
Formal Autograding in a Classroom

(Experience Report)

Dragana Milovančević, Mario Bucev, Marcin Wojnarowski,
Samuel Chassot and Viktor Kunčak

EPFL, Switzerland

May 07, 2025



Manual Grading is Difficult



Functional Programming @ EPFL



Example Exercise
Implement a function that takes a list of integers ls and an integer n, and returns
the list obtained by dropping every n-th element from ls. For example, the input
(List(1, 2, 3, 4, 5, 6, 7, 8, 9), 3) should lead to the output List(1, 2, 4, 5, 7, 8).

def drop(ls: List[Int], n: Int): List[Int] =

require(n >= 0)

def loop(ls: List[Int], i: Int): List[Int] =

require(i > 0 && n > 0)

ls match

case x :: xs =>

if i == 1 then

loop(xs, n)

else

x :: loop(xs, i - 1)

case Nil => Nil

if n == 0 then ls else loop(ls, n)

Is this solution correct? 3



Example Exercise
Implement a function that takes a list of integers ls and an integer n, and returns
the list obtained by dropping every n-th element from ls. For example, the input
(List(1, 2, 3, 4, 5, 6, 7, 8, 9), 3) should lead to the output List(1, 2, 4, 5, 7, 8).

def drop(ls: List[Int], n: Int): List[Int] =

require(n >= 0)

def loop(ls: List[Int], i: Int): List[Int] =

require(i > 0 && n > 0)

ls match

case x :: xs =>

if i == 1 then

loop(xs, n)

else

x :: loop(xs, i - 1)

case Nil => Nil

if n == 0 then ls else loop(ls, n)

Is this solution correct? 3



Example Exercise
Implement a function that takes a list of integers ls and an integer n, and returns
the list obtained by dropping every n-th element from ls. For example, the input
(List(1, 2, 3, 4, 5, 6, 7, 8, 9), 3) should lead to the output List(1, 2, 4, 5, 7, 8).

def drop(ls: List[Int], n: Int): List[Int] =

require(n >= 0)

def loop(ls: List[Int], i: Int): List[Int] =

require(i > 0 && n > 0)

ls match

case x :: xs =>

if i == 1 then

loop(xs, n)

else

x :: loop(xs, i - 1)

case Nil => Nil

if n == 0 then ls else loop(ls, n)

Is this solution correct? 3



How Does This Scale?

I FP @ ETF Belgrade in 2018: 30 students

I FP @ EPFL Lausanne in 2019: 200 students

I FP @ EPFL Lausanne in 2023: 400 students
I 11 exercise sessions
I 9 homework projects
I midterm and final exam

I Coursera Scala MOOC: over 200k students



Formal Autograding

I So far, in our course, testing-based automated grading
I Inaccurate, flawed assessment at scale
I Impersonal, fails to provide solution-specific feedback

I Our experiment: formal automated grading via program equivalence proving
I Formal techniques as a guarantee that programs are never wrongly classified
I Like human graders, examine the source code instead of just running it



Our Grader

Submission

Student

Submission files

Moodle platform
Feedback files

Stainless autograder
Docker image Submissions

server

SSH backup

Anonymization



Formal Autograding backed by the Stainless verifier

stainless.epfl.ch

I Open-source deductive verifier for Scala programs

I Used to verify data structures, blockchain clients, compression and other
algorithms

I Bolts (Stainless Verified Scala): github.com/epfl-lara/bolts

I ASPLOS’22 Tutorial: epfl-lara.github.io/asplos2022tutorial

stainless.epfl.ch
https://epfl-lara.github.io/asplos2022tutorial/


Internally: Program Equivalence Checking

I Formal verification is difficult!
I Case studies show ratios such as 9 lines of specifications per executable line1

I Solution: Program equivalence checking as push-button verification
I Specification is an executable program, instead of pre- and post-conditions
I Suitable for non-expert users

1Mario Bucev and Viktor Kunčak. Formally verified quite ok image format. FMCAD’22.



Background: Pairwise Equivalence Checking in Stainless

Definition of program equivalence?

I Given: candidate program f: X → Y, proven terminating,
and reference program m: X → Y, proven terminating.
A candidate program f is equivalent to a reference program m iff
f(x) = m(x) for all x ∈ X.

Main techniques:1

I proofs by (functional) induction

I function call matching

I clustering algorithm

3
7

1Dragana Milovančević and Viktor Kunčak. Proving and Disproving Equivalence of
Functional Programming Assignments. PLDI’23.



Background: Functional Induction in Stainless
def dropM(ls: List[Int], n: Int) =

require(n >= 0)

def loop(ls: List[Int], i: Int) =

require(i > 0 && n > 0)

ls match

case x :: xs =>

if i == 1 then

loop(xs, n)

else

x :: loop(xs, i - 1)

case Nil => Nil

if n == 0 then ls

else loop(ls, n)

def dropF(ls: List[Int], n: Int) =

require(n >= 0)

def rec(actual: Int, b: Int, ls: List[Int]) =

require((actual >= 1) && (b > 0))

ls match

case Nil => Nil

case first :: next =>

if (actual == 1) then

rec(b, b, next)

else

first :: rec(actual - 1, b, next)

if (n == 0) then ls

else rec(n, n, ls)



Background: Functional Induction in Stainless
def dropM(ls: List[Int], n: Int) =

require(n >= 0)

def loop(ls: List[Int], i: Int) =

require(i > 0 && n > 0)

ls match

case x :: xs =>

if i == 1 then

loop(xs, n)

else

x :: loop(xs, i - 1)

case Nil => Nil

if n == 0 then ls

else loop(ls, n)

def dropF(ls: List[Int], n: Int) =

require(n >= 0)

def rec(actual: Int, b: Int, ls: List[Int]) =

require((actual >= 1) && (b > 0))

ls match

case Nil => Nil

case first :: next =>

if (actual == 1) then

rec(b, b, next)

else

first :: rec(actual - 1, b, next)

if (n == 0) then ls

else rec(n, n, ls)

I Inner function matching using type-directed search



Background: Functional Induction in Stainless
def dropM(ls: List[Int], n: Int) =

require(n >= 0)

def loop(ls: List[Int], i: Int) = {

require(i > 0 && n > 0)

ls match

case x :: xs =>

if i == 1 then

loop(xs, n)

else

x :: loop(xs, i - 1)

case Nil => Nil

}. ensuring{_ => _ == rec(i,n,ls)}

def dropF(ls: List[Int], n: Int) =

require(n >= 0)

def rec(actual: Int, b: Int, ls: List[Int]) =

require((actual >= 1) && (b > 0))

ls match

case Nil => Nil

case first :: next =>

if (actual == 1) then

rec(b, b, next)

else

first :: rec(actual - 1, b, next)

if (n == 0) then ls

else rec(n, n, ls)

I For recursive functions, proofs by induction



Background: Functional Induction in Stainless
def dropM(ls: List[Int], n: Int) =

require(n >= 0)

def loop(ls: List[Int], i: Int) = {

require(i > 0 && n > 0)

ls match

case x :: xs =>

if i == 1 then

val res = UNFOLD(loop(xs, n, n))

assume(res == rec(n, n, xs))

res

else

val res = UNFOLD(loop(xs, i - 1, n))

assume(res == rec(i - 1, n, xs))

xs :: res

case Nil => Nil

}. ensuring{_ => _ == rec(i,n,ls)}

I Function unfolding and
functional induction



Background: Functional Induction in Stainless
def dropM(ls: List[Int], n: Int) =

require(n >= 0)

def loop(ls: List[Int], i: Int) = {

require(i > 0 && n > 0)

ls match

case x :: xs =>

if i == 1 then

val res = UNFOLD(loop(xs, n, n))

assume(res == rec(n, n, xs))

res

else

val res = UNFOLD(loop(xs, i - 1, n))

assume(res == rec(i - 1, n, xs))

xs :: res

case Nil => Nil

}. ensuring{_ => _ == rec(i,n,ls)}

I Function unfolding and
functional induction



Our Experiment: Stainless as a Grading Service

I Second year course on Software Construction (Functional Programming)

I Four programming exercises, one reference solution per exercise

I 200 participants, 719 submissions

Name Description #P #F LOC

drop Drop every n-th element from a list 373 1.8 13
gcd Find the greatest common divisor 80 1.3 11
prime Check if an integer is prime 220 3.7 19
infix Implement infix boolean operators 46 7.8 17



Our Experiment: Stainless as a Grading Service

I Second year course on Software Construction (Functional Programming)

I Four programming exercises, one reference solution per exercise

I 200 participants, 719 submissions

Name Description #P #F LOC

drop Drop every n-th element from a list 373 1.8 13
gcd Find the greatest common divisor 80 1.3 11
prime Check if an integer is prime 220 3.7 19
infix Implement infix boolean operators 46 7.8 17



Feedback
Feedback summary directly available to the students

I Congratulations message – the submission was proven correct (equivalent to
the reference solution)

I Counterexample errors – a counterexample input was found, proving that
the submission is incorrect (not equivalent to the reference solution)

I User errors – incorrectly named file or an incorrect function signature

I Safety errors – such as division by zero or integer overflow

I Warnings – equivalence could not be proven within the timeout

Additional feedback on the instructor side

I Clusters of submissions proven equivalent

I Singleton submissions
(not provably equivalent to any other submission)



Feedback
Feedback summary directly available to the students

I Congratulations message – the submission was proven correct (equivalent to
the reference solution)

I Counterexample errors – a counterexample input was found, proving that
the submission is incorrect (not equivalent to the reference solution)

I User errors – incorrectly named file or an incorrect function signature

I Safety errors – such as division by zero or integer overflow

I Warnings – equivalence could not be proven within the timeout

Additional feedback on the instructor side

I Clusters of submissions proven equivalent

I Singleton submissions
(not provably equivalent to any other submission)



Feedback
Feedback summary directly available to the students

I Congratulations message – the submission was proven correct (equivalent to
the reference solution)

I Counterexample errors – a counterexample input was found, proving that
the submission is incorrect (not equivalent to the reference solution)

I User errors – incorrectly named file or an incorrect function signature

I Safety errors – such as division by zero or integer overflow

I Warnings – equivalence could not be proven within the timeout

Additional feedback on the instructor side

I Clusters of submissions proven equivalent

I Singleton submissions
(not provably equivalent to any other submission)



Feedback
Feedback summary directly available to the students

I Congratulations message – the submission was proven correct (equivalent to
the reference solution)

I Counterexample errors – a counterexample input was found, proving that
the submission is incorrect (not equivalent to the reference solution)

I User errors – incorrectly named file or an incorrect function signature

I Safety errors – such as division by zero or integer overflow

I Warnings – equivalence could not be proven within the timeout

Additional feedback on the instructor side

I Clusters of submissions proven equivalent

I Singleton submissions
(not provably equivalent to any other submission)



Results

Name S TS I C TO Non-Singleton Singleton

drop 60 56 169 14 70 10 26
gcd 21 2 8 3 42 2 12
prime 146 9 40 1 22 4 11
infix 2 0 2 42 0 1 0

drop gcd prime infix



Results: gcd

I 76 submissions

I 8 proven incorrect

I 3 proven correct

I 42 unknown result (timeout)
I 2 non-singleton clusters
I 12 singleton clusters



Results: gcd

Submissions in the smaller cluster use
the subtraction-based Euclid’s algorithm.

def gcdR(a: Int, b: Int): Int =

require(a >= 0 && b >= 0)

if a == b then a

else if a > b then

if b == 0 then a

else gcdR(a - b, b)

else

if a == 0 then b

else gcdR(a, b - a)

def gcdS(a: Int, b: Int): Int =

require(a >= 0 && b >= 0)

if b == 0 then a

else if a >= b then gcdS(a - b, b)

else gcdS(b, a)



Results: gcd

Submissions in the larger cluster use
the modulo-based Euclid’s algorithm.

def gcdW(a: Int, b: Int): Int =

require(a >= 0 && b >= 0)

if b == 0 then a else gcdW(b, a%b)

def gcdX(a: Int, b: Int): Int =

require(a >= 0 && b >= 0)

b match

case 0 => a

case _ => gcdX(b, a % b)

def gcdZ(a: Int, b: Int): Int =

require(a >= 0 && b >= 0)

if a < b then gcdZ(b, a)

if b == 0 then a

else

val r = a % b

if r == 0 then b else gcdZ(b, r)



Results: gcd

Clustering does not differentiate purely
functional programs from programs with
loops and mutations.

def gcdY(a: Int, b: Int): Int =

require(a >= 0 && b >= 0)

var x = a; var y = b

while (y != 0)

val temp = y

y = x % y

x = temp

x



Results: gcd

Singleton clusters (not provably
equivalent to any other submission)
require further manual inspection.

def gcd(a: Int, b: Int): Int =

require(a >= 0 && b >= 0)

if a == b then a

else if a < b then gcd(b, a)

else if a == 0 then b

else if b == 0 then a

else

val r = a % b

val q = (a - r) / (a / b)

gcd(q, r)



Results: gcd

Singleton clusters (not provably
equivalent to any other submission)
require further manual inspection.

def gcd(a: Int, b: Int): Int =

require(a >= 0 && b >= 0)

if a == b then a

else if a < b then gcd(b, a)

else if a == 0 then b

else if b == 0 then a

else

val r = a % b

val q = (a - r) / (a / b) // computes b

gcd(q, r)



Takeaways

I A single reference solution is not sufficient to capture the algorithmic
variety in student submissions.

I By failing to automatically classify certain supposedly correct submissions,
the grader can help detect suboptimal solutions.

I Upon manual inspection, correct submissions can be promoted to
reference solutions (one manual check per cluster).

I Formal verification provides feedback even for errors that cannot be
formulated easily as counterexamples.

I Support for library functions is crucial. It allows exercising functional
programming abstractions and leads to more diversity in submissions.



Resources

Accompanying artifact with all our benchmarks:
https://doi.org/10.5281/zenodo.14624668

Additional examples:
github.com/epfl-lara/stainless/tree/main/frontends/benchmarks/equivalence

doi.org/10.5281/zenodo.14624668
https://github.com/epfl-lara/stainless/tree/main/frontends/benchmarks/equivalence


Further Resources and Related Work

I Automated grading
I Comparison to reference solution: AskElle (for Haskell), ZEUS (for Ocaml)
I Clustering: OverCode, Clara, CoderAssist, LEGenT
I LearnML: counterexample + feedback generation (FixML, TestML, CAFE)

I Equivalence checking
I Regression verification: REVE, RVT
I Translation validation

I Automated proofs by induction
I Recursion induction in Isabelle, functional induction in Coq
I Functional induction is the default induction heuristic in ACL2



Conclusions and Future Work

I Practical and rigorous autograding using program equivalence checking

I Formal verification complements testing-based grading and enriches the
feedback given to students

I Differentiates solutions, even those with identical input-output behaviour

I In the future: progressively use the approach on more (larger) exercises

I So far: well-defined input-output; Future work: underspecified assignments


