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Abstract
We consider the quantitative analysis problem for interprocedu-
ral control-flow graphs (ICFGs). The input consists of an ICFG ,
a positive weight function that assigns every transition a positive
integer-valued number, and a labelling of the transitions (events) as
good, bad, and neutral events. The weight function assigns to each
transition a numerical value that represents a measure of how good
or bad an event is. The quantitative analysis problem asks whether
there is a run of the ICFG where the ratio of the sum of the numer-
ical weights of good events versus the sum of weights of bad events
in the long-run is at least a given threshold (or equivalently, to com-
pute the maximal ratio among all valid paths in the ICFG). The
quantitative analysis problem for ICFGs can be solved in polyno-
mial time, and we present an efficient and practical algorithm for
the problem. We show that several problems relevant for static pro-
gram analysis, such as estimating the worst-case execution time of
a program or the average energy consumption of a mobile applica-
tion, can be modeled in our framework. We have implemented our
algorithm as a tool in the Java Soot framework. We demonstrate
the effectiveness of our approach with two case studies. First, we
show that our framework provides a sound approach (no false pos-
itives) for the analysis of inefficiently-used containers. Second, we
show that our approach can also be used for static profiling of pro-
grams which reasons about methods that are frequently invoked.
Our experimental results show that our tool scales to relatively large
benchmarks, and discovers relevant and useful information that can
be used to optimize performance of the programs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Optimization; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Langugages—Program
Analysis

General Terms Algorithms, Languages, Performance

Keywords Interprocedural analysis, Quantitative objectives,
Mean-payoff and ratio objectives, Memory bloat, Static profiling.
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1. Introduction
Static and interprocedural analysis. Static analysis techniques
provide ways to obtain information about programs without actu-
ally running them on specific inputs. Static analysis explores the
program behavior for all possible inputs and all possible execu-
tions. For non-trivial programs, it is impossible explore all the pos-
sibilities, and hence static analysis uses approximations (abstract
interpretations) to account for all the possibilities [16]. Static anal-
ysis algorithms generally operate on the interprocedural control-
flow graphs (for brevity ICFGs). An ICFG consists of a collection
of control-flow graphs (CFGs), one for each procedure of the pro-
gram. The CFG of each procedure has a unique entry node and
a unique exit node, and other nodes represent statements of the
program and conditions (in other words, basic blocks of the pro-
gram). In addition, there are call and return nodes for each pro-
cedure which represent invoking of procedures and return from
procedures. Call-transitions connect call nodes to entry nodes; and
return-transitions connect exit nodes to return nodes. Algorithmic
analysis of ICFGs provides the mathematical framework for static
analysis of programs. Interprocedural analysis with objectives such
as reachability, set-based information, etc have been deeply studied
in the literature [10, 24, 29, 31–33].

Quantitative objectives. A qualitative (or Boolean) objective as-
signs to every run of a program a Boolean value (accept or reject). A
quantitative objective assigns to every run of a program a real value
that represents a quality measure of the run. The analysis of pro-
grams with quantitative objectives is gaining huge prominence due
to embedded systems with requirements on resource consumption,
promptness of responses, performance analysis etc. Quantitative
objectives have been proposed in several applications such as for
worst-case execution time (see [41] for survey), power consump-
tion [37], prediction of cache behavior for timing analysis [20],
performance measures [5, 13, 21], to name a few. Another impor-
tant feature of quantitative objectives is that they are very well-
suited for anytime algorithms [8] (where anytime algorithms gen-
erate imprecise answers quickly, and proceed to construct progres-
sively better approximate solutions with refinements) (for a more
elaborate discussion see [12]).

Mean-payoff and ratio objectives. One of the most well-studied
and mathematically elegant quantitative objectives is the mean-
payoff objective, where a rational-valued weight is associated with
every transition and the goal is to ensure that the long-run average
of the weights along a run is at least a given threshold [3, 19, 46].
For example, consider a weight function that assigns to every
transition the resource (such as power) consumption, then the
mean-payoff objective measures the average resource consumption
along a run. Along with ICFGs with mean-payoff objectives, we
also consider ratio objectives. For ratio objectives, the transitions
(events) of the ICFGs are labelled as good, bad, or neutral events,
and a positive weight function assigns a positive integer-valued



weight to every transition, and the weight function represents how
good or bad an event is. The quantitative analysis problem asks if
there is a run of the program such that the ratio of the sum of the
weights of the good events versus the weights of the bad events in
the long-run is at least a given threshold. For example, consider a
weight function that assigns weight 1 to each transition, and a la-
beling of events as follows: whenever a request is made is a bad
event, whenever a request is pending is a good event, and whenever
no request is pending is a neutral event. The ratio objective assigns
the long-run average time between requests and the corresponding
grant per request for a run, and measures timeliness of responses to
requests. Finite-state systems (or intraprocedural finite-state pro-
grams) with mean-payoff objectives have been studied in the lit-
erature in [19, 21, 26, 46] for performance modeling, and more
recently applied in synthesis of reactive systems with quality guar-
antee [5] and robustness [6], reliability requirements and resource
bounds of reactive systems [9, 13, 17].
Interprocedural quantitative analysis. Quantitative objectives
such as mean-payoff and ratio objectives provide the appropriate
framework to express several important system properties such as
resource consumption and timeliness. While finite-state systems
with mean-payoff objectives have been studied in the literature,
the static analysis of ICFGs with mean-payoff and ratio objectives
has largely been ignored. An interprocedural analysis is precise if
it provides the meet-over-all-valid-paths solution (a path is valid if
it respects the fact that when a procedure finishes it returns to the
site of the most recent call). In the quantitative setting, the problem
corresponds to finding the maximal value over all valid paths and to
produce a witness (symbolic) path for that value. In this work, we
consider precise interprocedural quantitative analysis for ICFGs
with mean-payoff and ratio objectives.
Our contributions. In this work we present a flexible and general
modelling framework for quantitative analysis and show how it can
be used to reason about quantitative properties of programs and
about potential optimizations in the program. We present an effi-
cient polynomial-time algorithm for precise interprocedural quan-
titative analysis, which is implemented as a tool. We demonstrate
the efficiency of the algorithm with two case studies, and show that
our approach scales to programs with thousands of methods.
1. (Theoretical modeling). We show that ICFGs with mean-

payoff and ratio objectives provide a robust framework that nat-
urally captures a wide variety of static program analysis opti-
mization and reasoning problems.
(a) (Detecting container usage). An exceedingly important

problem for performance analysis is detection of runtime
bloat that significantly degrades the performance and scal-
ability of programs [27, 45]. A common source of bloat is
inefficient use of containers [45]. We show that the prob-
lem of detecting usage of containers can be modeled as
ICFGs with ratio objectives. A good use of a container cor-
responds to a good event and no use of the container is a bad
event, and a misuse is represented as a low ratio of good vs
bad events. Hence the container usage problem is naturally
modeled as ratio analysis of ICFGs. While the problem of
detecting container usage was already considered in [45],
our different approach has the following benefits (see Sec-
tion 5.2 for a comparison). First, our approach can handle
recursion ([45] does not handle recursion). Second, our ap-
proach is sound, and does not yield false positives. Third,
the approach of [45] ignored DELETE operations and we are
able to take into consideration both ADD and DELETE oper-
ations (thus provide a more refined analysis). Moreover, our
algorithmic approach for analysis of ICFGs is polynomial,
whereas the algorithmic approach of [45] in the worst case
can be exponential.

(b) (Static profiling of programs). We use our framework to
model a conceptually new way for static profiling of pro-

grams for performance analysis. A line in the code (or a
code segment) is referred as hot if there exists a run of the
program where the line of code is frequently executed. For
example, a function is referred as hot if there exists a run
of the program where the function is frequently invoked,
i.e., the frequency of calls to the function among all func-
tion calls is at least a given threshold. Again this problem is
naturally modeled as ratio problem for ICFGs, and our ap-
proach statically detects methods that are more frequently
invoked. Optimization of frequently executed code would
naturally lead to performance improvements and reasoning
about hot spots in the code can assist the complier to apply
optimization such as function inlining and loop unrolling
(see Subsection 3.2 for more details).

(c) (Other applications). We show the generality of our frame-
work by demonstrating that it provides an appropriate
framework for theoretical modeling of diverse applications
such as interprocedural worst-case execution time analysis,
evaluating speedup in parallel computation, and interproce-
dural average energy consumption analysis.

2. (Algorithmic analysis). The quantitative analysis of ICFGs
with mean-payoff objectives can be achieved in polynomial
time by a reduction to pushdown systems with mean-payoff ob-
jectives (which can be solved in polynomial time [14]). How-
ever, the resulting algorithm in the worst case has time complex-
ity that is a polynomial of degree thirteen and space complexity
that is a polynomial of degree six (which is prohibitive in prac-
tice). We exploit the special theoretical properties of ICFGs
in order to improve the theoretical upper bound and get an
algorithm that in the worst case runs in cubic time and with
quadratic space complexity. In addition, we exploit the prop-
erties of real-world programs and introduce optimizations that
give a practical algorithm that is much faster than the theoretical
upper bound when the relevant parameters (the total number of
entry, exit, call, and returns nodes) are small, which is typical
in most applications. Finally we present a linear reduction of
the quantitative analysis problem with ratio objectives to mean-
payoff objectives.

3. (Tool and experimental results). We have implemented our al-
gorithm and developed a tool in the Java Soot framework [38].
We show through two case studies that our approach scales to
relatively large programs from well-known benchmarks. The
details of the case studies are as follows:
(a) (Detecting container usage). Our experimental results show

that our tool scales to relatively large benchmarks (DaCapo
2009 [4]), and discover relevant and useful information that
can be used to optimize performance of the programs. Our
tool could analyze all containers in several benchmarks (like
muffin) whereas [45] could analyze them partially (in muf-
fin only half of the containers were analyzed in [45] — be-
fore the predefined time bound was exceeded). Our sound
approach allows us to avoid false reports (that were reported
by [45]) and our simple mathematical modelling even al-
lows us to report misuses that were not reported by [45].

(b) (Static profiling of programs). We run an analysis to detect
hot methods for various thresholds. Our experimental re-
sults on the benchmarks report only a small fraction of the
functions as hot for high threshold values, and thus give use-
ful information about potential functions to be optimized for
performance gain. In addition we perform a dynamic profil-
ing and mark the top 5% of the most frequently invoked
functions as hot. Our experiments show a significant corre-
lation between the results of the static and dynamic analysis.
In addition, we show that the sensitivity and specificity of
the static classification can be controlled by considering dif-
ferent thresholds, where lower thresholds increase the sen-
sitivity and higher thresholds increase the specificity. We in-



vestigate the trade-off curve (ROC curve) and demonstrate
the prediction power of our approach.

Thus we show that several conceptually different problems re-
lated to program optimizations are naturally modeled in our
framework, and demonstrate that we present a flexible and
generic framework for quantitative analysis of programs. More-
over, our case studies show that our tool scales to benchmarks
with real-world programs.

2. Definitions
In this section we present formal definitions of interprocedural
control-flow graphs, and the quantitative analysis problems. We
will use an example program, described in Figure 1 and Figure 2,
to demonstrate each definition.
Interprocedural control-flow graphs (ICFGs). A pro-
gram P with m methods is modeled by an interproce-
dural control-flow graph (ICFG) A which consists of
a tuple ⟨A1, . . . , Am⟩ of m modules, where each module
Ai = ⟨Ni,Eni,Ex i,Callsi,Retnsi, δi⟩ represents a method (or
the control-flow graph of a method) in the program. A module Ai

contains the following components:
• A finite set of nodes Ni.
• An entry node Eni, which represents the first node of the

method.
• An exit node Ex i, which represents termination of the method.
• A finite set Callsi that denotes the set of calls of the method,

and a finite set Retns i that denotes the set of returns.
• A transition relation δi defined as follows: A transition in Ai

is either (i) between two nodes in the same module (internal
transitions) or between a return node and a node in the same
module (i.e., u, v such that u ∈ Ni ∪ Retns i and v ∈ Ni ∪
Callsi); or (ii) between a call node of a module Ai and the entry
node of a module Aj (which models the invocation of method
j from method i); or (iii) between the exit node of module Ai

and a return node of a module Aj (which models the case that
method i terminated and the run of the program continues in
method j which invoked method i).

We denote by N =
⋃

1≤i≤m Ni and similarly,
En =

⋃
1≤i≤m{Eni}; Ex =

⋃
1≤i≤m{Ex i};

Calls =
⋃

1≤i≤m Callsi; Retns =
⋃

1≤i≤m Retnsi; and
δ =

⋃
1≤i≤m δi. In the sequel we use N (resp. Ni) to de-

note all nodes in A (resp. Ai), and refer to the nodes of
N \ (Calls ∪ Retns ∪ En ∪ Ex) as internal nodes.
Quantitative ICFGs. A quantitative ICFG (QICFG for brevity)
consists of an ICFG A and a weight function w that assigns a
rational-valued weight w(e) ∈ Q to every transition e, where Q is
the set of all rationals.

Example 1. Consider an example program shown
in Figure 1 and Figure 2. In this example, (i) Mod-
ules: A1 = main, A2 = foo; (ii) Nodes: N2 =
{f:Entry, if(x>1), f:call foo, f:foo ret, x++, f:Exit}; (iii) Entry
and exit: En2 = f:Entry and Ex 2 = f:Exit; (iv) Calls and returns:
Calls2 = {f:call foo} and Retns2 = {f:foo ret}; and (v) Transi-
tion: for example, (x++,f:Exit) ∈ δ2, (f:Exit,f:foo ret) ∈ δ2 and
(f:Exit,m:foo ret) ∈ δ2.

Configurations and paths. A configuration consists of a sequence
c = (r1, . . . , rj , u), where each ri is a return node (i.e., ri ∈
Retns) and u ∈ N is a node in one of the modules. Intuitively,
when the module that u belongs to terminates, the program will
continue in rj . A sequence of configurations is valid if it does not
violate the transition relation, and a path π is a valid sequence of
configurations. We note that a path can be equivalently represented
by the first configuration and a sequence of transitions. For a path
π = ⟨c1, c2, . . . , cℓ⟩ we denote by (i) ni: the node of configuration

v o i d main (){
wh i l e ( x ){

i f ( y > 0 )
f o o ( x ) ;

e l s e
z = 7 ;

}
z ++;
r e t u r n ;

}

m:Entry while(x)

z++

if(y > 0 )

m:Exit

m:foo ret m:call foo

z=7

Figure 1. main

i n t f o o ( i n t x ){
i f ( x > 1 )

f o o ( x − 1 ) ;
x ++;
r e t u r n x ;

}

f:Entry if( x>1 ) f:call foo

f:foo ret x++ f:Exit

Figure 2. foo

ci (i.e., ci = (r1, . . . , rj , ni)), and (ii) αi: the stack string of ci
(i.e., αi = r1, . . . , rj). For a path π let π[1, i] denote the prefix of
length i of π. A run of the program is modeled by a path in A.

Example 2. Consider the program and the corresponding ICFG
shown in Figure 1 and Figure 2. An example of a run in the program
modeled as a path in the ICFG is as follows: ⟨(ϵ, m:Entry), (ϵ,
while(x)), (ϵ, if (y > 0)), (ϵ, m:call foo), (m:foo ret, f:Entry),
(m:foo ret, if (x > 1)), (m:foo ret, f:call foo), (m:foo ret, f:foo ret,
f:Entry), . . . ⟩, where ϵ denotes the empty stack.

Ratio analysis problem. In this work we consider the ratio anal-
ysis problem, where every transition of a ICFG has a label from
the set {good , bad ,neutral}. Intuitively, desirable events are la-
belled as good , undesirable events are labelled as bad , and other
events are labelled as neutral . The ratio analysis problem, given
a ICFG , a labeling of the events, and a threshold λ > 0, asks
to determine whether there is a run where the ratio of sum of
weights of good events vs the sum of weights of the bad events
that is greater than the threshold λ. Formally, we consider a positive
integer-weight function w, that assigns a positive integer-valued
weight to every transition, and for good and bad events the weight
denotes how good or how bad the respective event is. For a finite
path π we denote by good(w(π)) (resp., bad(w(π))) the sum of
weights of the good (resp., bad) events in π. In particular, for the
weight function w that assigns weight 1 to every transition, we have
that good(w(π)) (resp. bad(w(π))) represents the number of good
(resp. bad) events. We denote Rat(w(π)) = good(w(π))

max{1,bad(w(π))} the
ratio of the sum of weights of good and bad events in π (note that
in denominator we have max{1, bad(w(π))} to remove the patho-
logical case of division by zero). For an infinite path π we denote

LimRat(w(π))=

⎧
⎪⎨

⎪⎩

lim inf
i→∞

Rat(w(π[1, i])) if π has infinitely many
good or bad events;

0 otherwise;

informally this represents the ratio as the number of relevant
(good/bad) events goes to infinity. Our analysis focuses on paths
with unbounded number of relevant events, and infinitely many
events provide an elegant abstraction for unboundedness. Hence,
we investigate the following problem:

Given a ICFG with labeling of good, bad, and neutral
events, a positive integer weight function w, and a threshold
λ ∈ Q such that λ > 0, determine whether there exists an
infinite path π such that LimRat(w(π)) > λ.

Remark 1. Our approach can be extended to reason about finite
runs by a adding an auxiliary transition, labeled as a neutral event,
from the final state of the program to its initial state (also see
Section 3.3).



Mean-payoff analysis problem. In the mean-payoff analysis prob-
lem we consider a QICFG with a rational-valued weight function
w. For a finite path π in a QICFG we denote by w(π) the total
weight of the path (i.e., the sum of the weights of the transitions
in π), and by Avg(w(π)) = w(π)

|π| the average of the weights,
where |π| denotes the length of π. For an infinite path π, we de-
note LimAvg(w(π)) = lim infi→∞ Avg(w(π[1, i])). The mean-
payoff analysis problem asks whether there exists an infinite path π
such that LimAvg(w(π)) > 0. In Section 4 we show how the ratio
analysis problem of ICFGs reduces to the mean-payoff analysis
problem of QICFGs.
Assigning context-dependent and path-dependent weights. In
our model the numerical weights are assigned to every transition of
a ICFG . First, note that since we consider weight functions as an
input and allow all weight functions, the weights could be assigned
in a dependent way. Second, in general, we can have an ICFG ,
and a finite-state deterministic automaton (such as a deterministic
mean-payoff automaton [13]) that assigns weights. The determin-
istic automaton can assign weights depending on different contexts
(or call strings) of invocations, or even independent of the context
but dependent on the past few transitions (i.e., path-dependent), i.e.,
the automaton has the stack alphabet and transition of the ICFG as
input alphabet and assigns weights depending on the current state
of the automaton and an input letter. We call such a weight function
regular weight function. Given a regular weight function specified
by an automaton A and an ICFG we can obtain a ICFG (that rep-
resents the path-dependent weights) by taking their synchronous
product, and hence we will focus on ICFGs for algorithmic anal-
ysis. The regular weight function can also be an abstraction of the
real weight function, e.g., the regular weight function is an over-
approximation if the weights that it assigns to the good (resp. bad)
events are higher (resp. lower) than the real weights. If the origi-
nal weight function is bounded, then an over-approximation with a
regular weight function can be obtained (which can be refined to be
more precise by allowing more states in the automaton of the reg-
ular weight function). Note that the new ICFG which is obtained
from an ICFG and automaton A has a blowup in the number of
states of A, and thus there is a tradeoff between the precision of A
and the size of the new ICFG constructed.

3. Applications: Theoretical Modeling
In this section we show that many diverse problems for static
analysis can be reduced to ratio analysis of ICFGs. We will present
experimental results (in Section 5) for the problems described in
Section 3.1 and Section 3.2.

3.1 Container analysis
The inefficient use of containers is the cause of many performance
issues in Java. An excellent exposition of the problem with sev-
eral practical motivations is presented in [45]. The importance of
accurate identification of misuse of containers that minimizes (and
ideally eliminates) the number of false warnings was emphasized
in [45] and much effort was spent to avoid false warnings for real-
world programs. We show that the ratio analysis for ICFGs pro-
vides a mathematically sound approach for the identification of in-
efficient use of containers.
Two misuses. We aim to capture two common misuses of contain-
ers following the definitions in [45]. The first inefficient use is an
underutilized container that always holds very few number of ele-
ments. The cause of inefficiency is two-fold: (i) a container is typi-
cally created with a default number of slots, and much more mem-
ory is allocated than needed; and (ii) the functionality that is asso-
ciated with the container is typically not specialized to the case that
it has only very few elements. The second inefficiency is caused by
overpopulated containers that are looked up rarely, though poten-
tially they can have many elements. This causes a memory waste

and performance penalty for every lookup. Thus we consider the
following two cases of misuse:
1. A container is underutilized if there exists a constant bound on

the number of elements that it holds for all runs of the program.
2. For a threshold λ, a container is overpopulated if for all runs of

the program the ratio of GET vs ADD operations is less than λ.
We note that our approach is demand-driven (where users can
specify to check the misuse of a specific container).

Modeling. The modeling of programs as ICFGs is standard. We
describe how the weight function and the ratio analysis problem can
model the problem of detecting misuses. We abstract the different
container operations into GET, ADD, and DELETE operations. For
this purpose we require the user to annotate the relevant class
methods by GET, ADD, or DELETE; and by a weight function that
corresponds to the number of GET, ADD, or DELETE operations
that the method does (typically this number is 1). For example,
in the class HashSet, the add method is annotated by ADD, the
contains method is annotated by GET and the remove operation
is annotated by DELETE. The clear operation which removes all
elements from the set is annotated by DELETE but with a large
weight (if clear appears in a loop, it dominates the add operations
of the loop). We note that the annotation can be automated with the
approach that is described in [45].
1. When detecting underutilized containers we define ADD opera-

tions as good events and DELETE operations as bad events, and
check for threshold 1. Note that the relevant threshold is 1: if
the (long-run) ratio of ADD vs DELETE is not greater than 1,
then the total number of elements in the container is bounded
by a constant.

2. When detecting overpopulated containers we define GET oper-
ations as good events and ADD operations as bad events, and
check for the given threshold λ.

In addition, since we wish to analyze heap objects, the allocation
of the container is a bad event with a large weight (i.e., similar
effect as of clear); see Example 3. The container is misused iff
the answer to the ratio analysis problem is NO (note that in the
problem description for container analysis we have quantification
over all paths and for ratio analysis of ICFGs the quantification
is existential). The detection is demand-driven and done for an
allocated container c.

Details of modeling. Intuitively, a transition in the call graph is good
if it invokes a functionality that is annotated by a good operation
(i.e., ADD operation for the underutilized analysis and GET opera-
tion for the overpopulated analysis) and the object that invokes the
operation points to container c, and it is bad if the invoked operation
is annotated as bad. Formally, for a given allocated container c: If
at a certain line a variable t that may point to c invokes a good func-
tionality, then we denote the transition as good. If t must point to c
and invokes a bad functionality, then we denote it as a bad events.
All other transitions are neutral. Note that our modeling is conser-
vative. The misuse is detected for the container c if all runs of the
program have a ratio of good vs bad events that is below the thresh-
old (in other words, the container is not misused if there exists a
path where the ratio of good vs bad events is above the threshold,
and this exactly corresponds to the ratio analysis of ICFGs).

Example 3. We illustrate some important aspects of the container
analysis problem with an example. Consider the program shown in
Figure 3. We consider the containers that are allocated in line 9
and in line 20 and analyze them for underutilization. There exist
runs that go through line 14 and properly use the container that is
allocated in line 9, since qux method can add unbounded number
of elements to the hash table (due to its recursive call). However,
the container in line 20 is underutilized, since in every run the
number of elements is bounded by 2. However, note that if the
DELETE operation is not handled, then the container is reported
as properly used. We note that since we assign large weights to



1 v o i d qux ( H a s h t a b l e h , i n t x ){
2 h . p u t ( x , x / 2 ) ;
3 i f ( x > 0 ){
4 qux ( h , x / 2 ) ;
5 }
6 }
7
8 H a s h t a b l e b ar ( i n t x ){
9 r e t u r n new H a s h t a b l e ( x∗x ) ;

10 }

12 v o i d f o o ( i n t x ){
13 i f ( x % 2){
14 H a s h t a b l e h1 = b ar ( x ) ;
15 qux ( h1 , x ) ;
16 }
17 e l s e
18 {
19 f o r ( i n t y = 0 ; y < x ; y++ ){
20 H a s h t a b l e h2 = new H a s h t a b l e ( y ) ;
21 h2 . p u t ( y , x ) ;
22 f o r ( i n t z = 0 ; z < y ; z++ )
23 {
24 h2 . p u t ( z , y ) ;
25 . . .
26 h2 . remove ( z ) ;
27 }
28 }
29 }
30 }

Figure 3. An example for underutilized container analysis.

the allocation of the container, this prevents the analysis from
reporting that h2 properly uses the container that is allocated in
line 20. In summary, the example illustrates the following important
features: (1) the proper usage of the container should be tested also
outside of its allocation site1 (as opposed to the approach of [45]);
(2) sometimes the proper usage of a container is due to recursion;
and (3) handling DELETE operations appropriately increases the
precision of analysis. While these important features are illustrated
with the toy example, such behaviors were also manifested in the
programs of the benchmarks (see Subsection 5.2 for details).

Soundness. Our ratio analysis approach for ICFGs is both sound
and complete (with respect to the weighted abstracted ICFG).
Since we use a conservative approach for assigning bad and good
events, the ICFG we obtain for the misuse analysis of containers
is sound and we get the following result.

Theorem 1. (SOUNDNESS). The underutilized and overpopulated
container analysis through the ratio analysis problem on ICFGs
is sound (do not report false positives, i.e., any reported misused
container is truly misused).

Remark 2. We remark about the significance of the soundness of
our approach.
• The soundness criteria is a very important and desirable feature

for container analysis (for details see [43, 45]), because a
reported misused container needs to be analyzed manually and
incurs a substantial effort for optimization. Hence as argued
in [43, 45], spurious warnings (false positive) of misuse must
be minimized. In our approach, a misuse is reported iff in every
run a misuse is detected, and with a sound (over approximation)
annotation of the weights our approach is sound.

• The soundness of our approach is with respect to a sound (over
approximation) annotation of the ADD , DELETE and GET
operations. In addition, for a given ICFG , our ratio analysis
is precise (i.e.. both sound and complete), hence, our container
analysis is sound.

3.2 Static profiling
Finding the most frequently executed lines in the code can help
the programmer to identify the critical parts of the program and
focus on the optimization of these parts. It can also assist the
compiler (e.g., a C compiler) to decide whether it should apply
certain optimizations such as function inlining (replacing a function
call by the body of the called function) and loop unrolling (re-write
the loop as a repeated sequence of similar independent statements).
These optimizations can reduce the running time of the program,
but on the other hand, they increase the size of the (binary) code.
Hence, knowing whether the function or loop is hot (frequently

1 E.g., an HashTable is allocated in bar function but the proper usage is done
outside the allocation site, namely, after the termination of bar.

invoked) is important when considering the time vs. code size
tradeoff. In this subsection we present the model for profiling the
frequency of function calls (which allows finding hot functions),
and we note that our profiling technique is generic and can be scaled
to detect other hot spots in the code (e.g., hot loops).

Problem description. Given a program with several functions, a
function f is called λ-hot, if there exists a run (of unbounded
length) of the program where the frequency of calls to f (among
all function calls in the run) is at least λ. Formally, for a run,
given a prefix of length i, let #f(i) denote the number of calls
to f and #c(i) denote the number of function calls in the prefix
of length i. The function is λ-hot if there exists a run such that
lim infi→∞

#f(i)
#c(i) > λ.

Modeling. The modeling of programs as ICFGs is straightfor-
ward. We describe the labeling of events and weight function in
ICFGs to determine if a function f is λ-hot. First we label call-
transitions to f as good events and assign weight 1; then we label
all other call-transitions as bad events and assign them weight 1. To
ensure that the number of calls to f also appear in the denomina-
tor (in the total number of calls) we label transitions from the entry
node of f as bad events with weight 1. The function f is λ-hot iff
the answer to the ratio analysis problem with threshold λ is YES.

3.3 Estimating worst-case execution time
The approach of [12] for estimating worst-case execution time
(WCET) is also naturally captured by ratio analysis. While the in-
traprocedural problem was considered in [12], our approach allows
the more general interprocedural analysis. In this approach, we con-
sider (as in [12]) that each program statement is assigned a cost that
corresponds to its running time (e.g., number of CPU cycles).

Modeling. The modelling of WCET analysis of the program is as
follows: We add to the ICFG of the program a transition from
every terminal node to the initial node, and every such transition is
a bad event with weight 1. All the other transitions are good events
and their weight is their cost (running time). The WCET of the
program is at most N cycles if and only if the answer to the ratio
analysis problem with threshold N is NO.

3.4 Evaluating the speedup in a parallel computation
The speed of a parallel computing is limited by the time needed for
the sequential fraction of the program. For example, if a program
runs for 10 minutes on a single processor core, and a certain
part of the program that takes 2 minutes to execute cannot be
parallelized, then the minimum execution time cannot be less than
two minutes (regardless of how many processors are devoted to
a parallelized execution of this program). Hence, the speedup is at
most 5. Amdahl’s law [1] states that the theoretical speedup that can
be obtained by executing a given algorithm on a system capable of
executing n threads of execution is at most 1

B+ 1
n (1−B)

, where B is
the fraction of the algorithm that is strictly serial. Our ratio analysis
technique can be used to (conservatively) estimate the value of B
and thus to evaluate the outcome of Amdahl’s law.

Modeling. As in Section 3.3, we consider that the cost of every
program statement is given, and we add to the ICFG of the pro-
gram a transition from every terminal node to the initial node, this
time as a neutral event with weight 0. All the transitions of the code
that cannot be parallelized are defined as good events, and the other
transitions are defined as bad events. We denote by P the fraction
of the code that can be parallelized and by S the fraction of the code
that is strictly serial. The value of S

P is at most λ if and only if the
answer to the ratio analysis problem with threshold λ is NO. Hence
B is bounded by 1

1+ 1
λ

for which the answer to the ratio analysis
problem with threshold λ is NO.



3.5 Average energy consumption
In the case of many consumer electronics devices, especially mo-
bile phones, battery capacity is severely restricted due to constraints
on size and weight of the device. This implies that managing energy
well is paramount in such devices. Since most mobile applications
are non-terminating (e.g., a web browser), the most important met-
ric for measuring energy consumption is the average memory con-
sumption per time unit [11], e.g., watts per second.
Modeling. We consider that the running time and energy consump-
tion of each statement in the application code is given (or is approx-
imated). In our modeling we split each transition in the ICFG into
two consecutive transitions, the first is a good event and the next is
a bad event. The good event is assigned with a weight that corre-
sponds to the energy consumption of the program statement and the
bad event is assigned with a weight that corresponds to the running
time of the statement. The average energy consumption of the ap-
plication is at most λ if and only if the answer to the ratio analysis
problem is NO.

4. Algorithm for Quantitative Analysis of
QICFGs

In this section we present three results. The mean-payoff analysis
problem for QICFGs can be solved in polynomial time, this can
be derived from [14]. First, we present an algorithm that signifi-
cantly improves the current theoretical bound for the problem for
QICFGs. Second, we present an efficient algorithm that in most
practical cases is much faster as compared to the theoretical upper
bound. Finally, we present a linear reduction of the ratio analysis
problem to the mean-payoff analysis problem for QICFGs.

4.1 Improved algorithm for mean-payoff analysis
In this section we first discuss the basic polynomial-time algorithm
for mean-payoff analysis of QICFGs that can be obtained from
the results on pushdown systems shown in [14]. Due to space
constraints the technical proofs are relegated to the supplementary
material.
Results of [14] and reduction. The results of [14] show that
pushdown systems with mean-payoff objectives can be solved in
polynomial time. Given a pushdown system with state space Q
and stack alphabet Γ, the polynomial-time algorithm of [14] can
be described as follows. The algorithm is iterative, and in each
iteration it constructs a finite graph of size O(|Q| · |Γ|2) and runs a
Bellman-Ford style algorithm on the finite graph from each vertex.
The Bellman-Ford algorithm on the finite graph from all vertices
in each iteration requires O(|Q|3 · |Γ|6) time and O(|Q|2 · |Γ|4)
space. The number of iterations required is O(|Q|2 · |Γ|2). Thus
the time and space requirement of the algorithm are O(|Q|5 · |Γ|8)
and O(|Q|2 · |Γ|4), respectively. A QICFG can be interpreted
as a pushdown system where N corresponds to Q and Retns
corresponds to Γ.

Theorem 2. (BASIC ALGORITHM [14]). The mean-payoff analy-
sis problem for QICFGs can be solved in O(|N |5 · |Retns |8) time
and O(|N |2 · |Retns |4) space, respectively.

Improved algorithm. We will present an improved polynomial-
time algorithm for the mean-payoff analysis of QICFGs. The
improvement relies on the following properties of QICFGs:
1. The transitions of a module are independent of the stack of a

configuration, while in pushdown systems the transitions can
depend on the top symbol of the stack. This enables to reduce
the size of the finite graphs to be considered in every iteration.

2. Every call node has only one corresponding return node. There-
fore, if a module A1 invokes a module A2, then the behavior of
A1 after the termination of A2 is independent of A2. This en-
ables us to reduce the number of iterations to O(|Calls |).

To present the improved algorithm and its correctness formally, we
need a refined analysis and extensions of the results of [14]. We
first describe a key aspect and present an overview of the solution.

Remark 3. (Infinite-height lattice). Our algorithm will be an it-
erative algorithm till some fixpoint is reached. However, for inter-
procedural analysis with finite-height lattices, fixpoints are guaran-
teed to exist. Unfortunately in our case for mean-payoff objectives,
it is an infinite-height lattice. Thus a fixpoint is not guaranteed.
For this reason the analysis for mean-payoff objectives is more in-
volved, and this is even in the case of finite graphs. For example, for
reachability objectives in finite graphs linear-time algorithms ex-
ist, whereas for finite graphs with mean-payoff objectives the best-
known algorithms (for over three decades) are quadratic [23].

Solution overview. In finite graphs the solution for the mean-
payoff analysis is to check whether the graph has a cycle C such
that the sum of weights of C is positive. If such a cycle exists, then
a lasso path that leads to the cycle and then follows the cyclic path
forever has positive mean-payoff value. For QICFGs we show that
it is enough to find either a loop in the program such that the sum
of weights of the loop is positive or a sequence of calls and returns
with positive total weight such that the last invoked module is the
same as the first invoked module. For this purpose we compute a
summary function that finds the maximum weight (according to the
sum of weights) path between every two statements of a method
(i.e., between every two nodes of a module). The computation is an
extension of the Bellman-Ford algorithm to QICFGs. We show
that it is enough to compute a summary function for QICFGs
with a stack height that is bounded by some constant, and then
all that is left is to mark pairs of nodes such that the weight of a
maximal weight path between them is unbounded. In finite graphs
the maximum weight between two vertices is unbounded only if
the graph has a cycle with positive sum of weights (i.e., a path
with positive total weight that can be pumped). For QICFGs it
is also possible to pump special types of acyclic paths. We first
characterize these pumpable paths (up to Lemma 2). We then show
how to compute a bounded summary function (Lemma 3 and the
paragraph that follows it and Example 5). Finally we show how
to use the summary function to solve the mean-payoff analysis
problem. We start with the basic notions related to stack heights
and pumpable paths, and their properties which are crucial for the
algorithm.
Stack heights. The configuration stack height of c =
(r1, . . . , rj , u), denoted as SH(c), is j. For a finite path π =
⟨(α1, n1), . . . , (αℓ, nℓ)⟩, the stack height of the path (denoted by
SH(π)) is the maximal stack height of all the configurations in
the path. Formally SH(π) = max{|α1|, . . . , |αℓ|}. The addi-
tional stack height of π is the additional height of the stack in the
segment of the path, i.e., the additional stack height ASH(π) is
SH(π)−max(|α1|, |αℓ|).
Pumpable pair of paths. Let π = ⟨c1t1t2 . . . ⟩ be a finite or infinite
path (where each ti is a transition in the QICFG). A pumpable
pair of paths for π is a pair of non-empty sequences of transitions:
(p1, p2) = (ti1ti1+1 . . . ti1+ℓ1 , ti2ti2+1 . . . ti2+ℓ2), for ℓ1, ℓ2 ≥
0, i1 ≥ 0 and i2 > i1 + ℓ1 such that for every j ≥ 0 the path
πj
(p1,p2)

obtained by pumping the pair p1 and p2 of paths j times
each is a valid path, i.e., for every j ≥ 0 we have

πj
(p1,p2)

= ⟨c1t1 . . . ti1−1(p1)
jti1+ℓ1+1 . . . ti2−1(p2)

jti2+ℓ2+1 . . . ⟩

is a valid path. We illustrate the above definitions with the next
example.

Example 4. Consider the program from Figure 1 and Figure 2 and
the corresponding ICFG . A possible path in the program is

m:Entry → while(x) → if(y>0) → m:call foo →
f:Entry → if(x>1) → f:call foo → f:Entry → if(x>1) →



x++ → f:Exit → f:foo ret → x++ → f:Exit →
m:foo ret→ while(x)

and we denote this path with π. Then ASH(π) = 2, and the pair
of paths f:Entry → if(x>1) → f:call foo and f:foo ret → x++ →
f:Exit is a pumpable pair of paths.

In the next lemmas we first show that every path with large
additional stack has a pumpable pair of paths, and then establish the
connection of additional stack height and the existence of pumpable
pair of paths with positive weights in Lemma 2. The key intuition
for the proof of the next lemma is that a path with ASH(π) >
|Calls|+ 1 must contain a recursive call that can be pumped.

Lemma 1. Let π be a finite path with ASH(π) = d > |Calls|+1.
Then π has a pumpable pair of paths.

Lemma 2. Let c1, c2 be two configurations and j ∈ Z. Let d ∈ N
be the minimal additional stack height of all paths between c1 and
c2 with total weight at least j. If d > |Calls|+ 1, then there exists
a path π∗ from c1 to c2 with additional stack height d that has a
pumpable pair (p1, p2) with w(p1) + w(p2) > 0.

Proof. Let us consider the set of paths Π between c1 and c2 with
total weight at least j, and let Πmin be the subset of Π that has
minimal additional stack height. The proof is by induction on the
length of paths in Πmin. Consider a path π from Πmin that has the
shortest length among all paths in Πmin. Since ASH(π) = d >
|Calls| + 1, then by Lemma 1 it contains a pumpable pair. Let us
consider the path π1 obtained from π by pumping the pumpable
pair zero times (i.e., the pumpable pair is removed). Since we
remove a part of the path we have that ASH(π1) ≤ ASH(π).
If w(π1) ≥ w(π), then we obtain a path π1 with weight at
least j, with either smaller additional stack height than π, or of
shorter length, contradicting that π is the shortest length minimal
additional stack height path with weight at least j. Hence we must
have w(π1) < w(π), and hence the pumpable pair has positive
weight. Now for an arbitrary path π in Πmin we obtain that it has
a pumpable pair. Either the pumpable pair has positive weight and
we are done, else removing the pumpable pair we obtain a shorter
length path of the same stack height, and the result follows by
inductive hypothesis on the length of paths.

Our algorithm for the mean-payoff analysis problem is based on
detecting the existence of certain non-decreasing paths with posi-
tive weight. The maximal weights of such non-decreasing paths
between node pairs are captured with the notion of a summary
function and bounded summary functions (with bounded additional
stack height). We now define them, and establish the lemma related
to the number of bounded summary functions to be computed.
Local minimum and non-decreasing paths. A configuration ci in
a path π = ⟨c1, . . . , cℓ⟩ is a local minimum if the stack height
of ci is minimal in π, i.e., |αi| = min(|α1|, . . . , |αℓ|). A path
from configuration (α, n1) to (αβ, n2) is a non-decreasing α-
path if (α, n1) is a local minimum. Note that if a sequence of
transitions is a non-decreasing α-path for some α ∈ Retns∗, then
the same sequence of transitions is a non-decreasing γ-path for
every γ ∈ Retns∗. Hence, we say that π is a non-decreasing path
if there exists α ∈ Retns∗ such that π is a non-decreasing α-path.
Summary function. Given the QICFG A and α ∈ Retns∗, we
define a summary function sα :

⋃
1≤ℓ≤m(Nℓ ×Nℓ) → {−∞} ∪

Z ∪ {ω} as:
1. sα(n1, n2) = z ∈ Z iff the weight of the maximum weight

non-decreasing path from configuration (α, n1) to configura-
tion (α, n2) is z.

2. sα(n1, n2) = ω iff for all j ∈ N there exists a non-decreasing
path from (α, n1) to (α, n2) with weight at least j.

3. sα(n1, n2) = −∞ iff there is no non-decreasing path from
(α, n1) to (α, n2).

We note that for every α, β ∈ Retns∗ it holds that sα ≡ sβ .
Hence, we consider only s ≡ sϵ (where ϵ is the empty string
and corresponds to empty stack). The computation of the summary
function is done by considering stack height bounded summary
functions defined below.
Stack height bounded summary function. For every
d ∈ N, the stack height bounded summary function
sd :

⋃
1≤ℓ≤m(Nℓ × Nℓ) → {−∞} ∪ Z ∪ {ω} is defined

as follows: (i) sd(n1, n2) = z ∈ Z iff the weight of the maximum
weight non-decreasing path from (ϵ, n1) to (ϵ, n2) with additional
stack height at most d is z; (ii) sd(n1, n2) = ω iff for all j ∈ N
there exists a non-decreasing path from (ϵ, n1) to (ϵ, n2) with
weight at least j and additional stack height at most d; and
(iii) sd(n1, n2) = −∞ iff there is no non-decreasing path with
additional stack height at most d from (ϵ, n1) to (ϵ, n2).

Facts of summary functions. We have the following facts: (i) for
every d ∈ N, we have sd+1 ≥ sd (monotonicity); and (ii) sd+1

is computable from sd and the QICFG . By the above facts we
get that if sd ≡ sd+1, i.e., if a fix point is reached, then s ≡ sd.
For interprocedural analysis with finite-height lattices, fix points
are guaranteed to exist. Unfortunately in our case, the image of si is
infinite and moreover, it is an infinite-height lattice. Thus a fix point
is not guaranteed. The next lemma shows that we can compute all
the non-ω values of s with the bounded summary function.

Lemma 3. Let d = |Calls|+1. For all n1, n2 ∈ N , if s(n1, n2) ∈
Z ∪ {−∞}, then s(n1, n2) = sd(n1, n2).

By Lemma 3 we get that if sd+1(n1, n2) > sd(n1, n2) (for d =
|Calls|+1), then s(n1, n2) = ω. Hence, the summary function s is
obtained by the fix point of the following computation: (i) Compute
si+1 from si up to sd for d = |Calls| + 1; (ii) for i ≥ |Calls| +
1, if si+1(n1, n2) > si(n1, n2), then set si+1(n1, n2) = ω;
(iii) a fix point is reached after at most O(|Calls |) iterations (say j
iterations), and then we set s ≡ sj . This establishes that we require
only O(|Calls|) iterations as compared to O(|N |2 · |Retns |2)
iterations. The number of returns and calls are the same and thus
we significantly improve the number of iterations required from
the quartic worst-case bound to linear bound. We now describe the
computation of every iteration to obtain si+1 from si.
Computation of si+1 from si. We first compute a partial func-
tion, namely, s′i+1 : En × Ex → {−∞,ω} ∪ Z that satisfies
s′i+1(n1, n2) = si+1(n1, n2) for every n1 ∈ En and n2 ∈ Ex .
We initialize s′0(n1, n2) = s0(n1, n2). For every module Aℓ we
construct a finite graph Gi

ℓ by taking all the nodes and transitions
of Aℓ and by adding a transition between every call node and its
corresponding return node. For every transition between a pair of
nodes n1, n2 ∈ Nℓ \ (Callsℓ ∪ Retnsℓ) we assign the weight ac-
cording to the original weight in A. For every transition between a
call node that invokes module Ap and a corresponding return node
we assign the weight s′i(Enp,Ex p). To compute s′i+1 for module
Aℓ we run one Bellman-Ford iteration over Gi

ℓ for source node Enℓ

and target node Ex ℓ. We observe the next two key properties of s′i:
• For every iteration i, a module Aℓ, and pair of nodes n1, n2 ∈
Nℓ we have that the weight of the maximum weight path be-
tween n1 and n2 in Gi

ℓ is exactly si+1(n1, n2) (the proof is by
a simple induction over i).

• If s′i+1 ≡ s′i, then si+1 ≡ si (follows from the first key
property).

Hence, to compute s we compute s′i+1 from s′i until we get s′i+1 ≡
s′i, and then we compute all pairs maximum weight paths (e.g.,
by the Floyd-Warshall algorithm) over every Gi

ℓ and get si+1

(and si+1 ≡ s). The Floyd-Warshall algorithm has a cubic time
complexity and quadratic space complexity [15]. Therefore, the
time complexity for computing every iteration of si is O(

∑
|Nℓ|2)

and the complexity of the last step is O(
∑

|Nℓ|3). The space



complexity of the last step is O(max{|N1|, . . . , |Nm|}2), but to
store si we require O(

∑
|Nℓ|2) space.

Summary graph. Given QICFG A with a summary func-
tion s, we construct the summary graph Gr(A) = (V,E)
of A with a weight function w : E → Z ∪ {ω} as
follows: (i) V = N \ (Ex ∪ Retns); and (ii) E =
Einternal ∪ Ecalls where Einternal = {(n1, n2) | n1, n2 ∈
Nℓ for some ℓ, and s(n1, n2) > −∞} contains the transitions in
the same module and Ecalls = {(n1, n2) | n1 ∈ Calls and n2 ∈
En and n1 is a call to a module with entry node n2} contains the
call transitions. The weights of Einternal are according to the sum-
mary function s and the weights of Ecalls are according to the
weights of these transitions in A (i.e., according to w). A simple
cycle in Gr(A) is a positive simple cycle iff one of the following
conditions hold: (i) the cycle contains an ω edge; or (ii) the sum of
the weights of the cycles according to the weights of the summary
graph is positive. Lemma 4 shows the equivalence of the mean-
payoff analysis problem and positive cycles in the summary graph.

Lemma 4. A QICFG A has a path π with LimAvg(w(π)) > 0
iff the summary graph Gr(A) has a (reachable) positive cycle.

Proof. If Gr(A) does not contain a positive cycle, then it follows
that the weight of every non-decreasing path in A is bounded by the
weight of the maximum weight path in Gr(A). Hence, for every
infinite path π we get that every prefix of π is a non-decreasing
path from the initial configuration with bounded weight (sum of
weights bounded from above), and therefore LimAvg(w(π)) ≤ 0.
Conversely, if Gr(A) has a positive cycle, then it follows that there
is a path π0π1 in Gr(A) such that π0 and π1 are non-decreasing
paths, π1 begins and ends in the same node (possibly at higher
stack height) and w(π1) > 0. Hence, the path π0πω

1 is a valid
path and satisfies LimAvg(w(π0πω

1 )) = w(π1)
|π1|

> 0, where
πω
1 = π1 · π1 · π1 . . . is the infinite concatenation of the finite

path π1. The desired result follows.

Algorithm and analysis. Algorithm 1 solves the mean-payoff anal-
ysis problem for QICFGs. The computation of the summary func-
tion requires O(|Calls|) computations of the partial summary func-
tion s′i, which requires m runs of Bellman-Ford algorithm, each run
over a graph of size |Nℓ| (hence, each run takes O(|Nℓ|2) time).
In addition the computation requires m runs of all pairs maximum
weight path (Floyd-Warshall) algorithm. Each run is over a graph of
size O(|Nℓ|) (hence, each run takes O(|Nℓ|3) time and O(|Nℓ|2)
space). Finally we detect positive cycles by running Bellman-Ford
algorithm once over the summary graph, which takes O(|N |2) time
and O(|N |) space. Thus we obtain the following result.

Theorem 3. (IMPROVED ALGORITHM). Algorithm 1
solves the mean-payoff analysis problem for QICFGs in
O
((
|Calls| · (

∑
|Nℓ|2)

)
+ (

∑
|Nℓ|3) + |N |2

)
time and

O(
∑

|Nℓ|2) space.

Remark 4. Note that in the worst case the running time of Algo-
rithm 1 is cubic and the space requirement is quadratic.

The next example is an illustration of a run of Algorithm 1.

Example 5. Consider the QICFG that consists of modules f and
g (Figures 4 and 5) and the entry of f is the initial entry of the
program. We now describe the run of Algorithm 1 over the QICFG .
For simplicity, we denote the graph of f by F and the graph of g by
G (and not by G1 and G2). Note that the number of call nodes is 3.

We first compute the summary function s′ and the first step
is to compute s′0. We have s′0(f:entry,f:exit) = −35, and
s′0(g:entry,g:exit) = −25.

In order to compute s′1(f:entry,f:exit) we construct a graph F 0

from F by adding a transition from the node f:call g to the node
f:ret g with weight s′0(g:entry,g:exit) and find the maximum weight

Algorithm 1 Mean-payoff QICFG Analysis
1: for ℓ← 1 to m do
2: s′0(Enℓ,Ex ℓ) ← BELLMAN-FORD(Aℓ) {Compute s′0 by

running Bellman-Ford algorithm on Aℓ}
3: end for
4: i← 1
5: loop
6: for ℓ← 1 to m do
7: Construct Gi−1

ℓ according to s′i−1

8: s′i(Enℓ,Ex ℓ)← BELLMAN-FORD(Gi−1
ℓ ) {Compute s′i

by running Bellman-Ford algorithm over Gi−1
ℓ }

9: end for
10: if s′i ≡ s′i−1 then
11: break
12: end if
13: if i > |Calls|+ 1 then
14: for ℓ← 1 to m do
15: if s′i(Enℓ,Ex ℓ) > s′i−1(Enℓ,Ex ℓ) then
16: s′i(Enℓ,Ex ℓ) = ω
17: end if
18: end for
19: end if
20: i← i+ 1
21: end loop
22: s←FLOYD-WARSHALL(s′i)
23: Construct Gr(A) from s
24: BELLMAN-FORD(Gr(A)) {Run Bellman-Ford over Gr(A)}
25: if Gr(A) has a positive cycle then
26: return YES
27: else
28: return NO
29: end if

f:call g f:g ret

f:entry f:v f:exit
-30

-10-15
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Figure 4. Module f

g:entry g:u1
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Figure 6. Summary graph of f and g



path from f:entry to f:exit in F 0. We get s′1(f:entry,f:exit) = −35.
In order to compute s′1(g:entry,g:exit) we construct a graph G0

from G by adding a transition from g:call g to g:ret g with weight
s′0(g:entry,g:exit) and a transition from g:call f to g:ret f with
weight s′0(f:entry,f:exit) and find the maximum weight path from
g:entry to g:exit in G0. We get s′1(g:entry,g:exit) = −10.

Since s′1 ̸= s′0, we continue to compute s′2. We construct F 1 and
G1 in the same manner as we constructed F 0 and G0 (but take
the values of s′1 instead of s′0) and get s′2(f:entry,f:exit) = −35,
s′2(g:entry,g:exit) = 5. For i = 3 we get s′3(f:entry,f:exit) = −35,
s′3(g:entry,g:exit) = 20. For i = 4, s′4(f:entry,f:exit) = −35,
s′4(g:entry,g:exit) = 35.

For i = 5 we get s′5(f:entry,f:exit) = −20 and
s′5(g:entry,g:exit) = 50. Since i > |Calls| + 1 and
s′5(f:entry,f:exit) > s′4(f:entry,f:exit) and s′5(g:entry,g:exit) >
s′4(g:entry,g:exit) we assign assign s′5(f:entry,f:exit) = ω and
s′5(g:entry,g:exit) = ω. In the sixth iteration we get a fix point
(that is, s′6 ≡ s′5) and exit the loop block.

From F 5 and G5 we compute the summary function s.
For example s(g:entry,g:u1) = ω and s(f:entry,f:v) = −30.
Finally, we construct the summary graph (see Figure 6)
and check whether a positive cycle exists. The cycle
f:entry→f:v→f:call g→g:entry→g:u1→g:u2→g:call f→f:entry
contains an ω-edge and thus, it is a positive cycle. Hence algorithm
returns YES.

4.2 Efficient algorithm for mean-payoff analysis
In this section we further improve the algorithm for the mean-
payoff analysis problem for QICFGs, and the improvement de-
pends on the fact that typically the number of entry, exit, call, and
returns nodes is much smaller than the size of the QICFGs. For-
mally, in most typical cases we have |Ex∪Retns∪Calls∪En| <<
|N |. Let Xℓ = {Ex ℓ,Enℓ} ∪ Retnsℓ ∪ Callsℓ and X =

⋃
ℓ Xℓ.

We present an improvement that enables us to construct the sum-
mary function over graphs of size O(|Xℓ|) (instead of graphs of
size O(|Nℓ|) of Section 4.1), and with at most O(|Calls |) iter-
ations. Hence, the algorithm in most typical cases will be much
faster and require much smaller space.
Compact representation. The key idea for the improvement is
to represent the modules in compact form. The compact form of
a module Aℓ, denoted by Comp(Aℓ), consists of the entry, exit,
call, and returns node of Aℓ. There is transition between every
node in Comp(Aℓ), and the weight of each transition is the maxi-
mum weight path between the nodes with additional stack height
0 (and if there is no such path, then the weight is −∞). For-
mally, Comp(Aℓ) = (V,E); where V = Xℓ; E = V × V , and
w(v1, v2) = s0(v1, v2) (where s0 is the bounded height summary
function of height 0). If in Comp(Aℓ) there is a cycle with positive
weight that is reachable from the entry node, then we say that Aℓ

is a positive mean-payoff witness. The computation of the compact
form for a module Aℓ requires O(|Xℓ| · |Nℓ|2) time and O(|Nℓ|)
space (running Bellman-Ford on each Aℓ), and thus the compact
form for all modules can be computed in O(

∑
|Xℓ| · |Nℓ|2) time

and O(max |Nℓ|) space (note that the space can be reused).
Witness in summary graph of compact forms. After construct-
ing the compact forms, we compute a summary function
for Comp(A1), . . . ,Comp(Am), and a corresponding summary
graph. We say that there is a path with positive mean-payoff iff
there exists a positive cycle in the summary graph or there exists
a path to the entry node of a positive mean-payoff witness. The
correctness of the algorithm relies on the next lemma.

Lemma 5. Let A = ⟨A1, . . . , Am⟩ be a QICFG , let Gr(A) be
its summary graph and let Comp(Gr(A)) be the summary graph
that is formed by Comp(A1), . . . ,Comp(Am). The following as-
sertions are equivalent:
1. Gr(A) has a (reachable) positive cycle.

2. Comp(Gr(A)) has a (reachable) positive cycle or a positive
mean-payoff witness.

The above lemma establishes the correctness of the computation
on compact form graphs, and gives us the following result. The
following result is obtained from Theorem 3 by replacing |Nℓ| with
|Xℓ| and |N | by |X|, and the additional

∑
|Xℓ| · |Nℓ|2 time and

max |Nℓ| space are required for the compact form computation.

Theorem 4. (EFFICIENT ALGORITHM). The mean-
payoff analysis problem for QICFGs can be solved in
O
((
|Calls| · (

∑
|Xℓ|2)

)
+ (

∑
|Xℓ|3) + |X|2 +

∑
|Xℓ| · |Nℓ|2

)

time and O(
∑

|Xℓ|2 + max |Nℓ|) space, where Xℓ =
{Ex ℓ,Enℓ} ∪ Retnsℓ ∪ Callsℓ and X =

⋃
ℓ Xℓ.

4.3 Reduction: Ratio analysis to mean-payoff analysis
We now establish a linear reduction of the ratio analysis problem to
the mean-payoff analysis problem. Given a ICFG A with labeling
of good, bad, and neutral events, a positive integer weight function
w, and rational threshold λ > 0, the reduction of the ratio analysis
problem to the mean-payoff analysis problem is as follows. We
consider a QICFG A′ with weight function wλ for the mean-
payoff objective defined as follows: for a transition e we have

wλ(e) =

⎧
⎪⎨

⎪⎩

w(e) if e is labelled with good

−λ · w(e) if e is labelled with bad

0 otherwise (if e is labelled with neutral )

The next lemma establishes the correctness of the reduction.

Lemma 6. Given a ICFG A with labeling of good, bad, and
neutral events, a positive integer weight function w, and rational
threshold λ > 0, let A′ be the QICFG with weight function wλ.

There exists a path π in A with LimRat(w(π)) > λ iff
there exists a path π in A′ with LimAvg(wλ(π)) > 0.

Remark 5. Note that in our reduction from ratio analysis to mean-
payoff analysis we do not change the QICFG , but only change
the weight function. Thus our algorithms from Theorem 3 and
Theorem 4 can also solve the ratio analysis problem for QICFGs.
Moreover, our proof of lemma 6 shows that for all paths π, if we
have LimAvg(wλ(π)) > 0, then we also have LimRat(w(π)) >
λ, i.e., any witness for the mean-payoff analysis is also a witness
for the ratio analysis.

5. Experimental Results: Two Case Studies
In this section we present our experimental results on two case stud-
ies described in Section 3.1 and Section 3.2. We run our case stud-
ies on several benchmarks in Java, including DaCapo 2009 bench-
marks [4], and we use [7, 25] to assist Soot for the construction of
the control-flow graphs. First we present some optimizations that
proved useful for speed-up in the benchmarks.

5.1 Optimization for case studies
We present four optimizations for the case studies: the first two are
general, and the last two are specific to our case studies.
Faster computation of stack height bounded summary func-
tion. We note that if module Aℓ invokes only modules
Aj1 , . . . , Ajk , and s′i(Enjh ,Ex jh ) = s′i−1(Enjh ,Ex jh) for all
h ∈ {1, . . . , k}, then s′i(Enℓ,Ex ℓ) = s′i−1(Enℓ,Ex ℓ). Hence,
when computing s′i, we maintain a set Li = {ℓ | s′i(Enℓ,Ex ℓ) >
s′i−1(Enℓ,Ex ℓ)}, and in the next iteration we run Bellman-Ford
algorithm only for the modules that invoke modules from Li.
Reducing the number of iterations for fix point. We now present
an optimization that allows us to reduce the number of bounded
height summary functions from O(|Calls|) to a practically con-
stant number. We note that the O(|Calls |) theoretical bound is



tight. However, only pathological cases can reach even a fraction
of this bound. We note that in typical programs the average nest-
ing of function calls is practically constant (say 10). So if we do
not get a fix point after 10 iterations (i.e., s′11 > s′10), then it is
probably because there is a recursive call with positive weight. If
this is the case, then if we build the summary graph according to
s11, we will get a positive cycle in the summary graph, that is, we
will get a witness for a path with a positive mean-payoff, and we
can stop the computation (since by definition s ≥ s11, we get that
this witness is valid). Hence, our optimized algorithm is to com-
pute the bounded height summary function s′i and if s′i > s′i−1 and
i = 10, 20, 30, . . . , then we construct the summary graph and look
for a witness path. If a path is found, then we are done. Otherwise
we continue and compute s′i+1.

Removing redundant modules. Consider an ICFG A =
⟨A1, . . . , Am⟩ in which every node is reachable from the program
entry (the entry node of the main method). We say that module Ai

is non-redundant if (i) the module has non-zero weight transitions
(good or bad events); or (ii) it invokes a non-redundant module, and
is called redundant otherwise. Let Ai be a redundant module. For
every path π that contains a transition to Eni (an invocation of Ai),
the segment of π between that transition and the first transition to
Exi contains only neutral transitions. Because all nodes of A are
reachable, we can safely replace each call node that invokes Ai by
an internal node that leads to the corresponding return node, and la-
bel it as a neutral event. Our optimization then consists of removing
redundant modules, as follows:
1. First, we perform a single-source interprocedural reachability

from the program entry, which requires linear time ([31]), and
discard all non-reachable nodes in all modules.

2. Then, we perform a backwards reachability computation on the
call graph of A, starting from the set of all modules that contain
non-zero weight transitions. All detected redundant modules
are discarded, and calls to them are replaced according to the
above description.

Hence, when computing the bounded height summary function,
the size of the graph is smaller and the Bellman-Ford algorithm
takes less time. Additionally, the number of calls |Calls| decreases,
which reduces the number of iterations required in the main loop
of Algorithm 1. In the first case study, typically more than half of
the methods are eliminated in this process.

Incremental computation of summary functions. We present the
final optimization which is relevant for our second case study.
Let A1 be a QICFG and let A2 be a QICFG that is obtained
from A1 only by increasing some of the transitions weights. Let
s1 be the summary function of A1. Then we can compute the
summary function of A2 by setting s′20 ≡ s1 and by computing
s′2i from s′2i+1 in the usual way. The correctness is almost trivial.
Since the weights of A2 are at least as the weights of A1, we
get that if we conceptually add a transition (n1, n2) with weight
s1(n1, n2) for every two nodes (in the same module) in A2, then
the weights of the paths with the maximal weight in A2 remain
the same. By assigning s′20 = s1 we only add such conceptual
transitions. Hence, the correctness follows. We now describe how
this optimization speed up the analysis of the second case study.
In the static profiling for function frequencies, we need to build a
summary graph for every function f , and then run the mean-payoff
analysis for every such graph. Given this optimization, we can first
compute (only once) a summary graph for the case that all method
invocations are bad events. We denote this QICFG by A∗ and the
corresponding summary function by s∗. Note that in A∗ all weights
are negative, and the mean-payoff analysis answer is trivially NO.
But still the summary function computation, which computes the
quantitative information about the maximum weight context-free
paths, provides useful information and saves recomputation. To
determine the frequency of f we assign weights to A and get Af ,

and the difference between Af and A∗ is only in the weight that
is assigned to the invocation of f . We then compute the summary
function sf for Af by first assigning s′f0 = s∗. In practical cases,
programs can have thousands of methods, but only small portion of
them will have a path to f . So along with the previous optimizations
we get that only few Bellman-Ford runs are required to compute sf .
Overall, the computation of s∗ is expensive, and may take several
minutes for a large program, but it is done only once, and then the
computation of each sf is much faster.

5.2 Container analysis

Technical details about experimental results. We discuss a few
relevant details about our experiments and results.
• We use the points-to analysis tool of [36]. This tool provides

interprocedural on demand analysis for a may-alias relation-
ship of two variables. We say that a variable may point to an
allocated container if it may-alias the container, and a variable
must point to an allocated container if it may-alias only one al-
located container.

• For the underutilized containers the threshold is 1, and for the
analysis of overpopulated containers we set a threshold of 0.1
for our experimental results. That is, if the ratio between the
number of added elements to the number of lookup operations
is more than 10, then the container is overpopulated.

Experimental results. Our experimental results on the benchmarks
are reported in Table 1. In the table, # M and # CO represent the
number of methods and containers that are reachable from the main
entry of the program, respectively; # OP and # UC represent the
number of overpopulated and underutilized containers discovered
by our tool, respectively; and TA(s) and TQ(s) represent the time
required for alias analysis and the time required for the quantita-
tive analysis of QICFGs (in seconds), respectively; and the entries
of the respective columns represent the time for overpopulated/un-
derutilized container analysis. We now highlight some interesting
aspects of our experimental results. First, our approach for con-
tainer analysis discovers containers that are overpopulated or un-
derutilized, while maintaining soundness. Second, the cases that we
identify reveal useful information for optimization, for example, in
the first (batik-rasterizer) and the second (batik-svgpp) benchmarks
we identify containers that always have a small bounded number of
elements.

Benchmark # M # CO # OP # UC TA(s) TQ(s)
batik-rasterizer 21433 9 1 2 124/125 144/143

batik-svgpp 7859 3 0 3 20/20 14/13
mrt 9798 10 1 0 70/13 41/59

java cup 8173 10 0 0 19/19 25/22
xalan 8729 6 3 2 5/5 41/43

polyglot 8068 8 2 2 0/0 17/17
antlr 8607 15 5 2 11/12 25/24
jflex 21852 43 3 6 2473/2614 178/210

avrora 13331 75 9 9 145/141 111/113
muffin 22503 50 3 5 2500/157 352/173
bloat06 10675 211 32 14 399/250 2241/2165

eclipse06 9335 74 8 4 37/22 222/164
jython06 12210 66 9 5 154/68 13593/8376

Table 1. Experimental results for container usage analysis

Comparison with the work of [45]. While the notion of under-
utilized and overpopulated containers is the same in our work and
in [45], the concrete mathematical definition is different.
• (Conceptual difference in modeling). The formal definitions

in [45] rely on properties of a specifically constructed inequality
graph that in practice gives a good approximation on whether a
container is properly used (for details, see Definition 8 in [45]).
Our formal definition is conceptually simpler and relies on a
very general and flexible mathematical framework, but on the



Benchmark # M # I T
antlr 768 326 1.2
bloat 2576 676 30.8

eclipse 1056 215 2.3
fop 429 47 0.4

luindex 567 239 0.7
lusearch 842 237 2.5

pmd 2547 589 11.5

Table 2. Experimental results for frequency of functions.

Figure 7. The ROC curves. The left plot shows the results when all
methods are analyzed. The right plot shows the results when only
the active methods are analyzed.

other hand it crucially relies on the accuracy of the constructed
QICFG . For example, our technique may not report a container
as underutilized even if the witness path for proper utilization is
very complex, e.g., has 20 nested function calls, and therefore
it is unlikely to be realizable on practice.

• (Advantages and disadvantages). Our approach has several
advantages: (1) First, our approach can handle recursion,
whereas [45] does not handle recursion. (2) Second, we present
a sound and complete approach for ratio analysis of QICFGs,
and with a conservative modeling we have a sound analysis ap-
proach for detecting containers misuse. (3) Third, our algorithm
is polynomial time (once the points-to relation is computed),
whereas the algorithmic approach of [45] in the worst case is
exponential. (4) Finally, our approach also allows us to handle
DELETE operations: in [45] loops with only ADD operations
(in ADD vs DELETE) were identified as proper usage, whereas
we identify loops where the difference of the ADD and DELETE
operations is positive as proper usage (this subsumes the loops
of [45] and for example, also loops with two ADD operations
and one DELETE operation). Example 3 illustrates the advan-
tages of our approach. One drawback of our approach is that
it is conservative: while for underutilized containers analysis
(ADD vs DELETE) our approach captures all cases of [45] (as
explained above), our approach for overpopulated containers
analysis is more conservative (to obtain soundness).

• (Comparison of experimental outcomes). With our approach
we were able to fully analyze all the containers in all bench-
marks, whereas in [45] the analysis for few benchmarks (e.g.,
muffin) was not done for all containers since a timeout was
reached. Below we present example snippets of code from the
benchmarks where our analysis gives different results from the
analysis of [45]. The example in Figure 8 shows that handling
DELETE operations leads to more refined analysis: in the ex-
ample, if DELETE operations are not handled, then the misuse
is not detected. The example in Figure 9 shows that the proper
utilization of containers might depend on the recursive calls. Fi-
nally, the example in Figure 10 illustrates that the proper use of
containers can be outside its allocation site.

1 p u b l i c v o i d c l e a r e d ( ) {
2 . . .
3 i f ( l i s t != n u l l ){
4 . . .
5 }
6 e l s e{
7 O b j e c t o = el emen t sB y I d . remove ( i d ) ;
8 i f ( o != t h i s ) / / oops n o t us !
9 e l emen t sB y Id . p u t ( id , o ) ;

10 }
11 }

1 p u b l i c v o i d r u n ( ) {
2 wh i l e ( t r u e ) {
3 . . .
4 i f ( . . . ) {
5 . . .
6 r c . c l e a r e d ( ) ;
7 }
8 . . .
9 }

10 . . .
11 }

Figure 8. An example from benchmark batik. The method run
invokes cleared in a loop, and in every invocation, one element
of elementsById is removed and one element is added. Thus in this
loop the total number of elements in elementsById is bounded.

1 v o i d addCNAME( CNAMERecord cname ) {
2 i f ( b a c k t r a c e == n u l l )
3 b a c k t r a c e = new Vect o r ( ) ;
4 b a c k t r a c e . i n s e r t E l e m e n t A t ( cname , 0 ) ;
5 }
6
7 p u b l i c Set R esp o n se f i n d R e c o r d s (Name name , s h o r t t y p e ) {
8 . . .
9 i f ( t y p e != Type .CNAME && t y p e != Type .ANY && r r s e t . g e t Ty p e ( ) == Type .CNAME)

10 {
11 z r = f i n d R e c o r d s ( cname . g e t T a r g e t ( ) , t y p e ) ;
12 z r . addCNAME( cname ) ;
13 . . .
14 }
15 . . .
16 r e t u r n z r ;
17 }

Figure 9. An example from benchmark muffin. The method find-
Records has a recursive call, and method addCNAME adds an
element to vector backtrace. A path with recursion depth n adds
n elements to backtrace. Hence, backtrace may have unbounded
number of elements and it is not underutilized.

1 H a s h t a b l e c g i ( R eq u es t r e q u e s t )
2 {
3 H a s h t a b l e a t t r s = new H a s h t a b l e ( 1 3 ) ;
4 . . .
5 i f ( q u er y != n u l l )
6 {
7 S t r i n g T o k e n i z e r s t = new S t r i n g T o k e n i z e r ( d eco d e ( q u er y ) , ”&” ) ;
8 wh i l e ( s t . hasMoreTokens ( ) )
9 {

10 . . .
11 a t t r s . p u t ( key , v a l u e ) ;
12 }
13 }
14 . . .
15 r e t u r n a t t r s ;
16 }
17
18 p u b l i c Reply r ecv R ep l y ( R eq u es t r e q u e s t )
19 {
20 . . .
21 e l s e i f ( r e q u e s t . g e t P a t h ( ) . e q u a l s ( ” / admin / s e t ” ) )
22 {
23 H a s h t a b l e a t t r s = c g i ( r e q u e s t ) ;
24 . . .
25 f o r ( i n t i = 0 ; i < e n a b l e d . s i z e ( ) ; i ++)
26 {
27 . . .
28 p r e f s . p u t ( key , ( S t r i n g ) a t t r s . g e t ( key ) ) ;
29 }
30 . . .
31 }
32 . . .
33 r e t u r n r e p l y ;
34 }

Figure 10. An example from benchmark muffin. The method cgi
allocates the container attrs and potentially adds it many elements.
The method recvReply performs a get operation over attrs in a
loop. Since we analyze not only the operations that are nested in
the allocation site, we detect that attrs is not overpopulated (the
analysis of [45] reports it as overpopulated).



5.3 Static profiling: frequency of function calls

Experimental results. We examined ten thresholds, namely
1/30, 2/30, 3/30, ..., 10/30, and for each threshold λ we say that
a method is statically hot if it is λ-hot (according to the definition
in Subsection 3.2). We compared the results to dynamic profiling
from the DaCapo benchmarks [4]. In the dynamic profiling we de-
fine the top 5% of the most frequently invoked functions as dynam-
ically hot. For example, if a program has 1000 functions, and in
the benchmark 500 functions were invoked at least once, then the
25 most frequently invoked functions are dynamically hot. We note
that theoretically speaking, the definitions of dynamic and static
hotness are incomparable (basically for any λ), but our experimen-
tal results show a good correlation between the two notions. To
illustrate the correlation we treat our static analysis as a classifier
of hot methods, and the specificity and sensitivity of the classifier
are controlled by the threshold λ. The sensitivity of a classifier is
measured by the true positive rate (tpr), which is

#dynamically hot methods that are reported as statically hot
#dynamically hot methods

The specificity is determined by the false positive rate (fpr):

#non-dynamically hot methods that are reported as statically hot
#methods

For high values of λ, the classifier is expected to capture only
dynamically hot methods (but it will miss most of the dynamically
hot methods), and thus it will have very high fpr but very low
tpr. For very low values of λ the classifier will report most of the
methods as hot, so most of the hot methods will be reported as
hot, and we will have very high tpr but very low fpr. A fundamental
metric for classifier evaluation is a receiver operating characteristic
(ROC) graph. A ROC graph is a plot with the false positive rate on
the X axis and the true positive rate on the Y axis. The point (0,1)
is the perfect classifier, and the area beneath an ROC curve can be
used as a measure of accuracy of the classifier.

In our experimental evaluation we only considered application
functions (and not library functions), and the results are presented
in Table 2. In the table, # M represents the number of application
methods (that are reachable from the main entry of the program), #
I represents the number of application methods that were actually
invoked in the benchmark, T represents the average running time
for the static analysis of a single method (i.e., to check whether a
single method is λ-hot for a fixed λ) (in seconds). For each λ we
present the tpr and fpr values of the classifications. We present an
evaluation for two cases. In the first case we statically analyze all
the methods and calculate the tpr and fpr accordingly. In the second
case we consider only the active methods, namely, the methods
that were invoked at least once in the program, and we remove
all the other methods from the program control flow graph. This
simulates a typical case where the programmer has prior knowledge
on methods that are definitely not hot and can instruct the static
analysis to ignore them. The ROC curves are presented in Figure 7,
where the most left points on the graph are for λ = 10/30 and
the fpr and tpr increases as λ decreases (until it finally reaches
1/30). In general, for most of the programs the static analysis gives
useful and quite accurate information. Specifically, the threshold
λ = 7/30 captures more than half of the hot methods for most
benchmarks (i.e., except fop and antlr) and with a fpr less than
0.3 which means that if a method was statically reported as not
hot, then with probability 0.7 it is really not hot. We note that the
analysis over fop gives quite poor results because only 10% of the
methods were active. However, when we analyzed only the active
methods we get better results for fop, see the right hand graph in
Figure 7. When we only consider the active methods, the threshold
λ = 9/30 captures most of the dynamically hot methods while
maintaining a fpr less than 0.1 (for most programs).

Remarks. We run the experiments on a single thread Intel Pentium
3.80GHz. For Table 1 results, the alias analysis did not complete
for some benchmarks (e.g. fop, pmd). In Table 2 we only show
benchmarks for which we managed to obtain dynamic profiles. For
a few benchmarks (e.g. jython) the quantitative analysis took too
long for the entire benchmark. In such cases, our tool could be used
to focus on specific functions.

6. Related Work
Interprocedural analysis. Algorithms that operate on the interpro-
cedural control-flow graphs provide the framework for static analy-
sis of programs, and have numerous applications. Precise interpro-
cedural analysis is crucial for dataflow analysis and has been stud-
ied in several works [29, 31]. The study of interprocedural analysis
has also been extended to weighted pushdown systems, where the
weight domain is a bounded idempotent semiring [10, 33]. Anal-
ysis of such weighted pushdown systems has been used in many
applications of program analysis [24, 32, 33]. Our work is different
because the objectives (mean-payoff and ratio analysis) we con-
sider are very different from reachability and bounded domains.
The mean-payoff objective is a function that assigns a real-valued
number to every path. In contrast to bounded domain functions,
the range of a mean-payoff function is potentially uncountable. We
develop novel techniques to extend the summary graph approach
for finite-height lattices to solve mean-payoff analysis of QICFGs
(which requires computing fix points for infinite-height lattices).
Mean-payoff analysis. Mean-payoff objectives are quantitative
metrics for performance modeling in many applications and very
well-studied in the context of finite-state graphs and games. Finite-
state graphs and games with mean-payoff objectives have been
studied in [19, 21, 23, 46] for performance modeling, and ro-
bust synthesis of reactive systems [5, 6]. Quantitative abstraction-
refinement frameworks for finite-state systems with mean-payoff
objectives have also been studied in [12]. While the mean-payoff
objectives have been considered in depth for finite-state systems,
they have not been considered in depth for interprocedural analysis.
Pushdown systems with mean-payoff objectives were considered
in [14]. We significantly improve the complexity of the polynomial-
time algorithm for interprocedural mean-payoff analysis that can be
obtained by a reduction to the results of [14].
Detecting inefficiently-used containers. Bloat detection and de-
tecting inefficiently used containers have been identified in many
previous works as a major reason for program inefficiency. Dy-
namic approaches for the problem were studied in many works
such as [18, 27, 28, 30, 34, 35, 44]. A static approach to analyze
the problem was first considered in [45], which is the most closely
related work to our case study. The work of [45] provides an excel-
lent exposition of the problem with several practical motivations. It
also describes the clear advantages of the static analysis tools, and
identifies that soundness in detecting inefficiently used containers
(with no or low false positive rates) is a very important feature.
Our approach for the problem is significantly different from the
approach of [45]. A big part of the contribution of [45] is an auto-
mated annotation for the functionality of the containers operation.
The main algorithmic approach of [45] is to use CFL-reachability
(context-free reachability) to identify nesting loop depths and then
use this information for detecting misuse of containers. Our algo-
rithmic approach is very different: we use a quantitative analysis
approach, i.e., ratio analysis of QICFGs to model the problem.
Static profiling of programs. Static and dynamic profiling of pro-
grams is in the heart of program optimization. Static profiling are
typically used in branch predictions where the goal is to assign
probabilities to branches, and typically require some prior knowl-
edge on the probability of inputs. Static profiling of programs for
branch predictions has been considered in [2, 22, 39, 42]. Dynamic
profiling has also been used in many applications related to perfor-



mance optimizations, see [40] for a collection of dynamic profiling
tools. Two main drawbacks of dynamic profiling are that they re-
quire inputs, and they cannot be used for compiler optimizations.
We use static profiling to determine if a function is invoked fre-
quently along some run of the program, and do not require any prior
knowledge on inputs. The techniques used in [2, 39, 42] involves
solving linear equations with sparse matrix solvers, whereas our
solution method is different (by quantitative analysis of QICFGs).

7. Conclusion
In this work we considered the quantitative (ratio and mean-payoff)
analysis for interprocedural programs. We demonstrated how in-
terprocedural quantitative analysis can aid to automatically reason
about properties of programs and potential program optimizations.
We significantly improved the theoretical known upper-bound for
the polynomial-time solution, and presented several practical opti-
mizations that proved to be useful in real programs. We have imple-
mented the algorithm in Java, and showed that it scales to DaCapo
benchmarks of real-world programs. This shows that interprocedu-
ral quantitative analysis is feasible and useful. Some possible di-
rections of future works are as follows: (1) extend our framework
with multiple quantitative objectives and study their applications;
and (2) extend [12] to have an abstraction-refinement framework
for quantitative interprocedural analysis.
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