
BOLTZMANN SAMPLERSFOR THE RANDOM GENERATIONOF COMBINATORIAL STRUCTURESPHILIPPE DUCHON, PHILIPPE FLAJOLET, GUY LOUCHARD, GILLES SCHAEFFERAbstra
t. This arti
le proposes a surprisingly simple framework for the ran-dom generation of 
ombinatorial 
on�gurations based on what we 
all Boltz-mann models. The idea is to perform random generation of possibly 
omplexstru
tured obje
ts by pla
ing an appropriate measure spread over the whole ofa 
ombinatorial 
lass|an obje
t re
eives a probability essentially proportionalto an exponential of its size. As demonstrated here, the resulting algorithmsbased on real-arithmeti
 operations often operate in linear time. They 
anbe implemented easily, be analysed mathemati
ally with great pre
ision, and,when suitably tuned, tend to be very eÆ
ient in pra
ti
e.1. Introdu
tionIn this study, Boltzmann models are introdu
ed as a framework for the randomgeneration of stru
tured 
ombinatorial 
on�gurations, like words, trees, permuta-tions, 
onstrained graphs, and so on. A Boltzmann model relative to a 
ombina-torial 
lass C depends on a real-valued (
ontinuous) 
ontrol parameter x > 0 andpla
es an appropriate measure that is spread over the whole of C: This measureis essentially proportional to xj!j for an obje
t ! 2 C of size j!j. Random obje
tsunder a Boltzmann model then have a 
u
tuating size, but obje
ts with the samesize invariably o

ur with the same probability. In parti
ular, a Boltzmann sampler(i.e., a random generator that produ
es obje
ts distributed a

ording to a Boltz-mann model) draws uniformly at random an obje
t of size n, when the size of itsoutput is 
onditioned to be the �xed value n.As we demonstrate, Boltzmann samplers 
an be derived systemati
ally (andsimply) for 
lasses that are spe
i�ed in terms of a basi
 
olle
tion of general-purpose
ombinatorial 
onstru
tions. These 
onstru
tions are pre
isely the ones that surfa
ere
urrently in modern theories of 
ombinatorial analysis [4, 28, 30, 60, 61℄ and insystemati
 approa
hes to random generation of 
ombinatorial stru
tures [29, 51℄.As a 
onsequen
e, one obtains with surprising ease Boltzmann samplers 
overingan extremely wide range of 
ombinatorial types.In most of the 
ombinatorial literature so far, �xed-size generation has been thestandard paradigm for the random generation of 
ombinatorial stru
tures, and avast literature exists on the subje
t. There, either spe
i�
 bije
tions are exploitedor general 
ombinatorial de
ompositions are put to use in order to generate obje
tsat random based on 
ounting possibilities|the latter approa
h has 
ome to beknown as the \re
ursive method" originating with Nijenhuis and Wilf [51℄, thensystematized and extended by Flajolet, Zimmermann, and Van Cutsem in [29℄.Date: Version of January 1,2003. Submitted to Combinatori
s, Probability, and Computing.1



2 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERIn 
ontrast, the basi
 prin
iple of Boltzmann sampling is to relax the 
onstraintof generating obje
ts of a stri
tly �xed size, and prefer to draw obje
ts with arandomly varying size. As we shall see, normally, one 
an then tune the value ofthe 
ontrol parameter x in order to favour obje
ts of a size in the vi
inity of a targetvalue n. (A \toleran
e" of, say, a few per
ents on size of the obje
t produ
ed islikely to 
ater for many pra
ti
al simulation needs.) If the tuning mentioned aboveis not suÆ
ient, one 
an always pile up a reje
tion method to restri
t further thesize of the element drawn. In this way, Boltzmann samplers may be employed forapproximate-size as well as �xed-size random generation.We propose Boltzmann samplers as an attra
tive alternative to standard 
om-binatorial generators based on the re
ursive method and implemented in pa
kageslike Combstru
t (under the 
omputer algebra system Maple) and CS (under Mu-Pad). The algorithms underlying the re
ursive ne
essitate a prepro
essing phasewhere tables of integer 
onstants are set up, then they appeal to a boustrophe-doni
 strategy in order to draw a random obje
t of size n. In the abstra
t, theinteger-arithmeti
 
omplexities atta
hed to the re
ursive method and measured bythe number of (large) integer-arithmeti
 operations are as follows:(1) Prepro
. memory Prepro
. time Time per generationO(n) O(n2) or O(n1+") O(n logn)The integer-based algorithms require the 
ostly maintenan
e of large tables of 
on-stants (in number O(n)). In fa
t, they e�e
t arithmeti
 operations over large mul-tipre
ision integers, whi
h themselves have size O(n) (in the unlabelled 
ase) orO(n logn) (in the labelled 
ase); see [29℄. Consequently, the overall Boolean 
om-plexities involve an extra fa
tor of O(n) at least, leading to a 
ost measured in ele-mentary operations that is quadrati
 or worse. (The integer-arithmeti
 time of theprepro
essing phase 
ould in prin
iple be de
reased from O(n2) to O(n1+") thanksto the re
ent work of van der Hoeven [65℄, but this does not a�e
t our basi
 
on-
lusions.) An alternative, initiated by Denise, Dutour, and Zimmermann [12, 13℄,
onsists in treating integers as real numbers and approximating them using realarithmeti
s (\
oating-point" implementations), possibly supplementing the te
h-nique by adaptive pre
ision routines. In the 
ase of real-based algorithms, theBoolean as well as pra
ti
al 
omplexities improve, and they be
ome fairly wellrepresented by the data of Equation (1), but the memory and time of the prepro-
essing phase remains fairly large, while the time per generation remains inherentlysuperlinear.As we propose to show, Boltzmann algorithms 
an well be 
ompetitive when
ompared to 
ombinatorial methods: Boltzmann samplers only ne
essitate a small�xed number of low pre
ision real 
onstants that are normally easy to 
omputewhile their 
omplexity is always linear in the size of the obje
t drawn. A

ordingly,uniform random generation of obje
ts with sizes in the range of millions is be
ominga possibility, whenever the Boltzmann framework is appli
able. The pri
e to be paidis an o

asional loss of 
ertainty in the exa
t size of the obje
t generated, typi
ally,a toleran
e on sizes of a few per
ents should be granted; refer to Figure 10 inthe 
on
luding se
tion. The table that summarizes the 
omplexities of Boltzmanngenerators, measured in real-arithmeti
 operations is then:(2) Prepro
. memory Prepro
. time Time per generationO(1) \small" with toleran
e : O(n)



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 3The vague quali�er \small" refers to the fa
t that pra
ti
al implementations will bebased on 
oating point approximations to exa
t real number arithmeti
s, in whi
h
ase, typi
ally, the prepro
essing time is likely to be a small power of logn. (Thatthis prepro
essing is pra
ti
ally feasible and of a very low 
omplexity should atleast transpire from the various examples given, but a systemati
 dis
ussion would
arry us too far away from our main obje
tives1.)As regards random generation, the ideas presented here draw their origins frommany sour
es. First the re
ursive method of [29, 51℄ served as a key 
on
eptualguide for delineating the types of obje
ts that are systemati
ally amenable to Boltz-mann sampling. Ideas from a statisti
al physi
s point of view on 
ombinatori
s, ofwhi
h great use was made by Vershik and his 
ollaborators [10, 67℄, then provided
ru
ial insight regarding the new 
lass of algorithms for random generation thatis presented here. Another important ingredient is the 
olle
tion of reje
tion al-gorithms developed by Du
hon, Lou
hard, and S
hae�er for 
ertain types of trees,polyominos, and planar maps [17, 45, 56℄. There are also similarities with thete
hnique of \shifting the mean" (see Greene and Knuth's book [33, p. 78{80℄) aswell as the theory of large deviations [11℄ and \exponential families" of probabilitytheory|we have bene�ted from dis
ussions with Alain Denise on these aspe
ts.Finally, the prin
iples of analyti
 
ombinatori
s (see [28℄) provide essential 
luesfor de
iding situations in whi
h the algorithms are likely to be eÆ
ient. Further
onne
tions are dis
ussed at the end of the next se
tion.Plan of this study. Boltzmann models and samplers are introdu
ed in Se
-tion 2. Boltzmann models exist in two varieties: the ordinary and the exponentialmodels. Ordinary models serve for 
ombinatorial 
lasses that are \unlabelled", the
orresponding samplers being developed in Se
tion 3, where basi
 
onstru
tion rulesare des
ribed. Se
tion 4 pro
eeds in a parallel way with exponential models and\labelled" 
lasses. Some of the 
omplexity issues raised by Boltzmann samplingare examined in Se
tion 5. There it is shown that, at least in the idealized senseof exa
t real-number 
omputations, a Boltzmann sampler suitably equipped with a�xed (and small) number of driving 
onstants operates in time that is linear in the(
u
tuating) size of the obje
t it produ
es.Se
tions 2 to 5 develop Boltzmann samplers that operate freely under the solee�e
t of the de�ning parameter x. We examine next the way the 
ontrol parameter x
an be tuned to attain obje
ts at or near a target value: this is the subje
t ofSe
tion 6, where reje
tion is introdu
ed and a te
hnique based on the pointingtransformation is developed. Se
tion 7 des
ribes two types of situation where thebasi
 Boltzmann samplers turn out to be optimized by assigning a 
riti
al value tothe 
ontrol parameter x. Se
tion 8 o�ers a few 
on
luding remarks.An extended abstra
t summarizing several of the results des
ribed here has beenpresented at the ICALP'2002 Conferen
e in Malaga [18℄.2. Boltzmann models and samplersWe 
onsider a 
lass C of 
ombinatorial obje
ts of sorts, with j � j the size fun
tionmapping C to Z�0. By Cn is meant the sub
lass of C 
omprising all the obje
tsin C having size n, and ea
h Cn is assumed to be �nite. One may think of binary1The primary goal of this arti
le is on pra
ti
al algorithmi
 design, not analysis of algorithms,although a fair amount of analysis, by ne
essity, enters into the dis
ussion.



4 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERwords (with size de�ned as length), permutations, graphs and trees of various types(with size de�ned as number of verti
es), and so on. Any set C endowed with a sizefun
tion and satisfying the �niteness axiom will hen
eforth be 
alled a 
ombinatorial
lass.The uniform probability distribution over Cn assigns to ea
h 
 2 Cn the proba-bility PCnf
g = 1=Cn;with Cn := 
ard(Cn). Exa
t-size random generation means the pro
ess of drawinguniformly at random from the 
lass Cn. We also 
onsider (see Se
tions 6 and 7 fora des
ription of various strategies) random generation from \neighbouring 
lasses",CN where N may not be totally under 
ontrol, but should still be in the vi
inityof n, namely, in some interval (1 � ")n � N � (1 + ")n, for some \toleran
e"fa
tor " > 0; this is 
alled approximate-size (uniform) random generation. It mustbe stressed that, even under approximate-size random generation, two obje
ts ofthe same size are invariably drawn with the same probability.De�nition 1. The Boltzmann models of parameter x exist in two varieties, theordinary version and the exponential version. They assign to any obje
t 
 2 C thefollowing probability:Ordinary/Unlabelled 
ase: Px(
) = 1C(x) � xj
j with C(x) = X
2C xj
j;Exponential/Labelled 
ase: Px(
) = 1bC(x) � xj
jj
j! with bC(x) = X
2C xj
jj
j! :A Boltzmann sampler (or generator) �C(x) for a 
lass C is a pro
ess that produ
esobje
ts from C a

ording to the 
orresponding Boltzmann model, either ordinary orexponential.The normalization 
oeÆ
ients are nothing but the values at x of the 
ountinggenerating fun
tions, respe
tively of ordinary type (OGF) for C and exponentialtype (EGF) for bC: C(z) = Xn�0Cnzn; bC(z) = Xn�0Cn znn! :Coherent values of x de�ned to be su
h that 0 < x < �C (or � bC), with �f theradius of 
onvergen
e of f are to be 
onsidered. The quantity �f is referred toas the \
riti
al" or \singular" value. (In the parti
ular 
ase when the generatingfun
tion C(x) still 
onverges at �C , one may also use the limit value x = �C tode�ne a valid Boltzmann model; see Se
tion 7 for uses of this te
hnique.)For reasons whi
h will be
ome apparent, we have introdu
ed two 
ategories ofmodels, the ordinary and exponential ones. Exponential Boltzmann models areappropriate for handling labelled 
ombinatorial stru
tures while ordinary models
orrespond to unlabelled stru
tures of 
ombinatorial theory2. In the unlabelleduniverse, all elementary 
omponents of obje
ts (\atoms") are indistinguishable,while in the labelled universe, they are all distinguished from one another by bearinga distin
tive mark, say one of the integers between 1 and n if the obje
t 
onsidered2This terminology is standard in 
ombinatorial enumeration and graph theory; see, e.g., thebooks of Bergeron et al., Goulden{Ja
kson, Harary{Palmer, Stanley, and Wilf [4, 30, 34, 60, 61, 69℄or the preprints by Flajolet & Sedgewi
k [28℄.



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 5has size n. Permutations written as sequen
es of distin
t integers are typi
al labelledobje
ts while words over a binary alphabet appear as typi
al unlabelled obje
tsmade of \anonymous" letters, say fa; bg for a binary alphabet.For instan
e, 
onsider the (unlabelled) 
lass W of all binary words, W = fa; bg?.There are Wn = 2n words of length n and the OGF is W (z) = (1 � 2z)�1. Theprobability assigned by the ordinary Botzmann model to any word w is xjwj(1�2x).There, the 
oherent values of x are all the positive values less than the 
riti
al value�W = 12 . The probability that a word of length n is sele
ted is (2x)n(1 � 2x), sothat the Boltzmann model of binary words is logi
ally equivalent to the followingpro
ess: draw a random variable N a

ording to the geometri
 distribution ofparameter 2x; if the value N = n is obtained, draw uniformly at random any ofthe possible words of size n. For the labelled 
ase, 
onsider the 
lass K of all 
y
li
permutations, K = f[1℄; [1 2℄; [1 2 3℄; [1; 3; 2℄; : : :g. There are Kn = (n � 1)! 
y
li
permutations of size n over the 
anoni
al set of \labels" f1; : : : ; ng. The EGF is(3) bK(z) = Xn�1(n� 1)!znn! = Xn�1 znn = log 11� z :The probability of drawing a 
y
li
 permutation of some �xed size n is then,(4) 1log(1� x)�1 xnn ;a quantity de�ned for 0 < x < � bK = 1. (This is known as the \logarithmi
 seriesdistribution"; see Se
tion 4). Like in the 
ase of binary words, the Boltzmannmodel 
an thus be realized by �rst sele
ting size a

ording to the logarithmi
 seriesdistribution, and then by drawing uniformly at random a 
y
li
 permutation of the
hosen size. We are pre
isely going to revert this pro
ess and show that, in many
ases, it is of advantage to draw dire
tly from a Boltzmann model, (Se
tions 3 to 5),and from there derive random generators that are eÆ
ient for a given range of sizes(Se
tions 6 and 7).The size of the resulting obje
t under a Boltzmann model is a random variabledenoted throughout by N . By 
onstru
tion, the probability of drawing an obje
tof size n is, under the model of index x,(5) Px(N = n) = CnxnC(x) ; or Px(N = n) = Cnxnn! bC(x) ;for the ordinary and exponential model, respe
tively. The law is well quanti�ed bythe following lemma. (See, e.g., Huang's book [37℄ for similar 
al
ulations from thestatisti
al me
hani
s angle.)Proposition 1. The random size of the obje
t produ
ed under the ordinary Boltz-mann model of parameter x has �rst and se
ond moments satisfying(6) Ex (N) = xC 0(x)C(x) ; Ex(N2) = x2C 00(x) + xC 0(x)C(x) :The same expressions are valid, but with bC repla
ing C, in the 
ase of the expo-nential Boltzmann model. In both 
ases, the expe
ted size Ex (N) is an in
reasingfun
tion of x.



6 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERProof. Under the ordinary Boltzmann model, the probability generating fun
tionof N is Xn Px(N = n)zn = C(xz)C(x) ;by virtue of (5). The result then immediately follows by di�erentiation upon set-ting z = 1:Ex (N) = � ��z C(xz)C(x) �z=1 ; Ex (N(N � 1)) = � �2�z2 C(xz)C(x) �z=1 :The very same 
al
ulation applies to exponential Boltzmann models, but with theEGF bC then repla
ing the OGF C.The mean size Ex(N) is always a stri
tly in
reasing fun
tion of x as soon as the
lass C 
ontains at least two elements of di�erent sizes. Indeed one veri�es by atrite 
al
ulation the identity x ddxEx (N) = Vx(N);where V denote the varian
e operator. Sin
e the varian
e of a nondegenerate ran-dom variable is always stri
tly positive the derivative of Ex (N) is positive andEx (N) is in
reasing. (This property is in fa
t a spe
ial 
ase of Hadamard's 
onvex-ity theorem.)For instan
e, in the 
ase of binary words, the 
oherent 
hoi
e x = 0:4 leadsto a size with mean value 4 and standard deviation about 4.47; for x = 0:49505,the mean and standard deviation of size be
ome respe
tively 100 and 100.5. For
y
li
 permutations, we determine similarly that the 
hoi
e x = 0:99846 leads toan obje
t of mean size equal to 100, while the standard deviation is somewhathigher than for words, being equal to 234. In general, the distribution of randomsizes under a Boltzmann model, as given by Formula (5), strongly depends on thefamily under 
onsideration. Figure 1 illustrates three widely di�ering pro�les: forset partitions, the distribution is \bumpy", so that a 
hoi
e of the appropriate xwill most likely generate an obje
t 
lose to the desired size; for surje
tions (whosebehaviour is analogous to the one of binary words), the distribution be
omes fairly\
at" as x nears the 
riti
al value; for trees, it is \peaked" at the origin, so thatvery small obje
ts are generated with high probability. It is pre
isely the purposeof later se
tions (Se
tions 6 and 7) to re
ognize and exploit the \physi
s" of thesedistributions in order to dedu
e eÆ
ient samplers for exa
t and approximate sizerandom generation.Relation to other �elds. The term \Boltzmann model" 
omes from the greatstatisti
al physi
ist Ludwig Boltzmann whose works (together with those of Gibbsand Maxwell) led to enun
iate the following prin
iple: Statisti
al me
hani
al 
on�g-urations of energy equal to E in a system have a probability3 of o

urren
e propor-tional to e��E. If one identi�es size of a 
ombinatorial 
on�guration with energyof a thermodynami
al system and sets x = e��, then what we term the ordinaryBoltzmann models be
ome the usual model of statisti
al me
hani
s. The 
ountinggenerating fun
tion in the 
ombinatorial world then 
oin
ides with the normaliza-tion 
onstant in the statisti
al me
hani
s world where it is known as the partition3Distributions of the type e��E play an important rôle in the study of point pro
esses andthey tend to be known to probabilists under the name of \Gibbs measures".
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Set Partitions
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1 2 3 4 5 6 7 8Figure 1. Size distributions under Boltzmann models for var-ious values of parameter x. From top to bottom: the \bumpy"type of set partitions (Example 5), the \
at" type of surje
tions(Example 6), and the \peaked" type of general trees. (Example 2).fun
tion|the Zustandsumme often denoted by Z. (Note: In statisti
al me
hani
s,� = 1=(kT ) is an inverse temperature. Thus situations where x! 0 formally 
orre-spond to low temperatures or \freezing" and give more weight to small stru
tures,while x ! �� 
orresponds to high temperatures or \melting", that is, to largersizes of the 
ombinatorial 
on�gurations being generated.)Exponential weights of the Boltzmann type are naturally essential to the sim-ulated annealing approa
h to 
ombinatorial optimization. In the latter area, forinstan
e, Fill and Huber [22℄ have shown the possibility of drawing at random in-dependent sets of graphs a

ording to a Boltzmann distribution, at least for 
ertainvalues of the 
ontrol parameter x = e��. Closer to us, Compton [7, 8℄ has madean impli
it use of what we 
all Boltzmann models for the analysis of 0{1 laws andlimit laws in logi
; see also the a

ount by Burris [6℄. Vershik has initiated in aseries of papers (see [67℄ and referen
es therein) a programme that 
an be des
ribedin our terms as �rst developing the probabilisti
 study of 
ombinatorial obje
ts un-der a Boltzmann model and then \returning" to �xed size statisti
s by means ofTauberian arguments of sorts. (A similar des
ription 
an be applied to Compton'sapproa
h; see espe
ially the work [50℄ for re
ent developments in this dire
tion.)As these examples indi
ate, the general idea of Boltzmann models is 
ertainly notnew, and, in this work, we may at best 
laim originality for aspe
ts related to thefast random generation of 
ombinatorial stru
tures.



8 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERConstru
tion GeneratorSingleton C = f!g �C(x) = !Union C = A+ B �C(x) = �Bern� A(x)A(x)+B(x)� �! �A(x) j �B(x)�Produ
t C = A�B �C(x) = ��A(x); �B(x)�Sequen
e C = S(A) �C(x) = �Geom(A(x)) =) �A(x)�Figure 2. The indu
tive rules for ordinary Boltzmann samplers.3. Ordinary Boltzmann GeneratorsIn this se
tion and the next one, we develop a 
olle
tion of rules by whi
h one
an assemble Boltzmann generators from simpler ones. The 
ombinatorial 
lasses
onsidered are built by means of a small set of 
onstru
tions that have wide expres-sive power. The language in whi
h 
lasses are spe
i�ed is in essen
e the same as theone underlying the re
ursive method [29℄: it in
ludes the 
onstru
tions of union,produ
t, sequen
e, and, in the labelled 
ase treated in the next se
tion, the addi-tional set and 
y
le 
onstru
tions. For ea
h allowable 
lass, a Boltzmann sampler
an be derived in an entirely systemati
 (and even automati
) manner.A 
ombinatorial 
onstru
tion builds a new 
lass C from stru
turally simpler
lasses A;B, in su
h a way that Cn is determined from smaller obje
ts, that is, fromelements of fAjgnj=0; fBjgnj=0. The unlabelled 
onstru
tions 
onsidered here aredisjoint union (+), 
artesian produ
t (�), and sequen
e formation (S). We de�nethese in turn and 
on
urrently build the 
orresponding Boltzmann sampler �C forthe 
omposite 
lass C, given random generators �A;�B for the ingredients andassuming the values of intervening generating fun
tions A(x); B(x) at x to be realnumbers whi
h are known exa
tly.Finite Sets. Clearly if C is �nite (and in pra
ti
e small), one 
an generate arandom element of C by sele
ting it a

ording to the �nite probability distributionde�ned by the Boltzmann model: If F = f!1; : : : ; !rg, then one sele
ts fj withprobability proportional to zjfjj. Thus, drawing from a �nite set is equivalent toa �nite probabilisti
 swit
h. Drawing from a singleton set is then a deterministi
pro
edure whi
h dire
tly outputs the obje
t in question. In parti
ular, in whatfollows, we make use of the singleton 
lasses, 1 and Z , formed respe
tively of oneelement of size 0 (analogous to the empty word of formal language theory) and ofone element of size 1 that 
an be viewed as a generi
 \atom" out of whi
h 
omplex
ombinatorial stru
tures are formed.Disjoint union. Write C = A+ B if C is the union of disjoint 
opies of A andB, with size on C inherited from A;B. By disjointness, one has Cn = An + Bn, sothat(7) C(z) = A(z) +B(z):Consider a random element of C under the Boltzmann model of index x. Then, theprobability that this random element is some � 2 A isPC;x(�) � xj�jC(x) = xj�jA(x) � �A(x)C(x)� :



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 9The Boltzmann model 
orresponding to C(x) is then a mixture of the modelsasso
iated to A(x) and B(x), the probability of sele
ting a parti
ular 
 in C beingPC;x(
 2 A) = A(x)C(x) ; PC;x(
 2 B) = A(x)C(x) :Given a generator for a Bernoulli variable Bern(p) de�ned byBern(p) = 1 with probability p; Bern(p) = 0 with probability 1� p,two Boltzmann samplers �A(x);�B(x), and the values of the OGFs A(x); B(x), aBoltzmann sampler �C for 
lass C = A+ B is simply obtained by the pro
edure:fun
tion �C(x : real); fgenerates C = A+ Bglet pA := A(x)=(A(x) +B(x));if Bern(pA) then return(�A(x)) else return(�B(x)) �; end.We abbreviate this 
onstru
tion as(8) �Bern�A(x)C(x)� �! �A(x) j �B(x)�;where (X �! f j g) is a shorthand notation for: \if the random variable X is 1,then exe
ute f , else exe
ute g". More generally, if X ranges over a �nite set with relements endowed with a probability measure, p1; : : : ; pr, we shall use the extendednotation(9) (Bern(p1; : : : ; pr�1) �! f1 j : : : j fr)to represent the 
orresponding r-fold probabilisti
 swit
h.Cartesian Produ
t. Write C = A � B if C is the set of ordered pairs from Aand B, and size on C is inherited additively from A;B. Generating fun
tions satisfy(10) C(z) = A(z) � B(z) sin
e C(z) = Xh�;�i2A�B zj�j+j�j:A random element of 
 2 C with 
 = (�; �) then has probabilityPC;x(
) � xj
jC(x) = xj�jA(x) � xj�jB(x) :It is thus obtained by forming a pair h�; �i with �; � drawn independently from theBoltzmann models �A(x);�B(x):fun
tion �C(x : real); fgenerates C = A�Bgreturn(h�A(x);�B(x)i) findependent 
allsg.We shall abbreviate this s
hema as�C(x) = ��A(x); �B(x)�;whi
h 
an be read either as fun
tionally produ
ing a pair, or as sequential exe
utionof the two pro
edures. We shall also use the natural extension (f1; : : : ; fr) whenr-tuples are involved.Sequen
es. Write C = S(A) if C is 
omposed of all the �nite sequen
es of ele-ments of A (with size of a sequen
e additively inherited from sizes of 
omponents).The sequen
e 
lass C is also the solution to the symboli
 equation C = 1 + A � C
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e), whi
h only involves unions and produ
ts and is re-
e
ted by the relation between OGFs: C = 1 +AC. Consequently,(11) C(z) = 11�A(z) :This gives rise to two logi
ally equivalent designs for a �C sampler:(i) the re
ursive sampler,fun
tion �C(x : real); fgenerates C = S(A)gif Bern(A(x)) then return(�A(x), �C(x)) fre
ursive 
allgelse return(1).(ii) the geometri
 sampler,fun
tion �C(x : real); fgenerates C = S(A)gdraw k a

ording to Geom(A(x));return the k-tuple h�A(x); : : : ;�A(x)i fk independent 
allsg.The re
ursive sampler for sequen
es is built from �rst prin
iples (union and produ
trules). It might in prin
iple loop for ever. However, by design, it repeatedly drawsa Bernoulli random variable till the value 0 is attained. Thus, the number of
omponents generated is a geometri
 random variable with rate A(x), where, were
all, X is geometri
 of rate � ifP(X = k) = (1� �)�k :For 
oheren
e to be satis�ed, we must have A(x) < 1. Then, the re
ursive samplerhalts with probability 1 sin
e the expe
ted number of re
ursive 
alls is �nite andequal to (1 � A(x))�1. This dis
ussion justi�es the geometri
 generator, whi
hunwinds the re
ursion of the basi
 re
ursive sampler using a generator Geom(�) forthe geometri
 variable of parameter �.In what follows, we use the notation,(12) �Y =) f�to mean: the random variable Y is drawn; if the value Y = y is returned, then yindependent 
alls, f1; : : : ; fy are laun
hed. The s
heme giving the sequen
e samplerfor C = S(A) is then simply:�C(x) = (Geom(A(x)) =) �(x)) :Re
ursive 
lasses. As suggested by the sequen
e 
onstru
tion, re
ursivelyde�ned 
lasses admit generators that 
all themselves re
ursively. A spe
i�
ationby means of 
onstru
tors is \well-founded" if it builds obje
ts from smaller ones.An equivalent 
ondition, when no re
ursion is involved, is that the sequen
e (and,for exponential Boltzmann models below, set, and 
y
le) operations are never ap-plied to 
lasses that 
ontain obje
ts of size 0. For re
ursive stru
tures this is atestable property akin to \properness" in the theory of 
ontext-free grammars. (A
ontext-free grammar is proper if the empty word is not generated with in�nitemultipli
ity.) This well-foundedness 
ondition also guarantees that the equationsde�ning generating fun
tion equations are well-posed and 
ontra
ting in the spa
eof formal power series endowed with the standard metri
, dist(f; g) = 2� val(f�g);a

ordingly, iteration provides a geometri
ally 
onverging approximation s
hemethat makes it possible to determine generating fun
tion values for all 
oherent val-ues of x (by analyti
ity and dominated 
onvergen
e). See [27, 29℄ for a detaileddis
ussion of this topi
 and the 
orresponding de
ision pro
edures.
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i�able an unlabelled 
lass that 
an be �nitely spe
i�ed(in a possibly re
ursive way) from �nite sets by means of disjoint unions, 
artesianprodu
ts, and the sequen
e 
onstru
tion. Let C be an unlabelled spe
i�able 
lass andx be a 
oherent parameter in (0; �C). Assume as given an ora
le that provides the�nite 
olle
tion of exa
t values at a 
oherent value x of the generating fun
tionsintervening in a spe
i�
ation of a 
lass C. Then, the Boltzmann generator �C(x)assembled from the de�nition of C by means of the four rules summarized in Figure 2has a 
omplexity measured in the number of (+;�;�;�) real-arithmeti
 operationsthat is linear in the size of its output obje
t.Proof. For a 
oherent value of size, the expe
tation of size is �nite, so that, inparti
ular, size is �nite with probability 1. Given a spe
i�
ation � for C, ea
hobje
t ! admits a unique parse tree (or syntax tree) � [!℄ relative to �. For well-founded spe
i�
ations, this parse tree � is of a size linear in the size of the obje
tprodu
ed. We shall see later (Lemma 1 in Se
tion 5) that in the real-arithmeti
model a Bernoulli 
hoi
e 
an be e�e
ted with 
omplexity O(1) and a geometri
random variable whi
h assumes value k 
an be generated at 
ost O(k + 1). Fromthis fa
t, the total 
ost of a Boltzmann sampler is of the formO0� X�2� [!℄(deg(�) + 1)1A ;where the summation ranges over all the nodes � of tree � , and deg(�) is theoutdegree of node �. Sin
e, for any tree � , one has P� 1 = j� j and P� deg(�) =j� j � 1, the total 
ost is linear in the size of � , hen
e linear in the size of !. Thestatement follows.Given this proposition, one 
an 
ompile automati
ally spe
i�
ations of 
ombina-torial 
lasses into Boltzmann samplers. The only pie
e of auxiliary data requiredis a table of 
onstants representing the values of the ordinary generating fun
tionsasso
iated with the sub
lasses that intervene in a spe
i�
ation. These are in �nitenumber and 
omputable.In the examples that follow, we enlarge the expressivity of the spe
i�
ationlanguage by allowing 
onstru
tions of the form(13) S
(A) = �h�1; : : : ; �ri �� �j 2 A; r 2 
	 ;where 
 � N is either a �nite or a 
o�nite subset of the integers. If 
 is �nite, this
onstru
tion redu
es to a disjun
tion of �nitely many 
ases and the 
orrespondingsampler is obtained by Bernoulli trials. If 
 is 
o�nite, we may assume without lossof generality that 
 = fn � m0g for some m0 2 N, in whi
h 
ase, the 
onstru
tionS�m0(A) redu
es to Am0 �S(A).Example 1. Words without long runs. Consider the 
olle
tion R of all binarywords over the alphabet A = fa; bg that never have more than m 
onse
utive o

ur-ren
es of any letter (su
h 
onse
utive sequen
es are also 
alled \runs" and interveneat many pla
es in statisti
s, 
oding theory, and geneti
s). Here we regard m as a�xed quantity. It is not a priori obvious how to generate a random word in Rof length n: a brutal reje
tion method based on generating random un
onstrainedwords and �ltering out those that satisfy the 
ondition R will not work in polyno-mial time sin
e the 
onstrained words have an exponentially small probability. On
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omposes into a sequen
e of alternations also 
alled its
ore, of the form(14) (aa � � � a j bb � � � b) (aa � � �a j bb � � � b) � � � (aa � � � a j bb � � � b);possibly pre�xed with a header of b's and post�xed with a trailer of a's. In symbols,the set W of all words is expressible by a regular expression written in our notationW = S(b)�S (aS(a)bS(b))�S(a):The de
omposition was 
ustomized to serve for R: simply repla
e any internalaS(a) by S1 : :m(a) and any bS(b) by S1 : :m(b), where S1 : :m means a sequen
eof between 1 and m elements, and adapt a

ordingly the header and trailer:R = S�m(b)�S (S1 : :m(a)S1 : :m(b))�S�m(a):The 
omposition rules given above give rise to a generator for R that has thefollowing form: two generators that produ
e sequen
es of a's or b's a

ording toa trun
ated geometri
 law; a generator for the produ
t C := (S1 : :m(a)S1 : :m(b))that is built a

ording to the produ
t rule; a generator for the sequen
e D :=S(C) 
onstru
ted a

ording to the sequen
e rule. The generator �nally assembledautomati
ally is:�R(x) = (X =) b); �Core(x); (X 0 =) a)�Core(x) = �Geom �x2(1�xm)2(1�x)2 � =) ((Y =) a); (Y 0 =) b))�X;X 0 2 Geom�m (x); Y; Y 0 2 Geom1 : :m (x):Observe that a table of only a small number of real-valued 
onstants rationallyrelated to x and in
luding
1 = x; 
2 = C(x) = x2(1� xm)2(1� x)�2;needs to be pre
omputed in order to implement the algorithm. �Here are three runs of the sampler �R(x) for m = 4 produ
ed with the 
oher-ent value x = 0:5 (the 
riti
al value is �R := 0:51879), of respe
tive lengths 124(trun
ated), 23, and 35, with the 
oding a =�, b = :� ��� � � ��� �� � � � �� �� � � � �� � �� ���� ���� ��� ���� � �� � � � �� � �� �� �� � ���� ��� �� � ��� � ����With this value of the parameter, the mean size of a random word produ
ed isabout 27. The distribution turns out to be of the \
at" type, like for Surje
tionsin Figure 1. We shall see later in Se
tion 7 that one 
an design optimized samplersfor su
h types of distributions. The te
hnique applies to any language 
omposed ofwords with ex
luded patterns, meaning words that are 
onstrained not to 
ontainany of a �nite set of words as fa
tor. (For su
h a language, one 
an spe
i�
ally
onstru
t a �nite automaton by way of the Aho{Corasi
k 
onstru
tion [1℄, thenwrite the automaton as a linear system of equations relating spe
i�
ations, and�nally 
ompile the set of equations into a re
ursive Boltzmann sampler.) Moregenerally, the method applies to any regular language: it suÆ
es to 
onvert ades
ription of the language into a deterministi
 �nite automaton and apply there
ursive 
onstru
tion of a sampler, or alternatively to obtain an unambiguousregular expression and derive from it a nonre
ursive sampler based on the geometri
law.



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 13The next set of examples is relative to stru
tures that satisfy nonlinear re
ursivedes
riptions of the 
ontext-free type.Example 2. Rooted plane trees. Take the 
lass B of binary trees de�ned by there
ursive spe
i�
ation B = Z + (Z � B � B);where Z is the 
lass 
omprising the generi
 node. The generator �Z is deterministi
and 
onsists simply of the instru
tion \output a node" (sin
e Z is �nite and in fa
thas only one element). The Boltzmann generator �B 
alls �Z (and halts) withprobability x=B(x) where B(x) is the OGF of binary trees,B(x) = 1�p1� 4x22x :With the 
omplementary probability 
orresponding to the stri
t binary 
ase, it willmake a 
all to �Z and two re
ursive 
alls to itself. In shorthand notation, there
ursive sampler is�B(x) = �Bern � xB(x)� �! Z �� (Z ; �B(x); �B(x))� :In other words: the Boltzmann generator for binary trees as 
onstru
ted automati-
ally from the 
omposition rules produ
es a random sample of the bran
hing pro
esswith probabilities ( xB(x) ; xB(x)2B(x) ). Note that the generator is de�ned for x < 1=2 (theradius of 
onvergen
e of B(x)), in whi
h 
ase the bran
hing pro
ess is sub
riti
al,so that the algorithm halts in �nite expe
ted time, as it should. Only two 
onstantsare needed for implementation, namely x and the quadrati
 irrational xB(x) .Unbalan
ed 2-3 trees in whi
h only external nodes 
ontribute to size are similarlyprodu
ed by U = Z + U2 + U3. Figure 3 displays su
h a tree for the value of theparameter x set at the 
riti
al value �U = 527 . (This 
riti
al value 
an be determinedby methods exposed in Se
tion 7.) In this 
ase, the bran
hing probabilities for anullary, binary, and ternary node are found to be respe
tivelyp0 = 59 ; p2 = 13 ; p3 = 19 ;and these three 
onstants are the only ones required by the algorithm. A typi
alrun of 30 Boltzmann samplings produ
es trees with total number of nodes equal to(15) 3; 6; 1; 1; 6; 7; 33; 1; 1; 1; 9; 1; 1; 3; 1; 3; 169; 1881; 1; 54; 6; 1; 1; 3; 3746; 1; 1; 1; 1; 1;whi
h empiri
ally gives an indi
ation of the distribution of sizes (it turns out to beof the peaked type, like in Figure 1, bottom). We shall see later in Se
tion 7 thatone 
an a
tually 
hara
terize the pro�le of this distribution (it de
ays like n�3=2)and put to good use some of its features.Unary-binary trees (also known as Motzkin trees) are de�ned by V = Z(1+V+V2). General plane trees, G, where all degrees of nodes are allowed, 
an be spe
i�edby the grammar G = Z �S(G);with OGF G(z) = (1�p1� 4z)=2. A

ordingly, the automati
ally produ
ed sam-pler is �G(x) = (Z ; (Geom(G(x)) =) �G(x))) ;whi
h 
orresponds to the well-known fa
t that su
h trees are equivalent to trees ofa bran
hing pro
ess where the o�spring distribution is geometri
. �
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Figure 3. Random unbalan
ed 2{3 trees of 173 and 2522 nodes(in total) produ
ed by a 
riti
al Boltzmann sampler.Example 3. Se
ondary stru
tures. This example is inspired by works of Water-man et al., themselves motivated by the problem of enumerating se
ondary RNAstru
tures [36, 62℄. To �x ideas, 
onsider rooted binary trees where edges 
on-tain 2 or 3 atoms and leaves (\loops") 
ontain 4 or 5 atoms. A spe
i�
ation isW = (Z4 +Z5) + (Z2 +Z3)2 � (W �W). A Bernoulli swit
h will de
ide whetherto halt or not, two independent re
ursive 
alls being made in 
ase it is de
ided to
ontinue, with the algorithm being sugared with suitable Bernoulli draws. Here isthe 
omplete 
ode:�A(x) = �Bern( x4x4+x5 ) �! Z4 �� Z5��B(x) = �Bern( x2x2+x3 ) �! Z2 �� Z3�let p = (x4 + x5)=W (x) = 12 (1 +p1� 4x8(1 + x)3);�W (x) = �Bern(p) �! �A(x) �� �B(x); �W (x); �B(x); �W (x)� :The method is 
learly universal for this entire 
lass of problems. �Example 4. Non
rossing graphs. Consider graphs whi
h, for size n, have ver-ti
es at the nth roots of unity, vk = e2ik�=n, and are 
onne
ted and non
rossing inthe sense that no two edges are allowed to meet in the interior of the unit 
ir
le;see Figure 4 for a random instan
e. The generating fun
tion of su
h graphs hasbeen �rst determined by Domb and Barret [15℄ motivated by the investigation of
ertain perturbative expansions of statisti
al physi
s. Their derivation is not basedon methods 
ondu
ive to Boltzmann sampling, though. On the other hand, theplanar stru
ture of su
h 
on�gurations entails a neat de
omposition, whi
h is de-s
ribed in [24℄. At the top level, 
onsider the graph as rooted at vertex v0. Let viand vj be two 
onse
utive neighbours of v0; the subgraph indu
ed on the vertex setfvi; vi+1; : : : ; vjg is either a 
onne
ted graph of D or is formed of two disjoint 
om-ponents 
ontaining vi and vj respe
tively. Also, if v` is the �rst neighbour of v0 and
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Figure 4. A random 
onne
ted non
rossing graph of size 50.vm is the last neighbour, there are two 
onne
ted 
omponents on fv1; : : : ; v`g andon fvm; : : : ; vn�1g respe
tively. The grammar for 
onne
ted non
rossing graphs isthen a trans
ription of this simple de
omposition, although its detail is 
ompli
atedas 
are must be exer
ised to avoid double 
ounting of verti
es. The 
lass of all su
h
onne
ted non
rossing graphs is denoted by X and the grammar is:X = Z +Z � E ; E = X �S(E + X � (1 + E)) �X :One �nds that E(z) = �1+X(z)=z while X(z) is a bran
h of the algebrai
 fun
tionde�ned impli
itly by X3 +X2 � 3zX + 2z2 = 0;and the 
riti
al value (the upper limit of all 
oherent values) is �X = 118p3 :=0:09622. The Boltzmann sampler 
ompiled from the spe
i�
ation is then of theglobal form�X(x) = �Bern � xX(x)� �! Z �� Z; �E(x)��E(x) = (�X(x); (Geom(E(x) +X(x)(1 +E(x))) =) ((� � � ))) ; �X(x)) :The algorithm needs the parameter x, the 
ubi
 quantity y = X(x) and a smallnumber of quantities that are all rationally expressed in terms of x and y. Forinstan
e, the 
oherent 
hoi
e x = 0:095 whi
h is 
lose to the 
riti
al value �X , leadsto X(x) := 0:11658. There is then a probability of about 17000 to attain a graphof size exa
tly 50; one su
h graph drawn uniformly at random is represented inFigure 4. �In the last three 
ases (trees, se
ondary stru
tures, and non
rossing graphs), thepro�le of the Boltzmann distribution resembles that of general trees in Figure 1.Optimized algorithms adapted to su
h tree-like pro�les are dis
ussed in Se
tions 6and 7, where it is shown that random generation 
an be a
hieved in linear timeprovided a �xed nonzero toleran
e on size is allowed. The method applies to any
lass that 
an be des
ribed unambiguously by a 
ontext-free grammar.4. Exponential Boltzmann GeneratorsWe 
onsider here labelled stru
tures in the pre
ise te
hni
al sense of 
ombinatorialtheory [4, 28, 30, 34, 60, 61, 69℄. A labelled obje
t of size n is then 
omposed of ndistinguishable atoms, ea
h bearing a distin
tive label that is an integer in theinterval [1; n℄. For instan
e, the 
lass K of labelled 
ir
ular graphs, where 
y
les



16 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERConstru
tion GeneratorSingleton C = f!g �C(x) = !Union C = A+ B �C(x) = �Bern� bA(x)bA(x)+ bB(x)� �! �A(x) j �B(x)�Produ
t C = A ? B �C(x) = ��A(x); �B(x)�Sequen
e C = S(A) �C(x) = �Geom( bA(x)) =) �A(x)�Set C = P(A) �C(x) = �Pois( bA(x)) =) �A(x)�Cy
le C = C(A) �C(x) = �Loga( bA(x)) =) �A(x)�Figure 5. The indu
tive rules for exponential Boltzmann samplers.are oriented in some 
onventional manner (say, positively) isK = ( h1 ; ����6h1h2 ; ����6h1h2 h3 ; ����6h1h3 h2 ; : : :) :Clearly, there are Kn = (n�1)! labelled obje
ts of size n � 1, and the 
orrespondingexponential generating fun
tion bK(z) has been determined in (3). In what follows,we fo
us on generating the \shape" of labelled obje
ts|for instan
e, the shape ofan n-
y
li
 graph would be a 
y
le with n anonymous dots pla
ed on it. The reasonfor doing so is that labels 
an then always be obtained by superimposing a randompermutation4 on the unlabelled nodes. Note however, that the unlabelled (ordinary)and labelled (exponential) Boltzmann models assign rather di�erent probabilitiesto obje
ts: in the unlabelled 
ase, there would be only kn � 1 obje
t of size n, withOGF k(x) = x=(1 � x) so that the distribution of 
omponent sizes is geometri
,while in the labelled 
ase, the logarithmi
 series distribution (4) o

urs.Labelled 
ombinatorial 
lasses 
an be subje
ted to the labelled produ
t de�nedas follows: if A and B are labelled 
lasses, the produ
t C = A ? B is obtained byforming all ordered pairs h�; �i with � 2 A and � 2 B and relabelling them inall possible order-
onsistent ways. Straight from the de�nition, one has a binomial
onvolution Cn =Pnk=0 �nk�AkBn�k; where the binomial takes 
are of relabellings.In terms of exponential generating fun
tions, this be
omesbC(z) = bA(z) � bB(z):Like in the ordinary 
ase, we pro
eed by assembling Boltzmann generators forstru
tured obje
ts from simpler ones.Disjoint union. The unlabelled 
onstru
tion 
arries over verbatim to this 
aseto the e�e
t that, for labelled 
lasses A;B; C satisfying C = A+B, EGFs are relatedby bC(z) = bA(z) + bB(z) and the exponential Boltzmann sampler for C is�C(x) = �Bern � bA(x)bA(x)+ bB(x)� �! �A(x) �� �B(x)� :Labelled produ
t. The 
artesian produ
t 
onstru
tion adapts to this 
ase withminor modi�
ations: to produ
e an element from C = A ?B, simply produ
e a pair4Drawing a random permutation of [1; n℄ only ne
essitates O(n) real operations [39, p. 145℄.
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artesian produ
t rule using values bA(x); bB(x):�C(x) = (�A(x); �B(x)) :Complete by a randomly 
hosen relabelling if a
tual values of the labels are needed.Sequen
es. In the labelled universe, C is the sequen
e 
lass of A, written C =S(A) i� it is 
omposed of all the sequen
es of elements from A up to order-
onsistentrelabellings. Then, the EGF relationbC(x) = Xk�0 bA(x)k = 11� bA(x)holds, and either of the two 
onstru
tions of the generator �C from �A given inSe
tion 3 is appli
able. In parti
ular, the nonre
ursive generator is�C(x) = �Geom( bA(x)) =) �A(x)�;where the stenographi
 
onvention of (12) is employed.Sets. This is a new 
onstru
tion that we did not 
onsider in the unlabelled 
ase.The 
lass C is the set-
lass of A, written C = P(A) (P is reminis
ent of \powerset")if C is the quotient of sequen
es, C = S(A)= �, by the relation � that de
lares twosequen
es as equivalent if one derives from the other by an arbitrary permutationof the 
omponents. It is then easily seen that the EGFs are related bybC(x) = Xk�0 1k! bA(x)k = e bA(x);where the fa
tor 1=k! \kills" the order present in k{sequen
es.The Poisson law of rate � is 
lassi
ally de�ned byP(X = k) = e���kk! :On the other hand, under the exponential Boltzmann, the probability for a set in Cto have k 
omponents in A is1bC(x) 1k! bA(x)k = e� bA(x) bA(x)kk! ;that is, a Poisson law of rate bA(x). This gives rise to a simple algorithm forgenerating sets (analogous to the geometri
 algorithm for sequen
es):�C(x) = �Pois( bA(x)) =) �A(x)�:Cy
les. This 
onstru
tion, written C = C(A), is de�ned like sets but with twosequen
es being identi�ed if one is a 
y
li
 shift of the other. The EGFs satisfybC(x) = Xk�1 1k bA(x)k = log 11� bA(x) ;where the fa
tor 1=k \
onverts" k{sequen
es into k{
y
les. The log-law of rate � <1, an \integral" of the geometri
 law also known as the logarithmi
 series distribu-tion, is the law of a variable X su
h thatP(X = k) = 1log(1� �)�1 �kk :



18 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFER(This is the same as in Equation (4); the distribution o

urs in statisti
al e
ologyand e
onomy and forms the subje
t of Chapter 7 of [38℄.) Then 
y
les under theexponential Boltzmann model 
an be drawn like in the 
ase of sets upon repla
ingthe Poisson law by the log-law:�C(x) = �Loga( bA(x)) =) �A(x)�:These 
onstru
tions are summarized in Figure 5.For reasons identi
al to the ones that justify Theorem 1, one has:Theorem 2. De�ne as spe
i�able a labelled 
lass that 
an be �nitely spe
i�ed (ina possibly re
ursive way) from �nite sets by means of disjoint unions, 
artesianprodu
ts, as well as the sequen
e, set and 
y
le 
onstru
tions. Let C be a labelledspe
i�able 
lass and x be a 
oherent parameter in (0; �C). Assume as given an or-a
le that provides the �nite 
olle
tion of exa
t values at a 
oherent value x of thegenerating fun
tions intervening in a spe
i�
ation of a 
lass C. Then, the Boltz-mann generator �C(x) assembled from the de�nition of C by means of the six rulesof Figure 5 has a 
omplexity measured in the number of (+;�;�;�) real-arithmeti
operations that is linear in the size of its output obje
t.(We also allow 
onstru
tionsS
;P
;C
 as in (13); in this 
ase, the random variableof geometri
, Poisson, or logarithmi
 type should be 
onditioned to assume its valuesin the set 
.)Like in the unlabelled 
ase, Boltzmann samplers 
an be 
ompiled automati
allyfrom 
ombinatorial spe
i�
ations. There is here added expressivity in the languageof spe
i�
ations, thanks to the in
lusion of the Set and Cy
le 
onstru
tions. Inthe examples that follow, we omit the hat-marker \ bf", whenever the exponen-tial/labelled 
hara
ter of the model is 
lear from the 
ontext.Example 5. Set partitions. A set partition of size n is a partition of the integerinterval [1; n℄ into a 
ertain number of nonempty 
lasses, also 
alled blo
ks, theblo
ks being by de�nition unordered between themselves. Let P�1 represent thepowerset 
onstru
tion where the number of 
omponents is 
onstrained to be � 1.(This modi�ed 
onstru
tion is easily subje
ted to random generation by using atrun
ated Poisson variable K, where K is 
onditioned to be � 1.) The labelled 
lassof all set partitions is then de�nable as S = P(P�1(Z)), where Z 
onsists of a singlelabelled atom, Z = f1g. Observe that the EGF of S is the well-known generatingfun
tion of the Bell numbers, S(z) = eez�1. By the 
omposition rules, one gets arandom generator as follows: Choose the number K of blo
ks as Poisson(ex � 1).Draw K independent 
opies X1; X2; : : : ; XK from the Poisson law of rate x, butea
h 
onditioned to be at least 1. In symbols:�S(x) = �Pois(ex � 1) =) �Pois�1 (x) =) Z�� :What this generates is in reality the \shape" of a set partition (the number of blo
ks(K) and the blo
k sizes (Xj)), with the \
orre
t" distribution. To 
omplete thetask, it suÆ
es to transport this stru
ture on a random permutation of the integersbetween 1 and N , where N = X1 + � � �+XK .The pro
ess distin
tly di�ers from the 
lassi
al algorithm of Nijenhuis and Wilf [51℄that requires tables of large integers. It is related to a 
ontinuous model devised byVershik [67℄ that 
an be interpreted as generating random set partitions based onS(x) = ex=1! � ex2=2! � ex3=3! � � � ;
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Figure 6. A random partition obtained by the Boltzmann pa-rameter of parameter x = 6, here of size n = 2356 and 
omprisedof 409 blo
ks: (left) the su

essive blo
k sizes generated; (right)the blo
k sizes in sorted order.i.e., by ordered blo
k lengths, as a potentially in�nite sequen
e of Poisson variablesof parameters x=1!, x2=2!, and so on. �Figure 6 represents a random set partition produ
ed by the Boltzmann modelof parameter x = 6. This parti
ular obje
t has size n = 2356, the expe
ted sizebeing Ex (N) = 2420 for this value of the parameter. The 
loseness between theobserved size and its mean value agrees with the 
on
entration that is per
eptibleon Figure 1. In addition, the Boltzmann model immediately provides a simpleheuristi
 model of partitions of large size. Obje
ts of size \near" n, are produ
edby the value xn de�ned by xnexn = n, that is, xn � logn � log logn. Then, thenumber of blo
ks is expe
ted to be about exn � n=(logn). This number beinglarge, and individual blo
ks being generated by independent Poisson variables ofparameter xn, we expe
t, for large n, the sorted pro�le of blo
ks to 
onverge tothe histogram of the Poisson distribution of rate xn (Figure 6, right). As shown byVershik [67℄, this heuristi
 model is indeed a valid asymptoti
 model of partitionsof large sizes.Example 6. Random surje
tions (or ordered set partitions). These may be de�nedas fun
tions from [1; n℄ to [1; n℄ su
h that the image of f is an initial segment of [1; n℄(i.e., there are no \gaps"). One has for the 
lass Q of surje
tions Q = S(P�1(Z)).Thus a random generator for Q is:�Q(x) = �Geom(ex � 1) =) �Pois�1 (x) =) Z�� :In words: �rst 
hoose a number of 
omponents given by a geometri
 law and thenlaun
h a number of Poisson generators 
onditioned to be at most 1. �Set partitions �nd themselves atta
hed to a 
ompound (PoissonÆPoisson) pro-
ess, whereas surje
tions are generated by a 
ompound (Geometri
ÆPoisson) pro
ess(with suitable dependen
ies on parameters). This re
e
ts the basi
 
ombinatorialopposition between freedom and order (for blo
ks). Here are two more examples.
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les in permutations. This 
orresponds to P = P(C�1(Z)) and isobtained by a (PoissonÆLog) pro
ess:�P (x) = �Pois(log(1� x)�1) =) (Loga(x) =) Z)� :This example is loosely related to the Shepp{Lloyd model [57℄ that generates per-mutations by ordered 
y
le lengths, as a potentially in�nite sequen
e of Poissonvariables of parameters x=1, x2=2, and so on. The interest of this 
onstru
tion isto give rise to a number of useful parti
ularizations. For instan
e derangements(permutations su
h that �(x) 6= x) are produ
ed by P = P(C�2(Z)); involutions(permutations su
h that � Æ �(x) = x) are given by P = P(C1 : : 2(Z)). �Example 8. Assemblies of �laments. Imagine assemblies of linear �laments 
oat-ing freely in a liquid. We may model these as sets of sequen
es, F = P(S�1(Z)).The EGF is exp� z1�z�. The random generation algorithm is a 
ompound of theform (PoissonÆGeometri
), with appropriate parameters:�F (x) = �Pois � x1�x� =) �Geom�1 (x) =) Z�� :The 
orresponding 
ounting sequen
e, 1; 1; 3; 13; 73; 501; : : :, appears as A000262 inSloane's en
y
lopedia [58℄. This example is 
losely related to linear forests andposets as des
ribed in Burris' book (see [6℄, pp. 23{24 and Ch. 4). �At this stage, it may be of interest to note that many 
lassi
al probabilisti
 distri-butions of probability theory 
an be retrieved as (size distributions of) Boltzmannmodels asso
iated to simple 
ombinatorial games. Consider an unbounded supplyof distinguishable (i.e., labelled) balls. View an urn as an unordered �nite 
olle
tionof balls (P(Z)) and a sta
k as an ordered 
olle
tion of balls (S(Z)). The geometri
and Poisson distributions arise as the size distributions of the sta
k and the urn. If,by an ex
lusion prin
iple, an urn is only allowed to 
ontain 0 or 1 ball (1+Z), thenthe family of all basi
 Bernoulli distributions results. If m urns or sta
ks are 
on-sidered, then the distributions are Poisson or negative binomial, respe
tively, and,with ex
lusion, one gets in this way the binomial distributions 
orresponding to mtrials. If balls and urns are taken to be indistinguishable, one obtains automati
allyVershik's model of integer partitions [67℄, whi
h is an in�nite produ
t of geometri
distributions of exponentially de
aying rates. (The re
ent work by Milenkovi�
 andCompton [50℄ dis
usses exa
t and asymptoti
 transforms asso
iated to several su
hdistributions.) For similar reasons, the two 
lassi
al models of random graphs dueto Erd}os and R�enyi are related to one another by \Boltzmannization". A largenumber of examples along similar lines 
ould 
learly be listed.5. The realization of Boltzmann samplersIn this se
tion, we make expli
it the way Boltzmann sampling 
an be imple-mented and sket
h a dis
ussion of the main 
omplexity issues involved. Broadlyspeaking, samplers 
an be realized under two types of 
omputational models 
or-responding to 
omputations 
arried out over the set R of real numbers or theset S = f0; 1gN of in�nite-length binary strings. (In the latter 
ase, only �nitepre�xes are ever used.) These are the real-arithmeti
 model, R, whi
h is the one
onsidered here and the bit string model (or Boolean model), S, whose algorithmswill be des
ribed in a future publi
ation. The \ideal" real-domain model R 
om-prises the elementary operations +;�;�;� ea
h taken to have unit 
ost.



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 21By de�nition, a Boltzmann sampler requires as input the value of the 
ontrolparameter x that de�nes the Boltzmann model of use. As seen in previous se
tions,it also needs the �nite 
olle
tion of values at x of the generating fun
tions thatintervene in a spe
i�
ation, in order to drive Bernoulli, geometri
, Poisson, andlogarithmi
 generators. We assume these values to be provided by what we 
all the(generating fun
tion) \ora
le":Ora
lex C(x); : : : Sampler�C(x)-Su
h 
onstants need only be pre
omputed on
e; they 
an be provided by a multi-pre
ision pa
kage or a 
omputer algebra system used as 
oroutine. We take herethese 
onstants as given, noting that the 
orresponding power series expansionsat 0 are 
omputable in low polynomial 
omplexity (this is, e.g., en
apsulated inthe Maple pa
kage Combstru
t; see [27, 29℄ for the underlying prin
iples) so thatvalues of the generating fun
tions of 
onstru
tible 
lasses stri
tly inside their dis
of 
onvergen
e are 
omputable real numbers of low polynomial time 
omplexity.There remains to spe
ify fully generators for the probabilisti
 laws Geom(�),Pois(�), Loga(�), as well as the Bernoulli generator Bern(p), where the latter out-puts 1 with probability p and 0 otherwise. What is assumed here is a randomgenerator `uniform()' that produ
es at unit 
ost a random variable uniformly dis-tributed over the real interval (0; 1).Bernoulli generator. The Bernoulli generator is simplyBern(p) := if uniform() � p then return(1) else return(0) �.This generator serves in parti
ular to draw from unions of 
lasses.Geometri
, Poisson, and Logarithmi
 generators. For the remaininglaws, we let pk be the probability that a random variable with the desired distri-bution has value k, namely,Geom(�) : pk = (1� �)�k ; Pois(�) : pk = e���kk! ; Loga(�) : pk = 1log(1� �)�1 �kk :The general s
heme that goes well with real-arithmeti
 models is the sequentialalgorithm:U := uniform(); S := 0; k := 0;while U < S do S := S + pk; k := k + 1; od;return(k).This s
heme is nothing but a straightforward implementation based on inversionof distribution fun
tions (see [14, Se
. 2.1℄ or [39, Se
. 3.4.1℄). For the three dis-tributions under 
onsideration, the probabilities pk 
an themselves be 
omputedre
urrently on the 
y as follows:(16) Geom(�) Pois(�) Loga(�)p0 = (1� �) p0 = e�� p1 = 1= �log(1� �)�1�pk+1 = �pk pk+1 = �pk 1k+1 pk+1 = �pk kk+1 :(Su
h prin
iples also apply to 
onstru
tions modi�ed by a 
onstraint on the num-ber of 
omponents; e.g., to generate a Pois�1(�) random variable, initialize thegenerator with p1 = (e� � 1)�1 and k = 1.)
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endental values in (16) (like e��) are in the present
ontext already provided by the ora
le. For instan
e, if one has to generate sets
orresponding to C = P(A), then the generator for sets, Pois(A(x)) =) �A(x),requires the knowledge of e�A(x) whi
h is none other than 1=C(x). Under themodel that has unit 
ost for the four elementary real-arithmeti
 operations, thesequential generators thus have a useful property:Lemma 1. For either of the geometri
, Poisson, or logarithmi
 generators, a ran-dom variable with out
ome k is drawn with a number of real-arithmeti
 operationswhi
h is O(k + 1).This lemma 
ompletes te justi�
ation of Theorems 1 and 2.In pra
ti
e, one may realize approximately a Boltzmann sampler by trun
atingreal numbers to some �xed pre
ision, say using 
oating point numbers representedon 64 bits or 128 bits. The resulting samplers operate in time that is linear in the sizeof the obje
t produ
ed, though they may fail (by la
k of digits in values of generatingfun
tions, i.e., by insuÆ
ient a

ura
y in parameter values) in a small number of
ases, and a

ordingly must deviate (slightly) from uniformity. Pragmati
ally, su
hsamplers are likely to suÆ
e for many simulations.A sensitivity analysis of trun
ated Boltzmann samplers would be feasible, thoughrather heavy to 
arry out. One 
ould even 
orre
t perfe
tly the la
k of uniformityby appealing to an adaptive pre
ision strategy based on guaranteed multipre
ision
oating point arithmeti
|-e.g., double the a

ura
y of 
omputations when moredigits are needed. In 
ase of 
oating-point implementations of the re
ursive method,su
h ideas are dis
ussed in Zimmermann's survey [71℄, and the reader may get afeeling of the type of analysis involved by referring to the works of Denise, Dutour,and Zimmermann [12, 13℄. In a 
ompanion paper, we shall explore another routeand des
ribe purely dis
rete Boltzmann samplers whi
h are solely based on binary
oin 
ips in the style of Knuth and Yao's work [40℄ and have the additional featureof \automati
ally" dete
ting when a

ura
y is insuÆ
ient.6. Exa
t-size and approximate-size samplingOur primary obje
tive in this arti
le is the fast random generation of obje
tsof some large size. In this se
tion and the next one, we 
onsider two types of
onstraints on size.| Exa
t-size random sampling, where obje
ts of C should be drawn uniformlyat random from the sub
lass Cn of obje
ts of size exa
tly n.| Approximate-size random sampling, where obje
ts should be drawn witha size in an interval of the form I(n; ") = [n(1 � "); n(1 + ")℄, for somequantity " � 0 
alled the (relative) toleran
e. In appli
ations, one is likelyto 
onsider 
ases where " is a small �xed number, like 0.05, 
orresponding toan un
ertainty on sizes of �5%. Though size may 
u
tuate (within limits),sampling is still unbiased in the sense that two obje
ts with the same sizeare drawn with equal likelihood.The 
onditions of exa
t and approximate-size sampling are automati
ally satis�edif one �lters the output a Boltzmann generator by retaining only the elements thatobey the desired size 
onstraint. (As a matter of fa
t, we have liberally madeuse of this feature in previous examples, e.g., when sele
ting the trees of Figure 3to be large enough.) Su
h a �ltering is simply a
hieved by a reje
tion te
hnique.
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omes: \When and how 
an the reje
tion strategy bereasonably eÆ
ient?".The major 
on
lusion of this se
tion is that in many 
ases, in
luding all theexamples seen so far, approximate-size sampling is a
hievable in linear time underthe (exa
t) real-arithmeti
 model. In addition, the 
onstants appear to be not toolarge if a \reasonable" toleran
e on size is a

epted. Pre
isely, we develop anal-yses and optimizations 
orresponding to the three 
ommon types of distributionsexempli�ed in Figure 1.| For size distributions that are \bumpy", the straight reje
tion strategysu

eeds with high probability in one trial, hen
e the linear-time 
omplexityof approximate-size Boltzmann sampling results (Se
tion 6.1).| For size distributions that are \
at", the straight reje
tion strategy su

eedsin O(1) trials on average, a fa
t that again ensures linear-time 
omplexitywhen a nonzero toleran
e on size is allowed (Se
tion 6.2).| For size distributions that are \peaked" (at the origin), the te
hnique ofpointing may be used to transform automati
ally spe
i�
ations into equiv-alent ones of the 
at type (Se
tion 6.3).6.1. Size-
ontrol and reje
tion samplers. The basi
 reje
tion sampler denotedby �C(x;n; ") uses a Boltzmann generator �C(x) for the 
lass C and is des
ribedas follows, for any x with 0 < x < �C , n a target size and " � 0 a relative toleran
e:fun
tion �C(x;n; ");fReturns an obje
t of C in I(n; ") := [n(1� "); n(1 + ")℄grepeat 
 := �C(x) until j
j 2 I(n; ");return(
); end.The reje
tion sampler �C depends on a parameter x that one may 
hoose arbitrarilyamongst all 
oherent values. It simply tries repeatedly until an obje
t of satisfa
torysize is produ
ed. The 
ase " = 0 then gives exa
t-size sampling.The out
ome of a basi
 Boltzmann sampler has a random size N whose distri-bution is des
ribed by Proposition 1. One hasEx (N) = �1(x); Ex(N2) = �2(x); Ex (N2)� Ex (N)2 = �(x)2;where � represents standard deviation, with�1(x) := xC 0(x)C(x) ; �2(x) := x2C 00(x)C(x) + xC 0(x)C(x) ; �(x) =p�2(x)� �1(x):If x stays bounded away from the 
riti
al value �C , then �1(x) remains bounded,so that the obje
t drawn is likely to have a small size (on average and in probability).Thus, values of x approa
hing the 
riti
al value � � �C have to be 
onsidered.Introdu
e the mean value 
ondition as(17) Mean Value Condition : limx!�� �1(x) = +1:(This 
ondition is satis�ed in parti
ular when C(��) = +1.) Then a \naturaltuning" for the reje
tion sampler 
onsists in adopting as 
ontrol parameter x thevalue xn that satis�es(18) xn is the root in (0; �) of n = xC 0(x)C(x) ;whi
h is uniquely determined. One then has:
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Figure 7. A random assembly of �laments of size n = 46299 pro-du
ed by the exponential Boltzmann sampler tuned to x50000 :=0:9952 (left) and its �laments presented in in
reasing order oflengths (right).Theorem 3. Let C be a 
ombinatorial 
lass and " a �xed (relative) toleran
e onsize. Assume the Mean Value Condition (17) and the following varian
e 
ondition(19) Varian
e Condition : limx!�� �(x)�1(x) = 0:Then, the reje
tion sampler �C(xn;n; ") equipped with the value x = xn impli
itlydetermined by (18) su

eeds in one trial with probability tending to 1 as n ! 1.In parti
ular, if C is spe
i�able, then the overall 
ost of approximate-size samplingis O(n) on average.Proof. This is a dire
t 
onsequen
e of Chebyshev's inequalities.The mean and varian
e 
onditions are satis�ed by the 
lass S of set partitions(Example 5, observe 
on
entration on Figure 1, top) and the 
lass F of assemblies of�laments (Example 8 and Figure 7). In e�e
t, for set partitions, S, the exponentialgenerating fun
tion is entire, whi
h 
orresponds to � = +1. One �nds�1(x) = xex; �(x)2 = x(x + 1)ex;while xn determined impli
itly by the equation xnexn = n satis�es xn � logn �log logn. These quantities are most easily interpreted when expressed in terms of nitself: �1(xn) = n; �(xn) �pn logn:For assemblies of �laments, F , one �nds � = 1 and �1(x) = x(1�x)2 , so that xnhas value xn = 1 + 12n � p1 + 4n2n � 1� 1pn:



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 25and �(xn) � p2n. Here is, for various values of n, a table of the sizes of obje
tsdrawn in bat
hes of 10 runs and the interval in whi
h sizes are found to lie:n xn N (bat
h of 10 runs) Nmin{Nmax50 0:85857 61; 80; 62; 13; 32; 65; 21; 34; 67; 16 13 { 80500 0:95527 647; 426; 323; 752; 599; 457; 505; 318; 358; 424 318 { 7525; 000 0:98585 4575; 4311; 4419; 4257; 4035; 4067; 4187; 4984; 4543; 5035 4035 { 5035The fa
t that 
on
entration of distribution improves with larger values of n isper
eptible on su
h data. This feature in turn implies sampling in linear time, assoon as a positive toleran
e on size is granted.Exa
t-size sampling. The previous dis
ussion suggests investigating 
onditionsunder whi
h exa
t-size generation is still reasonably eÆ
ient. The smooth aspe
tof the \bumpy" 
urves asso
iated with set partitions suggests the possibility that,in su
h 
ases, there exist a lo
al limit distribution for sizes, as x! �, implying anexpe
ted 
ost of O(n�(xn)) for exa
t-size sampling. It turns out that a suÆ
ient setof 
omplex-analyti
 
onditions 
an be stated by borrowing results from the theory ofadmissibility, an area originally developed for the purpose of estimating asymptoti-
ally Taylor 
oeÆ
ients of entire fun
tions. This theory was started in an importantpaper of Hayman [35℄ and is lu
idly exposed in Odlyzko's survey [52, Se
. 12℄. Afun
tion is said to be H-admissible if, in addition to the mean value 
ondition (17)and the varian
e 
ondition (19), it satis�es the following two properties:� There exists a fun
tion Æ(x) de�ned for x < � with 0 < Æ(x) < � su
h that,for j�j < Æ(x) as x! ��,f(xei�) � f(x)eia�� 12 b�2 ; a = �1(x); b = �2(x):� Uniformly as x! ��, for Æ(x) � j�j � �,f(xei�) = o�f(x)�(x)� :These 
onditions are the minimal ones that guarantee the appli
ability of the saddle-point method to Cau
hy 
oeÆ
ient integrals. They imply in parti
ular knowledgeof the asymptoti
 form of the 
oeÆ
ients of f , namely,fn � [zn℄f(z) � f(xn)p2�xnn�(xn) ; n!1:We state:Theorem 4. Consider a 
lass C whose generating fun
tion f(z) satis�es the 
omplex-analyti
 
onditions of H-admissibility. Then exa
t size reje
tion sampling base on�C(xn;n; 0) su

eeds in a mean number of trials that is asymptoti
 top2��(xn):In parti
ular, if C is spe
i�able, then the overall 
ost of exa
t-size sampling isO(n�(xn)) on average.Proof. This is a dire
t adaptation of one of Hayman's estimates, see Theorem Iof [35℄ (spe
ialized in the notations of [35℄ as r ! xn, n 7! m),fmxmnf(xn) � 1p2��(xn) exp�� (m� n)22�(xn)2 + o(1)� ;



26 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERuniformly for all m as xn ! �. This last equation means generally that the distri-bution of size values m is asymptoti
ally normal as xn ! ��, that is, as n ! 1.The spe
ialization m = n gives the statement.Hayman admissibility is easily 
he
ked to be satis�ed by the EGFs of set par-titions and assemblies of �laments. There results that exa
t size sampling has thefollowing 
osts:Set partitions : O(n3=2plogn); Assemblies : O(n3=2):Another result of Hayman states that, under H-admissibility, standard deviationis smaller than the mean, �(xn) = o(n) (see Corollary I of [35℄), so that exa
t-sizegeneration by Boltzmann reje
tion is ne
essarily subquadrati
 (o(n2)).The usefulness of Hayman's 
onditions devolves from a ri
h set of 
losure prop-erties: under mild restri
tions, admissible fun
tions are 
losed under sum (f + g),produ
t (fg), and exponentiation (ef ). An informally stated 
onsequen
e is then:For 
lasses whose generating fun
tion is \dominated" by an exponential, i.e., the\prin
ipal" 
onstru
tion is of the set type, approximate-size generation is of lineartime 
omplexity and exa
t-size generation is of subquadrati
 
omplexity. Here area few more examples.� Statisti
al 
lassi�
ation theory superimposes a tree stru
ture on obje
tsbased on a similarity measure (e.g., the number of 
ommon phenotypes orgenes). In this 
ontext, the value of a proposed 
lassi�
ation tree may be as-sessed by 
omparing it to a random 
lassi�
ation tree (stru
tural propertiesshould be substantially di�erent in order for the 
lassi�
ation to be likely tomake sense). Su
h 
omparisons in turn bene�t from random generation al-gorithms, a point originally made by Van Cutsem and 
ollaborators [63, 64℄.For instan
e, hierar
hies are labelled obje
ts determined byH = Z +P�2(H);and they 
orrespond to S
hr�oder's systems of 
ombinatorial theory [9,p. 223{224℄. Hierar
hies with a bounded depth of nesting are of interest inthis 
ontext, and their EGFsez � 1; z + eez�1 � ez; ez+eez�1�ez � 1� eez�1 + ez; : : : ;are all admissible, hen
e amenable to the 
on
lusions of Theorem 4.� Similar 
omments apply to labelled trees (Cayley trees, T = Z ?P(T )) ofbounded height, with the sequen
e of EGFs starting asz; zez; zezez ; zezezez ; ; : : : ;and to \superpartitions" obtained by iterating the 
onstru
tion P�1:eez�1 � 1; eeez�1�1 � 1; eeeez�1�1�1 � 1;where, e.g., the number sequen
e (1; 3; 12; 60; 358; : : :) asso
iated to these
ond 
ase is A000258 of Sloane's EIS [58℄. Related stru
tures are ofinterest in �nite model theory; see [68℄ for an introdu
tion.� Admissibility also 
overs generating fun
tions of the type eP (z), with P apolynomial with nonnegative 
oeÆ
ients. This in
ludes permutations withsizes of 
y
les 
onstrained to be in a �nite set 
, for instan
e involutions



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 27(I = P(C1;2(Z)), the solutions of �d = Id in the symmetri
 group, andpermutations whose longest 
y
le is at most some �xed value m.The 
onditions of Theorem 3 are not satis�ed by words without long runs (Ex-ample 1), surje
tions (Example 6, observe the la
k of 
on
entration on Figure 1,middle), and permutations (Example 7), although they fail by little, sin
e the meanand standard deviation, �1(x) and �(x), happen to be of the same order of mag-nitude. They fail more dramati
ally for binary trees (Example 2 and Figure 1,bottom), se
ondary stru
tures (Example 3), and non
rossing graphs (Example 4),where the ratio �(x)=�1(x) now tends to in�nity, in whi
h 
ase sizes produ
ed byBoltzmann models exhibit a high dispersion. As dis
ussed in the next two subse
-tions and in Se
tion 7, su
h situations 
an however be dealt with.6.2. Singularity types and reje
tion samplers. It is possible to dis
uss at afair level of generality 
ases where reje
tion sampling is eÆ
ient. The dis
ussionis fundamentally based on the types of singularities that the generating fun
tionsexhibit. This is an otherwise well-resear
hed topi
 as it is 
entral to asymptoti
enumeration [26, 28, 52℄.De�nition 2. A fun
tion f(z) analyti
 at 0 and a with �nite radius of analyti
-ity � > 0 is said to be �{singular if it satis�es the two 
onditions:(i) The fun
tion admits � as its only singularity on jzj = � and it is 
ontinuablein a domain �(r; �) = �z �� z 6= �; jzj < r; arg(z � �) 62 (��; �)	 ;for some r > � and some � satisfying 0 < � < �2 .(ii) For z tending to � in the � domain, f(z) satis�es a singular expansion ofthe formf(z) �z!�P (z) + 
0(1� z=�)�� + o((1� z=�)��); � 2 R n f0;�1;�2; : : :g;where P (z) is a polynomial. The quantity �� is 
alled the singular exponentof f(z).For reasons argued in [27℄, all the generation fun
tions asso
iated with spe
i�-able models in the sense of this arti
le are either entire or, else, they have dominantsingularities whi
h are isolated, hen
e they satisfy 
ontinuation 
onditions simi-lar to (i). Condition (ii) is also granted in a large number of 
ases. Here, wordswithout long runs, surje
tions, and permutations (Examples 1, 6, and 7) have gener-ating fun
tions with a polar singularity, 
orresponding to the singular exponent �1.Trees, se
ondary stru
tures, and non
rossing graphs (Example 2, 3, and 4), whi
hare re
ursively de�ned have singular exponent 12 ; see [24, 49℄ and Se
tion 8 below.Many properties go along with the 
onditions of De�nition 2. Most notably, the
ounting sequen
e asso
iated with a generating fun
tion f(z) that is �-singularsystemati
ally obeys an asymptoti
 law:(20) [zn℄f(z) � 
0�(�)��nn��1; (n!1):(This results from the singularity analysis theory exposed in [26, 28, 52℄.)Returning to random generation, one has:



28 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERTheorem 5. Let C be a 
ombinatorial 
lass su
h that its generating fun
tion is�-singular with an exponent �� < 0. Then the reje
tion sampler �C(xn;n; ")
orresponding to a �xed toleran
e " > 0 su

eeds in a number of trials whose expe
tedvalue is asymptoti
 to the 
onstant1��(") ; where ��(") = ���(�) Z "�"(1 + s)��1e��(1+s) ds:If C is spe
i�able, approximate-size Boltzmann sampling based on �C(xn;n; ") has
ost that is O(n); exa
t-size sampling has 
ost O(n2).Here is a table of numeri
al values of the expe
ted number of trials (1=��(")) forvarious values of the singular exponent �� and toleran
e ":(21) " = 0:2 " = 0:1 " = 0:05 " = 0:01�� = �2 4:619 9:236 18:47 92:36�� = � 32 5:387 10:80 21:61 108:0�� = �1 6:750 13:56 27:17 135:9�� = � 12 9:236 20:61 41:30 206:6For instan
e a toleran
e of �10% is likely to ne
essitate about 10 trials when ��is �2 or � 32 , while this number doubles for the singular exponent � 12 .Proof. The reje
tion sampler used with the value x has a probability of su

ess inone trial equal to Px(jN=n� 1j � ");whi
h is to be estimated. The inverse of this quantity gives the expe
ted numberof trials.Fun
tions that are �-singular are 
losed under di�erentiation, sin
e, by elemen-tary 
omplex analysis, asymptoti
 expansions valid in se
tors 
an be subje
ted todi�erentiation [54, p. 9℄. Consequently, one has�1(x) �x!�� �x=�1� x=� ! 1;whi
h veri�es the mean value 
ondition, whereas a similar 
al
ulation shows �(x)to be of the same order as �1(x) and the varian
e 
ondition is not satis�ed. Thestrong form of 
oeÆ
ient estimates in (20) then entails(22) Px(N = m) � 1�(�) m��1jx=�jm(1� x=�)�� ;for x! �� and m!1.Tune now the reje
tion sampler at the value x = xn, so that �1(xn) = n. Onehas xn � ��1� �n� :Then, setting m = t�1(xn) = tn transforms the estimate (22) into(23) Px(N = btn
) � 1�(�) t��1etn log(1�(�=n))���n� 1n�(�)��t��1e��t;uniformly for t in a 
ompa
t subinterval of (0;1). This is exa
tly a lo
al limit lawfor Boltzmann sizes in the form of a Gamma distribution [21, p. 47℄.



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 29Cumulating the estimates in the formula above, one �nds (by Euler-Ma
laurinsummation),(24) Pxn(jN=n� 1j � ") � ���(�) Z "�"(1 + s)��1e��(1+s)dswhi
h gives the value ��(") of the statement. Linearity for the 
umulated sizethen follows from the moderate dispersion of sizes indu
ed by the relation �(x) =�(�1(x)).The argument adapts when " is allowed to tend to 0. In this 
ase, as seen dire
tlyfrom (23), the su

ess probability of a single trial is asymptoti
 to2(�e)��(�) ";with the inverse of this quantity giving the mean number of trials. In parti
ular, ifthe target size lies in a �xed-width window around n (" = O(1=n)), whi
h 
oversexa
t-size random sampling, then a random generation ne
essitates O(n) trials,
orresponding to an overall 
omplexity that is O(n2) under the real-arithmeti
model.Given the polar singularity involved, Theorem 5 applies dire
tly to words withoutlong runs (Ex. 1), surje
tions (Ex. 6), and 
y
les-in-permutations (Ex. 7).Example 9. Mappings with degree 
onstraints. By a mapping of size n is meanthere a fun
tion from [1; n℄ into [1; n℄. (Obviously, there are nn of these.) We �x a�nite set 
 and restri
t attention to degree-
onstrained mappings f su
h that forea
h x in the domain, the 
ardinality of f (�1)(x) lies in 
. (In the 
ombinatori
sliterature, su
h mappings are surveyed in [2, 25℄.) For instan
e, in a �nite �eld,a non-zero element has either 0 or 2 prede
essors under the mapping f ;x 7! x2,so that (negle
ting one ex
eptional value) a quadrati
 fun
tion may be regardedas an element of the set of mappings 
onstrained by 
 = f0; 2g. Mappings are ofinterest in 
omputational number theory as well as in 
ryptography [55℄, and theeighth Fermat number, F8 = 228 + 1 was �rst fa
tored by Brent and Pollard [5℄in 1981 by means of an algorithm that pre
isely exploits statisti
al properties ofdegree-
onstrained mappings.As is well known, a mapping 
an be represented as a dire
ted graph (Figure 8)where ea
h vertex has outdegree equal to 1, while, by the degree 
onstraint, inde-grees must lie in 
. Then the graph of a mapping is made of 
omponents, whereea
h 
omponent is made of a unique 
y
le on whi
h trees are grafted (see, e.g., [4℄for this 
lassi
al 
onstru
tion). With P
 representing the set 
onstru
tion with anumber of elements 
onstrained to lie in 
, the 
lass M of 
{
onstrained mappingsis M = P(C(U)); U = Z ?P
�1(T ); T = Z ?P
(T ):There T is the 
lass of rooted labelled trees with outdegrees in 
, U is the 
lass oftrees grafted on a 
y
le, whi
h are su
h that their root degree must lie in 
� 1.Let �(y) := P!2
 y!=!!. The EGF of trees, T , is impli
itly de�ned by T =z�(T ) and one has U = z�0(T ). It has been �rst established by Meir and Moon [49℄that the EGF T (z) has systemati
ally a singularity of the square-root type (
orre-sponding to \failure" in the impli
it fun
tion theorem, see also Lemma 3 below).Pre
isely, one has T (z) � � � 
p1� z=� as z ! �, where � � �T is given by
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Figure 8. A random ternary map (
 = f0; 3g) of size 846 pro-du
ed by Boltzmann sampling.� = �=�(�) and � is the positive root of �(�) � ��0(�) = 0. There results that theEGF of 
onstrained mappings satis�es as z ! �,M(z) � 11� ��0(� � 
p1� z=�) � dp1� z=�;for some d > 0. In view of this last expansion, Theorem 5 dire
tly applies.Approximate-size random generation of 
-
onstrained mappings is thus a
hievablein linear time. �6.3. The pointing operator. In this se
tion we further enlarge the types of stru
-tures amenable to fast Boltzmann sampling. As a byprodu
t, we are able to liftthe restri
tion �� < 0 in Theorem 5, thus bringing in its s
ope trees, se
ondarystru
tures, and non
rossing graphs (Examples 2, 3, and 4) whose singularity isknown [24, 49℄ to be of the square{root type, i.e., � = 12 .Given a 
ombinatorial 
lass C, we de�ne the 
lassC� = f(
; i) j 
 2 C; i 2 f1; : : : ; j
jgg; equivalently, C�n ' Cn � f1; : : : ; ng;of pointed obje
ts. Pointing is for instan
e studied systemati
ally in [4, Se
. 2.1℄.Obje
ts in C� may be viewed as standard obje
ts of C with one of the atomsdistinguished by the mark \�". From the de�nition, one has jC�nj = njCnj, and theGF of the 
lass C� is C�(z) = z ddzC(z);regardless of the type of C(x) (ordinary or exponential). Pointing 
an then beviewed as a 
ombinatorial lifting of the usual operation of taking derivatives inelementary 
al
ulus. Sin
e any non-pointed obje
t of C gives rise to exa
tly npointed obje
ts, random sampling 
an be equally well be performed on Cn or C�n: itsuÆ
es to \forget" the pointer in an obje
t produ
ed by a sampler of C�n to obtainan obje
t of Cn. (Only the distributions of sizes under �C and �C� are di�erent.)The pointing operator � is related to an operator studied systemati
ally byGreene [32℄ (his \box" operation) and it plays a 
entral rôle in the re
ursive method



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 31(where it has been used under the name of \Theta operator"). For Boltzmann sam-pling, pointing 
an be used in 
onjun
tion with the previously de�ned operators+;� and ?;S;P;C in either the labelled or unlabelled universe.Lemma 2. Let C be a spe
i�able unlabelled or labelled 
lass (in the sense of The-orem 1 or 2). Then the 
lass C� is also spe
i�able, i.e., it admits a spe
i�
ationwithout the pointing operator �.Proof. First, for a �nite 
lass C, the 
lass C� is also �nite and 
an be represented(and sampled) expli
itly. Next, the pointing operator admits 
omposition ruleswith all the other operators; in the labelled 
ase, one has(25) 8<: (A+ B)� = A� + B�; (A ? B)� = A� ? B +A ? B�;(SA)� = SA ?A� ?SA; (CA)� = A� ?SA;(PA)� = A� ?PA:In the unlabelled 
ase, the �rst three rules apply, upon 
hanging the labelled prod-u
t \?" into the 
artesian produ
t \�". These rules are a 
ombinatorial analogueof the usual di�erentiation rules, and have a simple interpretation: e.g., pointing ata sequen
e ((SA)�) implies pointing at a 
omponent (A�), whi
h breaks the 
hainand individuates a left (SA) and a right (SA) subsequen
e.Consider now a spe
i�
ation of the 
lass C = F1 in the form of a system,S = fFi = �i(Z ;F1; : : : ;Fm); i = 1; : : : ;mg;where Fi are auxiliary 
lasses and the �i are fun
tional terms involving �nite 
lassesand the standard operators (without pointing). Then, one 
an build a spe
i�
ationof the 
lass C� in the form of a derived system,S 0 = S [ fF�i = 	i(Z ;F1; : : : ;Fm;F�1 ; : : : ;F�m); i = 1; : : : ;mg;where the fun
tionals 	i do not involve the pointing operator \�": 	i is obtainedfrom ��i by appli
ation of the derivation rules until the pointing operator is ap-plied to variables only. In the derived spe
i�
ation, ea
h F�i is treated as a newvariable, thereby leading to a 
omplete elimination of the pointing operator within
onstru
tions.Our interest for pointing lies in the following two observations.{ If a 
lass C has a generating fun
tion C(z) that is �-analyti
 with exponent��, then the generating fun
tion zC 0(z) of the 
lass C� is also �-analyti
and has an exponent ��� 1, whi
h is smaller.{ Uniform sampling in Cn is equivalent to uniform sampling in C�n. As a
onsequen
e, the sampler �C�(x;n; ") is a 
orre
t approximate-size samplerfor the 
lass C (upon removing the mark).Let �C�k(x;n; ") denote the reje
tion sampler of the 
lass derived from C by k su
-
essive appli
ations of the pointing operator. The last two observations immediatelylead to an extension of Theorem 5:Theorem 6. Let C be a 
ombinatorial 
lass su
h that its generating fun
tion is �-singular with any exponent �� 6= f0; 1; : : :g. Let �+ = max(0; d��e) the integralpositive part of ��, and �0 = �+�+ its fra
tional part. Then the reje
tion sampler�C��+(xn;n; ") 
orresponding to a �xed toleran
e " > 0 su

eeds in a number of tri-als whose mean is asymptoti
 to the 
onstant 1��0 (") . In parti
ular, if C is spe
i�able,the total 
ost of the reje
tion sampler �C��+(xn;n; ") is O(n) on average.



32 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERAs an illustration of Theorem 6, we examine the internal workings of the algo-rithm that results for the 
lass B of binary trees taken here for 
onvenien
e asB = Z + (B � B);so that only external nodes 
ontribute to size. The pointed 
lass satis�esB� = Z� + (B� �B) + (B � B�);whi
h 
ompletely de�nes it in terms of B and itself. A

ordingly, the Boltzmannsamplers for B and B� are de�ned by the system of simultaneous equations� �B(x) = �Bern (p0) �! Z �� (�B(x); �B(x))��B�(x) = �Bern (p1; p2) �! Z� �� (�B�(x); �B(x)) �� (�B(x); �B�(x))�where p0 = 2x1�p1� 4x; p1 = p1� 4x; p2 = 12 � 12p1� 4x;and the notation (9) for probabilisti
 swit
hes is employed.Random generation of a tree of size near n is a
hieved by a 
all to �B�(xn).For large n, the quantity xn is very 
lose to the 
riti
al value � = 14 . Thus, �B�generates a terminal node with a small probability (sin
e p1 � 0), and, with highprobability, �B�(xn) triggers a long sequen
e of 
alls to �B, whi
h itself produ
esea
h time a near-
riti
al tree (sin
e p0 � 12 ) . In parti
ular, the \danger" ofgenerating small trees is automati
ally 
ontrolled by �B�. Observe that a samplerformally equivalent to �B�(x) (by re
ursion removal) is then as follows: generatea long random bran
h (with randomly 
hosen ( 12 ; 12 ) left or right bran
hings) andatta
h to it a 
olle
tion of (near) 
riti
al trees5. For instan
e, here are the sizesobserved in runs of 20 
alls, one relative to �B equipped with the value x500 =0:2499997495, the other to �B� equipped with x0500 = 0:2497497497:2; 1; 4; 5; 4; 1; 1; 1; 1; 1; 1; 1; 56; 1; 1; 7; 2; 1; 2; 2831; 6; 76; 120; 1; 532; 15; 7; 11; 68; 99; 45; 1176; 12; 94; 81; 784; 3393; 21; 493:(See also (15) for more extensive data that are similar to the �rst line.) Whilethe parameters are 
hosen in ea
h 
ase su
h that the resulting obje
t has expe
tedsize n = 500, it is 
lear that the �B� sampler gets a better shot at the target.Pointing also 
onstitutes a valuable optimization whenever stru
tures are drivenby a 
y
le 
onstru
tion. De�ne a fun
tion f to be logarithmi
 if it is 
ontinuablein a �{domain and satis�esf(z) = 
 log 11� z=� +O(1); z ! �:This may somehow be regarded as the limit 
ase �! 0 of a singular exponent ��.As the table (21) suggests, the eÆ
ien
y of reje
tion deteriorates in this 
ase: singu-larity analysis may be used to verify that �(xn) = nplogn, so that approximate-sizeis of superlinear 
omplexity, namely O(nplogn). This problem is readily �xed bypointing. If C = C(A), then the transformation rules of (25) imply that we 
analternatively generate a sequen
e, whi
h is amenable to straight reje
tion samplingin linear time, sin
e its generating fun
tion now has a polar-like singularity (withexponent �� = �1). For instan
e, the 
lass K of 
onne
ted mappings is de�ned byfK = C(T ); T = Z ?P(T )g :5This 
onstru
tion is akin to the \size-biased" Galton{Watson pro
ess exposed in [47℄. It is in-teresting to note that we are here led naturally to it by a systemati
 use of formal transformations.
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i�
ation for K� is thenfK� = T � ?S(T ); T = Z ?P(T ); T � = Z� ?P(T ) +Z ?P(T ) ? T �g ;with nonterminalsK�; T ; T �. The generator �K� then a
hieves linear time samplingfor any �xed toleran
e " > 0. (Figure 8 has been similarly produ
ed by pointing.)This te
hnique applies to plane trees and variants thereof (Example 2), se
ondarystru
tures (Example 3), and non
rossing graphs (Example 4). It also applies to allthe simple families of labelled nonplane trees, T = Z ?P
(T ) de�ned by restri
-tions on node degrees (Example 9). In all these 
ases, linear-time approximate-sizesampling is granted by Theorem 6.7. Singular Boltzmann samplers.We now dis
uss two in�nite 
ategories of models, where it is possible to pla
eoneself right at the singularity x = �C in order to develop reje
tion samplers fromBoltzmann models. These \singular" reje
tion generators are freed from the ne-
essity to adapt the 
ontrol variable x to the target size n, thus making availableimplementations that only need a �xed set of 
onstants to be determined on
e andfor all, this independently of the value of n.7.1. Singular samplers for sequen
es. The �rst type of singular generator wepresent is dedi
ated to the sequen
e 
onstru
tion: de�ne a sequen
e 
onstru
tion tobe super
riti
al if C = S(A) and �A > �C (so that A(��A) > 1)). Put otherwise, thegenerating fun
tion of 
omponents A(x) should 
ross the value 1 before it be
omessingular. The generating fun
tion of C and A satisfy C(z) = 1=(1�A(z)), so thatthe super
riti
ality 
ondition implies that A(�C) = 1 and the (dominant) singularity�C of C(x) is a pole. (This notion of super
riti
ality is borrowed from Soria [59℄who showed it to be determinant in the probabilisti
 properties of sequen
es.)Literally taken, the Boltzmann sampler �C of Se
tion 3 taken with x = �C loopsforever and generates obje
ts of in�nite size, as it produ
es a number of 
ompo-nents equal to a \Geom(1)". This prevents us from using the reje
tion algorithm�C(x;n; ") with x = �. However, one may adapt the idea by halting exe
ution assoon as the target size has been attained. Pre
isely, the early-interrupt singularsequen
e sampler is de�ned as follows:fun
tion �C(�;n); fEarly-interrupt singular sequen
e samplergi := 0; repeat i := i+ 1; 
i := �A(�) until j(
1; : : : ; 
i)j > n;return((
1; : : : ; 
i)); end.The prin
iple of the algorithm 
an be depi
ted as \leapfrogging" over n:
Xn0 nThe singular early-interrupt sampler determined by the 
hoi
e x = �C has ex
ellentprobabilisti
 and 
omplexity-theoreti
 
hara
teristi
s summarized in the followingstatement. There, we assume without loss of generality that A(z) is aperiodi
 inthe sense that the quantity d := g
dfn j An 6= 0g satis�es d = 1. (If d � 2, a linear
hange of the size fun
tions brings us ba
k to the aperiodi
 
ase.)Theorem 7. Consider a sequen
e 
onstru
tion, C = S(A) that is super
riti
aland aperiodi
. Then the early-interrupt singular sequen
e generator, �C(�C ;n) isa valid sampler for C. It produ
es an obje
t of size n + O(1) in one trial with
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i�able 
lass A, exa
t-size random generation in C isa
hievable from this generator by reje
tion in expe
ted time O(n).Proof. Let Xn denote the random variable giving the size of the output of theearly-interrupt singular sequen
e generator with tarket size n. The analysis of Xn
an be treated by 
lassi
al renewal theory [20, Se
. XIII.10℄, but we opt for adire
t approa
h based on generating fun
tions, whi
h integrates smoothly withinour general formalism.The bivariate (probability) generating fun
tion with variable z marking the tar-get size n and variable u marking the size Xn of the a
tually generated obje
tis F (z; u) := Xn�1 Xm�nP(Xn = m) znum:A trial de
omposes into a sequen
e of samples of �A(�) ending by a sample thatbrings the total over n, whi
h impliesF (z; u) = 11�A(�zu)L[A(�zu)℄ = z1� z A(�u)�A(�zu)1�A(�zu) :There L[f(z)℄ := z(f(1)� f(z))=(1� z) is a linear operator, and, e.g.,L� 11� zu� = z(u+ u2 + � � � ) + z2(u2 + u3 + � � � ) + z3(u3 + u4 + � � � ) + � � � ;so that all powers of the form znu` with ` � n are produ
ed.One 
he
ks that F (z; 1) = z=(1�z), as should be. Next the expe
ted size E(Xn )of the output is given by the 
oeÆ
ient of zn in��uF (z; u)��u=1 = z1� z �A0(�)1�A(�z)= z(1� z)2 + �A00(�)2A0(�) � z1� z +O(1) (z ! 1):This expansion at the polar singularity 1 then yields the expe
ted \overshoot":E(Xn � n) = [zn℄ ��uF (z; u)��u=1 � n = �A00(�)2A0(�) +O(1=n):The se
ond moment of the expe
ted size of the output is similarly obtained via twosu

essive di�erentiations. A simple 
omputation then shows the varian
e of theovershoot to satisfy E((Xn � n)2)� E(Xn � n)2 = O(1):As a matter of fa
t, the dis
rete distribution of the overshoot is des
ribed byP(Xn � n = m) = [znun+m℄F (z; u) = [znum℄ zu� z �1� 1�A(�u)1�A(�z)� ;= [zn+m℄ 11�A(�z) � m�1X̀=0 [zn+`℄ 11�A(�z) [um�`℄A(�u);= � 1�A0(�) +O(1=n)� 1� m�1X̀=0 P(N = `)!= P(N � m)E(N) +O(1=n):



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 35where N denotes the random size of an element of A under the Boltzmann modelof parameter � and the two last estimates hold for n ! 1 uniformly in m. Thedistribution of N has exponential tails (sin
e � � �C lies stri
tly within the dis
 of
onvergen
e of A(z)), and thus the probability of a large overshoot de
ays geomet-ri
ally fast. This proves that exa
t size n is attained in O(1) trials.This theorem applies to \
ores"of words without long runs (Equation (14) fromExample 1) and it 
an be adapted to yield a generator of the full set R. It applies tosurje
tions (Example 6), for whi
h exa
t-size generation be
omes possible in lineartime. It also provides a global setting for a variety of ad ho
 algorithms developed byLou
hard [43, 44, 46℄ in the 
ontext of eÆ
ient generation of 
ertain types (dire
ted,
onvex) of random planar diagrams known as \animals" and \polyominos".Example 10. Coin fountains (O). A fountain is formed by starting with a rowof 
oins, then sta
king additional 
oins on top so that ea
h new 
oin tou
hes twoin the previous row, for instan
e,
These 
on�gurations have been enumerated by Odlyzko and Wilf [53℄ and the 
ount-ing sequen
e starts as (A005169 of [58℄)1; 1; 1; 2; 3; 5; 9; 15; 26; 45; 78; 135; 234; 406; 704; : : :They 
orrespond to Dy
k paths (equivalently, Bernoulli ex
ursions) taken a

ordingto area but disregarding length. A de
omposition by sli
es taken at an angle of 23�(on the example, this gives 1,2,2,2,1,2,3,1,1,2,3,3,4) is then expressed by an in�nitespe
i�
ation (not a priori 
overed by the standard paradigm):S(ZS(Z2S(Z3S(� � � )))):The OGF is 
onsequently given by the 
ontinued fra
tion (see also [23℄),O(z) = 11� z1� z21� z3� � � :At top level, the singular Boltzmann sampler of Theorem 7 applies (write O =S(Q) and O(z) = (1�Q(z))�1), this even though O is not �nitely spe
i�able. Theroot � of Q(z) = 1 is easily found to 50D,� := 0:5761487691427566022978685737199387823547246631189;see [53℄ for a trans
endental equation satis�ed by � that involves the q{exponential.The obje
ts of Q needed are then with high probability of size at most O(logn)(by general properties of largest 
omponents in sequen
es [31℄), so that they 
anbe generated by whi
hever subexponential method is 
onvenient (e.g., Maple'sCombstru
t) to the e�e
t that the overall (theoreti
al and pra
ti
al) 
omplexityremains O(n).
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isely, the implementation runs like this. First de�ne a family of �nitelyspe
i�able approximants to Q, as follows:Q[j℄ := ZS(Z2S(Z3S(� � � Zj�1S(Zj) � � � ))):At any given time, the program operates with the 
lass Q[d℄ of depth d: Q[d℄(z) andQ(z) 
oin
ide till terms of order �(d) = �d+12 ��1. The 
orresponding 
ounts till �(d)are assumed to be available, together with the 
orresponding exa
t-size samplersfor Q[d℄. (It is proves espe
ially 
onvenient here to appeal to algorithms based onthe re
ursive method as provided by Combstru
t.) In this way, one \knows" how tosample from Q till size �(d), and from knowledge of the pre
ise value of �, one also\knows" whenever a Q 
omponent of size larger than �(d) might be required. (Ifso, adaptively in
rease the value of d and resume exe
ution.) For instan
e, takingd = 4 (with � = 9) already suÆ
es in 92% of the 
ases to produ
e an element of�Q, while d = 20 (and � = 104) suÆ
es with probability about 1� 2 � 10�19 and isthus likely to 
ater for all simulation needs one might ever have.The resulting implementation 
onstants are reasonably low, so that random gen-eration in the range of millions be
omes feasible thanks to the singular Boltzmanngenerator. Here is for instan
e a fragment of a random fountain of size 100,004(n = 105) obtained in this way (in only about a trillion 
lo
k 
y
les under Maple):Dutour et al. [19℄ have previously employed an adaptation of the re
ursive method,but it is limited to sizes perhaps in the order of a few hundreds. �Example 11. Weighted Dy
k paths and adsorbing stair
ase walks. In [48℄, Martinand Randall examine (under the name of adsorbing walks) the generation of Dy
kpaths of length 2n, where a path re
eives a weight proportional to �k if it hits thehorizontal axis k times. Their Markov 
hain based algorithm has a high polynomialtime 
omplexity, perhaps as mu
h as O(n10), if not beyond. In 
ontrast, for � > 2,a Boltzmann sampler based on super
riti
al sequen
es has a 
omplexity that isO(n), this even when exa
t-size random generation is required. Pre
isely, let D bethe 
lass of Dy
k paths de�ned by the grammar D = 1+ % D & D with OGFD(z) = (1 � p1� 4z)=(2z) (with z marking size taken here to be half-length).One needs to generate obje
ts from the weighted 
lass E := S(% D &), viewedas weighted sequen
es of \ar
hes" with OGF (1� z�D(z))�1, where the 
oeÆ
ient
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ount. The sequen
e is super
riti
al as soonas � > 2, and the singular value of the Boltzmann parameter is found to be at� = (�� 1)=�2. Then, the linear time generator is, for � > 2:let � := ��1�2 , Dk = 1k+1�2kk �;repeat S := 0; repeatgenerate K a

ording to the distribution ���1� Dk�k	1k=0;S := S + 2K + 2; draw at random from % DK &; fe.g., in linear timeguntil S � 2n; until S = 2n.There, the last su

essful run should be returned. (The 
ase where � � 2 is easilytreated in linear time by dire
t 
ombinatori
s.) Figure 9 displays two su
h pathsof length 500 (higher values of � in
rease the number of 
onta
ts). �The book by van Rensburg [66℄ des
ribes models similar to the last two ones(in the 
ontext of 
riti
al phenomena in polymers and vesi
les), a number of whi
hare amenable to eÆ
ient Boltzmann sampling as they 
orrespond to 
ombinatorial
lasses that are spe
i�able.7.2. Singular samplers for re
ursive stru
tures. Re
ursive stru
tures tend to
onform to a universal 
omplex-analyti
 pattern 
orresponding to a square-rootsingularity, that is, a singular exponent �� = 1=2. This spe
i�
 behaviour may beexploited, resulting in another variety of singular samplers.In the statement below, a re
ursive 
lass C is de�ned as the 
omponent C = F1of a system of mutually dependent equations,fF1 = 	1 (Z ;F1; : : : ;Fm) ; : : : ;Fm = 	m (Z ;F1; : : : ;Fm)gwhere the 	's are any fun
tional term involving any of the basi
 
onstru
torspreviously de�ned (`+', `�' or `?', and S;P;C; pointing is not allowed here). Thesystem is said to be irredu
ible if the dependen
y graph between the Fj is strongly
onne
ted (every nonterminal Fj depends on any other Fk). A 
lass F is said to beof latti
e type if the index set of the nonzero 
oeÆ
ients of F (z) is 
ontained in anarithmeti
 progression of some ratio d, with d � 2. (The terminology is borrowedfrom 
lassi
al probability theory.) For instan
e, the 
lass of \
omplete" binary trees(F = Z+ZF2) only has obje
ts of size n = 1; 3; 5; 7; : : :, and is 
onsequently latti
eof ratio 2. Any latti
e 
lass is equivalent to a nonlatti
e one, upon rede�ning sizevia a linear transformation.Lemma 3. Consider a 
ombinatorial 
lass C de�ned by a re
ursive spe
i�
ation thatis irredu
ible and non-latti
e. Then C(z) has a unique dominant singularity whi
his algebrai
 and of the square-root type, that is, with singular exponent �� = 1=2in the notations of Se
tion 6.2.Proof (sket
h). The Fj(x) are impli
itly de�ned by an image system F = 	[F℄.The Ja
obian matrix of 	, J(z) := � ��Fi	j(F)�i;jis at least de�ned near the origin. Let �(z) be the spe
tral radius of J(z). Forsmall enough positive x, the matrix J(x) is Perron{Frobenius by irredu
ibility. Alo
al analysis of the Drmota{Lalley{Woods type [16, 41, 70℄ based on \failure"of the impli
it fun
tion theorem in its analyti
 version establishes the following:ea
h Fj has a singularity at � whi
h is determined as the smallest positive root



38 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERof det J(x) = 1, and the behaviour of Fj there is of the square-root type in a �-domain. The non-latti
e assumption implies that ea
h Fj satis�es jF (z)j < F (jzj)for any z satisfying 0 < jzj < � and z 62 R>0 ; by domination properties of analyti
fun
tions with positive 
oeÆ
ients and matri
es with 
omplex entries, this impliesthat �(z) < �(jzj), when
e the fa
t that ea
h Fj is analyti
 on jzj = �, z 6= �.In view of Lemma 3, C(z) is �-singular with an expansion of the form(26) C(x) = C(�)� 
0(1� z=�)1=2 +O(1� z=�);where C(�) > 0 and 
0 > 0. Singularity analysis then implies that the 
oeÆ
ientsare asymptoti
ally given by(27) [zn℄C(z) = 
02p���nn�3=2 �1 +O(n�1)� :(For details see [28, Ch. 8℄ and referen
e therein.) Consequently, the distribution ofsizes at the 
riti
al value x = � is of the form P(N = n) / n�3=2, whi
h means thatit has heavy tails. In parti
ular, the expe
tation of size E(N) is in�nite (this fa
t iswell-known in the spe
ial 
ase of 
riti
al bran
hing pro
esses). Su
h an observationpre
ludes the use of straight-reje
tion Boltzmann sampling.The idea of an early interruption dis
ussed in the previous se
tion may beadapted and extended. Consider in all generality a Boltzmann sampler �C(x) builta

ording to the design prin
iples already exposed and let m be a 
eiling (i.e., anuppperbound) imposed on the size of the required obje
ts. It is possible to build amodi�
ation �C<m(x) of �C(x) as follows: maintain a running 
ount, implementedas a global 
ounter K, of the number of atoms produ
ed at any given time duringa partial exe
ution of sampling by �C(x); the 
ounter is regularly in
remented aslong as K � m ea
h time an atom is produ
ed; however, as soon as K ex
eeds m,exe
ution is interrupted and the \unde�ned" symbol ? is returned. Then, reje
tion
an be piled on top of this sampler, whi
h 
orresponds to the s
heme:fun
tion �C(x;n; "); fCeiled reje
tion samplergrepeat 
 := �C<m(x;n(1 + ")) until (
 6=?) ^ (j
j � n(1� "));return(
); end.This 
eiling te
hnique optimizes any Boltzmann sampler for any value of x. The
hoi
e of the singular value x = � makes the algorithm well-behaved for re
ursive
lasses.Theorem 8. Let C be a 
ombinatorial 
lass given by a re
ursive spe
i�
ation thatis irredu
ible and aperiodi
. Then the singular 
eiled reje
tion sampler �C(�;n; "),
orresponding to a �xed toleran
e " > 0 su

eeds in a number of trials whose expe
tedvalue grows like n1=2=�(") for a positive 
onstant �(") given by (30) below.Moreover the 
umulated size Tn of the generated and reje
ted obje
ts during the
all of �C(�;n; ") satis�es as n!1(28) E(Tn) � n" �(1� ")1=2 + (1 + ")1=2�with its varian
e, �2 = E(T 2n )� E(Tn )2, being(29) �2 � E(Tn)2 + n2" �13(1� ")3=2 + (1 + ")3=2� :Under these 
onditions, approximate-size sampling and exa
t-size sampling are ofaverage-
ase 
omplexity respe
tively O(n) and O(n2).
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tion of C, and let C<n1(x)C>n2 (x); C [n1;n2℄(x)be the generating fun
tion for the sub
lass of those obje
ts with size respe
tivelystri
tly less than n1 = (1 � ")n, stri
tly greater than n2 = (1 + ")n, and betweenn1 and n2. The 
oeÆ
ients of C(z) are known from Equation (27), so that �C(�)produ
es sizes a

ording toP(N = k) � 
02C(�)p� k�3=2:For any " > 0, the probability that a single trial (one exe
ution of the repeat loop)of the 
eiled reje
tion sampler �C(�;n; ") su

eeds is obtained by summing over allvalues of k in the interval [n(1 � "); n(1 + ")℄. This probability thus de
ays like�(")n�1=2 where(30) �(") = 
05C(�)p� ((1 + ")5=2 � (1� ")5=2):The expe
ted number of trials follows.Next, the probability generating fun
tion of the interruptive singular Boltzmannsampler targeted at [n1; n2℄ isF (u) = Xk P(Tn = k)uk:From the de
omposition of a 
all to �C into a sequen
e of unsu

essful trials (
on-tributing to Tn) followed by a �nal su

essful trial (not 
ontributing to Tn),F (u) = �1� 1C(�) �C<n1(�u) + C>n2(�)un2���1 C [n1;n2℄(�)C(�) :(This is the 
ost in addition to the size of the last su

essful output, and it isassumed that the generation of obje
ts with size larger than n2 is interrupted atsize n2.) The moments of the 
ost are then given byE(Tn ) = ��uF (u)��u=1; E(T 2n ) = (u�)2�u2 F (u)��u=1:Taking partial derivatives, then spe
ializing to u = 1, and observing that C(x) �C<n1(x) � C>n2(x) = C [n1;n2℄(x), we getE(Tn) = �C 0<n1(�) + n2C>n2(�)C [n1;n2℄(�) ;E(T 2n ) = �2C 00<n1(�) + n2(n2 � 1)C>n2(�)C [n1;n2℄(�) + 2 E(Tn)2 + E(Tn):The asymptoti
 expression for the 
oeÆ
ients of C(x) as given in (27) yields, bydire
t Euler-Ma
Laurin summation:(31) �C 0<n1(�) � 2
0n1=21 ; �2C 00<n1(�) � 2
03 n3=21 ;C>n2(�) � 2
0n�1=22 ; C [n1;n2℄(�) � 2
0"n�1=2:The estimates (31) 
ombine with the exa
t expressions of E(Tn) and E(T 2n ) to givethe values stated in (28) and (29).For a relative toleran
e " = "n depending on n and tending to zero, the estimatesbe
ome E(Tn ) � 2n" and � � E(Tn ), whi
h implies the quadrati
 
ost of exa
t-sizesampling.
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eiled reje
tion sampler thus provides linear-time approximate-sizerandom generation for all the simple varieties of trees of Example 2, in
ludingbinary trees, unary-binary trees, 2-3 trees, and so on, for se
ondary stru
tures (Ex-ample 3), and for non
rossing graphs (Example 4). In all these 
ases, exa
t-sizeis also a
hievable in quadrati
 time. The method does not require the pointingtransformations of Se
tion 6.3 and only ne
essitates a �xed number of 
onstants,themselves independent of the target value n. The te
hnique is akin to the \Flo-rentine algorithm" invented by Bar
u

i{Pinzani{Sprugnoli [3℄ to generate pre�xesof Motzkin words and some dire
ted plane animals. The 
ost analysis given aboveis related to Lou
hard's work [45℄.Note. Let T be a 
lass of trees determined by restri
ting the degrees of nodes to liein a �nite set 
, that is, T = S
(T ) or T = P
(T ), depending on whether the treesare embedded in the plane or not. The 
orresponding generating fun
tion satis�esT (z) = z�(T (z)) (see Example 9). For su
h trees, exa
t-size sampling 
an be per-formed in time O(n3=2), whi
h improves on the general bound O(n2) of Theorem 8.Indeed, in order to generate a tree of size n, it suÆ
es to generate a  Lukasiewi
z
ode of length n, with steps in 
� 1. By Raney's 
onjuga
y prin
iple [42, Ch. 11℄(also known as Dvoretzky and Motzkin's 
y
le lemma), this task itself redu
es togenerating at random a planar path of length n with steps in 
� 1 and with �nalaltitude �1. When one pla
es oneself right at the singular value � (for T (z)), thelatter task is equivalent to sampling from n independent random variables, havingsupport 
 � 1 and probability generating fun
tion  (z) = �(�z)=(z�(�)), 
ondi-tioned to sum to the value �1. Reje
tion (on the �nal value of the n{sum) a
hievesthis in O(n1=2) trials, by virtue of the lo
al limit theorem for sums of dis
rete ran-dom variables. In this way, trees from any �nitely generated family of trees 
anbe sampled in total time O(n3=2); equivalently, the te
hnique makes it possible tosample from any bran
hing pro
ess (with �nitely supported o�spring distribution)
onditioned upon the size of the total progeny being n, this again in time O(n3=2).8. Con
lusionsAs shown here, 
ombinatorial de
ompositions allow for random generation inlow polynomial time. In parti
ular, approximate-size random generation 
an oftenbe e�e
ted in linear time, using algorithms that suitably exploit the \physi
s" ofrandom 
ombinatorial stru
tures. Given the large number of 
ombinatorial de
om-positions that have been gathered over the past two de
ades (see, e.g., [4, 28, 30℄)we thus estimate to well over a hundred the number of 
lassi
al 
ombinatorialstru
tures that are amenable to eÆ
ient Boltzmann sampling. In 
ontrast with there
ursive method [13, 29, 51℄, memory requirements are kept to a minimum sin
eonly a table of 
onstants of size O(1) is required.For the reader's 
onvenien
e, we gather in Figure 10 the best strategies that havebeen developed for ea
h of the eleven pilot examples of this arti
le. Naturally, afew of the basi
 
ases are beaten by spe
ial-purpose 
ombinatorial generators|thishappens for permutations (P), binary trees (B), or mappings (M) and Cayley trees(T ), where the 
ounting sequen
es admit of a produ
t form and spe
i�
 bije
tionsmay be exploited to a
hieve exa
t-size sampling in linear time [51℄. In su
h 
ases,however, the same 
omplexity estimates 
ontinue to hold when Boltzmann samplingis applied to a large number of related 
lasses, whereas dedi
ated 
ombinatorialgenerators based on bije
tions generally break down. For instan
e, Boltzmann



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 41Stru
tures Approx. size Exa
t size1. Runs R O(n) (reje
t.) O(n) (sing. seq.)2. Trees B O(n) (point.; sing. 
eil.) O(n2) (point.; sing. 
eil.); O(n3=2)3. Se
ondary S. W O(n) (point.; sing. 
eil.) O(n2) (point.; sing. 
eil.)4. Non
rossing G. X O(n) (point.; sing. 
eil.) O(n2) (point.; sing. 
eil.)5. Set Part. S O(n) (reje
t.) O(n3=2plog n) (reje
t.)6. Surje
tions Q O(n) (reje
t.) O(n) (sing. seq.)7. Permutations P O(n) (reje
t.) O(n2) (reje
t.)8. Filaments F O(n) (reje
t.) O(n3=2) (reje
t.)9. Mappings M O(n) (point.) O(n2) (point.; sing. 
eil.)10. Fountains O O(n) (reje
t.) O(n) (sing. seq.)11. Weighted Dy
k E O(n) (reje
t.) O(n) (sing. seq.)Figure 10. The best strategies of the paper for Boltzmann sam-pling: reje
tion (Se
tion 6.1, 6.2), pointing (Se
tion 6.3), singularsequen
e (Se
tion 7.1), and singular 
eiled (Se
tion 7.2).algorithms for permutations 
an be adapted to obtain derangements (P(C�2(Z))and the like) and involutions (P(C1;2(Z)) and related stru
tures); the bran
hingpro
ess algorithms dedu
ed automati
ally for binary trees apply equally well tounbalan
ed 2{3 trees (U = Z + U2 + U3) and to other families of trees de�ned bydegree restri
tions; random mappings satisfying various 
onstraints then be
omeamenable to Boltzmann sampling, and so on.This arti
le has shown that 
ombinatorial samplers 
an be 
ompiled automat-i
ally from formal spe
i�
ations (\grammars") des
ribing 
ombinatorial models.The pro
ess is an eÆ
ient one as the program size of the sampler is derived by asingle-pass linear-time formal transformation. A general-purpose implementationwould most 
onveniently be developed on top of Maple's Combstru
t, as manyfun
tionalities are already available there. As matter of fa
t, a prototype has beendeveloped by Marni Mishna; together with other experiments, it 
on�rms the easeof implementation and the pra
ti
al eÆ
ien
y of Boltzmann sampling for the ran-dom generation of many di�erent types of 
ombinatorial stru
tures.In forth
oming works, we propose to demonstrate the versatility of Boltzmannsampling for a number of simulation needs in
luding:| the extension of the set of allowed 
onstru
tions, e.g., in the unlabelled
ase, sampling for multisets (M, repetitions are allowed), powersets (P, norepetitions allowed), 
y
les (C), and the substitution operation;| multivariate extensions, meaning the sampling of 
on�gurations a

ordingto a 
onstraint on size and on an auxiliary parameter (e.g., words of somelength 
ontaining an unusual number of o

urren
es of a designated pat-tern);| the realization of Boltzmann samplers using only dis
rete sour
es of ran-domness and basi
 logi
al operations in the style of Knuth and Yao's funda-mental study [40℄|nearly linear boolean (bit level) 
omplexity still seemsto be a
hievable in many 
ases of pra
ti
al interest.A
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