Algorithms for Algebraic Path Properties in Concurrent Systems of Constant Treewidth Components

Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, Andreas Pavlogiannis

POPL 2016
A typical paradigm in program analysis is to reduce the problem to a standard graph problem P:

Input: Program

1. Extract control flow graph G
2. Annotate G
3. Run best general graph algorithm for P on G
A typical paradigm in program analysis is to reduce the problem to a standard graph problem \(P \):

Input: Program

1. Extract control flow graph \(G \)
2. Annotate \(G \)
3. **Run best general graph algorithm for** \(P \) **on** \(G \)
 - by exploiting special structure of CFGs
Static dataflow/quantitative analysis of concurrent systems
System consists of CFGs of local threads + sync vars
A node of the concurrent system specifies the local state of each thread (+ sync)
System transitions wrt interleaving semantics
Concurrent system annotated with a (complete, closed) semiring.

Variety of properties expressible

- (Generalized) reachability
- Distributive dataflow analysis problems
- Quantitative problems (quality measures / quantitative verification)
- Algebraic relaxations for interprocedural analysis
Concurrent system annotated with a (complete, closed) semiring.

Variety of properties expressible

- (Generalized) reachability
- Distributive dataflow analysis problems
- Quantitative problems (quality measures / quantitative verification)
- Algebraic relaxations for interprocedural analysis
Formal Setting

- Complete, closed \textbf{semiring} \(S = (\Sigma, \oplus, \otimes, \overline{0}, \overline{1}) \)
- \(k \) local graphs \(G_i = (V_i, E_i), |V_i| \leq n \)
- Compose a \textbf{concurrent system} \(G = (V, E, \text{wt}) \)
 - Nodes of the form \(v = \langle v_1, \ldots, v_k \rangle \)
 - \(E \subseteq \text{product}(E_1, \ldots, E_k) \)
 - i.e. \((\langle u_1, \ldots, u_k \rangle, \langle v_1, \ldots, v_k \rangle) \in E \)
 - Global weight function \(\text{wt} : E \to \Sigma \)
- \textbf{Weight} of a path \(P : x_1, x_2, \ldots, x_m : \)

\[\otimes(P) = \text{wt}(x_1, x_2) \otimes \text{wt}(x_2, x_3) \cdots \otimes \text{wt}(x_{k-1}, x_m) \]
Formal Setting

- Complete, closed semiring $S = (\Sigma, \oplus, \otimes, \overline{0}, \overline{1})$
- k local graphs $G_i = (V_i, E_i), \; |V_i| \leq n$
- Compose a concurrent system $G = (V, E, wt)$
 - Nodes of the form $v = \langle v_1, \ldots, v_k \rangle$
 - $E \subseteq \text{product}(E_1, \ldots, E_k)$
 - i.e. $(\langle u_1, \ldots, u_k \rangle, \langle v_1, \ldots, v_k \rangle) \in E$
 - Global weight function $wt : E \rightarrow \Sigma$

Weight of a path $P : x_1, x_2, \ldots, x_m$:

$$\otimes(P) = wt(x_1, x_2) \otimes wt(x_2, x_3) \cdots \otimes wt(x_{k-1}, x_m)$$
Formal Setting

- Complete, closed **semiring** $S = (\Sigma, \oplus, \otimes, \overline{0}, \overline{1})$
- k local graphs $G_i = (V_i, E_i)$, $|V_i| \leq n$
- Compose a **concurrent system** $G = (V, E, wt)$
 - Nodes of the form $v = \langle v_1, \ldots, v_k \rangle$
 - $E \subseteq \text{product}(E_1, \ldots, E_k)$
 - i.e. $(\langle u_1, \ldots, u_k \rangle, \langle v_1, \ldots, v_k \rangle) \in E$
 - Global weight function $wt : E \to \Sigma$
- **Weight** of a path $P : x_1, x_2, \ldots, x_m$:

$$\otimes(P) = wt(x_1, x_2) \otimes wt(x_2, x_3) \cdots \otimes wt(x_{k-1}, x_m)$$
Graph Problem: Semiring Distances

Weight of a path $P : x_1, x_2, \ldots, x_m$:

$$\otimes(P) = \text{wt}(x_1, x_2) \otimes \text{wt}(x_2, x_3) \cdots \otimes \text{wt}(x_{k-1}, x_m)$$

Semiring distance from u to v:

$$d(u, v) = \bigoplus_{P : u \rightsquigarrow v} \otimes(P)$$
Method 1: Thread 1

1 while 1 do
2 if turn = −1 then
3 lock(ℓ)
4 turn ← my_id
5 unlock(ℓ)
6 if turn = my_id then
7 /* do stuff */
8 turn ← −1
9 end

Method 2: Thread 2

1 while 1 do
2 if turn = −1 then
3 lock(ℓ)
4 turn ← my_id
5 unlock(ℓ)
6 if turn = my_id then
7 /* do stuff */
8 turn ← −1
9 end
Method 1: Thread 1
1 while 1 do
2 if turn = −1 then
3 lock(ℓ)
4 turn ← my_id
5 unlock(ℓ)
6 end
7 if turn = my_id then /* do stuff */
8 turn ← −1
9 end

Method 2: Thread 2
1 while 1 do
2 if turn = −1 then
3 lock(ℓ)
4 turn ← my_id
5 unlock(ℓ)
6 end
7 if turn = my_id then /* do stuff */
8 turn ← −1
9 end

Nodes V: (2, 7)
Nodes V: $\langle 2, 7 \rangle$

Edges E: $(\langle 2, 7 \rangle, \langle 6, 8 \rangle)$

Method 1: Thread 1

1 while 1 do
2 if turn = -1 then
3 lock(ℓ)
4 turn \leftarrow my_id
5 unlock(ℓ)
6 if turn = my_id then /* do stuff */
7 turn $\leftarrow -1$
8 end
9 end

Method 2: Thread 2

1 while 1 do
2 if turn = -1 then
3 lock(ℓ)
4 turn \leftarrow my_id
5 unlock(ℓ)
6 if turn = my_id then /* do stuff */
7 turn $\leftarrow -1$
8 end
9 end
Method 1: Thread 1

1. while 1 do
2. if turn = -1 then
3. lock(ℓ)
4. turn \leftarrow my_id
5. unlock(ℓ)
6. if turn = my_id then
7. /* do stuff */
8. turn $\leftarrow -1$
9. end

Method 2: Thread 2

1. while 1 do
2. if turn = -1 then
3. lock(ℓ)
4. turn \leftarrow my_id
5. unlock(ℓ)
6. if turn = my_id then
7. /* do stuff */
8. turn $\leftarrow -1$
9. end

Nodes V: $\langle 2, 7 \rangle$

Edges E: $(\langle 2, 7 \rangle, \langle 6, 8 \rangle)$

Weights $wt : E \rightarrow \Sigma : wt(\langle 2, 7 \rangle, \langle 6, 8 \rangle) = \alpha$
Nodes V: $\langle 2, 7 \rangle$

Edges E: $(\langle 2, 7 \rangle, \langle 6, 8 \rangle)$

Weights $wt : E \to \Sigma : wt(\langle 2, 7 \rangle, \langle 6, 8 \rangle) = \alpha$

Pair query: $d(\langle 1, 1 \rangle, \langle 7, 7 \rangle)$
Existing Algorithmic Approach

- Construct the product graph G from the local components G_1, G_2
- Compute transitive closure (all-pairs) on G
 - Warshall-Floyd-Kleene algorithm, cubic complexity
 - $O\left((n^2)^3 \right) = O\left(n^6 \right)$
Existing Algorithmic Approach

- Construct the product graph G from the local components G_1, G_2
- Compute transitive closure (all-pairs) on G
 - Warshall-Floyd-Kleene algorithm, cubic complexity
 - $O \left((n^2)^3 \right) = O(n^6)$
Component graphs have special structure, i.e., low-treewidth graphs

- Measures similarity of a graph to a tree
- Well-known property of control-flow graphs

A faster algorithm for the transitive closure $O(n^6) \rightarrow O(n^{4+\epsilon})$
Our Improvements for Semiring Distances

- Component graphs have special structure, i.e., low-treewidth graphs
 - Measures similarity of a graph to a tree
 - Well-known property of control-flow graphs

\[O(n^6) \rightarrow O(n^{4+\epsilon}) \]
Our Improvements for Semiring Distances

- On demand analysis: *preprocess vs query*

Preprocessing spectrum

- No Preprocessing
- Transitive Closure

- Answering a few queries does not require the transitive closure
- On demand analysis: preprocess more only if expecting many queries
Our Improvements for Semiring Distances

- On demand analysis: \textit{preprocess} vs \textit{query}

Preprocessing spectrum

- No Preprocessing
- Transitive Closure

- Answering a few queries does not require the transitive closure
- On demand analysis: preprocess more only if expecting many queries
Our Improvements for Semiring Distances

- 2 components: product size $n \times n$, transitive closure has n^4 entries
- Existing $O(n^6)$ time for transitive closure

Preprocessing spectrum

No Preprocessing

Transitive Closure

- (1): Transitive closure almost optimal
- (3): Conditionally optimal
Our Improvements for Semiring Distances

- 2 components: product size $n \times n$, transitive closure has n^4 entries
- Existing $O(n^6)$ time for transitive closure

Preprocessing spectrum

<table>
<thead>
<tr>
<th>No Preprocessing</th>
<th>Transitive Closure</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1) \ n^{4+\epsilon} + i$</td>
<td>$n^{3+\epsilon}$</td>
</tr>
</tbody>
</table>

- (1): Transitive closure almost optimal
- (3): Conditionally optimal
Our Improvements for Semiring Distances

- 2 components: product size $n \times n$, transitive closure has n^4 entries
- Existing $O(n^6)$ time for transitive closure

Preprocessing spectrum

\[
\begin{array}{c|c|c}
& (2) & (1) \\
\hline
n^3 + \epsilon + i \cdot n & n^4 + \epsilon + i \\
\hline
n^{1+\epsilon} & n^{3+\epsilon} \\
\end{array}
\]

No Preprocessing \hspace{2cm} Transitive Closure

- (1): Transitive closure almost optimal
- (3): Conditionally optimal
Our Improvements for Semiring Distances

- 2 components: product size $n \times n$, transitive closure has n^4 entries
- Existing $O(n^6)$ time for transitive closure

Preprocessing spectrum

<table>
<thead>
<tr>
<th>Preprocessing</th>
<th>Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Preprocessing</td>
<td>$n^{1+\epsilon}$</td>
</tr>
<tr>
<td>Transitive Closure</td>
<td>$n^{3+\epsilon}$</td>
</tr>
</tbody>
</table>

(1) $n^{4+\epsilon} + i$
(2) $n^{3+\epsilon} + i \cdot n$
(3) $n^3 + i \cdot n^2$

- (1): Transitive closure almost optimal
- (3): Conditionally optimal
Our Improvements for Semiring Distances

- 2 components: product size $n \times n$, transitive closure has n^4 entries
- Existing $O(n^6)$ time for transitive closure

Preprocessing spectrum

| (3) $n^3 + i \cdot n^2$ | (2) $n^{3+\epsilon} + i \cdot n$ | (1) $n^{4+\epsilon} + i$ |

- $n^{1+\epsilon}$
- $n^{3+\epsilon}$

No Preprocessing | Transitive Closure

- (1): Transitive closure almost optimal
- (3): Conditionally optimal
Our Improvements for Semiring Distances

- 2 components: product size $n \times n$, transitive closure has n^4 entries
- Existing $O(n^6)$ time for transitive closure

Preprocessing spectrum

<table>
<thead>
<tr>
<th>(3) $n^3 + i \cdot n^2$</th>
<th>(2) $n^{3+\epsilon} + i \cdot n$</th>
<th>(1) $n^{4+\epsilon} + i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^{1+\epsilon}$</td>
<td>$n^{3+\epsilon}$</td>
<td></td>
</tr>
</tbody>
</table>

No Preprocessing
Transitive Closure

- (1): Transitive closure almost optimal
- (3): Conditionally optimal
Outline

- Tree decompositions
- Treewidth of the concurrent system
- On demand analysis on the concurrent tree-decomposition
- Experimental results
Definition (Tree decomposition)

Given a graph \(G = (V, E) \), a **tree-decomposition** \(\text{Tree}(G) = (V_T, E_T) \) is a tree of bags \(B_i \subseteq V \).
Given a graph $G = (V, E)$, a **tree-decomposition** $\text{Tree}(G) = (V_T, E_T)$ is a tree of bags $B_i \subseteq V$.
Tree Decompositions

Definition (Tree decomposition)

Given a graph $G = (V, E)$, a tree-decomposition $\text{Tree}(G) = (V_T, E_T)$ is a tree of bags $B_i \subseteq V$.

![Diagram of a graph and its tree decomposition](https://via.placeholder.com/150)
Definition (Tree decomposition)

Given a graph $G = (V, E)$, a tree-decomposition $\text{Tree}(G) = (V_T, E_T)$ is a tree of bags $B_i \subseteq V$.

G

$\text{Tree}(G)$
Definition (Tree decomposition)

Given a graph $G = (V, E)$, a **tree-decomposition** $\text{Tree}(G) = (V_T, E_T)$ is a tree of bags $B_i \subseteq V$.

\[\exists x_1 \in B_1 \cap B_2 \]
\[\exists x_2 \in B_2 \cap B_3 \]

\[d(10,6) = d(10, x_1) \otimes d(x_1, x_2) \otimes d(x_2, 6) \]
Definition (Tree decomposition)

Given a graph $G = (V, E)$, a **tree-decomposition** $\text{Tree}(G) = (V_T, E_T)$ is a tree of bags $B_i \subseteq V$

$\exists x_1 \in B_1 \cap B_2$
$\exists x_2 \in B_2 \cap B_3$

$d(10, 6) = d(10, x_1) \otimes d(x_1, x_2) \otimes d(x_2, 6)$

Semiring distances reduce to:
1. Tree decomposition
2. Local Distances
CFGs of typical imperative programs have tree-decompositions of small sized bags

- Theoretically, for goto-free programs
 - Pascal ≤ 4
 - C ≤ 7
- In practice small in imperative programs (e.g. Java ≤ 8)
CFGs of typical imperative programs have tree-decompositions of small sized bags

- Theoretically, for goto-free programs
 - Pascal ≤ 4
 - C ≤ 7
- In practice small in imperative programs (e.g. Java ≤ 8)

Theorem (Tree decomposition)

For constant treewidth graphs, $\text{Tree}(G)$ can be constructed in $O(n)$ time.
Treewidth of the Concurrent System

Components of small treewidth can yield a concurrent system G of very large treewidth!

Computing an optimal tree decomposition of G is intractable (NP-C)
Strongly Balanced Tree Decompositions

Convert the local tree decompositions to

- **Binary**: every bag has two children
- **Strongly balanced**: most bags have two subtrees of approximately equal size
State the local tree decompositions to

- **Binary:** every bag has two children
- **Strongly balanced:** most bags have two subtrees of approximately equal size
Convert the local tree decompositions to

- **Binary**: every bag has two children
- **Strongly balanced**: most bags have two subtrees of approximately equal size
Strongly Balanced Tree Decompositions

Convert the local tree decompositions to

- **Binary**: every bag has two children
- **Strongly balanced**: most bags have two subtrees of approximately equal size

\[
\text{Tree}(G_1) \quad \rightarrow \quad \text{Strongly Balanced Tree}(G_1)
\]
Tree Decomposition of the Concurrent System

$t = O(1)$

Tree(G_1)

Tree(G_2)

Tree(G)
For every two nodes u, v appearing in a bag, compute $d(u, v)$

Tree(G)

- Transitive closure on the bags instead of the whole system
- Cost decreases geometrically on the levels
 - Transitive closure on the root dominates
 - $O(n^6) \rightarrow O(n^3)$
For every two nodes u, v appearing in a bag, compute $d(u, v)$

Tree(G)

- Transitive closure on the bags instead of the whole system
- Cost decreases geometrically on the levels
 - Transitive closure on the root dominates
 - $O(n^6) \rightarrow O(n^3)$
For every two nodes u, v appearing in a bag, compute $d(u, v)$

- Transitive closure on the bags instead of the whole system
- Cost decreases geometrically on the levels
 - Transitive closure on the root dominates
 - $O(n^6) \rightarrow O(n^3)$
For every two nodes u, v appearing in a bag, compute $d(u, v)$

Tree(G)

- Transitive closure on the bags instead of the whole system
- Cost decreases geometrically on the levels
 - Transitive closure on the root dominates
 - $O(n^6) \rightarrow O(n^3)$
For every two nodes u, v appearing in a bag, compute $d(u, v)$

Tree(G)

- Transitive closure on the bags instead of the whole system
- Cost decreases geometrically on the levels
 - Transitive closure on the root dominates
 - $O(n^6) \rightarrow O(n^3)$
For every two nodes u, v appearing in a bag, compute $d(u, v)$

$$\text{Tree}(G)$$

- Transitive closure on the bags instead of the whole system
- Cost decreases geometrically on the levels
 - Transitive closure on the root dominates
 - $O(n^6) \rightarrow O(n^3)$
For every two nodes u, v appearing in a bag, compute $d(u, v)$

Tree(G)

- Transitive closure on the bags instead of the whole system
- Cost decreases geometrically on the levels
 - Transitive closure on the root dominates
 - $O(n^6) \rightarrow O(n^3)$
For every two nodes u, v appearing in a bag, compute $d(u, v)$

Tree(G)

- Transitive closure on the bags instead of the whole system
- Cost decreases geometrically on the levels
 - Transitive closure on the root dominates
 - $O(n^6) \rightarrow O(n^3)$
For every two nodes \(u, v\) appearing in a bag, compute \(d(u, v)\)

Tree(\(G\))

- Transitive closure on the bags instead of the whole system
- Cost decreases geometrically on the levels
 - Transitive closure on the root dominates
 - \(O(n^6) \rightarrow O(n^3)\)
For every two nodes u, v appearing in a bag, compute $d(u, v)$

Tree(G)

- Transitive closure on the bags instead of the whole system
- Cost decreases geometrically on the levels
 - Transitive closure on the root dominates
 - $O(n^6) \rightarrow O(n^3)$
Tradeoffs

Preprocessing spectrum

<table>
<thead>
<tr>
<th>No Preprocessing</th>
<th>Transitive Closure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) $n^3 + i \cdot n^2$</td>
<td>(1) $n^{4+\varepsilon} + i$</td>
</tr>
<tr>
<td>$n^{1+\varepsilon}$</td>
<td>$n^{3+\varepsilon}$</td>
</tr>
</tbody>
</table>
Experiments

- Control-flow graphs (CFGs) of methods from java libraries and benchmarks
- Focus on algorithmic comparison with standard transitive closure algorithms
- Used the tropical min-plus semiring on $\mathbb{R} \cup \{\infty\}$
Experiments 1

- CFGs from the DaCapo suit
- n nodes each CFG
- 2-self product: size $n \times n$
- Random weights in $[-10^3, 10^3]$
- Compute the transitive closure
- Baseline: Bellman-Ford
Experiments 1

- CFGs from the DaCapo suit
- n nodes each CFG
- 2-self product: size $n \times n$

- Random weights in $[-10^3, 10^3]$
- Compute the transitive closure
- Baseline: Bellman-Ford
Experiments 1

- CFGs from the DaCapo suit
- n nodes each CFG
- 2-self product: size $n \times n$
- Random weights in $[-10^3, 10^3]$
- Compute the transitive closure
- Baseline: Bellman-Ford
Experiments 2

- CFGs from container methods in java.util.concurrent
- Bloated with values of locks
- 2-self product: size $n \times n$

- Random weights in $[-10^3, 10^3]$
- Transitive closure
Experiments 2

- CFGs from container methods in java.util.concurrent
- Bloated with values of locks
- 2-self product: size $n \times n$
- Random weights in $[-10^3, 10^3]$
- Transitive closure
Experiments 2

- CFGs from container methods in `java.util.concurrent`
- Bloated with values of locks
- 2-self product: size $n \times n$
- Random weights in $[-10^3, 10^3]$
- Transitive closure
Thank you!
Questions?
Experiments 2

- CFGs from container methods in java.util.concurrent
- Bloated with values of locks
- 2-self product: size $n \times n$
- Random weights in $[-10^3, 10^3]$
- Transitive closure times:
 - $T_o(s)$: our algorithm
 - $T_b(s)$: baseline (Bellman-Ford)

<table>
<thead>
<tr>
<th>Java method</th>
<th>n</th>
<th>$T_o(s)$</th>
<th>$T_b(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArrayBlockingQueue: poll</td>
<td>19</td>
<td>19</td>
<td>60</td>
</tr>
<tr>
<td>ArrayBlockingQueue: peek</td>
<td>20</td>
<td>20</td>
<td>81</td>
</tr>
<tr>
<td>LinkedBlockingDeque: advance</td>
<td>25</td>
<td>29</td>
<td>195</td>
</tr>
<tr>
<td>PriorityBlockingQueue: removeEQ</td>
<td>25</td>
<td>32</td>
<td>176</td>
</tr>
<tr>
<td>ArrayBlockingQueue: init</td>
<td>26</td>
<td>47</td>
<td>249</td>
</tr>
<tr>
<td>LinkedBlockingDeque: remove</td>
<td>26</td>
<td>49</td>
<td>290</td>
</tr>
<tr>
<td>ArrayBlockingQueue: offer</td>
<td>26</td>
<td>56</td>
<td>304</td>
</tr>
<tr>
<td>ArrayBlockingQueue: clear</td>
<td>28</td>
<td>33</td>
<td>389</td>
</tr>
<tr>
<td>ArrayBlockingQueue: contains</td>
<td>32</td>
<td>205</td>
<td>881</td>
</tr>
<tr>
<td>DelayQueue: remove</td>
<td>42</td>
<td>267</td>
<td>3792</td>
</tr>
<tr>
<td>ConcurrentHashMap: scanAndLockForPut</td>
<td>46</td>
<td>375</td>
<td>2176</td>
</tr>
<tr>
<td>ArrayBlockingQueue: next</td>
<td>46</td>
<td>407</td>
<td>3915</td>
</tr>
<tr>
<td>ConcurrentHashMap: put</td>
<td>72</td>
<td>1895</td>
<td>> 8 h</td>
</tr>
</tbody>
</table>
Results

2 components

<table>
<thead>
<tr>
<th></th>
<th>Preprocess</th>
<th>Query time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Space</td>
</tr>
<tr>
<td>Existing</td>
<td>$O(n^6)$</td>
<td>$O(n^4)$</td>
</tr>
<tr>
<td>Our result</td>
<td>$O(n^3)$</td>
<td>$O(n^{2+\epsilon})$</td>
</tr>
<tr>
<td>Our result</td>
<td>$O(n^{3+\epsilon})$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>Our result</td>
<td>$O(n^{4+\epsilon})$</td>
<td>$O(n^4)$</td>
</tr>
</tbody>
</table>

$k \geq 3$ components

<table>
<thead>
<tr>
<th></th>
<th>Preprocess</th>
<th>Query time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Space</td>
</tr>
<tr>
<td>Existing</td>
<td>$O(n^{3k})$</td>
<td>$O(n^{2k})$</td>
</tr>
<tr>
<td>Our result</td>
<td>$O(n^{3k-3})$</td>
<td>$O(n^{2k-1})$</td>
</tr>
<tr>
<td>Our result</td>
<td>$O(n^{3k-2})$</td>
<td>$O(n^{2k})$</td>
</tr>
</tbody>
</table>

Chatterjee, Kafshdar Goharshady, Ibsen-Jensen, Pavlogiannis
2 components: product size $n \times n$, transitive closure has n^4 entries

Existing $O(n^6)$ time for transitive closure
Tree Decompositions

Definition (Tree decomposition)

Given a graph $G = (V, E)$, a **tree-decomposition** $\text{Tree}(G) = (V_T, E_T)$ is a **tree of bags** $B_i \subseteq V$ such that:

1. Every node of G is contained in a bag
2. Every edge of G is contained in a bag
3. Every node of G appears in a contiguous subtree of $\text{Tree}(G)$.

\[
\begin{align*}
G & \quad \quad
\end{align*}
\]
Definition (Tree decomposition)

Given a graph $G = (V, E)$, a **tree-decomposition** $\text{Tree}(G) = (V_T, E_T)$ is a tree of bags $B_i \subseteq V$ such that:

1. Every node of G is contained in a bag
2. Every edge of G is contained in a bag
3. Every node of G appears in a contiguous subtree of $\text{Tree}(G)$.

![Diagram of a graph G and its tree decomposition $\text{Tree}(G)$]
Definition (Tree decomposition)

Given a graph $G = (V, E)$, a **tree-decomposition** $\text{Tree}(G) = (V_T, E_T)$ is a **tree of bags** $B_i \subseteq V$ such that:

1. Every node of G is contained in a bag
2. Every edge of G is contained in a bag
3. Every node of G appears in a contiguous subtree of $\text{Tree}(G)$.
Definition (Tree decomposition)

Given a graph $G = (V, E)$, a **tree-decomposition** $\text{Tree}(G) = (V_T, E_T)$ is a tree of bags $B_i \subseteq V$ such that:

1. Every node of G is contained in a bag
2. Every edge of G is contained in a bag
3. Every node of G appears in a contiguous subtree of $\text{Tree}(G)$.
Any graph G can be constructed as the product of two constant-treewidth graphs G_1, G_2

Semiring distance on the product of G_1, G_2 as hard as on G

Widely conjectured $\Omega(n^3)$ lower-bound