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Abstract. Boolean Algebra with Presburger Arithmetic (BAPA) is a dkatile logic that
combines 1) Boolean algebras of sets of uninterpreted elen{BA) and 2) Presburger
arithmetic operations (PA). BAPA can express relationstigtween integer variables and
cardinalities of unbounded sets. In combination with otlemision procedures and theorem
provers, BAPA is useful for verifying quantitative proges of data structures. Motivated
by the observation that many queries in program analysiserification are quantifier-free
formulas, this paper examines QFBAPA, the quantifier-fragrhent of BAPA. The compu-
tational complexity of QFBAPA satisfiability was previoysinknown. Previous QFBAPA
algorithms have non-deterministic exponential time caxity due to an explosion in the
number of introduced integer variables.

This paper shows, for the first time, how to avoid such exptakexplosion. We present
an algorithm for checking satisfiability of QFBAPA formullag reducing them to formulas
of quantifier-free Presburger arithmetic, with only O(n(log increase in formula size. We
prove the correctness of our algorithm using a theorem afjpaitse solutions of integer
linear programming problems. This proves that QFBAPA §iabdity is in NP and there-
fore NP-complete. We implemented our algorithm; we desdt#initial deployment in the
Jahob verification system and discuss its performance.

1 Introduction

This paper considers the satisfiability problem for a logiat tallows reasoning about
sets and their cardinalities. We call this logic quantifieile Boolean Algebra with Pres-
burger Arithmetic and denote @FBAPA. Our motivation forQFBAPA is proving the
validity of formulas arising from program verificatiod$, 16, 17], but QFBAPA con-
straints also occur in mechanized set the@fydonstraint data base2§,29], as a frag-
ment of other logics33, 25, 1] and in the semantic analysis of natural languaf@. [
Figurel shows the syntax dQFBAPA. The logic contains 1) arbitrary boolean alge-
bra BA) expressions denoting sets, supporting operations suaghias, intersection
and complement, 2) arbitrary quantifier-free Presburgéraetic (PA) expressions,
supporting addition of integers and multiplication by cams, and 3) a cardinality
operator| B| for computing the the size of BA expression3 and treating it as a
PA expression. The constamMAXC denotes the size of the finite universal &gtso
|| = MAXC. The expressiok dvd 7" means that an integer constdiitdivides an
integer expressiofi, whereasd3¢ denotes the complement of the det

Fu=A|FLANF| AV F | -F
Au=Bi =Bz |BiCBy | Ti =T | Ty <To | Kdvd T
Biu=z|0|U|B1UB2 | BiNBy | B°
T:=k|K|MAXC|Ti+T: | K-T| | B|
Ko=...-2]-1]0|1]2...

Fig. 1. Quantifier-Free Boolean Algebra with Presburger Arithm&iFBAPA)



1.1 UsingQFBAPA in Software Verification

We implemented the algorithm described in this paper in #mlB data structure ver-
ification system 15]. Figure 2 shows some of the verification conditions expressible
in QFBAPA that we encountered and proved using our decision proce(koemore
examples, se€lfr, Chapters 2 and 7].) The formulas in Figte@re in HOL syntax,
where cardinality of a set is denoted bgir d. Jahob soundly maps such formulas into
strongeBAPA, using a simple syntactic translation that representsiddal variables

as singleton sets and approximates constructs unsupyraPA.

Section7 describes our preliminary experience, which suggests filathe more
complex examples, our ne@FBAPA decision procedure generates smaller formulas
than the originaBAPA decision procedure. When proving formula validity, thidue-
tion does not yet translate to smaller running times. Howemar decision procedure
seems to have advantage for finding counterexamples offlamgellas. We believe that
the underlying results are interesting in their own righigl agiven the exponential re-
duction in formula size for larger formulas, they can be \aévas a first step towards
future scalable decision procedures @dfBAPA.

verification condition property being checked
1|z ¢ content Asize =cardcontent — using invariant on size to
(size =0« content =0) prove correctness of an
efficient emptiness check
2|z ¢ content Asize =cardcontent — maintaining correct size when
size+1=card({z} Ucontent) inserting fresh element
3|size =cardcontent A maintaining size after
sizel =card({z}Ucontent) — inserting any element
size<sizelAsizel<size+1
4/content CallocA allocating and inserting three
xz1 ¢ alloc A objects into a countainer

xzo ¢allocU{zi} A
T3 ¢ allocU {ml} U {$2} —
card(content U{zi1}U{z2} U{z3}) =
cardcontent +3

5/content CallocO A z; ¢allocA allocating and inserting three
allocOU{z:} Callocl A zx¢alloclA objects into a countainer while
allocluU{z.} Calloc2 A z3¢alloc2—  potentially performing other
card(content U{zi1}U{z2} U{z3}) = allocations
cardcontent +3
6lz e CANCL=(C\{z})A bound on the number of allocated
card(allocl\allocO)<1A objects in a recursive function
card(alloc2\allocl) <cardC; — that incorporates containéf into
card(alloc2\alloc0) <cardC another container

Fig. 2. Example verification conditions proved using tREBAPA decision procedure

1.2 QFBAPA and BAPA

The logicQFBAPA is the quantifier-free fragment of Boolean Algebra with Breger
Arithmetic (BAPA). In addition to the constructs in Figute full BAPA supports arbi-
trary set and integer quantifiers. Feferman and Vautht$ection 8, Page 90] showed
the decidability of a variant oBAPA and used it to show the decidability of general-



ized products of first-order structures. k6] 17] we formalize a decision procedure for
BAPA and show thaBAPA has the same complexity 8\, namely alternating dou-

bly exponential time with a linear number of alternationsnotedSTA (x, 92" ,n)
in [4], [14, Lecture 24].

BAPA admits quantifier elimination, which implies th@FBAPA formulas define
the same class of relations on sets and integeBA&# formulas, so they essentially
have the same expressive power. Quantifier eliminationralskesBAPA interesting
as a potential shared language for combining multiple r@agoproceduresi3]. In
general QFBAPA formulas may be exponentially larger than the equivaleantjtied
BAPA formulas with same free variables. However, it is often thsecthat the proof
obligation (or other problem of interest) is already expeskin quantifier-free form.
It is therefore interesting to consider the complexity of #atisfiability problem for
QFBAPA.

1.3 Challenges in checkinddFBAPA satisfiability

QFBAPA satisfiability is clearly NP-hard, becauQEBAPA supports arbitrary propo-
sitional operators. MoreoveRFBAPA contains Boolean algebra of sets, which has its
own propositional structure, so even the satisfiabilityrafividual atomic formulas is
NP-hard. The challenge is therefore proving the membeishi®. Membership in NP
means that there are short certificates for satisfiabiliQFEBAPA formulas, or, dually,
that invalidQFBAPA formulas have short counterexamples. Despite the widade-
currence of QFBAPA constraints, this result was not knowtil mow. To understand
why existing approaches fail to establish membership in ddRsider the following
exampleQFBAPA formula:

U =100 A N JziUz;|=30A /|| =20 (E)
0<i<5<10 0<:i<10

Explicitly specifying set contents.The formula(E) has 10 set variables. Each of these
variables represents a subset of the universe of 100 elsnidrgrefore, a straightfor-
ward certificate of satisfiability of thiQFBAPA formula would require 100 bits indi-
cating whether each element is in the set, which is a cetfiegponential in the size of
the formula because we assume that 100 is representedlositit) bits. Such certifi-
cates therefore yield merely a membershi@&BAPA in NEXPTIME. Note that, even

if we restrict the constants in QFBAPA language to bé and1, Presburger arithmetic
expressions such as = 1, k;11 = k; + k; can efficiently encode large constants. Fun-
damentally, the reason we are interested in large set @ditéBs is because they arise
from small model theorem for Presburger arithmetic; supipgithem is necessary for
verifying symbolic cardinality bounds and constraintstsas|z N y| = |z|.

Abstraction using sizes of partitions. An alternative approach to examining set in-
terpretations up to a certain size is to consider a completgtipning of sets into
disjoint Venn regionss§ N ... N x5y, 2§ N ... Nz, ..., 1 N ... N x19, and intro-
duce one non-negative integer variable for the size eadiesttpartitions, yielding'°
variabledy .. o,lo...1,.-.,l1,.. 1. We can then represent cardinality of any set expres-
sion as a sum of finitely many of of these integer variabless @pproach is widely
known 23, [9, Chapter 11] and is often used to illustrate the very ideaefrvdia-
grams B4). It has the advantage of not being exponential in the califies of sets,

because it reasons about these cardinalities symboli¢alyso naturally integrates



with the PA structure ofQFBAPA and allows reducin@FBAPA to quantifier-freePA,

as we explain below. Unfortunately, its direct use intraeia number of non-negative
integer variables that is exponential in the number of Sétis approach is the essence
of previous algorithms for foQFBAPA [36,28,23] and appears as a special case of our
algorithm for quantifiedAPA [16,17]. All these algorithms would yield exponentially
large certificates for satisfiability @dFBAPA, specifying the values of exponentially
many non-negative integer variables.

1.4 Our Results

We can summarize the results of this paper as follows:

1. The key contribution of this paper is an encoding@¥BAPA formulas into
polynomially-sized quantifier-fre®A formulas. Instead of using exponentially
many Venn region cardinality variablés. . o,l,... 1,...,01,. .1, we use polyno-
mially many “generic” variables along with polynomially maindices that deter-
mine the region that each generic variable represents.elexample E) above,

we would use introduceN = 502 of generic integer variable[gji7“.,1,;:0 for

1 <4 < N that are a function of propositional variables, . . ., pi,) € {0,1}1°
for1 < i < N.We assume that the remaining Venn regions are all emptghti
lows us to express any set expresdi@s a sum of those of th¥ integer variables
Lyi....pi, Whose indiceg’, ..., p, identify Venn regions that belong to

2. The computation of a sufficient polynomial value féiis the second contributions
of this paper. We start with the result]] that if an element is in an integer cone
generated by a set of vectaks of dimensiond, then it is also in an integer cone
generated by a “small” subset &F of size N (d). This result implies that a system
of equations with bounded coefficients, if satisfiable, haparse solutiorwith
only polynomially many non-zero variables, even if the n@maf variables in the
system is exponential. As a consequence, every satisf@BAPA formula has

a witness of polynomial size, which indicates the valuesitdger variables in the

original QFBAPA formula, lists the Venn regions that are non-empty, anccieis

the cardinalities of these non-empty regions.

This application of 11] gives the memership d§FBAPA in NP, but, given the NP-

hardness of satisfiability of the generated formulas, ieisitéble to obtain as tight

bound onN (d) as possible. We make the following steps towards the cortipnta
of a precise bound:

(a) we compute the exact boundd) = d for d < 3;

(b) we identify a lower boundV(d) > d + | 4] for d > 4;

(c) we provide several equivalent characterizations ofarschat achieve the op-
timal bound for anyl, introducing the notion of a “non-redundant integer code
generator” (NICG);

(d) we provide a more precise bound in the presence of cditicanstraints of
the form|b| < ¢ and|b| = ¢ for a small constant.

3. We also describe the implemention of our algorithm in tbetext of the Jahob
verification system. We evaluate the algorithm on the exampi Figure?2 and
their variations.

Our previously reported results. We suggested the possibility of the existence of
sparse solutions in the final version @f7], where we also established the complexity of
quantifiedBAPA. In a previous technical repo2]] we identified a PSPACE algorithm



for QFBAPA, but the techniques used there are different and not needdukf results
of this paper. We became aware of the resiit jn November 2006. A preliminary
version of the current result is described 15[ Section 7.9].

2 Constructing Small Presburger Arithmetic Formulas

Given aQFBAPA formula, this section shows how to construct an associatdg p
nomially larger quantifier-fre®A formula. Sectior8 then proves that the constructed
formula is equisatisfiable with the original one.

Consider an arbitrar@FBAPA formula in the syntax of Figuré. To analyze the
problem, we first separat®A andBA parts of the formula by replacing = b, with
b1 C by A by C by, replacingb; C be with |by N S| = 0, and then introducing integer
variables; for all cardinality expression$;| occurring in the formula. With a constant
increase in size, we obtain an equisatisfigfe8 APA formula of the form& A F' where
G is a quantifier-fre@A formula andF’ is of the form

p
/\ |bi| = K 1)
i=0

We assumé, = U/ andky = MAXC, i.e., the first constraint ig/| = MAXC.
Letyi,...,y. be the set variables itv, . . ., b,. If we view each Boolean algebra
formulab; as a propositional formula, then f6ér= (p1,...,p.) wherep; € {0,1} let
[b:]s € {0,1} denote the truth value @f under the propositional valuation assigning
the truth valuep; to the variabley;. Let furtherss denote the Venn region associated
with 3, given byss = N5_,y}? wherey) = y¢ is set complementang = y;. Because
b; is a disjoint union of its corresponding Venn regions, weeijay = Zmzm |sg|. For
the sake of analysis, for eaghe {0, 1} introduce a non-negative integer variable
denoting|ss|. Then () is equisatisfiable with the exponentially lardg®k formula

_/\ > {ls 18 €{0,13° A [bi]p=1} = ki )

Instead of this exponentially large formula wheteanges over alk¢ propositional
assignments, the idea of our paper is to check the satigfjabilan asymptotically
smaller formula

p

A D {is1Be{Br,....Bn} A bils=1} = ki 3
=0
where( ranges over a set 6 assignments, ..., By for 5; = (pi1, ..., pic) andp;;

are fresh free variables ranging ofér 1}. Letd = p + 1. We are interested in the best
upper boundV(d) on the number of non-zero Venn regions over all possiblegysof
equations. In the sequel we show th&td) is polynomial ind and therefore polynomial
in the size of the originaQFBAPA formula. This result implies thaQFBAPA is in
NP and gives an effective bound on how to construct a quantiie PA formula for
checking the satisfiability of a giveRFBAPA formula.

Encoding generic cardinality variables inPA. Formula @) uses som@aA constructs
along with some meta-notation. We next explain how to wieas a polynomially



large quantifier-fred®’A formula. Because there are on distinct assignments);
considered, we introduce one variabjdor eachl < j < N, for a total of V integer
variables. Let;; = [b;]g, for1 <i < pandl < j < N. Then each conjunct o8|

becomeijj.vz1 cijl; = k;. It therefore suffices to show how to efficiently express sums
with boolean variable (as opposed to constant) coefficidtus this we can use the
standard conditional expressiohe(p, t1, t2), wherep is a propositional formula and
t1,to are integer terms. Thet e(p, t1,t2) expression evaluates tp whenp evaluates
to true, and evaluates te whenp evaluates to false. It can be efficiently eliminated by
flattening the formula to contain no nested terms and thelacewgt =i t e(p, t1,t2)
with the formula(p — t = t1) A (-p — t = t2). (It is also directly available in the
SMT-LIB format [27] and in the UCLID [L9] decision procedure.) Usingt e, we can
express;;l; asi t e(c;;,1;,0). Then @) becomeg\”_, Z;V:li te([bis,,1;,0) = k.
Note that we can substitute the valugdack into the originaPA formulaG, so there

is no need to peform the separation irffoA F' in practice. We obtain the following
simple summary of our algorithm:

N
substitute each expressiomb;| with > i t e([b;]s,,1;,0)
j=1

Note that this translation dFBAPA into PA is parameterized bjy. Sufficiently large
values of N guarantee soundness and are the subject of the followinigsgcwhich
show that a polynomial value suffices. However, any valuévofan be used to try
to prove the existence of a satisfying assignment@&BAPA formulas, because a
satisfying assignment folN, implies the existence of satisfying assignments for all
N > Ny, lettingl; =0for No+1 < j < N.

3 Upper Bound on the Number of Non-Zero Venn Regions

We next prove that the numbér(d) of non-zero Venn regions can be assumed to be
polynomialind. LetZ denote the set of integers afig, denote the set of non-negative

integers. We writ_ X for 3" v.
yeX

Definition 1. For X C Z? a set of integer vectors, let
int_.cone(X) ={ A1 +...+ Nz [t >0A21, ..., 20 € X A X, ..., A\ € Z>0}
denote the set of all non-negative integer linear comboratif vectors fromX'.

To prove the bound on the numb&T of non-empty Venn regions from Secti@n
we use a variation of the following result, established asorbm 1(ii) in fL1].

Fact 1 (Eisenbrand, Shmonina (2005))Let X C 74 be a finite set of integer vectors
and M = max{(max{, |zf[) | (z},...,29) € X} be the bound on the coordinates
of vectors inX. If b € int_cone(X), then there exists a subsat C X such that

b € int_cone(X) and|X| < 2dlog(4dM).

To apply Factl to formula @), let X = {z3 | 8 € {0,1}°} wherexzg € {0,1}is
given by

rp = ([[bo]]ﬂv [[blﬂﬁv ) [[be]]ﬂ)'



Factlimplies is that if(ko, k1, . . ., kp) € int_cone(X) wherek; are as in formula3),
then (ko, k1, ..., k,) € int_cone(X) where|X| = 2dlog(4d) (note thatM = 1 be-
causers are{0, 1}-vectors). The subseét corresponds to selecting a polynomial sub-
set of N Venn region cardinality variabldg and assuming that the remaining ones are
zero. This implies that formulag) and @) are equisatisfiable.

A direct application of Fact yields N = 2d log(4d) bound, which is sufficient to
prove thatQFBAPA is in NP. However, because this bound is not tight, in the sequ
we prove results that slightly strengthen the bound andigecadditional insight into
the problem.

4 Nonredundant Integer Cone Generators and Upper Bound

Definition 2. Let X be a set of integer vectors. We say thats anonredundantinteger
cone generatdor b, and write NICG X, b), if b € int_cone(X), and for everyy € X,

b ¢ int_cone(X \ {y}).

Lemmal says that if NICGX, b) for someb, then the sums of vectols Y forY C X
are uniquely generated elementsiwof cone(X).

Lemma 1. Suppose NICGX, b). If A1, A2 : X — Z>( are non-negative integer coef-
ficients for vectors inY such that

> @) =3 ha@) Q)

zeX zeX
andX;(z) € {0,1} forall x € X, then\s = \;.

Proof. Suppose NICGX, b), A1, A2 : X — Z>( are such that4) holds and\; (z) €
{0,1} forall z € X, butAy # \;. If there are vectors on the left-hand side ofl that
also appear on the right-hand side, we can cancel them. Véénadot equality of the
form (4) for distinct\}, A, with the additional property that, () = 1 implies\,(z) =
0. Moreover, not al\; (x) are equal to zero. By € int_cone(X), let A : X — Z> be
such thah = > __ A(z)z. Letzo be such thad (zo) = min{A(z) | \j(z) = 1}.
By construction\] (zo) = 1 and;(zp) = 0. We then have, with: in sums ranging
overX:

b= > Ax)z+ > Moz

A (z)=1 A (2)=0

= > (M@)=A@o))z+Axo) > x4+ Y A
N (z)=1 N (z)=1 A (z)=0

= 2 (A@) = A@o))z + Awo) o Ap(@)z + > A(z)x
A (z)=1 A (z)=0

In the last sum, the coefficient next iq is zero in all three terms. We concluéles
int_cone(X \ {x0}), contradicting NICGX,b). m

We write NICGE X) as a shorthand for NICG(, > X'). Theoreml gives several
equivalent characterizations of NIC®). The equivalence of 1) and 4) is interesting
because it justifies the use of NIC®) independently of the generated vedior

Theorem 1. Let X C {0,1}<. The following statements are equivalent:



1) there exists a vectdr € Z< , such that NICGX, b);

2) If A1, A2 : X — Z>( are non-negative integer coefficients for vectorsXirsuch

that
Z A(x)z = Z Ao (x)x
rzeX xeX
and);(z) € {0,1} forall x € X, then)y = \;.
3) For {z1,...,x,} = X (for xq,...,x, distinct), the system of equations ex-
pressed in vector form as

a1z 4.4 Aan)zn = 3 X (5)

has(\(z1),..., M) = (1,..., 1) as the unique solution iAZ .
4) NICG(X).

Proof. 1) — 2): This is Lemmal.

2) — 3): Assume2) and let\;(z;) = 1for 1 < i < n. For any solutiom\, we
then haved . Mi(z)z = > A2()z, SOX2 = A;. Therefore\; is the unique
solution.

3) — 4): Assume3). Clearly > X € int_cone(X); it remains to prove thak is
minimal. Lety € X. For the sake of contradiction, suppdseX < int_cone(X \{y}).
Then there exists a solutiox(x) for (5) with A\(y) = 0 # 1, a contradiction with the
uniqueness of the solution.

4) - 1): Takeb=>"X.m

Corollarylis used in 1] to establish the bound on the size ¥fwith NICG(X).
We obtain it directly from Lemma taking \z(x) € {0,1}.

Corollary 1. If NICG(X) then forYy,Y> C X, V) # Y> we haved | Y # 5 Vs,

The following lemma says that it suffices to establish bowrdghe cardinality of
X such that NICGX), because they give bounds on &Il

Lemma2. If b € int_cone(X), then there exists a subsat C X such thath ¢
int_cone(X) and NICG X, b).

Proof. If b € int_cone(X) then by definitionb € int_cone(Xy) for a finite Xy C
X. If not NICG(Xy,b), thenb € int_cone(X;) whereX; is a proper subset oXy.
Continuing in this fashion we obtain a sequend¢g O X; D ... D X wherek <
| Xo|. The last elemenk;, satisfies NICGX},b).n

Moreover, the property NICGX) is hereditary, i.e. it applies to all subsets of a set
that has it. (The reader familiar with matroid35] might be interested to know that,
for d > 4, the family of sets{X C {0,1}? | NICG(X)} is not a matroid, because it
contains multiple subset-maximal elements of differendiceality.)

Lemma 3. If NICG(X) andY C X, then NICGQY).

Proof. Suppose that NICGY) andY C X but not NICQY, > Y). Because_ Y €
int_cone(X), there isz € Y such thad Y € int_cone(Y \ {z}). Then alsod_ Y €
int_cone(X \ {z}), contradicting Lemm4. m



The following theorem gives our bounds [xi|. As in [11], we only use Corollarni
instead of the stronger Lemmasuggesting that the bound is not tight.

Theorem 2. Let X C {0,1}?and NICGX). Them2V < (N +1)¢, and, consequently,
[ X| < (1+¢(d))(dlogd) (6)

wheree(d) < 1foralld > 1, anddlim e(d) =0.

Proof. Let X C {0,1}%, NICG(X) andN = | X|. We prove2” < (N + 1)¢. Suppose
that, on the contrar2¥ > (N + D)4 If YV = (21,...,2%) for Y C X, then

0 < 27 < N becaus&” C {0,1}? and|Y| < N. Therefore, there are onfyV + 1)¢
possible sums” Y. Because there a2V subsetsy’ C X, there exist two distinct
subsetd/, V' € 2% such thaty_ U = " V. This contradicts Corollary. Therefore,
2N < (N + 1), soN < dlog(N + 1). From here we use elementary reasoning
with inequalities to obtailV < 2dlog(2d) (see [L1] or [17, Section 7.9.3] for details).
Substituting this bound ofY back intoN < dlog(N + 1) we obtain

N < dlog(N +1) < dlog(2dlog(2d) + 1) = dlog(2d(log(2d) + 57))
)

=d(1 + logd + log(log(2d) + ﬁ)) =dlogd(1+ %)

so we can let(d) = (1 + log(logd + 1 + 35))/logd. =

We can now define the function whose bounds we are interestahiputing.
Definition 3. N(d) = max{|X| | X € {0,1}¢ A NICG(X)}

Theorem?2 implies N(d) < (1 + e(d))(dlogd). However, because the function

N/log(N + 1) on integers is monotonic, we can efficiently compute its eiaerse
by binary search.

5 Lower Bounds and Reals

Although we currently do not have tight bounds ¥id), in this section we show, in
sequence, the following observations about lower bounda’{a):

1. d < N(d) forall d;

2. Ngr(d) = dif we use real variables instead of integer variables;
3. N(d) =dford € {1,2,3};

4. ford+ 4] < N(d)for4 < d;

We first showd < N (d).
Lemma4. LetX = {(z},...,2¢) |1 <i<n}and
Xt ={(z},...,24,0)|1<i<n}u{(0,...,0,1)}
Then NICGX) if and only if NIC@X ).
Corollary 2. N(d)+ 1< N(d+1)foralld > 1.

Proof. Let X C {0,1}¢, NICG(X), and|X| = N(d). Then NICGX*) by Lemma4
and|X*| = N(d) + 1, which impliesN(d + 1) > N(d) + 1.m



Note that we haveV (1) = 1 because there is only one non-z€fp 1} vector in
one dimension. From Corollary we obtain our lower bound, with standard basis as
NICG.

Lemma5. d < N(d). Specifically, NIC&{ey, ..., eq}) wheree; are unit vectors.

Note that forX = {es,...,eq} we haveint_cone(X) = Z2 , which implies thatX

is amaximalNICG, in the sense that no proper superfdét> X has the property
NICG(WV).

Real-valued relaxation of QFBAPA. In AppendixB we show that, if we use real or
rational measure of set size instead of integer arithmeticpbtain a nicer-behaved
problem and the boundi’(d) = d follows using well-known results in linear program-
ming. We can use this technique as a sound (but incompletéoador proving the
absence of solutions of @FBAPA formula. This approach is attractive both because
the boundN’(d) = d is smaller than the bound for integers, and because theidcis
procedure for real linear arithmetic is more efficient thanduantifier-freePA.

N(d) = dford € {1,2,3}. We next show that fod € {1,2,3} notonlyd < N(d)
but alsoN (d) < d.

Lemma6. N(d) =dford € {1,2,3}.

Proof. By Corollary2, if N(d +1) = d+1,thenN(d) +1 < d+ 1soN(d) < n.
Therefore N (d) = 3 implies N (2) = 2 as well, so we can také= 3.
If N(d) > d, then there exists a s&t with NICG(X') and| X | > d. From Lemmaz8,
a subsefX; C X with | X| = d + 1 also satisfies NICGX,). Therefore N(3) = 3 is
equivalent to showing that there is no $étC {0, 1} with NICG(X) and|X | = 4.
Consider a possible counterexample= {x1, 72, 23,24} C {0,1}® with b € X.
By previous argument on real-value relaxatid¥,(3) = 3, sob is in convex cone
of some three vectors fronX, sayb € cone({z1,x3,2z3}). On the other hand,
b ¢ int_cone({x1,z3,x3}). If we consider a system x; + Aoz + Aza3 = b thisim-
plies that such system has solution over non-negative, flealsiot over non-negative
integers. This can only happen if in the process of Gausdiarination we obtain
coefficients whose absolute value is more than 1. The onlpfstiree vectors for
which this can occur ist; = {(0,1,1),(1,0,1),(1,1,0)} We then consider all pos-
sibilities for the fourth vector inX, which, modulo permutations of coordinates, are
(0,0,0), (1,1,1), (1,1,0), and(1, 0, 0). However, adding any of these vectors violates
the unigueness of the solution @z, + Moo + A3zs + M\gzy = > X, S0 NICG X)
does not hold by Theoref condition 3)=

N = 3d — 3 Jower bound. We next show that there exists an examfleC {0, 1}*
with NICG(X5) and| X5| = 5. From this it follows thatV(d) > d for all d > 4.

Consider the following system of 4 equations with 5 variaplghere all variable
coefficients are if0, 1}. (We found this example by narrowing down the search using
the observations on minimal counterexamples in the probeaimas.)

A+ Ao+ Mg —3
A2+ A3+ A4 =3
M At dAs—4 ()

AL+ A2 + M+ =4

10



Performing Gaussian elimination yields an equivalentesyst

AL+ A2+ A3 =3
A2+ A3 + M\ =3

A3 42X + A5 =4

3\ +2X5 =5

From this form it easy to see that the system bas A2, A3, Ay, As) = (1,1,1,1,1)
as the only solutionin the space of non-negative integers. Note that all vagmbl
are non-zero in this solution. (In contrast, as discusseavgbbecause the sys-
tem is satisfiable, it must have a solution in non-negatiasrevhere at most 4
coordinates are non-zero; an example of such solutiof\is A2, A3, Ay, A5) =
(0,1.5,1.5,0,2.5).) The five columns of the systerii)(correspond to the set of vectors
X5 ={(1,0,1,1),(1,1,0,1),(1,1,1,0),(0,1,1,1),(0,0,1,1)} such that NICGX).
The setXj5 is also a maximal NICG, because adding any of the remainingr9zero
vectors in{0,1}*\ X5 results in a set that is not NICG.

This argument shows that there exist maximal NICG of sizgdathand for d > 4.
As we have remarked before, the setdofinit vectors is a maximal NICG for every
d, which means that, unlike linearly independent sets ofarsabver a field or other
independent sets in a matro®H, there are maximal NICG sets of different cardinality.

Note also thatX; is not a Hilbert basis31]. Namely, we have thatl,1,1,1) €
cone(X5) \ int_cone(Xs) because(1,1,1,1) = 1/3((1,0,1,1) + (1,1,0,1) +
(1,1,1,0) + (0,1, 1,1)). This illustrates why previous results on Hilbert bases db n
directly apply to the notion of NICG.

Using & identical copies ofX5 (with 4 equations in a group mentioning a disjoint
set of 5 variables) we obtain systemsd4af equations withbk variables such that the
only solution is a vectof1, ..., 1) of all ones. By adding unit vector columns for
1 < p < 3, we also obtain systems df + p equations withbk + p variables, with
N =3d—§ =d+|{] > 3d— %, which, in particular, shows tha{ = d upper bound
is invalid for alld > 4.

6 Better Upper Bounds for Small Cardinalities

Consider 2QQFBAPA formula in separated forr@ A F' as in Sectior2, whereG is a
PA formula andF is given by @). Our bounds onV so far a function ofi alone. For
many formulas arising in practice we can redi¢eising bounds on the values thiat
can take, as explained in this section. In our experiencirtiprovement significantly
reduced the overall running time of our algorithm.

Improved bound. Suppose that we can conclude that if the formiule is satisfiable,
then there exists a satisfying assignments for variableseth < k; < ¢; (if we do
not have a bound for somewe letc; = oo). We can often obtain such a bouadby
transformingG to negation-normal form and checkingkf occurs in literals such as
ki = 0ork; < ¢. (It may also be possible to adapt the techniquesPforformulas
from [32].) Given the bounds;, we have the following inequality that generalizes the
one in Theorenz:

d
2N < H(l + min(c;, N)) (8)
i=1

11



The reasoning follows the proof of Theoréhand we sketch it below. By construction
of ¢;, consider a satisfying assignment with< ¢;, fix the values of; and consider a
satisfying assignment foR) that has a minimal numbe¥ of non-zero values fdys, for
someN. Considerasum_Y = (t1,...,1q) of a subsel” of vectorsX corresponding
to N non-zerdlg. From)_ X = (ki,...,kq) andY C X we havet; < k; < ¢;. On
the other handY| < N, sot; < N. Thereforef; < min(c;, N). As in Theoren2,
the inequality 8) then follows from the requirement that &l subsets” have distinct
sums with coordinates from 0 tain(c¢;, NV).

Consequences for common casesTwo common cases that we can easily take ad-
vantage of are bounds = 0 and¢; = 1. Suppose that for € Iy we havec; = 0
and fori € I, (wherel; NIy = 0) we havec; = 1. Let|Iy] = so and || = s;.
Lettingc; = oo fori ¢ Iy U I, from (8) we obtain2V < 251(N + 1)4=s0=s1, For

¢; = 0ande¢; = 1 we can in fact obtain a slightly stronger bound from the cbodi
2V < 251 (N — 51+ 1)?=*0=s1 which can be justified as follows. Consider a satisfying
assignment folz A F'. Wheni € I, we can eliminate the equatidby| = k; in (2)
and remove allg such that]b;]s=1 from the remaining equations, while preserving
the property that all vectors in the matrix correspondin(®are in{0, 1}. The bound
on non-zero variables for the resulting system wiiths, equations therefore applies to
the original system as well. Similarly, ife I, and the right-hand side;, = 1, then we
know that in the satisfying assignment there is exactly @nsuch that]b;]z, =1, so
we can remove the equatidhy| = 1, and for allj such that]b,] 3, =1 subtract 1 from

k; and removépg,. The result is again a system wiflo, 1} coefficients, but one less
equation. Increasing the bound for the resulting systemmey(to account fotz, = 1)

we obtain the bound for the original system, which provesotaim.

These observations are important in practice becauseti@y that pure boolean
algebra expressions (suchtasC b, andb; = bs) do not increaséV when they occur
positively. The bound; = 1 also frequently occurs in our examples because we encode
elements as singleton sets; our result says that one sutinaléty bound to a formula
increases the number of needed integer variables only hy one

Note that, if all cardinality bounds are small constantsolvin formulas simpler
thanQFBAPA and we can expect good results by encoding them with unilyecgaan-
tified formulas of first-order logic with equality withoutrfigtion symbols, as inl[8, 7].
What we have shown in this section is that we can benefit frdingasmall constant
cardinalities into account even if some of the cardinalitiee large or symbolic.

7 Preliminary Experiments

Figure3 shows formula sizes and running times for the origiBAPA algorithm and
our newQFBAPA algorithm. As benchmarks we used the formulas in Fiduees well
as two of their variations. Namely, formulas in Figirare nice-looking partly because
we generated them using Jahob annotations that specifiarglassumptions needed to
establish an assertion. Without such assertions, veiditabnditions contain tens of
additional useless assumptions. Syntactically determginihich assumptions are use-
ful is a difficult problem B], so it is reasonable to leave this task to the the decision
procedure. Therefore, in examples 2a and 6a we added backh®sd original as-
sumptions. Moreover, we made 6a an invalid formula by changi in the goal into
<. For both the original and the new reduction®a we report the size of the gener-
atedPA formula, the time needed for SMT solver to prove its validitgd the overall
running time that includes the conversion®a. The conversion t®A is very fast for

12



the QFBAPA algorithm, but is exponential in worst case for BB&PA algorithm (see,
for example, 2a benchmark). We used CVC LBgds the solver foPA. TheQFBAPA
algorithm compute#V by inverting the monotonic functiolV/ log(N + 1) and by tak-
ing into account the optimizations in SectiénFor propositional variables that encode
assignmentg, . . ., By, our QFBAPA algorithm implementation generates a symme-
try breaking predicate that imposes a lexicographical ootethese assignments; we
found that this predicate reduces the running time offesolver several times.

For these particular examples we can conclude that for SRFEBAPA formulas
both the previouBAPA and the currenQFBAPA approach are fast. For proving va-
lidity of formulas with a larger number of variables (bendmks 2a, 5), th&QFBAPA
approach can generate smalké formulas (as expected), but tRé solver often fails
to prove their validity, most likely due to a large number ofdé@ional propositional
variables and t e statements.Finally, for finding counterexamples, the example 6a
suggests that thQFBAPA algorithm is already better. THRAPA algorithm takes over
30 seconds even to generatefiAeformula. TheQFBAPA algorithm computed/ = 18
and finishes in 13.1 seconds. In fact, REBAPA algorithm can find counterexample
even forN = 2, taking less thar).1 seconds, suggesting that iterative search from
N = 1 to the bound that guarantees soundness could be veru piradfart finding
counterexamples.

vC BAPA QFBAPA

PA sizg PA time(s)total time(s)PA sizg PA time(s)total time(s)
1 39 < 0.1 < 0.1 190 < 0.1 < 0.1
2 57 < 0.1 < 0.1 220 < 0.1 < 0.1
2a| 1049 0.7 2.0 840 18.6 18.8
3 51 < 0.1 < 0.1 131 < 0.1 0.1
4 546 0.3 0.6] 1328 o0 o0
5 2386 3.2 14.8| 1750 00 00
6 442 0.2 0.4 2613 00 00
6a| 4251 00 oo| 4687 12.1 13.1

Fig. 3. Formula sizes and running times for formulas in Figire

8 Related Work

To our knowledge, our result is the only decision procedoreaflogic with sets and
cardinality constraints that does not explicitly constrait set partitions. Using a new
form of small model property, the “small number of non-zeasiables property”, we
obtained a non-deterministic polynomial-time algorithmattcan be solved by produc-
ing polynomially large quantifier-free Presburger arittiméormulas. A polynomial
bound sufficient for NP membership can be derived fradj.[In addition to improve-
ments in the bounds that take into account small cardiaglitie introduced the notion
of non-redundantinteger cone generators and establisbagtoperties. Note that pre-
vious results, such a8]], consider matroids and Hilbert bases. Non-redundangérte
cone generators that we introduced seem the most naturahrfot determining the
bounds for sparse solutions problem. As we remark in Seétitime sets of vectorX
with NICG(X) do not form a matroid, and maximal NIG& ) need not be a Hilbert
basis. Note also that the equations generated fRéRAPA problems are more diffi-

1 In our experiments, CVC Lite would run out of memory. We al$ed using with Yices which did not run
out of memory, but still failed to complete in a reasonableant of time.
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cult than set packing and set partitioning proble@jbcause integer variables are not
restricted to bg0,1}.

Relationship to counting SAT. Although similarly looking, it turns out thaFBAPA
and #SAT problem33] are quite different; see Appendix for detalils.

Presburger arithmetic. The matching lower and upper bounds R were shown in
[4]. Our reduction tdPA along with small model property fétA that follows from R4]
yields polynomial encoding dFBAPA into SAT, whose efficiency in practice would
be interesting to explore in the future.

Reasoning about Sets.The quantifier-free fragment @A is shown NP-complete
in [22]; see [L8] for a generalization of this result using the parameterizemplexity
of the Bernays-Schonfinkel-Ramsey class of first-ordeiclpg, Page 258]. 9] gives
an overview of several fragments of set theory includingtles with quantifiers but
no cardinality constraints and theories with cardinaldystraints but no quantification
over sets. The decision procedure for quantifier-free fiagrwvith cardinalities in9,
Chapter 11] introduces exponentially many integer vaeialbd reduce the problem to
PA.

Using first-order provers. With appropriate axioms and decision procedures, first-
order provers can also be used to reason aQe®APA-like constraints, as shown, for
example, by SPASS+T2p]. Our decision procedure by itself is not nearly as widely
applicable as SPASS+T, but is complete for its domain (fangxe, it proves a formu-
lation of problem number (73) fron2p] in 0.1 seconds whereas SPASS+T is reported
to time out in the particular experiments performed26]]. Our decision procedure
can therefore be useful as a component of such more genstahsy or as guidance
for choosing axioms on cardinalities of collections alorithvgtrategies on when they
should be applied.
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Appendix
A Counting SAT

The complexity ofQFBAPA is perhaps even more interesting in the light of the sim-
ilarity of QFBAPA to the #SAT problem of computing the number of satisfying as-
signments of a propositional formula. The #SAT problem geliwes propositional sat-
isfiability (SAT) and is possibly more difficult33]. Given a propositional formula
with propositional variablegy, . . ., p,,, consider instead the corresponding boolean al-
gebra formula with corresponding set variables, .. ., z,, with A, v, = replaced by

N, U, ©. Then checkingl/| = 2" A |b| > 2"~1 — 1 satisfiability corresponds to testing
the most significant bit of the number of solutions of the msifonal formulaa, but
only under the following conditiofi«): all 2™ partitions with variables:, . . ., x,, are
non-empty|f there was a formula that would encode the conditienwhile being of
size polynomial inn, then the formulaC' A || = 2™ A [b] > 2"~! — 1 would en-
code (the query version of) #SAT, so the existence of shaigfsdility certificates for
QFBAPA would be intimately tied to fundamental questions in comityetheory. The
results of this paper imply that there is no such polynomialige formulaC, and that
there are, in factQFBAPA satisfiability certificates of polynomial size, indepentign

of the relationship between #SAT and SAT.

B Quantifier-Free Boolean Algebra with (Real) Linear Arithm etic

It is interesting to observe that, for a variation of tAEBAPA problem overeal num-
bers which we callQFBALA (Quantifier-Free Boolean Algebra with Linear Arith-
metic), we haveéV’(d) = d as a loweand uppeound for everyl.

We defineQFBALA similarly asQFBAPA, but we use real (or rational) linear arith-
metic instead of integer linear arithmetic and we interp#étis some real-valued mea-
sure of the setl. A possible application 0RFBALA are generalizations of probability
consistency problems such & Page 385, Example 8.3]. Set algebra operations then
correspond to the-algebra of events, and the measure of the set is the prapatsil
the event. Another model dFBALA is to interpret sets as finite disjoint unions of
half-open interval$a, b) contained iff0, 1), and let| A| be the sum of the lengths of the
disjoint intervals making upl.

The conditions we are using on the models are 1) for two disjeétsA, B, we
have|AU B| = |A| + |B|, 2) if |C| = pand0 < ¢ < p, then there exist® C C such
that| B| = ¢, and 3) (for simplicity) ifA # ), then|A| > 0.

We can reduce the satisfiability @FBALA to the satisfiability of a conjunction
of a quantifier-free linear arithmetic formula over realsl @aformula of the form%)
but with /3 non-negative real values instead of non-negative integkres. We then
reduce formulaZ) to a formula of the form3). The question is then, what can we use
as the boundV’(d) for QFBALA problems? This question reduces to following. Define
convex cone generated by a set of vectors by

cone(X)={ Mz + ...+ x|t >0AZ,...,2: € X ANy, ..., N, >0}

wherels, ..., A\, € R are non-negative real coefficientsblE cone(X ), what bound
can we put on the cardinality of a subSétC X such thatX e cone(X)? Note thatl is

a lower bound, using the same example of unit vectors da the case of real numbers,
Carathéodory’s theorenl ()] states thatl is an upper bound as well:€ cone(X ) for
someX of cardinality at mostl.
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We can also explain tha¥’(d) = d using the terminology of linear programming
[30. The equations?) along withiz > 0 for 3 € {0,1}° determine a polytope in
R?, so if they have a solution, they have a solution that is aexest the polytope. The
vertex inR?" is the intersection a2¢ hyperplanes, of which at mogtare given by 2),
so the remaining ones must be hyperplanes of the fgre 0. This implies that at least
2¢ — d coordinates of the vertex are zero and at nabst them can be non-zero.
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