Distributed Synthesis for LTL Fragments

Krishnendu Chatterjee, Thomas A. Henzinger, Jan Otop, Andreas Pavlogiannis

July 18, 2013
Synchronous architecture $\mathcal{A} = (\mathcal{P}, p_e, V, E)$

- \mathcal{P} is a set of $n + 1$ processes.
- $p_e \in \mathcal{P}$ is the environment.
- V is a set of binary variables.
- $E : \mathcal{P} \times \mathcal{P} \to 2^V$ defines the communication.
- For $p \in \mathcal{P}$ denote input variables with $I(p)$, output variables with $O(p)$.
Process p behaves according to local strategy $\sigma_p : (2^{I(p)})^* \rightarrow 2^{O(p)}$.

Can be viewed as the labeling of an infinite $2^{I(p)}$-tree, T_{σ_p}.

The collective strategy $\sigma : (2^{O(p_e)})^* \rightarrow 2^{V \setminus O(p_e)}$ determines the distributed behavior of the system.

Can be viewed as the labeling of an infinite $2^{O(p_e)}$-tree, T_σ.
Realizability

- Every infinite path $\pi = (a_1, a_2 \ldots)$ of T_σ defines a *computation* $\ell_\sigma(\pi) = (c_1, c_2 \ldots)$.
 - $\ell_\sigma(\pi)[i]$ is the set of variables being True at that node.
- Acceptable computations are specified by LTL specifications.

Realizability

Given an architecture \mathcal{A} and an LTL specification ϕ, decide whether there exist local strategies σ_p for all processes p, such that for every path π in the corresponding collective strategy tree T_σ, it holds $\ell_\sigma(\pi) \models \phi$.

- If so, synthesize them.
Distributed realizability was shown to be undecidable for the following architecture.

Reduction from the halting problem.

For any Turing machine M, construct ϕ_M which requires that p_1, p_2 output a legal sequence of configurations of M, and M halts.

1. When p_i receives a start signal, it outputs a sequence of legal configurations of M.
2. Initially p_i outputs the first two configurations of M.
3. If p_1, p_2 output C_1C_1' and C_2C_2' and $C_1 \vdash C_2$, then $C_1' \vdash C_2'$.
For which classes of architectures is realizability decidable?

Complete characterization base on the *information fork* criterion.

Processes p_1, p_2 form an information fork in architecture A if there exist paths $p_e \leadsto p_i$ in A such that do not traverse edges in $I(p_i)$.

Every architecture either:
- Has an information fork (undecidable).
- Can be reduced to a pipeline (decidable).
For propositional formulae P and Q, we consider $\phi \in \text{LTL}^{\Diamond}$ of the form

$$
\theta = P \mathbin{|} \mathcal{X}P \\
\psi = \theta_1 \land \theta_2 \mathbin{|} \theta_1 \lor \theta_2 \mathbin{|} \neg \theta \\
\phi = Q \rightarrow \Diamond \psi
$$

Theorem

The realizability of specifications from LTL^{\Diamond} in some architecture \mathcal{A} is decidable iff \mathcal{A} does not have information fork.

K. Chatterjee, T. A. Henzinger, J. Otop, A. Pavlogiannis
Distributed Synthesis for LTL Fragments
Fix a Turing machine M, with tape alphabet $\{0, 1, \sqcup\}$ and set of states Q. Let $\Sigma = \{0, 1, \sqcup, \bot, \#\} \cup Q$.

Configurations of M are words over $\Sigma \setminus \{\bot\}$ and start with $\#$.

Projection $\pi_\bot : \Sigma^* \to (\Sigma \setminus \{\bot\})^*$ omits the \bot symbols.

A scattered configuration C is a word over Σ such that $\pi_\bot(C)$ is a configuration of M. Denote with $\bot(C) = \{i : C[i] = \bot\}$.

A scattered preconfiguration is a word over Σ which is a prefix of some scattered configuration.

We write $C_1 \parallel C_2$ if $|\bot(C_1) \bigtriangleup \bot(C_2)| \leq 1$.

$C_1 \vdash C_2$

For scattered preconfigurations C_1 and C_2 we write $C_1 \vdash C_2$ if

1. $\pi_\bot(C_1) \vdash \pi_\bot(C_2)$, or

2. C_1 and C_2 are infinite and every finite prefix of $\pi_\bot(C_i)$ can be extended to C'_i such that $C'_1 \vdash C'_2$.
We consider the following architecture

\[p_1 \rightarrow p_e \rightarrow p_2 \]

- \(p_e \) sends \textit{next} and \textit{stall} signals.
- Processes output infinite words over \(\Sigma \).
- Undecidability obtained through reduction from the halting problem of \(M \).
- We first describe a safety property \(\varphi \).
Proof Idea (Cont.)

\[\varphi = \mathcal{L} \rightarrow \bigwedge_{0 \leq i \leq 4} \text{Cond}_i \]

\mathcal{L}: for every process, every *stall* input signal is followed by a *next* signal.

Cond\(_0\): each process outputs \(\bot \) when its input is *stall*, otherwise it outputs a letter from \(\Sigma \setminus \{\bot\} \),

Cond\(_1\): each process produces a sequence of scattered preconfigurations,

Cond\(_2\): initially each process produces two scattered configurations of \(M \), whose projections are the first two valid configurations of \(M \),

Cond\(_3\): if starting from some position, \(p_1 \) outputs consecutively \(C_1, C_2 \) and \(p_2 \) outputs consecutively \(C'_1, C'_2 \), then \(C_1 \vdash C'_1 \) implies \(C_2 \vdash C'_2 \) or \(C'_2 \parallel C_2 \),

Cond\(_4\): if \(D, D' \) are outputs of \(p_1, p_2 \) up to some positions such that \(D \parallel D' \) and \(|\pi_\bot(D)| = |\pi_\bot(D')| \), then \(\pi_\bot(D) = \pi_\bot(D') \).
Proof Idea (Cont)

- φ can be expressed by a safety automaton A_{safe}.

Lemma

Strategies realizing A_{safe} output a valid computation of M.

- $Cond_2$ requires the first two configurations.
- If C_1 and C'_1 are the i and $i + 1$ configurations of M, then p_e can synchronize them as outputs of p_1 and p_2.
- Needs to send at most i stalls to p_1, without violating L.
- If no more stalls follow, by $Cond_3$, $C'_1 \vdash C_1$ implies $C'_2 \vdash C_2$.
- Due to $Cond_4$ we can show that for any execution under L, $\pi_\perp(C'_1)$ and $\pi_\perp(C'_2)$ are the $i + 1$ and $i + 2$ configurations of M.
\(\phi = Q \rightarrow \Diamond (\psi_1 \lor \psi_2) \)

\(Q \) The first state of \(A_{\text{safe}} \) according to the output variables \(\{q_1, \ldots, q_m\} \) corresponds to the first step of the computation.

\(\psi_1 \) \(p_e \) cheats in simulating \(A_{\text{safe}} \).

\(\psi_2 \): The current state of \(A_{\text{safe}} \) is not rejecting, and \(p_1 \) or \(p_2 \) output a halting state of \(M \).

\[q_1, \ldots, q_m \]

\(\phi \) is realizable iff \(M \) halts.
For propositional formulae P and Q, we consider $\phi \in \text{LTL} \Box$ of the form

$$
\psi = P \mid \psi_1 \land \psi_2 \mid \psi_1 \lor \psi_2 \mid \neg \psi \mid X\psi
$$

$$
\phi = Q \land \Box \psi
$$

- Consider star architectures with p_e the central process.
- We distinguish between overlapping inputs (inter process communication), and disjoint inputs.
\(\phi = Q \land \Box(\psi_1 \land \psi_2 \land \psi_3) \)

Q: The first state of \(A_{\text{safe}} \) according to the output variables \(\{q_1, \ldots, q_m\} \) corresponds to the first step of the computation.

\(\psi_1 \): \(p_3 \) simulates \(A_{\text{safe}} \) faithfully in \(\{q_1, \ldots, q_m\} \).

\(\psi_2 \): \(p_1 \) and \(p_2 \) do not output a halting state of \(M \).

\(\psi_3 \): \(A_{\text{safe}} \) does not reach a rejecting state.
Let k be the nesting depth of χ operators in ψ.

Lemma

A formula $\phi = Q \land \Box \psi$ is realizable iff it is realizable by bounded strategies of depth $k + 2^{k|V|}$.

- Assume ϕ is realizable by local strategies σ_i.
- If some good computation $\ell_{\sigma}(\pi)$ repeats a k-segment then another computation $\ell_{\tau}(\pi)$ that loops between the two segments is also good.
The type of a local node is the unique history of inputs and outputs k steps back.

- There exist at most $2^{k|V|}$ unique types of nodes.
- The type of a level is the set of types of all local nodes in that level.
- There exist at most $2^{2^k|V|}$ unique types of levels.

Define folding functions f_i that folds levels with the same types, wrt the types of the nodes.