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Concurrency Bugs

Thread 1: Withdraw(x)

1 if balance > x then
2 balance← balance− x

Withdraw(5)

Thread 2: Withdraw(x)

1 if balance > x then
2 balance← balance− x

Withdraw(5)

balance = 8

→ 3→ −2

No control over scheduling

“Heisenbugs” lie in scheduling subtleties

Formal verification to the rescue
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Concurrency Setting

Deterministic processes

No randomization
Fixed inputs

All nondeterministic behavior comes from the scheduler

Goal local-state reachability: catch bugs, e.g. assertion violations

Algorithmic problem: visit all local states of each process

Explicit state: visiting each state must be fast

Stateless: cannot remember all system states

Examine all traces

n! many

We can do better: DPOR
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Commutative Events

Definition

A pair of events (e1, e2) is non-commutative if

e1 and e2 are in the same process, or

e1, e2 use the same variable, and at last one is a write

Data-centric Dynamic Partial Order Reduction 4



The Mazurkiewicz Equivalence

Definition

Two traces t1, t2 are Mazuriekwicz equivalent, written t1 ∼M t2, if

Events(t1) = Events(t2) = E , and

for every non-commutative pair (e1, e2) ∈ E × E ,

e1→t1e2 iff

e1→t2e2

T

t1 ∼M t2 =⇒ local states agree

n! 7→ |T / ∼M |
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Focus on 2 processes
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Motivating Example

Process p1 :

w1
x r1

x

Process p2 :

w2
x r2

x

t1

w1
x

r1
x

w2
x

r2
x

t2

w2
x

r2
x

w1
x

r1
x

6∼M
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The Observation Equivalence

Definition

Observation Ot : Reads(t)→Writes(t)

Definition

Two traces t1, t2 are Observation equivalent, written t1 ∼O t2, if

Events(t1) = Events(t2) = E , and

for each read r ∈ E ,

Ot1 (r) = Ot2 (r)

T

t1 ∼O t2 =⇒ local states agree

Data-centric Dynamic Partial Order Reduction 8



The Observation Equivalence

Definition

Observation Ot : Reads(t)→Writes(t)

Definition

Two traces t1, t2 are Observation equivalent, written t1 ∼O t2, if

Events(t1) = Events(t2) = E , and

for each read r ∈ E ,

Ot1 (r) = Ot2 (r)

T

t1 ∼O t2 =⇒ local states agree

Data-centric Dynamic Partial Order Reduction 8



Main Result

Theorem (1)

∼M refines ∼O .

Theorem (2)

∼O can be exponentially coarser than ∼M .

T

Theorem (3)

There exists an algorithm that explores every class of ∼O

exactly once (optimal),

while spending polynomial time per class
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Theorem 1: ∼M refines ∼O

Consider traces t1, t2 with t1 6∼O t2

t1
rw

t2
rw

In all cases, t1 6∼M t2
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Theorem 2: ∼O exponentially coarser than ∼M

Process p1 :

1. write x

2. write x

. . .

n + 1. read x

Process p2 :

1. write x

2. write x

. . .

n + 1. read x

|T / ∼O | = O(n) |T / ∼M | = Ω(2n)
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Theorem 3: Exists optimal, fast algorithm

A bit more involved. . .
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Realizing observation functions

Algorithmic problem

Given observation function O : Reads 7→Writes

Construct trace t with Ot = O, or

Return False if O is unrealizable

Can construct O encoding assertion violations

Not easier than our original problem
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Realizing well-formed observation functions (1)

Well-formed observation functions

An observation function O is well-formed if . . .

Defines a local execution in each process

τ1 τ2

Any t that realizes O must be a linearization of τ1||τ2
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Realizing well-formed observation functions (2)

τ1 τ2

Observation constraints →
Sequential consistency constraints →

2 SAT: If w y→ry then w y→wy

Transitivity constraints

If (e1 → e2 and e2 → e3) then e1 → e3

3 SAT /

For 2 processes, every triplet of events
has an ordered pair!
If ((((((hhhhhe1 → e2 and e2 → e3) then e1 → e3

If (e1 → e2 (((((hhhhhand e2 → e3) then e1 → e3

2 SAT ,

Theorem

For 2 processes, realizing a well-formed observation requires polynomial
time.
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Data-centric DPOR

1 Start with an empty observation
2 While at node u with observation Ou

1 Get a (any!) trace tu realizing Ou

2 Mutation: take every
1 r ∈ Events(tu) \ Ou , and
2 w ∈ Events(tu) with Confl(r ,w)
3 Construct successor v of u with
Ov = Ou ∪ {r 7→ w}

4 (If Ov not well-formed, skip)

3 bookkeeping (local!) to guarantee
optimality

O = ∅

Theorem

Every observation function visited once

Total time O (poly(n) · |T / ∼O |)

Data-centric Dynamic Partial Order Reduction 16



Data-centric DPOR

1 Start with an empty observation
2 While at node u with observation Ou

1 Get a (any!) trace tu realizing Ou

2 Mutation: take every
1 r ∈ Events(tu) \ Ou , and
2 w ∈ Events(tu) with Confl(r ,w)
3 Construct successor v of u with
Ov = Ou ∪ {r 7→ w}

4 (If Ov not well-formed, skip)

3 bookkeeping (local!) to guarantee
optimality

O = ∅

t1

Theorem

Every observation function visited once

Total time O (poly(n) · |T / ∼O |)

Data-centric Dynamic Partial Order Reduction 16



Data-centric DPOR

1 Start with an empty observation
2 While at node u with observation Ou

1 Get a (any!) trace tu realizing Ou

2 Mutation: take every
1 r ∈ Events(tu) \ Ou , and
2 w ∈ Events(tu) with Confl(r ,w)

3 Construct successor v of u with
Ov = Ou ∪ {r 7→ w}

4 (If Ov not well-formed, skip)

3 bookkeeping (local!) to guarantee
optimality

O = ∅

t1

Theorem

Every observation function visited once

Total time O (poly(n) · |T / ∼O |)

Data-centric Dynamic Partial Order Reduction 16



Data-centric DPOR

1 Start with an empty observation
2 While at node u with observation Ou

1 Get a (any!) trace tu realizing Ou

2 Mutation: take every
1 r ∈ Events(tu) \ Ou , and
2 w ∈ Events(tu) with Confl(r ,w)
3 Construct successor v of u with
Ov = Ou ∪ {r 7→ w}

4 (If Ov not well-formed, skip)

3 bookkeeping (local!) to guarantee
optimality

O = ∅

t1

t2

r 7→ w

Theorem

Every observation function visited once

Total time O (poly(n) · |T / ∼O |)

Data-centric Dynamic Partial Order Reduction 16



Data-centric DPOR

1 Start with an empty observation
2 While at node u with observation Ou

1 Get a (any!) trace tu realizing Ou

2 Mutation: take every
1 r ∈ Events(tu) \ Ou , and
2 w ∈ Events(tu) with Confl(r ,w)
3 Construct successor v of u with
Ov = Ou ∪ {r 7→ w}

4 (If Ov not well-formed, skip)

3 bookkeeping (local!) to guarantee
optimality

O = ∅

t1

t2 t3

r 7→ w
r ′ 7→ w ′

1

Theorem

Every observation function visited once

Total time O (poly(n) · |T / ∼O |)

Data-centric Dynamic Partial Order Reduction 16



Data-centric DPOR

1 Start with an empty observation
2 While at node u with observation Ou

1 Get a (any!) trace tu realizing Ou

2 Mutation: take every
1 r ∈ Events(tu) \ Ou , and
2 w ∈ Events(tu) with Confl(r ,w)
3 Construct successor v of u with
Ov = Ou ∪ {r 7→ w}

4 (If Ov not well-formed, skip)

3 bookkeeping (local!) to guarantee
optimality

O = ∅

t1

t2 t3 t4

r 7→ w
r ′ 7→ w ′

1
r ′ 7→ w ′

2

Theorem

Every observation function visited once

Total time O (poly(n) · |T / ∼O |)

Data-centric Dynamic Partial Order Reduction 16



Data-centric DPOR

1 Start with an empty observation
2 While at node u with observation Ou

1 Get a (any!) trace tu realizing Ou

2 Mutation: take every
1 r ∈ Events(tu) \ Ou , and
2 w ∈ Events(tu) with Confl(r ,w)
3 Construct successor v of u with
Ov = Ou ∪ {r 7→ w}

4 (If Ov not well-formed, skip)

3 bookkeeping (local!) to guarantee
optimality

O = ∅

t1

t2 t3 t4

t5

r 7→ w
r ′ 7→ w ′

1
r ′ 7→ w ′

2

r ′ 7→ w ′
1

Theorem

Every observation function visited once

Total time O (poly(n) · |T / ∼O |)

Data-centric Dynamic Partial Order Reduction 16



Data-centric DPOR

1 Start with an empty observation
2 While at node u with observation Ou

1 Get a (any!) trace tu realizing Ou

2 Mutation: take every
1 r ∈ Events(tu) \ Ou , and
2 w ∈ Events(tu) with Confl(r ,w)
3 Construct successor v of u with
Ov = Ou ∪ {r 7→ w}

4 (If Ov not well-formed, skip)

3 bookkeeping (local!) to guarantee
optimality

O = ∅

t1

t2 t3 t4

t5 t6

r 7→ w
r ′ 7→ w ′

1
r ′ 7→ w ′

2

r ′ 7→ w ′
1 r

′ 7→ w ′
2

Theorem

Every observation function visited once

Total time O (poly(n) · |T / ∼O |)

Data-centric Dynamic Partial Order Reduction 16



Data-centric DPOR

1 Start with an empty observation
2 While at node u with observation Ou

1 Get a (any!) trace tu realizing Ou

2 Mutation: take every
1 r ∈ Events(tu) \ Ou , and
2 w ∈ Events(tu) with Confl(r ,w)
3 Construct successor v of u with
Ov = Ou ∪ {r 7→ w}

4 (If Ov not well-formed, skip)

3 bookkeeping (local!) to guarantee
optimality

O = ∅

t1

t2 t3 t4

t5 t6 t7

r 7→ w
r ′ 7→ w ′

1
r ′ 7→ w ′

2

r ′ 7→ w ′
1 r

′ 7→ w ′
2 r 7→ w

Theorem

Every observation function visited once

Total time O (poly(n) · |T / ∼O |)

Data-centric Dynamic Partial Order Reduction 16



Data-centric DPOR

1 Start with an empty observation
2 While at node u with observation Ou

1 Get a (any!) trace tu realizing Ou

2 Mutation: take every
1 r ∈ Events(tu) \ Ou , and
2 w ∈ Events(tu) with Confl(r ,w)
3 Construct successor v of u with
Ov = Ou ∪ {r 7→ w}

4 (If Ov not well-formed, skip)

3 bookkeeping (local!) to guarantee
optimality

O = ∅

t1

t2 t3 t4

t5 t6 t7

r 7→ w
r ′ 7→ w ′

1
r ′ 7→ w ′

2

r ′ 7→ w ′
1 r

′ 7→ w ′
2 r 7→ w

Theorem

Every observation function visited once

Total time O (poly(n) · |T / ∼O |)

Data-centric Dynamic Partial Order Reduction 16



Focus on k > 2 processes
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k > 2 processes

Theorem

Realizing a well-formed observation function is NP-complete.

Hints on giving up either

Polynomial time, or

∼O coarseness

Data-centric Dynamic Partial Order Reduction 18



Topologies

A graph G = (V ,E ) depicts the communication topology

V = {p1, . . . , pk}
(pi , pj) ∈ E iff processes pi , pj share a global variable

Data-centric Dynamic Partial Order Reduction 19



k processes

Acyclic topologies

2 processes, stars, pipelines, . . .

∼O optimal

Time O (poly(n) · |T / ∼O |)

Arbitrary topologies

Cliques, . . .

∼ optimal

∼M 6 ∼ 6 ∼O

∼ exponentially coarser than ∼M

Time O (poly(n) · |T / ∼ |)

Space usage O(n3)
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Implementation & Experiments

Implemented DC-DPOR for handling programins in C/pthreads

Based on Nidhugg

Conducted some experiments, comparing with Source-DPOR
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Synthetic Benchmarks

// ---- Process 0 < j < 2 ----

1 i ← 0
2 while i < n do
3 i ← i + 1
4 last id← j
5 x ← get message(j)
6 if last id = j then
7 return

8 end

Benchmark Traces Time (s)
DC-DPOR S-DPOR DC-DPOR S-DPOR

opt lock(12) 141 785,674 0.35 252.64
opt lock(13) 153 2,056,918 0.36 703.90
opt lock(14) 165 5,385,078 0.43 1,880.12
opt lock(15) 177 - 0.46 -
opt lock(50) 597 - 5.91 -

opt lock(100) 1,197 - 43.82 -
opt lock(200) 2,397 - 450.99 -
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Benchmarks from SV-Comp (1)

Benchmark Traces Time (s)
DC-DPOR S-DPOR DC-DPOR S-DPOR

fib bench(4) 1,233 19,605 0.93 3.03
fib bench(5) 8,897 218,243 7.41 37.82
fib bench(6) 70,765 2,364,418 85.71 463.52

Benchmark Traces Time (s)
DC-DPOR S-DPOR DC-DPOR S-DPOR

pthread demo(8) 256 12,870 0.37 3.17
pthread demo(10) 1,024 184,756 1.23 49.51
pthread demo(12) 4,096 2,704,156 5.30 884.99
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Benchmarks from SV-Comp (2)

Benchmark Traces Time (s)
DC-DPOR S-DPOR DC-DPOR S-DPOR

parker(8) 1,254 3,343 1.52 1.33
parker(10) 2,411 6,212 5.03 3.96
parker(12) 4,132 10,361 8.09 5.62
parker(14) 6,529 16,022 11.96 6.86
parker(16) 9,714 23,427 19.89 10.85
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A new paradigm for DPOR

Data-centric instead of Control-centric

Coarser partitioning of the trace space

Efficient exploration

Thank you!
Questions?
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k processes

Acyclic topologies

2 processes, stars, pipelines, . . .

∼O optimal

Time O (poly(n) · |T / ∼O |)

Arbitrary topologies

Cliques, . . .

∼ optimal

∼M 6 ∼ 6 ∼O

∼ exponentially coarser than ∼M

Time O (poly(n) · |T / ∼ |)

p1 p2

p3p4

→

∼M based

∼O based

p1

p2p3 p4

Space usage O(n3)

(compare with Ω(2n) in Optimal Mazurkiewicz-based DPOR)
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Data-centric DPOR

Lemma

Target observation function O, and t∗ a witness trace, i.e., Ot∗ = O
Take any trace t with t 6∼O t∗

Then, there exists a first read r ∈ Events(t∗) such that:

r ∈ Events(t),

Ot∗(r) ∈ Events(t),

Ot∗(r) 6= Ot(r)

t∗ t

Data-centric Dynamic Partial Order Reduction 2



Data-centric DPOR

Lemma

Target observation function O, and t∗ a witness trace, i.e., Ot∗ = O
Take any trace t with t 6∼O t∗

Then, there exists a first read r ∈ Events(t∗) such that:

r ∈ Events(t),

Ot∗(r) ∈ Events(t),

Ot∗(r) 6= Ot(r)

t∗
rw

t

Data-centric Dynamic Partial Order Reduction 2



Data-centric DPOR

Lemma

Target observation function O, and t∗ a witness trace, i.e., Ot∗ = O
Take any trace t with t 6∼O t∗

Then, there exists a first read r ∈ Events(t∗) such that:

r ∈ Events(t),

Ot∗(r) ∈ Events(t),

Ot∗(r) 6= Ot(r)

t∗
rw

t
r

Data-centric Dynamic Partial Order Reduction 2



Data-centric DPOR

Lemma

Target observation function O, and t∗ a witness trace, i.e., Ot∗ = O
Take any trace t with t 6∼O t∗

Then, there exists a first read r ∈ Events(t∗) such that:

r ∈ Events(t),

Ot∗(r) ∈ Events(t),

Ot∗(r) 6= Ot(r)

t∗
rw

t
r w

Data-centric Dynamic Partial Order Reduction 2



Data-centric DPOR

Lemma

Target observation function O, and t∗ a witness trace, i.e., Ot∗ = O
Take any trace t with t 6∼O t∗

Then, there exists a first read r ∈ Events(t∗) such that:

r ∈ Events(t),

Ot∗(r) ∈ Events(t),

Ot∗(r) 6= Ot(r)

t∗
rw

t
r w

Data-centric Dynamic Partial Order Reduction 2



Optimizations (we have a few)

Cycle detection

Unit propagation in realizing
observation functions

(a =⇒ b) ∧ a implies b

Strengthens the PO

Early cycle detection avoids 2
SAT altogether

Burst mutations

Standard algorithm
accumulates mutations
one-by-one

Instead accumulate many at
once

τ1

rx

wy

τ2

wx

ry

Makes the recursion tree much
shallower
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Realizing Observation Functions is Hard

Reduction from Monotone 1-in-3 SAT

One unobserved w ′i for each variable xi
One observation rCi 7→ wiC iff xi appears in clause C

Some extra happens-before edges

wC
1

rC1

wC
2

rC2

wC
3

rC3

wD
1

rD1

wD
4

rD4

wD
5

rD5

w ′
1 w ′

2 w ′
3

w ′
4 w ′

5

φ = (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
C

∧ (x1 ∨ x4 ∨ x5)︸ ︷︷ ︸
D
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Synthetic Benchmarks

// --------- Process j = 0 ---------

1 i ← n
2 while array[i ] 6= 0 do
3 i ← i − 1
4 end

// --------- Process 1 < j 6 n ---------

5 array[j]← array[j − 1] + 1

Benchmark Traces Time (s)
DC-DPOR S-DPOR DC-DPOR S-DPOR

lastzero(4) 38 2,118 0.21 0.84
lastzero(5) 113 53,172 0.34 19.29
lastzero(6) 316 1,765,876 0.63 856
lastzero(7) 937 - 1.8 -
lastzero(8) 3,151 - 9.32 -
lastzero(9) 12,190 - 47.97 -

lastzero(10) 52,841 - 383.12 -
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