BOLTZMANN SAMPLERS
FOR THE RANDOM GENERATION
OF COMBINATORIAL STRUCTURES

PHILTIPPE DUCHON, PHILIPPE FLAJOLET, GUY LOUCHARD, GILLES SCHAEFFER

ABSTRACT. This article proposes a surprisingly simple framework for the ran-
dom generation of combinatorial configurations based on what we call Boltz-
mann models. The idea is to perform random generation of possibly complex
structured objects by placing an appropriate measure spread over the whole of
a combinatorial class an object receives a probability essentially proportional
to an exponential of its size. As demonstrated here, the resulting algorithms
based on real-arithmetic operations often operate in linear time. They can
be implemented easily, be analysed mathematically with great precision, and,
when suitably tuned, tend to be very efficient in practice.

1. INTRODUCTION

In this study, Boltzmann models are introduced as a framework for the random
generation of structured combinatorial configurations, like words, trees, permuta-
tions, constrained graphs, and so on. A Boltzmann model relative to a combina-
torial class C depends on a real-valued (continuous) control parameter z > 0 and
places an appropriate measure that is spread over the whole of C: This measure
is essentially proportional to z!“! for an object w € C of size |w|. Random objects
under a Boltzmann model then have a fluctuating size, but objects with the same
size invariably occur with the same probability. In particular, a Boltzmann sampler
(i.e., a random generator that produces objects distributed according to a Boltz-
mann model) draws uniformly at random an object of size n, when the size of its
output is conditioned to be the fixed value n.

As we demonstrate, Boltzmann samplers can be derived systematically (and
simply) for classes that are specified in terms of a basic collection of general-purpose
combinatorial constructions. These constructions are precisely the ones that surface
recurrently in modern theories of combinatorial analysis [4, 28, 30, 60, 61] and in
systematic approaches to random generation of combinatorial structures [29, 51].
As a consequence, one obtains with surprising ease Boltzmann samplers covering
an extremely wide range of combinatorial types.

In most of the combinatorial literature so far, fixed-size generation has been the
standard paradigm for the random generation of combinatorial structures, and a
vast literature exists on the subject. There, either specific bijections are exploited
or general combinatorial decompositions are put to use in order to generate objects
at random based on counting possibilities the latter approach has come to be
known as the “recursive method” originating with Nijenhuis and Wilf [51], then
systematized and extended by Flajolet, Zimmermann, and Van Cutsem in [29].

Date: Version of January 1,2003. Submitted to Combinatorics, Probability, and Computing.
1

2 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFER

In contrast, the basic principle of Boltzmann sampling is to relaz the constraint
of generating objects of a strictly fixed size, and prefer to draw objects with a
randomly varying size. As we shall see, normally, one can then tune the value of
the control parameter x in order to favour objects of a size in the vicinity of a target
value n. (A “tolerance” of, say, a few percents on size of the object produced is
likely to cater for many practical simulation needs.) If the tuning mentioned above
is not sufficient, one can always pile up a rejection method to restrict further the
size of the element drawn. In this way, Boltzmann samplers may be employed for
approximate-size as well as fixed-size random generation.

We propose Boltzmann samplers as an attractive alternative to standard com-
binatorial generators based on the recursive method and implemented in packages
like Combstruct (under the computer algebra system MAPLE) and CS (under Mu-
Pap). The algorithms underlying the recursive necessitate a preprocessing phase
where tables of integer constants are set up, then they appeal to a boustrophe-
donic strategy in order to draw a random object of size n. In the abstract, the
integer-arithmetic complexities attached to the recursive method and measured by
the number of (large) integer-arithmetic operations are as follows:

(1) Preproc. memory Preproc. time Time per generation
O(n) O(n?) or O(n'*®) O(nlogn)

The integer-based algorithms require the costly maintenance of large tables of con-
stants (in number O(n)). In fact, they effect arithmetic operations over large mul-
tiprecision integers, which themselves have size O(n) (in the unlabelled case) or
O(nlogn) (in the labelled case); see [29]. Consequently, the overall Boolean com-
plexities involve an extra factor of O(n) at least, leading to a cost measured in ele-
mentary operations that is quadratic or worse. (The integer-arithmetic time of the
preprocessing phase could in principle be decreased from O(n?) to O(n' ") thanks
to the recent work of van der Hoeven [65], but this does not affect our basic con-
clusions.) An alternative, initiated by Denise, Dutour, and Zimmermann [12, 13],
consists in treating integers as real numbers and approximating them using real
arithmetics (“floating-point” implementations), possibly supplementing the tech-
nique by adaptive precision routines. In the case of real-based algorithms, the
Boolean as well as practical complexities improve, and they become fairly well
represented by the data of Equation (1), but the memory and time of the prepro-
cessing phase remains fairly large, while the time per generation remains inherently
superlinear.

As we propose to show, Boltzmann algorithms can well be competitive when
compared to combinatorial methods: Boltzmann samplers only necessitate a small
fixzed number of low precision real constants that are normally easy to compute
while their complexity is always linear in the size of the object drawn. Accordingly,
uniform random generation of objects with sizes in the range of millions is becoming
a possibility, whenever the Boltzmann framework is applicable. The price to be paid
is an occasional loss of certainty in the exact size of the object generated, typically,
a tolerance on sizes of a few percents should be granted; refer to Figure 10 in
the concluding section. The table that summarizes the complexities of Boltzmann
generators, measured in real-arithmetic operations is then:

2) Preproc. memory | Preproc. time || Time per generation
0O(1) “small” with tolerance : O(n)

BOLTZMANN SAMPLERS FOR RANDOM GENERATION 3

The vague qualifier “small” refers to the fact that practical implementations will be
based on floating point approximations to exact real number arithmetics, in which
case, typically, the preprocessing time is likely to be a small power of logn. (That
this preprocessing is practically feasible and of a very low complexity should at
least transpire from the various examples given, but a systematic discussion would
carry us too far away from our main objectives!.)

As regards random generation, the ideas presented here draw their origins from
many sources. First the recursive method of [29, 51] served as a key conceptual
guide for delineating the types of objects that are systematically amenable to Boltz-
mann sampling. Ideas from a statistical physics point of view on combinatorics, of
which great use was made by Vershik and his collaborators [10, 67], then provided
crucial insight regarding the new class of algorithms for random generation that
is presented here. Another important ingredient is the collection of rejection al-
gorithms developed by Duchon, Louchard, and Schaeffer for certain types of trees,
polyominos, and planar maps [17, 45, 56]. There are also similarities with the
technique of “shifting the mean” (see Greene and Knuth’s book [33, p. 78-80]) as
well as the theory of large deviations [11] and “exponential families” of probability
theory—we have benefited from discussions with Alain Denise on these aspects.
Finally, the principles of analytic combinatorics (see [28]) provide essential clues
for deciding situations in which the algorithms are likely to be efficient. Further
connections are discussed at the end of the next section.

Plan of this study. Boltzmann models and samplers are introduced in Sec-
tion 2. Boltzmann models exist in two varieties: the ordinary and the exponential
models. Ordinary models serve for combinatorial classes that are “unlabelled”, the
corresponding samplers being developed in Section 3, where basic construction rules
are described. Section 4 proceeds in a parallel way with exponential models and
“labelled” classes. Some of the complexity issues raised by Boltzmann sampling
are examined in Section 5. There it is shown that, at least in the idealized sense
of exact real-number computations, a Boltzmann sampler suitably equipped with a
fixed (and small) number of driving constants operates in time that is linear in the
(fluctuating) size of the object it produces.

Sections 2 to 5 develop Boltzmann samplers that operate freely under the sole
effect of the defining parameter z. We examine next the way the control parameter x
can be tuned to attain objects at or near a target value: this is the subject of
Section 6, where rejection is introduced and a technique based on the pointing
transformation is developed. Section 7 describes two types of situation where the
basic Boltzmann samplers turn out to be optimized by assigning a critical value to
the control parameter z. Section 8 offers a few concluding remarks.

An extended abstract summarizing several of the results described here has been
presented at the ICALP’2002 Conference in Malaga [18].

2. BOLTZMANN MODELS AND SAMPLERS

We consider a class C of combinatorial objects of sorts, with | - | the size function
mapping C to Z>q. By C, is meant the subclass of C comprising all the objects
in C having size n, and each C,, is assumed to be finite. One may think of binary

IThe primary goal of this article is on practical algorithmic design, not analysis of algorithms,
although a fair amount of analysis, by necessity, enters into the discussion.

4 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFER

words (with size defined as length), permutations, graphs and trees of various types
(with size defined as number of vertices), and so on. Any set C endowed with a size
function and satisfying the finiteness axiom will henceforth be called a combinatorial
class.

The uniform probability distribution over C, assigns to each v € C, the proba-
bility

]PCn {7} =]‘/Cna

with C), := card(C,,). Ezact-size random generation means the process of drawing
uniformly at random from the class C,,. We also consider (see Sections 6 and 7 for
a description of various strategies) random generation from “neighbouring classes”,
Cn where N may not be totally under control, but should still be in the vicinity
of n, namely, in some interval (1 —e)n < N < (1 + €)n, for some “tolerance”
factor £ > 0; this is called approzimate-size (uniform) random generation. It must
be stressed that, even under approximate-size random generation, two objects of
the same size are invariably drawn with the same probability.

Definition 1. The Boltzmann models of parameter x exist in two varieties, the
ordinary version and the exponential version. They assign to any object v € C the
following probability:

1
Ordinary/Unlabelled case: P.(y) = c 2l with C(2) = Z:UM,
(T) vec
E I/Labelled Po(y) = — T ith C(x) Z”’M
Tponential /Labelled case: (V) = =— —5 with T) = —.
C(z) I 2 !

A Boltzmann sampler (or generator) I'C'(x) for a class C is a process that produces
objects from C' according to the corresponding Boltzmann model, either ordinary or
exponential.

The normalization coefficients are nothing but the values at = of the counting
generating functions, respectively of ordinary type (OGF) for C and exponential
type (EGF) for C:

n
Clz) =Y Cuz", C(2)=Y on%.
n>0 n>0
Coherent values of x defined to be such that 0 < z < po (or pg), with py the
radius of convergence of f are to be considered. The quantity ps is referred to
as the “critical” or “singular” value. (In the particular case when the generating
function C(z) still converges at pc, one may also use the limit value z = p¢ to
define a valid Boltzmann model; see Section 7 for uses of this technique.)

For reasons which will become apparent, we have introduced two categories of
models, the ordinary and exponential ones. Exponential Boltzmann models are
appropriate for handling labelled combinatorial structures while ordinary models
correspond to wunlabelled structures of combinatorial theory?. In the unlabelled
universe, all elementary components of objects (“atoms”) are indistinguishable,
while in the labelled universe, they are all distinguished from one another by bearing
a distinctive mark, say one of the integers between 1 and n if the object considered

2This terminology is standard in combinatorial enumeration and graph theory; see, e.g., the
books of Bergeron et al., Goulden-Jackson, Harary—Palmer, Stanley, and Wilf [4, 30, 34, 60, 61, 69]
or the preprints by Flajolet & Sedgewick [28].

BOLTZMANN SAMPLERS FOR RANDOM GENERATION 5

has size n. Permutations written as sequences of distinct integers are typical labelled
objects while words over a binary alphabet appear as typical unlabelled objects
made of “anonymous” letters, say {a, b} for a binary alphabet.

For instance, consider the (unlabelled) class W of all binary words, W = {a, b}*.
There are W,, = 2" words of length n and the OGF is W(z) = (1 — 22)"'. The
probability assigned by the ordinary Botzmann model to any word w is z!/*!(1—2z).
There, the coherent values of x are all the positive values less than the critical value
pw = %. The probability that a word of length n is selected is (2z)"(1 — 2z), so
that the Boltzmann model of binary words is logically equivalent to the following
process: draw a random variable N according to the geometric distribution of
parameter 2z; if the value N = n is obtained, draw uniformly at random any of
the possible words of size n. For the labelled case, consider the class K of all cyclic

permutations, K = {[1],[12],[123],[1,3,2],...}. There are K,, = (n — 1)! cyclic

permutations of size n over the canonical set of “labels” {1,...,n}. The EGF is
~ 2z 2" 1
3 K(z)= , — 1)l— = — =1 .
3 ()=)i =Y T =g
n>1 n>1

The probability of drawing a cyclic permutation of some fixed size n is then,

1 "
4 _
) log(1—z)=' n’

a quantity defined for 0 < 2 < pz = 1. (This is known as the “logarithmic series
distribution”; see Section 4). Like in the case of binary words, the Boltzmann
model can thus be realized by first selecting size according to the logarithmic series
distribution, and then by drawing uniformly at random a cyclic permutation of the
chosen size. We are precisely going to revert this process and show that, in many
cases, it is of advantage to draw directly from a Boltzmann model, (Sections 3 to 5),
and from there derive random generators that are efficient for a given range of sizes
(Sections 6 and 7).

The size of the resulting object under a Boltzmann model is a random variable
denoted throughout by N. By construction, the probability of drawing an object
of size n is, under the model of index z,

Cpx" Cpx"
(5) P,(N=n)=—2_ or Pu(N=n)=—22
C(z) n!C(x)

for the ordinary and exponential model, respectively. The law is well quantified by
the following lemma. (See, e.g., Huang’s book [37] for similar calculations from the
statistical mechanics angle.)

Proposition 1. The random size of the object produced under the ordinary Boltz-
mann model of parameter x has first and second moments satisfying

C'(x) 220" (z) + 2C' ()

Clz) C(z)

(6) E,(N) = E, (N?) =

The same expressions are valid, but with C replacing C, in the case of the expo-
nential Boltzmann model. In both cases, the expected size B, (N) is an increasing
function of x.

6 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFER

Proof. Under the ordinary Boltzmann model, the probability generating function

of N is O(a2)
zn:IF’m(N =n)z" = Ca)’

by virtue of (5). The result then immediately follows by differentiation upon set-
ting z = 1:

9 C(zz) 0? C(xz)
E,(N)=|———> , E,(N(N—-1)) = =———~ .
v (N) <8z C(x))Z_] » (N) (822 C(x)).,
The very same calculation applies to exponential Boltzmann models, but with the
EGF C then replacing the OGF C.
The mean size E, (V) is always a strictly increasing function of z as soon as the

class C contains at least two elements of different sizes. Indeed one verifies by a
trite calculation the identity

d
21—, (N) = Va(N),

where V denote the variance operator. Since the variance of a nondegenerate ran-
dom variable is always strictly positive the derivative of E,(NN) is positive and
E. (N) is increasing. (This property is in fact a special case of Hadamard’s convex-
ity theorem.) g

For instance, in the case of binary words, the coherent choice z = 0.4 leads
to a size with mean value 4 and standard deviation about 4.47; for x = 0.49505,
the mean and standard deviation of size become respectively 100 and 100.5. For
cyclic permutations, we determine similarly that the choice z = 0.99846 leads to
an object of mean size equal to 100, while the standard deviation is somewhat
higher than for words, being equal to 234. In general, the distribution of random
sizes under a Boltzmann model, as given by Formula (5), strongly depends on the
family under consideration. Figure 1 illustrates three widely differing profiles: for
set partitions, the distribution is “bumpy”, so that a choice of the appropriate x
will most likely generate an object close to the desired size; for surjections (whose
behaviour is analogous to the one of binary words), the distribution becomes fairly
“flat” as = nears the critical value; for trees, it is “peaked” at the origin, so that
very small objects are generated with high probability. It is precisely the purpose
of later sections (Sections 6 and 7) to recognize and exploit the “physics” of these
distributions in order to deduce efficient samplers for exact and approximate size
random generation.

Relation to other fields. The term “Boltzmann model” comes from the great
statistical physicist Ludwig Boltzmann whose works (together with those of Gibbs
and Maxwell) led to enunciate the following principle: Statistical mechanical config-
urations of energy equal to E in a system have a probability® of occurrence propor-
tional to e~ P”. If one identifies size of a combinatorial configuration with energy
of a thermodynamical system and sets z = e~ #, then what we term the ordinary
Boltzmann models become the usual model of statistical mechanics. The counting
generating function in the combinatorial world then coincides with the normaliza-
tion constant in the statistical mechanics world where it is known as the partition

3Distributions of the type e #¥ play an important role in the study of point processes and
they tend to be known to probabilists under the name of “Gibbs measures”.

BOLTZMANN SAMPLERS FOR RANDOM GENERATION 7

Set Partitions 012 Surjections

0 50 100 150 200

0.8{\!

0.6

0.4

0.2

FiGure 1. Size distributions under Boltzmann models for var-
ious values of parameter z. From top to bottom: the “bumpy”
type of set partitions (Example 5), the “flat” type of surjections

(Example 6), and the “peaked” type of general trees. (Example 2).

function—the Zustandsumme often denoted by Z. (Note: In statistical mechanics,
B = 1/(kT) is an inverse temperature. Thus situations where 2z — 0 formally corre-
spond to low temperatures or “freezing” and give more weight to small structures,
while z — p~ corresponds to high temperatures or “melting”, that is, to larger
sizes of the combinatorial configurations being generated.)

Exponential weights of the Boltzmann type are naturally essential to the sim-
ulated annealing approach to combinatorial optimization. In the latter area, for
instance, Fill and Huber [22] have shown the possibility of drawing at random in-
dependent sets of graphs according to a Boltzmann distribution, at least for certain
values of the control parameter z = e~?. Closer to us, Compton [7, 8] has made
an implicit use of what we call Boltzmann models for the analysis of 0-1 laws and
limit laws in logic; see also the account by Burris [6]. Vershik has initiated in a
series of papers (see [67] and references therein) a programme that can be described
in our terms as first developing the probabilistic study of combinatorial objects un-
der a Boltzmann model and then “returning” to fixed size statistics by means of
Tauberian arguments of sorts. (A similar description can be applied to Compton’s
approach; see especially the work [50] for recent developments in this direction.)
As these examples indicate, the general idea of Boltzmann models is certainly not
new, and, in this work, we may at best claim originality for aspects related to the
fast random generation of combinatorial structures.

8 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFER

Construction Generator

Singleton C ={w} I'C(z) =w

Union C=A+B|IC(x) = <Bern (ﬁ) S TA(®x) | FB(m))
Product C=AxB|IC(z) = (TA(z);TB(z))

—_—

Sequence C=6(A) |I'C(z) = (Geom(A(z)) = I'A(x))

FIGURE 2. The inductive rules for ordinary Boltzmann samplers.

3. ORDINARY BOLTZMANN GENERATORS

In this section and the next one, we develop a collection of rules by which one
can assemble Boltzmann generators from simpler ones. The combinatorial classes
considered are built by means of a small set of constructions that have wide expres-
sive power. The language in which classes are specified is in essence the same as the
one underlying the recursive method [29]: it includes the constructions of union,
product, sequence, and, in the labelled case treated in the next section, the addi-
tional set and cycle constructions. For each allowable class, a Boltzmann sampler
can be derived in an entirely systematic (and even automatic) manner.

A combinatorial construction builds a new class C from structurally simpler
classes A, B, in such a way that C,, is determined from smaller objects, that is, from
elements of {A;}7 o, {B;}7_o. The unlabelled constructions considered here are
disjoint union (+), cartesian product (x), and sequence formation (&). We define
these in turn and concurrently build the corresponding Boltzmann sampler I'C' for
the composite class C, given random generators ' A,I'B for the ingredients and
assuming the values of intervening generating functions A(x), B(x) at z to be real
numbers which are known ezxactly.

Finite Sets. Clearly if C is finite (and in practice small), one can generate a
random element of C by selecting it according to the finite probability distribution
defined by the Boltzmann model: If F = {wq,...,w,}, then one selects f; with
probability proportional to z!fil. Thus, drawing from a finite set is equivalent to
a finite probabilistic switch. Drawing from a singleton set is then a deterministic
procedure which directly outputs the object in question. In particular, in what
follows, we make use of the singleton classes, 1 and Z, formed respectively of one
element of size 0 (analogous to the empty word of formal language theory) and of
one element of size 1 that can be viewed as a generic “atom” out of which complex
combinatorial structures are formed.

Disjoint union. Write C = A+ B if C is the union of disjoint copies of A and
B, with size on C inherited from A, B. By disjointness, one has C,, = A, + B,,, so
that

) C(z) = A(z) + B(z).

Consider a random element of C under the Boltzmann model of index . Then, the
probability that this random element is some a € A is

gl B zlel . A(z)
Pea(0) = Gos = oy (c@)'

BOLTZMANN SAMPLERS FOR RANDOM GENERATION 9
The Boltzmann model corresponding to C(z) is then a mixture of the models
associated to A(z) and B(z), the probability of selecting a particular 7 in C being

Az) Az)
C(x)’ C(z)

Given a generator for a Bernoulli variable Bern(p) defined by

PC7E(7€A) = PC7E(7€B) =

Bern(p) = 1 with probability p; Bern(p) = 0 with probability 1 — p,
two Boltzmann samplers T'A(z), ' B(z), and the values of the OGFs A(x), B(x), a
Boltzmann sampler I'C' for class C = A + B is simply obtained by the procedure:

function I'C(z : real); {generates C = A+ B}
let pa := A(z)/(A(z) + B(2));
if Bern(pa) then return(CA(z)) else return(I'B(z)) fi; end.

We abbreviate this construction as

8) (Bern <%> S TA() | FB(m)),

where (X — f|g) is a shorthand notation for: “if the random variable X is 1,
then execute f, else execute g”. More generally, if X ranges over a finite set with r

elements endowed with a probability measure, py,...,p., we shall use the extended
notation
(9) (Bern(p,...,pr—1) — f1| .. | fr)

to represent the corresponding r-fold probabilistic switch.

Cartesian Product. Write C = A x B if C is the set of ordered pairs from A
and B, and size on C is inherited additively from A, B. Generating functions satisfy
(10) C(z) = A(2)- B(z) since C(z)= > zlFl5l

(a,B)EAXB

A random element of v € C with v = (a,) then has probability

ikl zlal gl

Pcx(7) = C(z) A(x) B(x)

It is thus obtained by forming a pair {«, 5) with a, 8 drawn independently from the
Boltzmann models T'A(z), [B(z):

function I'C(z : real); {generates C = A x B}
return((I'A(z),T'B(z))) {independent calls}.

We shall abbreviate this schema as
I'C(z) = (TA(z); T B(z)),

which can be read either as functionally producing a pair, or as sequential execution
of the two procedures. We shall also use the natural extension (fi;...;f.) when
r-tuples are involved.

Sequences. Write C = &(A) if C is composed of all the finite sequences of ele-
ments of A (with size of a sequence additively inherited from sizes of components).
The sequence class C is also the solution to the symbolic equation C =1+ A x C

10 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFER

(with 1 the empty sequence), which only involves unions and products and is re-
flected by the relation between OGFs: C =1+ AC. Consequently,

B 1

11— Az)

This gives rise to two logically equivalent designs for a I'C' sampler:

(11) O(z)

(7) the recursive sampler,
function TC(x : real); {generates C = &(A)}
if Bern(A(x)) then return(T'A(z), T'C(z)) {recursive call}
else return(1).
(i1) the geometric sampler,
function TC(x : real); {generates C = &(A)}
draw k according to Geom(A(x));
return the k-tuple (T A(z),...,[A(z)) {k independent calls}.

The recursive sampler for sequences is built from first principles (union and product
rules). It might in principle loop for ever. However, by design, it repeatedly draws
a Bernoulli random variable till the value 0 is attained. Thus, the number of
components generated is a geometric random variable with rate A(z), where, we
recall; X is geometric of rate A if

P(X =k) = (1 - MAF

For coherence to be satisfied, we must have A(z) < 1. Then, the recursive sampler
halts with probability 1 since the expected number of recursive calls is finite and
equal to (1 — A(z))~!. This discussion justifies the geometric generator, which
unwinds the recursion of the basic recursive sampler using a generator Geom(\) for
the geometric variable of parameter \.

In what follows, we use the notation,

(12) (Y =1)
to mean: the random variable Y is drawn; if the value Y = y is returned, then y
independent calls, f1,..., f, are launched. The scheme giving the sequence sampler

for C = &(A) is then simply:
I'C(z) = (Geom(A(z)) = I'(x)).

Recursive classes. As suggested by the sequence construction, recursively
defined classes admit generators that call themselves recursively. A specification
by means of constructors is “well-founded” if it builds objects from smaller ones.
An equivalent condition, when no recursion is involved, is that the sequence (and,
for exponential Boltzmann models below, set, and cycle) operations are never ap-
plied to classes that contain objects of size 0. For recursive structures this is a
testable property akin to “properness” in the theory of context-free grammars. (A
context-free grammar is proper if the empty word is not generated with infinite
multiplicity.) This well-foundedness condition also guarantees that the equations
defining generating function equations are well-posed and contracting in the space
of formal power series endowed with the standard metric, dist(f,g) = 2~ Y2(/~9);
accordingly, iteration provides a geometrically converging approximation scheme
that makes it possible to determine generating function values for all coherent val-
ues of z (by analyticity and dominated convergence). See [27, 29] for a detailed
discussion of this topic and the corresponding decision procedures.

BOLTZMANN SAMPLERS FOR RANDOM GENERATION 11

Theorem 1. Define as specifiable an unlabelled class that can be finitely specified
(in a possibly recursive way) from finite sets by means of disjoint unions, cartesian
products, and the sequence construction. Let C' be an unlabelled specifiable class and
x be a coherent parameter in (0, pc). Assume as given an oracle that provides the
finite collection of exact values at a coherent value x of the gemerating functions
intervening in a specification of a class C. Then, the Boltzmann generator T'C(z)
assembled from the definition of C by means of the four rules summarized in Figure 2
has a complezity measured in the number of (+, —, X, +) real-arithmetic operations
that is linear in the size of its output object.

Proof. For a coherent value of size, the expectation of size is finite, so that, in
particular, size is finite with probability 1. Given a specification ¥ for C, each
object w admits a unique parse tree (or syntax tree) 7[w] relative to ¥. For well-
founded specifications, this parse tree 7 is of a size linear in the size of the object
produced. We shall see later (Lemma 1 in Section 5) that in the real-arithmetic
model a Bernoulli choice can be effected with complexity O(1) and a geometric
random variable which assumes value k can be generated at cost O(k + 1). From
this fact, the total cost of a Boltzmann sampler is of the form

@) Z (deg(v) + 1)

veT|w]

where the summation ranges over all the nodes v of tree 7, and deg(v) is the
outdegree of node v. Since, for any tree 7, one has) 1 = |7| and), deg(v) =
|7| — 1, the total cost is linear in the size of 7, hence linear in the size of w. The
statement follows. m

Given this proposition, one can compile automatically specifications of combina-
torial classes into Boltzmann samplers. The only piece of auxiliary data required
is a table of constants representing the values of the ordinary generating functions
associated with the subclasses that intervene in a specification. These are in finite
number and computable.

In the examples that follow, we enlarge the expressivity of the specification
language by allowing constructions of the form

(13) Sq(A) = {{a1,...,ar) | aj €A re},

where 2 C N is either a finite or a cofinite subset of the integers. If Q is finite, this
construction reduces to a disjunction of finitely many cases and the corresponding
sampler is obtained by Bernoulli trials. If is cofinite, we may assume without loss
of generality that Q = {n > mg} for some mg € N, in which case, the construction
S >m, (A) reduces to A™° x &(A).

ExamMpLE 1. Words without long runs. Consider the collection R of all binary
words over the alphabet A = {a, b} that never have more than m consecutive occur-
rences of any letter (such consecutive sequences are also called “runs” and intervene
at many places in statistics, coding theory, and genetics). Here we regard m as a
fixed quantity. It is not a priori obvious how to generate a random word in R
of length n: a brutal rejection method based on generating random unconstrained
words and filtering out those that satisfy the condition R will not work in polyno-
mial time since the constrained words have an exponentially small probability. On

12 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFER

the other hand, any word decomposes into a sequence of alternations also called its
core, of the form

(14) (aa---a|bb---b)(aa---a|bb---b) ---(aa---a|bb---b),

possibly prefixed with a header of b’s and postfixed with a trailer of a’s. In symbols,

the set W of all words is expressible by a regular expression written in our notation
W =6(b) x & (a&(a)bS(h)) x &(a).

The decomposition was customized to serve for R: simply replace any internal
aS(a) by 61 n(a) and any b&(b) by &1 ,,,(b), where &1, means a sequence
of between 1 and m elements, and adapt accordingly the header and trailer:

R = Ggm(b) x & (61..m((1)61..m(b)) X Ggm(a)-

The composition rules given above give rise to a generator for R that has the
following form: two generators that produce sequences of a’s or b’s according to
a truncated geometric law; a generator for the product C := (&1, m(a)B&1. m(b))
that is built according to the product rule; a generator for the sequence D :=
S(C) constructed according to the sequence rule. The generator finally assembled
automatically is:

T'R(z)
I'Core(z)

(X = b);TCore(z); (X' = a)
(Geom (ZH=2E) = (v =)i (v = 1))
X, X'e Ggom(m), Y, Y'e (]}eom(m).

Observe that a table of only a small number of real-valued constants rationally
related to z and including

ca=x, c3=C(zx)=21—2")>21—2)2
needs to be precomputed in order to implement the algorithm. O

Here are three runs of the sampler I'R(z) for m = 4 produced with the coher-
ent value z = 0.5 (the critical value is pp = 0.51879), of respective lengths 124
(truncated), 23, and 35, with the coding a =0, b = m:

[B B Em Em __En 8 3

T T T T T T T T

With this value of the parameter, the mean size of a random word produced is
about 27. The distribution turns out to be of the “flat” type, like for Surjections
in Figure 1. We shall see later in Section 7 that one can design optimized samplers
for such types of distributions. The technique applies to any language composed of
words with excluded patterns, meaning words that are constrained not to contain
any of a finite set of words as factor. (For such a language, one can specifically
construct a finite automaton by way of the Aho Corasick construction [1], then
write the automaton as a linear system of equations relating specifications, and
finally compile the set of equations into a recursive Boltzmann sampler.) More
generally, the method applies to any regular language: it suffices to convert a
description of the language into a deterministic finite automaton and apply the
recursive construction of a sampler, or alternatively to obtain an unambiguous
regular expression and derive from it a nonrecursive sampler based on the geometric
law.

BOLTZMANN SAMPLERS FOR RANDOM GENERATION 13

The next set of examples is relative to structures that satisfy nonlinear recursive
descriptions of the context-free type.
EXAMPLE 2. Rooted plane trees. Take the class B of binary trees defined by the
recursive specification

B=Z+4+(ZxBxDB),

where Z is the class comprising the generic node. The generator I'Z is deterministic
and consists simply of the instruction “output a node” (since Z is finite and in fact
has only one element). The Boltzmann generator I'B calls I'Z (and halts) with
probability z/B(z) where B(x) is the OGF of binary trees,

1—+V1—422
2x '
With the complementary probability corresponding to the strict binary case, it will

make a call to I'Z and two recursive calls to itself. In shorthand notation, the
recursive sampler is

B(z) =

(x)
In other words: the Boltzmann generator for binary trees as constructed automati-

cally from the composition rules produces a random sample of the branching process
2

with probabilities (%, %). Note that the generator is defined for z < 1/2 (the

radius of convergence of B(z)), in which case the branching process is subcritical,

so that the algorithm halts in finite expected time, as it should. Only two constants

T

are needed for implementation, namely x and the quadratic irrational By
. 1})

IB(z) = (Bern (5%) — Z | (Z;FB(m);FB(m))).

Unbalanced 2-3 trees in which only external nodes contribute to size are similarly
produced by U = Z + U? + U>. Figure 3 displays such a tree for the value of the
parameter x set at the critical value py = % (This critical value can be determined
by methods exposed in Section 7.) In this case, the branching probabilities for a
nullary, binary, and ternary node are found to be respectively

5 1 1
p0_97 p2_37 p3_9/
and these three constants are the only ones required by the algorithm. A typical

run of 30 Boltzmann samplings produces trees with total number of nodes equal to
(15) 3,6,1,1,6,7,33,1,1,1,9,1,1,3,1,3,169,1881,1,54,6,1,1,3,3746,1,1,1,1,1,

which empirically gives an indication of the distribution of sizes (it turns out to be
of the peaked type, like in Figure 1, bottom). We shall see later in Section 7 that
one can actually characterize the profile of this distribution (it decays like n~3/2)
and put to good use some of its features.

Unary-binary trees (also known as Motzkin trees) are defined by V= Z(1+V +
V2). General plane trees, G, where all degrees of nodes are allowed, can be specified
by the grammar

G=Z2Zx6(9),
with OGF G(z) = (1 — /1 —42)/2. Accordingly, the automatically produced sam-
pler is
IG(x) = (2; (Geom(G(2)) = TG(x)),
which corresponds to the well-known fact that such trees are equivalent to trees of
a branching process where the offspring distribution is geometric. O

14 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFER

FIGURE 3. Random unbalanced 2-3 trees of 173 and 2522 nodes
(in total) produced by a critical Boltzmann sampler.

EXAMPLE 3. Secondary structures. This example is inspired by works of Water-
man et al., themselves motivated by the problem of enumerating secondary RNA
structures [36, 62]. To fix ideas, consider rooted binary trees where edges con-
tain 2 or 3 atoms and leaves (“loops”) contain 4 or 5 atoms. A specification is
W= (2% + Z%)+ (224 23)2 x (W x W). A Bernoulli switch will decide whether
to halt or not, two independent recursive calls being made in case it is decided to
continue, with the algorithm being sugared with suitable Bernoulli draws. Here is
the complete code:

TFA(z) = (Bern(mf:ms) — 74 | Z5)
IB(z) = (Bern(ﬁ) — 77 | 23)
let p = (a* +2°)/W(z) = (14 /1~ 4283(1 + 2)3);
TW(z) = (Bern(p) — T'A(z) ‘ IB(z);TW (z);TB(z); TW (z)) .
The method is clearly universal for this entire class of problems. O

EXaAMPLE 4. Noncrossing graphs. Consider graphs which, for size n, have ver-
tices at the nth roots of unity, vy = e?*™/" and are connected and noncrossing in
the sense that no two edges are allowed to meet in the interior of the unit circle;
see Figure 4 for a random instance. The generating function of such graphs has
been first determined by Domb and Barret [15] motivated by the investigation of
certain perturbative expansions of statistical physics. Their derivation is not based
on methods conducive to Boltzmann sampling, though. On the other hand, the
planar structure of such configurations entails a neat decomposition, which is de-
scribed in [24]. At the top level, consider the graph as rooted at vertex vg. Let v;
and v; be two consecutive neighbours of vy; the subgraph induced on the vertex set
{vi,Vit1,...,v;} is either a connected graph of D or is formed of two disjoint com-
ponents containing v; and v; respectively. Also, if v, is the first neighbour of vy and

BOLTZMANN SAMPLERS FOR RANDOM GENERATION 15

FIGURE 4. A random connected noncrossing graph of size 50.

v is the last neighbour, there are two connected components on {vy,...,v;} and
on {vpm,...,v,_1} respectively. The grammar for connected noncrossing graphs is
then a transcription of this simple decomposition, although its detail is complicated
as care must be exercised to avoid double counting of vertices. The class of all such
connected noncrossing graphs is denoted by X and the grammar is:

X=Z+ZxE E=AXxG(E+X%x(1+E))xX.

One finds that E(z) = —1+ X (z)/z while X (z) is a branch of the algebraic function
defined implicitly by
X3+ X% —3:X 4222 =0,

and the critical value (the upper limit of all coherent values) is px = $cV3 =
0.09622. The Boltzmann sampler compiled from the specification is then of the
global form

IX(z) = (Bern(%) — Z | Z;FE(.T,))
FE(x) = (I'X(z);(Geom(E(z)+ X(z)(1+ E(z))) = ((---)));TX(2)).

The algorithm needs the parameter x, the cubic quantity y = X (z) and a small
number of quantities that are all rationally expressed in terms of z and y. For
instance, the coherent choice z = 0.095 which is close to the cr