wheni ∈ I0, we can eliminate the equation|bi| = ki in (2)
and remove alllβ such thatJbiKβ=1 from the remaining equations, while preserving
the property that all vectors in the matrix corresponding to(2) are in{0, 1}. The bound
on non-zero variables for the resulting system withd−s0 equations therefore applies to
the original system as well. Similarly, ifi ∈ I1 and the right-hand sideki = 1, then we
know that in the satisfying assignment there is exactly oneβ1 such thatJbiKβ1=1, so
we can remove the equation|bi| = 1, and for allj such thatJbjKβ1=1 subtract 1 from
kj and removelβ1 . The result is again a system with{0, 1} coefficients, but one less
equation. Increasing the bound for the resulting system by one (to account forlβ1 = 1)
we obtain the bound for the original system, which proves ourclaim.

These observations are important in practice because they imply that pure boolean
algebra expressions (such asb1 ⊆ b2 andb1 = b2) do not increaseN when they occur
positively. The boundci = 1 also frequently occurs in our examples because we encode
elements as singleton sets; our result says that one such cardinality bound to a formula
increases the number of needed integer variables only by one.

Note that, if all cardinality bounds are small constants, weobtain formulas simpler
thanQFBAPA and we can expect good results by encoding them with universally quan-
tified formulas of first-order logic with equality without function symbols, as in [18,7].
What we have shown in this section is that we can benefit from taking small constant
cardinalities into account even if some of the cardinalities are large or symbolic.

7 Preliminary Experiments
Figure3 shows formula sizes and running times for the originalBAPA algorithm and
our newQFBAPA algorithm. As benchmarks we used the formulas in Figure2, as well
as two of their variations. Namely, formulas in Figure2 are nice-looking partly because
we generated them using Jahob annotations that specify relevant assumptions needed to
establish an assertion. Without such assertions, verification conditions contain tens of
additional useless assumptions. Syntactically determining which assumptions are use-
ful is a difficult problem [8], so it is reasonable to leave this task to the the decision
procedure. Therefore, in examples 2a and 6a we added back 3 ofthose original as-
sumptions. Moreover, we made 6a an invalid formula by changing≤ in the goal into
<. For both the original and the new reduction toPA we report the size of the gener-
atedPA formula, the time needed for SMT solver to prove its validity, and the overall
running time that includes the conversion toPA. The conversion toPA is very fast for

12

theQFBAPA algorithm, but is exponential in worst case for theBAPA algorithm (see,
for example, 2a benchmark). We used CVC Lite [3] as the solver forPA. TheQFBAPA

algorithm computesN by inverting the monotonic functionN/ log(N +1) and by tak-
ing into account the optimizations in Section6. For propositional variables that encode
assignmentsβ1, . . . , βN , ourQFBAPA algorithm implementation generates a symme-
try breaking predicate that imposes a lexicographical order on these assignments; we
found that this predicate reduces the running time of thePA solver several times.

For these particular examples we can conclude that for smallQFBAPA formulas
both the previousBAPA and the currentQFBAPA approach are fast. For proving va-
lidity of formulas with a larger number of variables (benchmarks 2a, 5), theQFBAPA

approach can generate smallerPA formulas (as expected), but thePA solver often fails
to prove their validity, most likely due to a large number of additional propositional
variables andite statements.1 Finally, for finding counterexamples, the example 6a
suggests that theQFBAPA algorithm is already better. TheBAPA algorithm takes over
30 seconds even to generate thePA formula. TheQFBAPA algorithm computesN = 18
and finishes in 13.1 seconds. In fact, theQFBAPA algorithm can find counterexample
even forN = 2, taking less than0.1 seconds, suggesting that iterative search from
N = 1 to the bound that guarantees soundness could be veru productive for finding
counterexamples.

vc BAPA QFBAPA

PA sizePA time(s)total time(s)PA sizePA time(s)total time(s)
1 39 < 0.1 < 0.1 190 < 0.1 < 0.1
2 57 < 0.1 < 0.1 220 < 0.1 < 0.1
2a 1049 0.7 2.0 840 18.6 18.8
3 51 < 0.1 < 0.1 131 < 0.1 0.1
4 546 0.3 0.6 1328 ∞ ∞
5 2386 3.2 14.8 1750 ∞ ∞
6 442 0.2 0.4 2613 ∞ ∞
6a 4251 ∞ ∞ 4687 12.1 13.1

Fig. 3.Formula sizes and running times for formulas in Figure2

8 Related Work

To our knowledge, our result is the only decision procedure for a logic with sets and
cardinality constraints that does not explicitly construct all set partitions. Using a new
form of small model property, the “small number of non-zero variables property”, we
obtained a non-deterministic polynomial-time algorithm that can be solved by produc-
ing polynomially large quantifier-free Presburger arithmetic formulas. A polynomial
bound sufficient for NP membership can be derived from [11]. In addition to improve-
ments in the bounds that take into account small cardinalities, we introduced the notion
of non-redundant integer cone generators and established their properties. Note that pre-
vious results, such as [31], consider matroids and Hilbert bases. Non-redundant integer
cone generators that we introduced seem the most natural notion for determining the
bounds for sparse solutions problem. As we remark in Section5, the sets of vectorsX
with NICG(X) do not form a matroid, and maximal NICG(X) need not be a Hilbert
basis. Note also that the equations generated fromQFBAPA problems are more diffi-

1 In our experiments, CVC Lite would run out of memory. We also tried using with Yices which did not run
out of memory, but still failed to complete in a reasonable amount of time.

13

cult than set packing and set partitioning problems [2] because integer variables are not
restricted to be{0, 1}.

Relationship to counting SAT. Although similarly looking, it turns out thatQFBAPA

and #SAT problem [33] are quite different; see AppendixA for details.

Presburger arithmetic. The matching lower and upper bounds forPA were shown in
[4]. Our reduction toPA along with small model property forPA that follows from [24]
yields polynomial encoding ofQFBAPA into SAT, whose efficiency in practice would
be interesting to explore in the future.

Reasoning about Sets.The quantifier-free fragment ofBA is shown NP-complete
in [22]; see [18] for a generalization of this result using the parameterized complexity
of the Bernays-Schönfinkel-Ramsey class of first-order logic [6, Page 258]. [9] gives
an overview of several fragments of set theory including theories with quantifiers but
no cardinality constraints and theories with cardinality constraints but no quantification
over sets. The decision procedure for quantifier-free fragment with cardinalities in [9,
Chapter 11] introduces exponentially many integer variables to reduce the problem to
PA.

Using first-order provers. With appropriate axioms and decision procedures, first-
order provers can also be used to reason aboutQFBAPA-like constraints, as shown, for
example, by SPASS+T [26]. Our decision procedure by itself is not nearly as widely
applicable as SPASS+T, but is complete for its domain (for example, it proves a formu-
lation of problem number (73) from [26] in 0.1 seconds whereas SPASS+T is reported
to time out in the particular experiments performed in [26]). Our decision procedure
can therefore be useful as a component of such more general systems or as guidance
for choosing axioms on cardinalities of collections along with strategies on when they
should be applied.

References
1. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider,

editors.The Description Logic Handbook: Theory, Implementation and Applications. CUP, 2003.

2. Egon Balas and Manfred W. Padberg. Set partitioning: A survey. SIAM Review, 18(4):710–760, 1976.

3. Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the cooperating validity
checker. InProc.16th Int. Conf. on Computer Aided Verification (CAV ’04), volume 3114 ofLecture
Notes in Computer Science, pages 515–518, 2004.

4. Leonard Berman. The complexity of logical theories.Theoretical Computer Science, 11(1):71–77,
1980.

5. Dimitris Bertsimas and John N. Tsitsiklis.Introduction to Linear Optimization. Athena Scientific,
Belmont, Massachusetts, 1997.

6. Egon Börger, Erich Grädel, and Yuri Gurevich.The Classical Decision Problem. Springer-Verlag,
1997.

7. Charles Bouillaguet, Viktor Kuncak, Thomas Wies, Karen Zee, and Martin Rinard. On using first-order
theorem provers in a data structure verification system. Technical Report MIT-CSAIL-TR-2006-072,
MIT, November 2006.http://hdl.handle.net/1721.1/34874.

8. Charles Bouillaguet, Viktor Kuncak, Thomas Wies, Karen Zee, and Martin Rinard. Using first-order
theorem provers in a data structure verification system. InVMCAI’07, November 2007.

9. Domenico Cantone, Eugenio Omodeo, and Alberto Policriti. Set Theory for Computing. Springer, 2001.

10. W. J. Cook, J. Fonlupt, and A. Schrijver. An integer analogue of Carathéodory’s theorem.Journal of
Combinatorial Theory, Series B, 40(63–70), 1986.

14

http://hdl.handle.net/1721.1/34874

11. Friedrich Eisenbrand and Gennady Shmonina. Carathéodory bounds for integer cones.Operations
Research Letters, 34(5):564–568, September 2006.
http://dx.doi.org/10.1016/j.orl.2005.09.008.

12. S. Feferman and R. L. Vaught. The first order properties ofproducts of algebraic systems.Fundamenta
Mathematicae, 47:57–103, 1959.

13. Silvio Ghilardi. Model theoretic methods in combined constraint satisfiability.Journal of Automated
Reasoning, 33(3-4):221–249, 2005.

14. Dexter Kozen.Theory of Computation. Springer, 2006.

15. Viktor Kuncak.Modular Data Structure Verification. PhD thesis, EECS Department, Massachusetts
Institute of Technology, February 2007.

16. Viktor Kuncak, Hai Huu Nguyen, and Martin Rinard. An algorithm for deciding BAPA: Boolean
Algebra with Presburger Arithmetic. In20th International Conference on Automated Deduction,
CADE-20, Tallinn, Estonia, July 2005.

17. Viktor Kuncak, Hai Huu Nguyen, and Martin Rinard. Deciding Boolean Algebra with Presburger
Arithmetic. J. of Automated Reasoning, 2006.
http://dx.doi.org/10.1007/s10817-006-9042-1.

18. Viktor Kuncak and Martin Rinard. Decision procedures for set-valued fields. In1st International
Workshop on Abstract Interpretation of Object-Oriented Languages (AIOOL 2005), 2005.

19. Shuvendu K. Lahiri and Sanjit A. Seshia. The UCLID decision procedure. InCAV’04, 2004.

20. Iddo Lev. Precise understanding of natural language. Stanford Univeristy PhD dissertation draft,
February 2007.

21. Bruno Marnette, Viktor Kuncak, and Martin Rinard. On algorithms and complexity for sets with
cardinality constraints. Technical report, MIT CSAIL, August 2005.

22. Kim Marriott and Martin Odersky. Negative boolean constraints. Technical Report 94/203, Monash
University, August 1994.

23. Hans Jürgen Ohlbach and Jana Koehler. How to extend a formal system with a boolean algebra
component. In W. Bibel P.H. Schmidt, editor,Automated Deduction. A Basis for Applications, volume
III, pages 57–75. Kluwer Academic Publishers, 1998.

24. Christos H. Papadimitriou. On the complexity of integerprogramming.J. ACM, 28(4):765–768, 1981.

25. Ian Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifiers.Journal of
Logic, Language and Information, 14(3):369–395, 2005.

26. Virgile Prevosto and Uwe Waldmann. SPASS+T. InESCoR: Empirically Successful Computerized
Reasoning, volume 192, 2006.

27. Silvio Ranise and Cesare Tinelli. The SMT-LIB Standard:Version 1.2. Technical report, Department of
Computer Science, The University of Iowa, 2006. Available at www.SMT-LIB.org.

28. Peter Revesz. Quantifier-elimination for the first-order theory of boolean algebras with linear
cardinality constraints. InProc. Advances in Databases and Information Systems (ADBIS’04), 2004.

29. Peter Z. Revesz. The expressivity of constraint query languages with boolean algebra linear cardinality
constraints. InADBIS, pages 167–182, 2005.

30. Alexander Schrijver.Theory of Linear and Integer Programming. John Wiley & Sons, 1998.

31. András Sebö. Hilbert bases, Caratheodory’s theorem and combinatorial optimization. In R. Kannan and
W. Pulleyblank, editors,Integer Programming and Combinatorial Optimization I. University of
Waterloo Press, 1990.

32. Sanjit A. Seshia and Randal E. Bryant. Deciding quantifier-free presburger formulas using
parameterized solution bounds. In19th IEEE LICS, 2004.

33. S. Toda. PP is as hard as the polynomial-time hierarchy.SIAM Journal on Computing, 20(5):865–877,
1991.

34. John Venn. On the diagrammatic and mechanical representation of propositions and reasonings.Dublin
Philosophical Magazine and Journal of Science, 9(59):1–18, 1880.

35. H. Whitney. On the abstract properties of linear independence.American Journal of Mathematics,
57:509–533, 1935.

36. Calogero G. Zarba. Combining sets with cardinals.J. of Automated Reasoning, 34(1), 2005.

15

http://dx.doi.org/10.1016/j.orl.2005.09.008
http://dx.doi.org/10.1007/s10817-006-9042-1

Appendix

A Counting SAT
The complexity ofQFBAPA is perhaps even more interesting in the light of the sim-
ilarity of QFBAPA to the #SAT problem of computing the number of satisfying as-
signments of a propositional formula. The #SAT problem generalizes propositional sat-
isfiability (SAT) and is possibly more difficult [33]. Given a propositional formulaa
with propositional variablesp1, . . . , pn, consider instead the corresponding boolean al-
gebra formulab with corresponding set variablesx1, . . . , xn, with ∧,∨,¬ replaced by
∩,∪, c. Then checking|U| = 2n ∧ |b| > 2n−1 − 1 satisfiability corresponds to testing
the most significant bit of the number of solutions of the propositional formulaa, but
only under the following condition(∗): all 2n partitions with variablesx1, . . . , xn are
non-empty. If there was a formula that would encode the condition(∗) while being of
size polynomial inn, then the formulaC ∧ |U| = 2n ∧ |b| > 2n−1 − 1 would en-
code (the query version of) #SAT, so the existence of short satisfiability certificates for
QFBAPA would be intimately tied to fundamental questions in complexity theory. The
results of this paper imply that there is no such polynomially large formulaC, and that
there are, in fact,QFBAPA satisfiability certificates of polynomial size, independently
of the relationship between #SAT and SAT.

B Quantifier-Free Boolean Algebra with (Real) Linear Arithm etic
It is interesting to observe that, for a variation of theQFBAPA problem overreal num-
bers, which we callQFBALA (Quantifier-Free Boolean Algebra with Linear Arith-
metic), we haveN ′(d) = d as a lowerand upperbound for everyd.

We defineQFBALA similarly asQFBAPA, but we use real (or rational) linear arith-
metic instead of integer linear arithmetic and we interpret|A| is some real-valued mea-
sure of the setA. A possible application ofQFBALA are generalizations of probability
consistency problems such as [5, Page 385, Example 8.3]. Set algebra operations then
correspond to theσ-algebra of events, and the measure of the set is the probability of
the event. Another model ofQFBALA is to interpret sets as finite disjoint unions of
half-open intervals[a, b) contained in[0, 1), and let|A| be the sum of the lengths of the
disjoint intervals making upA.

The conditions we are using on the models are 1) for two disjoint setsA, B, we
have|A ∪ B| = |A| + |B|, 2) if |C| = p and0 ≤ q ≤ p, then there existsB ⊆ C such
that|B| = q, and 3) (for simplicity) ifA 6= ∅, then|A| > 0.

We can reduce the satisfiability ofQFBALA to the satisfiability of a conjunction
of a quantifier-free linear arithmetic formula over reals and a formula of the form (2)
but with lβ non-negative real values instead of non-negative integer values. We then
reduce formula (2) to a formula of the form (3). The question is then, what can we use
as the boundN ′(d) for QFBALA problems? This question reduces to following. Define
convex cone generated by a set of vectors by

cone(X) = {λ1x1 + . . . + λtxt | t ≥ 0 ∧ x1, . . . , xt ∈ X ∧ λ1, . . . , λn ≥ 0}

whereλ1, . . . , λn ∈ R are non-negative real coefficients. Ifb ∈ cone(X), what bound
can we put on the cardinality of a subsetX̃ ⊆ X such thatX ∈ cone(X̃)? Note thatd is
a lower bound, using the same example of unit vectors asX . In the case of real numbers,
Carathéodory’s theorem [10] states thatd is an upper bound as well:b ∈ cone(X̃) for
someX̃ of cardinality at mostd.

16

We can also explain thatN ′(d) = d using the terminology of linear programming
[30]. The equations (2) along with lβ ≥ 0 for β ∈ {0, 1}e determine a polytope in
R

2e

, so if they have a solution, they have a solution that is a vertex of the polytope. The
vertex inR

2e

is the intersection of2e hyperplanes, of which at mostd are given by (2),
so the remaining ones must be hyperplanes of the formlβ = 0. This implies that at least
2e − d coordinates of the vertex are zero and at mostd of them can be non-zero.

17

	Towards Efficient Satisfiability Checking for Boolean Algebra with Presburger Arithmetic
	Viktor Kuncak and Martin Rinard

