Extending Satisfiability Modulo Theories to Quantifed Formulas

Andrew Reynolds
University of Iowa
September 24, 2012

Overview

- Satisfiability Modulo Theories (SMT)
 - Challenge of quantifiers in SMT
- SMT approaches to quantifiers
 - Heuristic Instantiation/E-matching
 - Model-Based Quantifier Instantiation
 - Finite Model Finding
- Automated Theorem Proving
- Current Research
 - CVC4 + Finite Model Finding

Satisfiability Modulo Theories (SMT)

• SMT solvers:

- Are powerful tools for determining satisfiability of ground formulas
 - Built-in decision procedures for many theories
 - Arithmetic, Arrays, BitVectors, Datatypes, ...
- Have applications in:
 - Software/Hardware verification
 - Planning and scheduling
 - Design automation
- Had significant performance improvement in past 10 years
- Key to success of many industrial verification applications

Strengths of SMT Solvers

Performance

- Built on top of high performance SAT solvers
- Use fast decision procedures for theories
- Designed to work incrementally

Usability

- Enable rich encodings of problems
- Accept SMT LIB v2 common language
- Produce more than SAT/UNSAT answer:
 - Models, proofs, unsat cores, interpolants, ...

What is SMT?

$$(a = 5 \lor select(R, a) = b) \land g(5) \ge g(a) + 1$$

- Satisfiability Modulo Theories:
 - Determine if there exists satisfying assignment
 - If so, return SAT
 - Return UNSAT if none can be found
 - Satisfying assignment must be T-consistent

$$(a=5)$$
 \vee select $(R,a)=b$ $) \land g(5) \ge g(a)+1$

Abstract to boolean satisfiability problem

$$(a=5)$$
 \vee select(R,a)=b) \wedge g(5) \geq g(a)+1

Find satisfying assignment: A, C

- However, A and C are inconsistent according to theory
 - a = 5 and $g(5) \ge g(a) + 1$ cannot both be true according to UF + Int
- Can add additional clause:

(a = 5
$$\vee$$
 select(R, a) = b) \wedge g(5) \geq g(a) + 1
 \downarrow

(A \vee B \rightarrow) \wedge C \rightarrow

False True True

$$(\neg A \vee \neg C)$$
 \Rightarrow answer SAT

DPLL(T) Architecture [Nieuwenhuis et al 03]

Challenge: Quantifiers in SMT

$$\forall x. f(x+1) \ge f(x) + 1 \land (f(2) = 5 \lor select(R, a) = b)$$

For all integers x...

• Treat each quantified formula as literal, as before

- Find satisfying assignment: A, B
- ⇒ Problem: In general, determining consistency of quantified formulas is undecidable

Quantifier Instantiation

- Divide problem into:
 - Ground portion G, and quantified portion Q:

- Determine if G is T-inconsistent
 - If not, instantiate Q with some set of ground terms

Quantifier Instantiation

- Check again if G is T-inconsistent
 - If not, repeat

⇒ Sound but incomplete procedure

Instantiation-Based Approaches

- Given set of literals (G, Q):
 - Set of ground constraints G
 - Set of quantified assertions Q
- Questions:
 - -(1) How to choose instantiations for Q
 - -(2) When can we answer SAT?

Pattern-Based Quantifier Instantiation

[Detlefs et al 05]

- Idea: Determine instantiations heuristically
 - Find terms in Q with same shape as ground terms in G
- Example:

$$a = b$$
, $f(a, a) \neq b$, $\forall x$. $f(x, b) = a$

- Consider f(x, b) as trigger term
- Determine if f(a, a) and f(x, b) match,
 - Modulo set of background equalities E = { a=b }
- Here, f(x, b) E-matches f(a, a) with $\{x \rightarrow a\}$
 - Add instantiation [a/x] for quantifier
 - Adds constraint f(a, b) = a, leading to T-inconsistency

Pattern-Based Quantifier Instantiation

Challenges:

- Trigger selection is highly non-trivial
- Sensitive to syntactic changes in formulas
- Matching loops can occur
 - Repeating pattern of generated terms, f(a), f(f(a)), f(f(f(a))), ...
- # instantiations may explode
- It is an incomplete procedure, i.e. cannot answer SAT
- As a result, tends to:
 - Discover easy conflicts if they exist
 - Otherwise, overloads SMT solver with instances
 - Run indefinitely or answer unknown

Model-Based Quantifier Instantiation (MBQI) [Ge, deMoura 08]

- Idea: Try to show that no instance of Q falsifies the current model M for G
- To check if an instance of $\forall x$. F falsifies M:
 - \Rightarrow Suffices to check if $\neg F^M[e/x]$ is satisfable
- If unsat, then no instance of $\forall x$. F falsifies M
- Otherwise, we must refine M
 - Instantiate $\forall x$. F using sat assignment to $\neg F^M[e/x]$

MBQI: Example

P(a, a),
$$a \neq b$$
, $\forall z$. \neg P(z, b)

G

Find model M: {a, b}, representatives

$$P^{M} := \lambda \, xy. \, (x=a \land y=a) \quad \text{interpretations for uninterpreted symbols in Q}$$

MBQI: Example

Find model M : $\{a, b\},\$ $P^{M} := \lambda xy. (x=a \land y=a)$

$$\neg P^{M}(z, b) \equiv \neg(z=a \land b=a) \equiv true$$

Is (¬ true)[e/z] ≡ false satisfiable?
 ⇒ unsat, therefore Q does not falsify M

MBQI as Model Refinement

P(a,a),
$$a \neq b$$
, $\forall z$. \neg P(z,b)

G
Q

Find model M': { a, b },
$$P^{M'} := \lambda xy. x = a$$

$$\neg P^{M'}(z,b) \equiv \neg (z=a)$$

- Is $(\neg\neg (z = a))[e/z] \equiv (z = a)[e/z] \equiv (e = a)$ satisfiable? \Rightarrow sat with valuation $\{e \rightarrow a\}$
- Add instantiation [a/z], add ¬ P(a, b) to G
 - Guaranteed to rule out M' on subsequent iterations

Model-Based Quantifier Instantiation

Challenges:

- Hard to determine interpretations in M
 - Default values chosen heuristically
- External model checking calls are expensive

• Typically:

- Is effective at answering SAT for simple cases
- Can be paired with E-matching to improve coverage

Finite Model Finding

- Idea: Build model for G that is small enough to test Q exhaustively
- Given set of literals (G, Q):
 - Find a "smallest" model for G
 - One with fewest # of ground equivalence classes
 - Try every instance of Q in the model
 - Feasible if the number of instances is *finite*
 - If every instance is true in model, answer SAT

Why Small Models?

- Easier to test against quantifiers
 - -Given quantified formula $\forall x_1...x_n$. F($x_1 ... x_n$)
 - Naively, we require kⁿ instantiations
 - Where k is the cardinality of sort($x_1 ... x_n$)
 - Feasible if either:
 - Both n and k are small
 - We can recognize redundant instantiations
 - Use Model-Based Quantifier Instantiation

SMT vs ATP

- SMT Solvers
 - Strengths:
 - Efficient decision procedures for theories
 - Theories increase expressivity
 - Weaknesses:
 - Ability to handle quantifiers is limited
- Automated Theorem Provers (ATP)
 - Strengths:
 - Advanced methods for quantified clauses
 - Weaknesses:
 - Nearly no support for theories
 - Omission is intentional, as this leads to undecidability

Resolution-Based Theorem Proving

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma} \text{ Res} \qquad \qquad \frac{C \vee A \vee B}{(C \vee A)\sigma} \text{ Factor}$$
 where $\sigma = mgu(A, B)$.

- Sound and complete
 - If input is unsat, we will eventually derive \perp
 - When clause set is saturated wrt rules, input is sat
- Additional rules for equational reasoning
 - Paramodulation, superposition
- Optimizations
 - Term Indexing
 - Redundancy Elimination (i.e. clause subsumption)

ATP Approaches

- Deciding fragments of first-order logic (EPR):
 - Model evolution calculus [Baumgartner, Tinelli 03]
 - Darwin [Fuchs et al 04]
 - Inst-Gen [Korovin, Ganzinger 03]
 - iProver [Korovin 06]
- Finite model finding:
 - SEM-style model finding [Zhang, Zhang 96]
 - MACE-style model finding [McCune 94]
 - Paradox [Clausen, Sorenson 03]

MACE-Style Model Finding

- Idea: Check for models of fixed size by generating a corresponding ground queries
- Given (G, Q):
 - First, create ground problem G, F_{G,Q,1}
 - If sat, then model of size 1 exists
 - If unsat, create ground problem G, F_{G,Q,2}
 - If sat, then model of size 2 exists
 - •
- Will eventually find *finite* model, if one exists

MACE-Style Model Finding: Example

$$a \neq b, b = c, \forall x. f(x) = x$$

$$G \qquad Q$$

- No model of size 1 can be found...
- Generate ground problem G, F_{G,Q,2}:
 - Use domain constants d_1 , d_2

a
$$\neq$$
 b, b = c,
(a = d₁ \vee a = d₂), ...
(f(d₁) = d₁ \vee f(d₁) = d₂), equal to
(f(d₂) = d₁ \vee f(d₂) = d₂), some d_i
f(d₁) = d₁, f(d₂) = d₂ \longrightarrow Q is true for all d_i

MACE-Style Model Finding

Challenges:

- Introducing constants leads to value symmetries
 - Find identical models modulo renaming of constants
 - ⇒ Can use static symmetry breaking techniques
- May produce large # of clauses
 - Must test all instances of quantified clauses
 - ⇒ Use sort inference to determine a subset of instances that are relevant
 - ⇒ Use clause splitting to reduce # variables per clause

My Current Research

- New approaches to quantifiers in SMT
- In this talk: Finite Model Finding in CVC4
- Approach for (G, Q) consists of:
 - Finding minimal models for G
 - Model checking Q by exhaustive instantiation

Finite Model Finding for SMT

- Similar to MACE-style approaches for (G, Q),
 - Search for models of size 1, 2, 3, etc.
 - Naively, test all instances of Q for fixed model size
- In contrast to MACE-style approaches,
 - Search for models is integrated into DPLL(T)
 - Do not introduce domain constants explicitly
 - Use internal union-find data structure in SMT solver

Finite Model Finding in SMT: Example

$$a \neq b, b = c, \forall x. f(x) = x$$

$$G Q$$

- Using DPLL(T), we find smallest model for G, equivalence classes: { <u>a</u> }, { <u>b</u>, c }
- Instantiate Q with all representative terms:
 - f(a) = a, f(b) = b added to G
- Afterwards : { <u>a</u>, f(a) }, { <u>b</u>, c, f(b) }
 - All instances are true in model ⇒ answer SAT

Finite Model Finding

- To find small models:
 - Where "smallest" model for sort S means:
 - Fewest # equivalence classes of sort S
 - Try to find models of size 1, 2, 3, ... etc.
 - Impose cardinality constraints
 - Requires:
 - Control the DPLL(T) search for postulating cardinalities
 - Theory solver for equality + cardinality constraints

Solver for Eq + Cardinality Constraints

- Maintain disequality graph
 - Nodes are equivalence classes
 - Edges are disequalities
- For cardinality k, interested whether graph is k-colorable

- Partition disequality graph of the solver into regions where the edge density is high
 - Discover cliques local to regions
 - Suggest relevant terms to identify

Finite Model Finding for SMT

CVC4 + Finite Model Finding

- Implemented in SMT solver CVC4 [Barrett et al 10]
 - State of the art solver developed by NYU/Iowa
- Preliminary Results
 - Successful as backend to Intel's DVF Tool [Goel et al 12]
 - Effective at finding small countermodels (SAT cases)
 - Added ability to discharge VC's (UNSAT cases)
 - Orthogonal to other approaches
 - Answers SAT in cases where no other solver can

Ongoing Work

- For Equality + Cardinality Constraint Solver:
 - Improved clique finding and reporting
- For Quantifier Instantiation:
 - Incorporate heuristic instantiation
 - Use of iProver's Inst-Gen calculus
 - Require weaker condition for answering SAT
 - Eliminate the need for exhaustive instantiation

• Questions?