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Concurrency Bugs

Thread 1: Withdraw(x)

1 if balance > x then
2 balance < balance — x
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Concurrency Bugs

Thread 1: Withdraw(x) Thread 2: Withdraw(x)

1 if balance > x then 1 if balance > x then
2 balance < balance — x 2 balance < balance — x
Withdraw(5) Withdraw(5)

balance =8 — 3
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Concurrency Bugs

Thread 1: Withdraw(x) Thread 2: Withdraw(x)

1 if balance > x then 1 if balance > x then
2 balance < balance — x 2 balance < balance — x
Withdraw(5) Withdraw(5)

balance =8 -3 — -2
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Concurrency Bugs

Thread 1: Withdraw(x) Thread 2: Withdraw(x)

1 if balance > x then 1 if balance > x then
2 balance < balance — x 2 balance < balance — x
Withdraw(5) Withdraw(5)

balance =8 -3 — -2

@ No control over scheduling
@ "“Heisenbugs” lie in scheduling subtleties

@ Formal verification to the rescue
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Concurrency Setting
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Concurrency Setting

@ Deterministic processes

o No randomization
o Fixed inputs

@ All nondeterministic behavior comes from the scheduler

@ Goal local-state reachability: catch bugs, e.g. assertion violations
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Algorithmic problem: visit all local states of each process

Explicit state: visiting each state must be fast

Stateless: cannot remember all system states

Data-centric Dynamic Partial Order Reduction 3



Concurrency Setting

@ Deterministic processes

o No randomization
o Fixed inputs

All nondeterministic behavior comes from the scheduler

Goal local-state reachability: catch bugs, e.g. assertion violations

Algorithmic problem: visit all local states of each process

Explicit state: visiting each state must be fast

Stateless: cannot remember all system states

Examine all traces

n! many
@ We can do better: DPOR
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Commutative Events

Definition

A pair of events (e, &) is non-commutative if
@ e and e are in the same process, or

@ e1, & use the same variable, and at last one is a write
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The Mazurkiewicz Equivalence

Two traces t1, t, are Mazuriekwicz equivalent, written t; ~p; to, if
o Events(t;) = Events(t,) = E, and
@ for every non-commutative pair (e1, &) € E x E,

e1— € iff

€116
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The Mazurkiewicz Equivalence

Two traces t1, t, are Mazuriekwicz equivalent, written t; ~p; to, if
o Events(t;) = Events(t,) = E, and
@ for every non-commutative pair (e1, &) € E x E,

e1— € iff

€116

t1 ~y to = local states agree

nl— T/ ~wm|
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Focus on 2 processes
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Motivating Example

Process p; : Process p; :
1,1 2 2
WX rX WX rX
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Process p; : Process p; :
Wl ! Wl P2
t1 to
wy wg
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Process p; : Process p; :
1,1 2 2
WX rX WX rX

t1 7(/ M t>

wy wg
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Motivating Example

Process p; : Process p; :
1,1 2 2
WX rX WX rX

t1 7(/ M t>

XN

(Y
Xﬁ'—‘ Xsl—‘
XWN g

2 1

Wi Wy D
2 1

I "
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Motivating Example

Process p; : Process p; :
Wl ! Wl P2
t1 7(/ M t>

Y ()
><\I\J >§N ><ﬁ|—\ xs,_.
X Xs,_\ X To ng
U
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The Observation Equivalence

Definition
Observation O; : Reads(t) — Writes(t)

Definition

Two traces t1, t, are Observation equivalent, written t; ~¢ b, if
e Events(t;) = Events(t;) = E, and

@ for each read r € E,

Ot1(r) = Otz(r)
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The Observation Equivalence

Definition
Observation O; : Reads(t) — Writes(t)

Definition

Two traces t1, t, are Observation equivalent, written t; ~¢ b, if
e Events(t;) = Events(t;) = E, and

@ for each read r € E,

Ot1(r) = Otz(r)

t; ~o to = local states agree
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Main Result

~w refines ~gq.
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Main Result

~w refines ~gq.

~o can be exponentially coarser than ~ .

T

There exists an algorithm that explores every class of ~¢

@ exactly once (optimal),

@ while spending polynomial time per class
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Theorem 1: ~, refines ~¢

o Consider traces ty, t, with t; 4o to
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Theorem 1: ~, refines ~¢

o Consider traces ty, t, with t; 4o to

. o~ S~
t i i — to i i i —
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Theorem 1: ~, refines ~¢

o Consider traces ty, t, with t; 4o to

. o~ S~
t i i — to i i i —
w o r w W w w

@ In all cases, t; #um t
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Theorem 2: ~ exponentially coarser than ~,

Process p1 : Process p> :
1. write x 1. write x
2. write x 2. write x

n+ 1. read x n+ 1. read x
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Theorem 2: ~ exponentially coarser than ~,

Process p1 : Process p> :
1. write x 1. write x
2. write x 2. write x

n+ 1. read x n+ 1. read x

T/ ~o|=0(n) [T/ ~m|=0(2")
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Theorem 3: Exists optimal, fast algorithm
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Theorem 3: Exists optimal, fast algorithm

A bit more involved. ..
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Realizing observation functions

Algorithmic problem

Given observation function O : Reads — Writes
@ Construct trace t with O; = O, or

@ Return False if O is unrealizable
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Realizing observation functions

Algorithmic problem
Given observation function O : Reads — Writes

@ Construct trace t with O; = O, or
@ Return False if O is unrealizable

@ Can construct O encoding assertion violations

@ Not easier than our original problem
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Realizing well-formed observation functions (1)

Well-formed observation functions
An observation function O is well-formed if . ..
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@ Defines a local execution in each process
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Realizing well-formed observation functions (1)

Well-formed observation functions
An observation function O is well-formed if . ..

@ Defines a local execution in each process

@ Any t that realizes O must be a linearization of 71|72
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Realizing well-formed observation functions (2)

1 2
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Realizing well-formed observation functions (2)

@ Observation constraints —

1 2

rX</

Wi
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Realizing well-formed observation functions (2)

T1 2

@ Observation constraints —

@ Sequential consistency constraints —

e 2 SAT: If wy—r, then w,—w,
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Realizing well-formed observation functions (2)

@ Observation constraints —
@ Sequential consistency constraints —
1 2 e 2 SAT: If wy—r, then w,—w,
o Transitivity constraints
o If (e1 = e and &2 — e3) then e — 3

- / e 3SAT®
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Realizing well-formed observation functions (2)

@ Observation constraints —
@ Sequential consistency constraints —
1 2 e 2 SAT: If wy—r, then w,—w,
o Transitivity constraints
o If (e1 = e and &2 — e3) then e — 3

- / e 3SAT®

For 2 processes, every triplet of events

\ , has an ordered pair!

Y If (6r==e==0d & — e3) then e1 — €3
If (61 — & antd=r<=2:) then e; — &3
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Realizing well-formed observation functions (2)

@ Observation constraints —
@ Sequential consistency constraints —
1 2 e 2 SAT: If wy—r, then w,—w,
o Transitivity constraints
o If (e1 = e and &2 — e3) then e — 3

- / e 3SAT®

For 2 processes, every triplet of events

\ , has an ordered pair!

Y If (6r==e==0d & — e3) then e1 — €3

If (e1 — e, ant=r<¢3) then e; — &3
e 2SAT ©

For 2 processes, realizing a well-formed observation requires polynomial
time.
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Data-centric DPOR

@ Start with an empty observation
@ While at node u with observation O,
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@ Mutation: take every

@ r € Events(t,) \ Ou, and
@ w € Events(t,) with Confl(r, w)
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Data-centric DPOR

@ Start with an empty observation
@ While at node u with observation O,

@ Get a (any!) trace t, realizing O, /@

@ Mutation: take every r"w

@ r € Events(t,) \ Ou, and
@ w € Events(t,) with Confl(r, w)

@ Construct successor v of u with
O, =0,U{r— w}
@ (If Oy not well-formed, skip)
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Data-centric DPOR

@ Start with an empty observation

@ While at node v with observation O, 0=2
@ Get a (any!) trace t, realizing O, /@
@ Mutation: take every rewo ,

r— Wl
@ r € Events(t,) \ Ou, and
@ w € Events(t,) with Confl(r, w)

@ Construct successor v of u with
O, =0,U{r— w}
@ (If Oy not well-formed, skip)
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Data-centric DPOR

@ Start with an empty observation
@ While at node u with observation O,
® Get a (any!) trace t, realizing O,
@ Mutation: take every rewo
r— w
@ r € Events(t,) \ Ou, and 1
@ w € Events(t,) with Confl(r, w) @
@ Construct successor v of u with
Oy =0,U{r— w} r=wy
@ (If Oy not well-formed, skip) Gé

!
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Data-centric DPOR

@ Start with an empty observation
@ While at node u with observation O,
® Get a (any!) trace t, realizing O,
@ Mutation: take every rewo ;e w)
r— Wl
@ r € Events(t,) \ Ou, and
@ w € Events(t,) with Confl(r, w) @ @
@ Construct successor v of u with
O, =0,U{r— w} r

—
@ (If Oy not well-formed, skip) Gé @
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Data-centric DPOR

@ Start with an empty observation

@ While at node v with observation O, 0=2
® Get a (any!) trace t, realizing O,
@ Mutation: take every rew , e w)
ro— Wl
@ r € Events(t,) \ Ou, and
@ w € Events(t,) with Confl(r, w) @

@ Construct successor v of u with
O, =0,U{r— w} r

= wyr’ = w) rew
@ (If Oy not well-formed, skip) Gé @ ga
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Data-centric DPOR

@ Start with an empty observation
@ While at node u with observation O,

® Get a (any!) trace t, realizing O,
@ Mutation: take every rew , e w)

@ r € Events(t,) \ Ou, and !
@ w € Events(t,) with Confl(r, w) @ @
@ Construct successor v of u with
O, =0,U{r— w} r—=
@ (If Oy not well-formed, skip) Gé @
@ bookkeeping (local!) to guarantee
optimality

@ Every observation function visited once

o Total time O (poly(n) - |T/ ~o |)
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Focus on k > 2 processes

Data-centric Dynamic Partial Order Reduction
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k > 2 processes

Realizing a well-formed observation function is NP-complete.

Hints on giving up either
@ Polynomial time, or

@ ~p coarseness

Data-centric Dynamic Partial Order Reduction 18



Topologies

A graph G = (V, E) depicts the communication topology

° V:{p17"'7pk}
@ (pi, pj) € E iff processes p;, pj share a global variable
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k processes

Acyclic topologies
@ 2 processes, stars, pipelines, ...
@ ~p optimal
e Time O (poly(n)-|T/ ~o )
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k processes

Arbitrary topologies

Acyclic topologies e Cliques, ...

@ 2 processes, stars, pipelines, ... e ~ optimal
o~y < ~ < ~o
e ~ exponentially coarser than ~

e Time O (poly(n) - |7/~ )

@ ~p optimal
e Time O (poly(n)-|T/ ~o|)
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k processes

Arbitrary topologies

Acyclic topologies e Cliques, ...

@ 2 processes, stars, pipelines, ... e ~ optimal
o~y < ~ < ~o
e ~ exponentially coarser than ~

e Time O (poly(n) - |7/~ )

@ ~p optimal
e Time O (poly(n)-|T/ ~o|)

Space usage O(n%)
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Implementation & Experiments

o Implemented DC-DPOR for handling programins in C/pthreads
@ Based on Nidhugg

@ Conducted some experiments, comparing with Source-DPOR

Data-centric Dynamic Partial Order Reduction 21



Synthetic Benchmarks

// --—- Process 0 <j <2 ——--
i< 0
while i < n do

i<—i+1

last_id < j

x + get_message(j)

if last_id = j then

‘ return

L I O O

end
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Synthetic Benchmarks

// ---- Process 0<j <2 ----
i< 0
while i < n do

i<—i+1

last_id < j

x + get_message(j)

if last_id = j then

‘ return

L I O O

end

Benchmark Traces Time (s)
DC-DPOR S-DPOR |DC-DPOR S-DPOR
opt_lock(12) 141 785,674 0.35 252.64
opt_lock(13) 153 2,056,918 0.36 703.90
(1
(1

opt_lock(14) 165 5,385,078 0.43  1,880.12

opt_lock(15) 177 - 0.46 -
opt_lock(50) 597 - 5.91 -
opt_lock(100)|[ 1,197 N 43.82 N
opt_lock(200)|[ 2,397 - 450.99 -
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Benchmarks from SV-Comp (1)

Benchmark Traces Time (s)
DC-DPOR S-DPOR |DC-DPOR S-DPOR
fib_bench(4)|| 1,233 19,605 0.93 3.03
fib_bench(5)|| 8,897 218,243 7.41 37.82
fib_bench(6)|| 70,765 2,364,418 85.71 463.52

Benchmark Traces Time (s)
DC-DPOR S-DPOR |DC-DPOR S-DPOR
pthread_demo(8) 256 12,870 0.37 3.17
pthread_demo(10)|| 1,024 184,756 1.23 49.51
pthread_demo(12)|| 4,096 2,704,156 5.30 884.99
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Benchmarks from SV-Comp (2)

Benchmark Traces Time (s)
DC-DPOR S-DPOR|DC-DPOR S-DPOR
parker(8) 1,254 3,343 1.52 1.33
parker(10) 2,411 6,212 5.03 3.96
parker(12) 4,132 10,361 8.09 5.62
parker(14) 6,529 16,022 11.96 6.86
parker(16) 9,714 23,427 19.89 10.85
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A new paradigm for DPOR
Data-centric instead of Control-centric
Coarser partitioning of the trace space
Efficient exploration

Thank you!

Questions?

Data-centric Dynamic Partial Order Reduction
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k processes

Arbitrary topologies

Acyclic topologies o Cliques, ...
@ 2 processes, stars, pipelines, . .. e ~ optimal

e~y < ~ < ~o

e ~ exponentially coarser than ~

e Time O (poly(n)-|T/ ~o )
e Time O (poly(n)-|T/ ~|)

@ ~p optimal

— ~ based
---  ~ based

@ Space usage O(n®)
o (compare with £2(2") in Optimal Mazurkiewicz-based DPOR)
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Data-centric DPOR

Lemma

o Target observation function O, and t* a witness trace, i.e., O = O
@ Take any trace t with t %o t*

Data-centric Dynamic Partial Order Reduction

N



Data-centric DPOR

@ Target observation function O, and t* a witness trace, i.e., O = O
o Take any trace t with t %o t*

Then, there exists a first read r € Events(t*) such that:
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Data-centric DPOR

@ Target observation function O, and t* a witness trace, i.e., O = O
o Take any trace t with t %o t*

Then, there exists a first read r € Events(t*) such that:
o r € Events(t),

@ O« (r) € Events(t),
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Data-centric DPOR

@ Target observation function O, and t* a witness trace, i.e., O = O
o Take any trace t with t %o t*

Then, there exists a first read r € Events(t*) such that:
o r € Events(t),

@ O« (r) € Events(t),

0 O (r) # O(r)

Data-centric Dynamic Partial Order Reduction
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Optimizations (we have a few)
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Optimizations (we have a few)

Cycle detection

@ Unit propagation in realizing
observation functions

e (a = b)Aaimplies b
@ Strengthens the PO

@ Early cycle detection avoids 2
SAT altogether
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Optimizations (we have a few)

Burst mutations

Cycle detection o Standard algorithm

@ Unit propagation in realizing accumulates mutations
observation functions one-by-one
o (a = b)Aaimplies b @ Instead accumulate many at
@ Strengthens the PO once
@ Early cycle detection avoids 2 m 2
SAT altogether W
I Ry r,
re d--T >

@ Makes the recursion tree much
shallower
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Realizing Observation Functions is Hard

Reduction from Monotone 1-in-3 SAT

One unobserved w! for each variable x;

C

One observation r;- — w; C iff x; appears in clause C

Some extra happens-before edges

¢=(X1VX2VX3)/\(X1 VX4\/X5)

Data-centric Dynamic Partial Order Reduction 4



Synthetic Benchmarks

/] - Process j =0 ——--——--——-
1i4n
2 while array[i] # 0 do
N !
4 end
/] === Process 1 <j<n -—————---

array[j] « array[j — 1] +1

2}
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Synthetic Benchmarks

/] - Process j =0 ——--——--——-
1i4n
2 while array[i] # 0 do
N !
4 end
/] === Process 1 <j<n -—————---

2}

array[j] « array[j — 1] +1

Benchmark Traces Time (s)
DC-DPOR S-DPOR |[DC-DPOR S-DPOR

lastzero(4) 38 2,118 0.21 0.84
lastzero(5) 113 53,172 0.34 19.29
lastzero(6) 316 1,765,876 0.63 856
lastzero(7) 937 - 1.8 -
lastzero(8) || 3,151 - 9.32 -
lastzero(9) || 12,190 - 47.97 -
lastzero(10)|| 52,841 - 383.12 -
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