Data-centric Dynamic Partial Order Reduction

Marek Chalupa Krishnendu Chatterjee **Andreas Pavlogiannis**Nishant Sinha Kapil Vaidya

Thread 1: Withdraw(x)

1 if balance $\geqslant x$ then

 $\mathsf{balance} \leftarrow \mathsf{balance} - x$

Thread 1: Withdraw(x)	Thread 2: Withdraw(x)
if balance $\geqslant x$ then	$$ if balance $\geqslant x$ then
$balance \leftarrow balance - x$	2 balance \leftarrow balance $-x$

2

Thread 1: Withdraw(x)	Thread 2: Withdraw(x)
if balance $\geqslant x$ then	1 if balance $\geqslant x$ then
$balance \leftarrow balance - x$	2 balance \leftarrow balance $-x$

Withdraw(5) Withdraw(5)

balance = 8

2

Thread 1: Withdraw(x)	Thread 2: Withdraw(x)
if balance $\ge x$ then balance \leftarrow balance $-x$	1 if balance $\geqslant x$ then 2 balance \leftarrow balance $-x$

Withdraw(5) Withdraw(5)

balance = 8

2

Thread 1: Withdraw(x)	Thread 2: Withdraw(x)
if balance $\geqslant x$ then	1 if balance $\ge x$ then
$balance \leftarrow balance - x$	2 balance ← balance $-x$

Withdraw(5) Withdraw(5)

balance = 8

2

Thread 1: Withdraw(x)	Thread 2: Withdraw(x)
if balance $\geqslant x$ then	1 if balance $\geqslant x$ then
$balance \leftarrow balance - x$	2 balance \leftarrow balance $-x$

$$\mathsf{balance} = 8 \to 3$$

2

Thread 1: Withdraw(x)	Thread 2: Withdraw(x)
if balance $\geqslant x$ then	$$ if balance $\geqslant x$ then
$balance \leftarrow balance - x$	2 balance \leftarrow balance $-x$

Withdraw(5)

$$\mathsf{balance} = 8 \to 3 \to -2$$

2

Thread 1: Withdraw(x)	Thread 2: Withdraw(x)
if balance $\geqslant x$ then	1 if balance $\geqslant x$ then
balance \leftarrow balance $-x$	2 balance ← balance $-x$

Withdraw(5)

Withdraw(5)

$$\mathsf{balance} = 8 \to 3 \to -2$$

- No control over scheduling
- "Heisenbugs" lie in scheduling subtleties
- Formal verification to the rescue

- Deterministic processes
 - No randomization
 - Fixed inputs
- All nondeterministic behavior comes from the scheduler
- Goal local-state reachability: catch bugs, e.g. assertion violations

- Deterministic processes
 - No randomization
 - Fixed inputs
- All nondeterministic behavior comes from the scheduler
- Goal local-state reachability: catch bugs, e.g. assertion violations
- Algorithmic problem: visit all local states of each process
- Explicit state: visiting each state must be fast
- Stateless: cannot remember all system states

- Deterministic processes
 - No randomization
 - Fixed inputs
- All nondeterministic behavior comes from the scheduler
- Goal local-state reachability: catch bugs, e.g. assertion violations
- Algorithmic problem: visit all local states of each process
- Explicit state: visiting each state must be fast
- Stateless: cannot remember all system states
- Examine all traces
- n! many
- We can do better: DPOR

Commutative Events

Definition

A pair of events (e_1, e_2) is **non-commutative** if

- e_1 and e_2 are in the same process, or
- e_1 , e_2 use the same variable, and at last one is a write

The Mazurkiewicz Equivalence

Definition

Two traces t_1 , t_2 are **Mazuriekwicz equivalent**, written $t_1 \sim_M t_2$, if

- Events (t_1) = Events (t_2) = E, and
- for every non-commutative pair $(e_1, e_2) \in E \times E$,

$$e_1 {
ightarrow}_{t_1} e_2$$
 iff $e_1 {
ightarrow}_{t_2} e_2$

The Mazurkiewicz Equivalence

Definition

Two traces t_1 , t_2 are **Mazuriekwicz equivalent**, written $t_1 \sim_M t_2$, if

- Events (t_1) = Events (t_2) = E, and
- for every non-commutative pair $(e_1, e_2) \in E \times E$,

$$e_1 {
ightarrow}_{t_1} e_2$$
 iff $e_1 {
ightarrow}_{t_2} e_2$

T

$$t_1 \sim_M t_2 \implies \mathsf{local} \; \mathsf{states} \; \mathsf{agree}$$

$$n! \mapsto |\mathcal{T}/\sim_M|$$

Focus on 2 processes

$$\frac{\text{Process } p_1:}{w_x^1 \quad r_x^1} \qquad \frac{\text{Process } p_2:}{w_x^2 \quad r_x^2}$$

$$\frac{\text{Process } p_1:}{w_x^1 \quad r_x^1} \qquad \frac{\text{Process } p_2:}{w_x^2 \quad r_x^2}$$

 t_1 w_x^1 r_x^1 w_x^2 r_x^2

$$\frac{\text{Process } p_1:}{w_x^1 \quad r_x^1} \qquad \frac{\text{Process } p_2:}{w_x^2 \quad r_x^2}$$

$$\begin{array}{cccc} \mathbf{t_1} & & \mathbf{t_2} \\ w_x^1 & & w_x^2 \\ r_x^1 & & r_x^2 \\ w_x^2 & & w_x^1 \\ r_x^2 & & r_x^1 \end{array}$$

$$\frac{\text{Process } p_1:}{w_x^1 \quad r_x^1} \qquad \frac{\text{Process } p_2:}{w_x^2 \quad r_x^2}$$

$$\frac{\text{Process } p_1:}{w_x^1 \quad r_x^1} \qquad \frac{\text{Process } p_2:}{w_x^2 \quad r_x^2}$$

$$\frac{\text{Process } p_1:}{w_x^1 \quad r_x^1} \qquad \frac{\text{Process } p_2:}{w_x^2 \quad r_x^2}$$

The Observation Equivalence

Definition

Observation O_t : Reads(t) o Writes(t)

Definition

Two traces t_1 , t_2 are **Observation equivalent**, written $t_1 \sim_O t_2$, if

- Events (t_1) = Events (t_2) = E, and
- for each read $r \in E$,

$$O_{t_1}(r)=O_{t_2}(r)$$

The Observation Equivalence

Definition

Observation O_t : Reads(t) o Writes(t)

Definition

Two traces t_1 , t_2 are **Observation equivalent**, written $t_1 \sim_O t_2$, if

- Events (t_1) = Events (t_2) = E, and
- for each read $r \in E$,

$$O_{t_1}(r)=O_{t_2}(r)$$

T

 $t_1 \sim_O t_2 \implies \text{local states agree}$

Theorem (1)

 \sim_M refines \sim_O .

Theorem (1)

 \sim_M refines \sim_O .

Theorem (2)

 \sim_{O} can be exponentially coarser than \sim_{M} .

Theorem (1)

 \sim_M refines \sim_O .

Theorem (2)

 \sim_{O} can be exponentially coarser than \sim_{M} .

T

Theorem (1)

 \sim_M refines \sim_O .

Theorem (2)

 \sim_{O} can be exponentially coarser than \sim_{M} .

1

Theorem (1)

 \sim_{M} refines \sim_{O} .

Theorem (2)

 \sim_O can be exponentially coarser than \sim_M .

1

Theorem (3)

There exists an algorithm that explores every class of \sim_{O}

- exactly once (optimal),
- while spending polynomial time per class

Theorem 1: \sim_M refines \sim_O

• Consider traces t_1, t_2 with $t_1 \not\sim_O t_2$

• In all cases, $t_1 \not\sim_M t_2$

Theorem 2: \sim_O exponentially coarser than \sim_M

Process p ₁ :	Process p ₂ :		
1. write x	1. write x		
2. write x	2. write x		
n+1. read x	n+1. read x		

Theorem 2: \sim_O exponentially coarser than \sim_M

$$\begin{array}{cccc} \underline{\mathsf{Process}\; p_1:} & \underline{\mathsf{Process}\; p_2:} \\ \hline 1.\; \mathsf{write}\; x & 1.\; \mathsf{write}\; x \\ 2.\; \mathsf{write}\; x & 2.\; \mathsf{write}\; x \\ & \dots & & \dots \\ \hline n+1.\; \mathsf{read}\; x & n+1.\; \mathsf{read}\; x \end{array}$$

$$|\mathcal{T}/\sim_{O}| = O(n)$$
 $|\mathcal{T}/\sim_{M}| = \Omega(2^{n})$

Theorem 3: Exists optimal, fast algorithm

Theorem 3: Exists optimal, fast algorithm

A bit more involved...

Realizing observation functions

Algorithmic problem

Given observation function \mathcal{O} : Reads \mapsto Writes

- Construct trace t with $\mathcal{O}_t = \mathcal{O}$, or
- \bullet Return False if \mathcal{O} is unrealizable

Realizing observation functions

Algorithmic problem

Given observation function \mathcal{O} : Reads \mapsto Writes

- Construct trace t with $\mathcal{O}_t = \mathcal{O}$, or
- Return False if \mathcal{O} is unrealizable

- ullet Can construct ${\cal O}$ encoding assertion violations
- Not easier than our original problem

Well-formed observation functions

An observation function $\mathcal O$ is well-formed if ...

Well-formed observation functions

An observation function $\mathcal O$ is well-formed if . . .

Defines a local execution in each process

Well-formed observation functions

An observation function $\mathcal O$ is well-formed if . . .

• Defines a local execution in each process

Well-formed observation functions

An observation function $\mathcal O$ is well-formed if ...

• Defines a local execution in each process

ullet Any t that realizes ${\cal O}$ must be a linearization of $au_1 || au_2$

Observation constraints →

- Observation constraints →
- ullet Sequential consistency constraints o
 - 2 SAT: If $\overline{w}_y \rightarrow r_y$ then $\overline{w}_y \rightarrow w_y$

- Observation constraints →
- ullet Sequential consistency constraints o
 - 2 SAT: If $\overline{w}_y \rightarrow r_y$ then $\overline{w}_y \rightarrow w_y$
- Transitivity constraints
 - ullet If $(e_1
 ightarrow e_2$ and $e_2
 ightarrow e_3)$ then $e_1
 ightarrow e_3$
 - 3 SAT ©

- Observation constraints →
- ullet Sequential consistency constraints o
 - 2 SAT: If $\overline{w}_y \rightarrow r_y$ then $\overline{w}_y \rightarrow w_y$
- Transitivity constraints
 - ullet If $(e_1
 ightarrow e_2$ and $e_2
 ightarrow e_3)$ then $e_1
 ightarrow e_3$
 - 3 SAT ③
 - For 2 processes, every triplet of events has an ordered pair!
 - If $(e_1
 ightharpoonup e_2
 ightharpoonup e_3)$ then $e_1
 ightharpoonup e_3$
 - ullet If $(e_1
 ightarrow e_2$ and e_2 e_3 then $e_1
 ightarrow e_3$

- Observation constraints →
- Sequential consistency constraints →
 - 2 SAT: If $\overline{w}_y \rightarrow r_y$ then $\overline{w}_y \rightarrow w_y$
- Transitivity constraints
 - ullet If $(e_1
 ightarrow e_2$ and $e_2
 ightarrow e_3)$ then $e_1
 ightarrow e_3$
 - 3 SAT ©
 - For 2 processes, every triplet of events has an ordered pair!
 - If $(e_1 \rightarrow e_2 \text{ and } e_2 \rightarrow e_3)$ then $e_1 \rightarrow e_3$
 - ullet If $(e_1
 ightarrow e_2$ and e_2 e_3) then $e_1
 ightarrow e_3$
 - 2 SAT ©

Theorem

For 2 processes, realizing a well-formed observation requires polynomial time.

- Start with an empty observation
- $\textbf{ While at node } \textit{u} \textit{ with observation } \mathcal{O}_{\textit{u}}$

 $\mathcal{O} = \emptyset$

- Start with an empty observation
- **4** While at node u with observation \mathcal{O}_u
 - Get a (any!) trace t_u realizing \mathcal{O}_u

 $\mathcal{O}=\varnothing$

- Start with an empty observation
- **4** While at node u with observation \mathcal{O}_u
 - Get a (any!) trace t_u realizing \mathcal{O}_u
 - Mutation: take every
 - $\mathbf{0}$ $r \in \mathsf{Events}(t_u) \setminus \mathcal{O}_u$, and
 - $w \in Events(t_u)$ with Confl(r, w)

 $\mathcal{O} = \emptyset$

- Start with an empty observation
- **4** While at node u with observation \mathcal{O}_u
 - Get a (any!) trace t_u realizing \mathcal{O}_u
 - Mutation: take every
 - $\mathbf{0}$ $r \in \mathsf{Events}(t_u) \setminus \mathcal{O}_u$, and
 - $w \in \text{Events}(t_u) \text{ with } \text{Confl}(r, w)$
 - **3** Construct successor v of u with $\mathcal{O}_v = \mathcal{O}_u \cup \{r \mapsto w\}$
 - (If \mathcal{O}_{v} not well-formed, skip)

- Start with an empty observation
- **4** While at node u with observation \mathcal{O}_u
 - Get a (any!) trace t_u realizing \mathcal{O}_u
 - Mutation: take every
 - $\mathbf{0}$ $r \in \mathsf{Events}(t_u) \setminus \mathcal{O}_u$, and
 - $w \in \text{Events}(t_u) \text{ with } \text{Confl}(r, w)$
 - **3** Construct successor v of u with $\mathcal{O}_v = \mathcal{O}_u \cup \{r \mapsto w\}$
 - (If \mathcal{O}_{v} not well-formed, skip)

- Start with an empty observation
- **4** While at node u with observation \mathcal{O}_u
 - Get a (any!) trace t_u realizing \mathcal{O}_u
 - Mutation: take every
 - $\mathbf{0}$ $r \in \mathsf{Events}(t_u) \setminus \mathcal{O}_u$, and
 - $w \in \text{Events}(t_u) \text{ with } \text{Confl}(r, w)$
 - **3** Construct successor v of u with $\mathcal{O}_v = \mathcal{O}_u \cup \{r \mapsto w\}$
 - (If \mathcal{O}_{v} not well-formed, skip)

- Start with an empty observation
- **4** While at node u with observation \mathcal{O}_u
 - Get a (any!) trace t_u realizing \mathcal{O}_u
 - Mutation: take every
 - $\mathbf{0}$ $r \in \mathsf{Events}(t_u) \setminus \mathcal{O}_u$, and
 - $w \in \text{Events}(t_u) \text{ with } \text{Confl}(r, w)$
 - **3** Construct successor v of u with $\mathcal{O}_v = \mathcal{O}_u \cup \{r \mapsto w\}$
 - (If \mathcal{O}_{v} not well-formed, skip)

- Start with an empty observation
- **4** While at node u with observation \mathcal{O}_u
 - Get a (any!) trace t_u realizing \mathcal{O}_u
 - Mutation: take every
 - $\mathbf{0}$ $r \in \mathsf{Events}(t_u) \setminus \mathcal{O}_u$, and
 - $w \in \text{Events}(t_u) \text{ with Confl}(r, w)$
 - **3** Construct successor v of u with $\mathcal{O}_v = \mathcal{O}_u \cup \{r \mapsto w\}$
 - (If \mathcal{O}_{v} not well-formed, skip)

- Start with an empty observation
- **4** While at node u with observation \mathcal{O}_u
 - Get a (any!) trace t_u realizing \mathcal{O}_u
 - Mutation: take every
 - $\mathbf{0}$ $r \in \mathsf{Events}(t_u) \setminus \mathcal{O}_u$, and
 - $w \in \text{Events}(t_u) \text{ with Confl}(r, w)$
 - **3** Construct successor v of u with $\mathcal{O}_v = \mathcal{O}_u \cup \{r \mapsto w\}$
 - (If \mathcal{O}_{v} not well-formed, skip)

- Start with an empty observation
- **4** While at node u with observation \mathcal{O}_u
 - Get a (any!) trace t_u realizing \mathcal{O}_u
 - Mutation: take every
 - $\mathbf{0}$ $r \in \mathsf{Events}(t_u) \setminus \mathcal{O}_u$, and
 - $w \in \text{Events}(t_u) \text{ with Confl}(r, w)$
 - **3** Construct successor v of u with $\mathcal{O}_v = \mathcal{O}_u \cup \{r \mapsto w\}$
 - (If \mathcal{O}_{v} not well-formed, skip)
- bookkeeping (local!) to guarantee optimality

Theorem

- Every observation function visited once
- Total time $O(\text{poly}(n) \cdot |\mathcal{T}/\sim_O|)$

Focus on $k \geqslant 2$ processes

$k \geqslant 2$ processes

Theorem

Realizing a well-formed observation function is NP-complete.

Hints on giving up either

- Polynomial time, or
- $\bullet \sim_{\mathcal{O}}$ coarseness

Topologies

A graph G = (V, E) depicts the communication topology

- $V = \{p_1, \ldots, p_k\}$
- $(p_i, p_i) \in E$ iff processes p_i, p_i share a global variable

k processes

Acyclic topologies

- 2 processes, stars, pipelines, ...
- $\bullet \sim_O$ optimal
- Time $O(\operatorname{poly}(n) \cdot |\mathcal{T}/\sim_O|)$

k processes

Acyclic topologies

- 2 processes, stars, pipelines, ...
- $\bullet \sim_O$ optimal
- Time $O(\operatorname{poly}(n) \cdot |\mathcal{T}/\sim_O|)$

Arbitrary topologies

- Cliques, . . .
- optimal
 - $\sim_M \leqslant \sim \leqslant \sim_O$
 - ullet \sim exponentially coarser than \sim_M
- Time $O(\operatorname{poly}(n) \cdot |\mathcal{T}/\sim |)$

k processes

Acyclic topologies

- 2 processes, stars, pipelines, ...
- $\bullet \sim_O$ optimal
- Time $O(\operatorname{poly}(n) \cdot |\mathcal{T}/\sim_O|)$

Arbitrary topologies

- Cliques, . . .
- ∼ optimal
 - $\sim_M \leqslant \sim \leqslant \sim_O$
 - ullet \sim exponentially coarser than \sim_M
- Time $O(\operatorname{poly}(n) \cdot |\mathcal{T}/\sim |)$

Space usage $O(n^3)$

Implementation & Experiments

- Implemented DC-DPOR for handling programins in C/pthreads
- Based on Nidhugg
- Conducted some experiments, comparing with Source-DPOR

Synthetic Benchmarks

```
 \begin{tabular}{lll} // & ---- & {\tt Process} & 0 < j < 2 & ---- \\ 1 & i \leftarrow 0 \\ 2 & {\tt while} & i < n & {\tt do} \\ 3 & & i \leftarrow i+1 \\ 4 & & {\tt last\_id} \leftarrow j \\ 5 & & x \leftarrow {\tt get\_message}(j) \\ 6 & & {\tt if} & {\tt last\_id} = j & {\tt then} \\ 7 & & & {\tt return} \\ 8 & {\tt end} \\ \end{tabular}
```

Synthetic Benchmarks

```
// ---- Process 0 < j < 2 ----

1 i \leftarrow 0

2 while i < n do

3 i \leftarrow i + 1

4 last.id \leftarrow j

5 x \leftarrow get\_message(j)

6 if last.id = j then

7 return

8 end
```

Benchmark	Traces		Time (s)	
	DC-DPOI	R S-DPOR	DC-DPOF	R S-DPOR
opt_lock(12)	141	785,674	0.35	252.64
opt_lock(13)	153	2,056,918	0.36	703.90
opt_lock(14)	165	5,385,078	0.43	1,880.12
opt_lock(15)	177	-	0.46	-
opt_lock(50)	597	-	5.91	-
opt_lock(100)	1,197	-	43.82	-
opt_lock(200)	2,397	-	450.99	-

Benchmarks from SV-Comp (1)

Benchmark			Time (s)	
	DC-DPOR	S-DPOR	DC-DPOR	S-DPOR
fib_bench(4)	1,233	19,605	0.93	3.03
fib_bench(5)	8,897	218,243	7.41	37.82
fib_bench(6)	70,765	2,364,418	85.71	463.52

Benchmark	Tra	ces	Time (s)	
	DC-DPOR	S-DPOR	DC-DPOR	S-DPOR
pthread_demo(8)	256	12,870	0.37	3.17
pthread_demo(10)	1,024	184,756	1.23	49.51
pthread_demo(12)	4,096	2,704,156	5.30	884.99

Benchmarks from SV-Comp (2)

Benchmark	Traces		Time (s)	
	DC-DPOF	R S-DPOR	DC-DPOF	S-DPOR
parker(8)	1,254	3,343	1.52	1.33
parker(10)	2,411	6,212	5.03	3.96
parker(12)	4,132	10,361	8.09	5.62
parker(14)	6,529	16,022	11.96	6.86
parker(16)	9,714	23,427	19.89	10.85

- A new paradigm for DPOR
- Data-centric instead of Control-centric
- Coarser partitioning of the trace space
- Efficient exploration

Thank you! Questions?

k processes

Acyclic topologies

- 2 processes, stars, pipelines, . . .
- $\bullet \sim_O$ optimal
- Time $O(\operatorname{poly}(n) \cdot |\mathcal{T}/\sim_O|)$

Arbitrary topologies

- Cliques, ...
- ullet \sim optimal
 - $\bullet \sim_M \leqslant \sim \leqslant \sim_O$
 - ullet \sim exponentially coarser than \sim_M
- Time $O(\operatorname{poly}(n) \cdot |\mathcal{T}/\sim |)$

- Space usage $O(n^3)$
 - (compare with $\Omega(2^n)$ in Optimal Mazurkiewicz-based DPOR)

Lemma

- Target observation function \mathcal{O} , and t^* a witness trace, i.e., $\mathcal{O}_{t^*} = \mathcal{O}$
- Take any trace t with t $\not\sim_O$ t*

t -

Lemma

- Target observation function \mathcal{O} , and t^* a witness trace, i.e., $\mathcal{O}_{t^*} = \mathcal{O}$
- Take any trace t with t eq_0 t*

Then, there exists a **first read** $r \in Events(t^*)$ such that:

Lemma

- Target observation function \mathcal{O} , and t^* a witness trace, i.e., $\mathcal{O}_{t^*} = \mathcal{O}$
- Take any trace t with t $\not\sim_O$ t*

Then, there exists a first read $r \in Events(t^*)$ such that:

• $r \in \text{Events}(t)$,

Lemma

- Target observation function \mathcal{O} , and t^* a witness trace, i.e., $\mathcal{O}_{t^*} = \mathcal{O}$
- Take any trace t with t $\not\sim_O$ t*

Then, there exists a **first read** $r \in Events(t^*)$ such that:

- $r \in \text{Events}(t)$,
- $\mathcal{O}_{t^*}(r) \in \mathsf{Events}(t)$,

Lemma

- Target observation function \mathcal{O} , and t^* a witness trace, i.e., $\mathcal{O}_{t^*} = \mathcal{O}$
- Take any trace t with t $\not\sim_O$ t*

Then, there exists a **first read** $r \in Events(t^*)$ such that:

- $r \in \text{Events}(t)$,
- $\mathcal{O}_{t^*}(r) \in \mathsf{Events}(t)$,
- $\mathcal{O}_{t^*}(r) \neq \mathcal{O}_t(r)$

Optimizations (we have a few)

Optimizations (we have a few)

Cycle detection

- Unit propagation in realizing observation functions
- $(a \implies b) \land a \text{ implies } b$
- Strengthens the PO
- Early cycle detection avoids 2 SAT altogether

Optimizations (we have a few)

Cycle detection

- Unit propagation in realizing observation functions
- $(a \implies b) \land a \text{ implies } b$
- Strengthens the PO
- Early cycle detection avoids 2 SAT altogether

Burst mutations

- Standard algorithm accumulates mutations one-by-one
- Instead accumulate many at once

 Makes the recursion tree much shallower

Realizing Observation Functions is Hard

- Reduction from Monotone 1-in-3 SAT
- One unobserved w'_i for each variable x_i
- One observation $r_i^C \mapsto w_i C$ iff x_i appears in clause C
- Some extra happens-before edges

Synthetic Benchmarks

Synthetic Benchmarks

Benchmark	Traces		Time (s)	
	DC-DPOF	R S-DPOR	DC-DPOR	S-DPOR
lastzero(4)	38	2,118	0.21	0.84
lastzero(5)	113	53,172	0.34	19.29
lastzero(6)	316	1,765,876	0.63	856
lastzero(7)	937	-	1.8	-
lastzero(8)	3,151	-	9.32	-
lastzero(9)	12,190	-	47.97	-
lastzero(10)	52,841	-	383.12	-