
Formal Autograding in a Classroom

Dragana Milovančević, Mario Bucev, Marcin Wojnarowski, Samuel Chassot,
and Viktor Kunčak

EPFL, Station 14, CH-1015 Lausanne, Switzerland

Abstract. We report our experience in enhancing automated grading
in an undergraduate programming course using formal verification. In
our experiment, we deploy a program verifier to check the equivalence
between student submissions and reference solutions, alongside the exist-
ing, testing-based grading infrastructure. We were able to use program
equivalence to differentiate student submissions according to their high-
level program structure, in particular their recursion pattern, even when
their input-output behaviour is identical. Consequently, we achieve (1)
higher confidence in correctness of idiomatic solutions but also (2) more
thorough assessment of solution landscape that reveals solutions beyond
those envisioned by instructors.

Keywords: Functional programming · Automated grading · Program
equivalence.

1 Introduction

With the growing numbers of students in programming courses, automated grad-
ing of programming assignments has become ubiquitous. The goal of practical
and rigorous automated grading has motivated the development of tools to aid
teaching programming courses [56,54,49,35,62,1,24]. These tools commonly em-
ploy automated testing to assess the correctness of student submissions [38].

We observed this general trend in the functional programming course at our
university. Whereas seven years ago the course counted 200 students, this number
has more than doubled since then. To maintain a reasonable workload for the
teaching staff, the course heavily relies on testing to automate the assessment of
programming assignments, both in the final exam and throughout the semester.

While highly automated, testing-based grading comes at the cost of accuracy
and feedback quality. Researchers have shown that flaws in test suites and the
consequential misclassifications of student solutions can have a negative impact
on students [63]. Furthermore, among the solutions that do satisfy the input-
output requirements, testing-based graders fail to provide solution-specific feed-
back [9,19]. Finally, in large programming courses, the use of automated grading
tools can result in completely impersonal feedback, to the point where most stu-
dents never get to speak with the instructors [22]. We would like to reverse this
trend.

Like human graders, we want an automated grader that examines the source
code instead of just running it. Ideally, we would like our automated grader to

2 D. Milovančević, M. Bucev, M. Wojnarowski, S. Chassot and V. Kunčak

help scaling human grading to support the growing number of students, while
still providing meaningful, targeted feedback.

Providing feedback solely based on input-output tests is particularly prob-
lematic for solutions that are unusual, whether in a good or in a bad way. As
an example, consider the student submissions from Figure 1, computing gcd for
two natural numbers. The submission from Figure 1c exhibits the same input-
output behaviour as all the other submissions from Figure 1, despite being less
efficient. This submission would thus typically go unnoticed with a testing-based
grader, despite its unique underlying approach. Furthermore, while all the sub-
missions from Figure 1 have identical input-output behaviour, we can identify
two different recursion structures (subtraction-based vs. modulo-based Euclid’s
algorithm). We would like our autograder to classify submissions not just by
correctness, but also based on the underlying program structure.

Our main inspiration is the Rainfall study from functional programming ed-
ucation [15], which studies the variety in high-level structures of student sub-
missions. The analysis from that study is a manual, time intensive process: it
consists of first identifying categories of interest and then labelling each indi-
vidual submission by hand. Whereas human insight is indispensable, this paper
explores the potential for automation in producing such classification.

To this end, we suggest the use of formal verification tools for automated
grading. We consider functional induction as the strategy of choice for prov-
ing program correctness, and recursion as the main indicator of the underly-
ing program structure. We use the Stainless formal verifier for Scala, which
was previously evaluated on recursive equivalence checking benchmarks, includ-
ing programming assignments in an offline setting, translated from OCaml to
Scala [39]. The theory and encouraging results of past programming languages
research already suggest that verification tools can be used as grading assistants
for program clustering [39,9], but the authors in past work do not go as far as
deploying such tools in a classroom. In this paper, we report on our experiment
using the Stainless verifier as a grading assistant in the live setting of an under-
graduate programming course in our university. To encourage other researchers
and educators to adopt formal verification tools in programming classrooms, we
document our experience, what did, and what did not work in practice.

The main contributions of this paper are as follows:

– We report on our pilot experiment deploying the Stainless verifier as an
automated grader for introductory exercises in a programming course. We
describe our deployment process in detail and share our insights.

– We show that formal verification can reveal variations in the underlying pro-
gram structure used in student solutions, such as different recursion schemas,
even when solutions have identical input-output behaviour.

– We publish a new data set with over 700 Scala programs, alongside the
exercise material.

Formal Autograding in a Classroom 3

def gcdR(a: Int, b: Int): Int =
require(a >= 0 && b >= 0)
if a == b then a
else if a > b then

if b == 0 then a
else gcdR(a − b, b)

else
if a == 0 then b
else gcdR(a, b − a)

def gcdS(a: Int, b: Int): Int =
require(a >= 0 && b >= 0)
if b == 0 then

a
else if a >= b then

gcdS(a−b, b)
else

gcdS(b, a)

(a) Two programs from the cluster of submissions using subtraction-based Euclid’s
algorithm. Submission gcdS is proven equivalent to the reference solution gcdR, and
therefore correct.

def gcdW(a: Int, b: Int): Int =
require(a >= 0 && b >= 0)
if b == 0 then a else gcdW(b, a%b)

def gcdX(a: Int, b: Int): Int = b match
case 0 => a
case _ => gcdX(b, a % b)

def gcdY(a: Int, b: Int): Int =
require(a >= 0 && b >= 0)
var x = a
var y = b
while (y != 0)

val temp = y
y = x % y
x = temp

x

def gcdZ(a: Int, b: Int): Int =
require(a >= 0 && b >= 0)
if a < b then

gcdZ(b, a)
if b == 0 then a
else

val r = a % b
if r == 0 then b
else gcdZ(b, r)

(b) Four programs from the cluster of submissions using modulo-based Euclid’s algo-
rithm, proven equivalent among themselves, and passing all the tests, but not proven
equivalent to our reference solution gcdR. The instructor can manually inspect one
submission from the cluster to provide feedback for the entire cluster (27 submissions).

def gcd(a: Int, b: Int): Int =
require(a >= 0 && b >= 0)
def checkGcd(a: Int, b: Int, testVal: Int): Int =

require(testVal > 0)
if a % testVal == 0 && b % testVal == 0 then testVal
else checkGcd(a, b, testVal − 1)

(a,b) match
case (0,x) => x
case (x,0) => x
case (x,y) => if x < y then checkGcd(x,y,x) else checkGcd(x,y,y)

(c) Singleton cluster and suboptimal implementation. This submission passes the tests,
but is not proven equivalent to any other submission. By failing to classify this program,
the grader points to this submission that requires manual inspection, allowing the
instructor to detect suboptimal implementation.

Fig. 1: Three clusters of student submissions for the gcd exercise, illustrating
different recursion schemas.

4 D. Milovančević, M. Bucev, M. Wojnarowski, S. Chassot and V. Kunčak

def drop(ls: List[Int], n: Int): List[Int] =
require(n >= 0)
val helper = ls.foldLeft((Nil, 1))((base, elem) =>

val list = base._1
val count = base._2
val newList = if count % 3 != 0 then list :+ elem else list
(newList, count + 1)

)
helper._1

Unfortunately, we found some incorrect functions. Invalid functions:
drop

Counter−example with the following values:
ls = (1, 2, 3, 4, 5, 6, 7, 8, 9, Nil), n = 0
expected (1, 2, 3, 4, 5, 6, 7, 8, 9, Nil) but got (1, 2, 4, 5, 7, 8, Nil)

Fig. 2: An incorrect submission from the drop exercise. Stainless detects a con-
crete counterexample, which we communicate as feedback to the student, and
use on the instructor side by adding it to the test suite.

2 Background: Stainless Verifier

One differentiating characteristic of our study is the use of a formal verifier.
Our course uses Scala [45], so we adopt the Stainless verifier [34]. Stainless can
prove program termination and the absence of runtime errors such as division by
zero. Developers can optionally provide program specification using contracts,
such as pre- and post-conditions. Stainless supports only a subset of Scala, with
best support for a purely functional subset with ML-style polymorphism.1 This
subset largely aligns with the concepts that we present in our course.

Stainless works by first parsing and type checking the input program using
the Scala compiler to generate an abstract syntax tree (AST). Stainless then
transforms this AST into an equivalent purely functional program, from which
it generates verification conditions using a type checking algorithm [27]. It itera-
tively unfolds recursive functions [60,57] and uses SMT solvers (Z3 [11], cvc5 [2],
Princess [51]) to prove or disprove those verification conditions.

Our deployment makes use of a high-level functionality of Stainless to perform
program equivalence checking via automated proofs by functional induction [39].
In this mode, rather than writing pre- and post-conditions, users provide spec-
ification in the form of a reference program. Stainless then attempts to prove
program correctness via automated equivalence checks against the reference pro-
gram. Our deployment also exploits the ability of Stainless to generate counterex-
amples for incorrect programs [60], providing feedback valuable to students and
instructors (Figure 2).

1 Stainless also supports imperative programs [26,5,52].

Formal Autograding in a Classroom 5

3 The Experiment

In this section, we describe our experiment deploying a Stainless-backed formal
autograder in a second-year undergraduate course that teaches software con-
struction through functional programming to around 400 students.

3.1 Teaching Software Construction Using Scala

The goal of our Software Construction course is to teach functional program-
ming and reasoning about programs, along with software engineering concepts
and skills. This includes concepts such as subtyping, polymorphism, structural
induction, (tail) recursion, as well as soft skills like debugging, reading and writ-
ing specifications, or using libraries. During the semester, students work on 12
homework assignments, designed to produce interesting or practical programs,
including games as web applications, dynamical system simulations, and file sys-
tem traversals. In addition to these graded projects, students work on exercise
sets, consisting of smaller problems designed to help grasp the course material,
such as evaluation of algebraic expressions, manual recursion elimination, and
memoisation.

3.2 Experimental Setup

Our experiment took place during the fall semester of 2023. We prepared four
autograded exercises in the form of optional individual short programming as-
signments to be solved and submitted on a computer. Table 1 describes our
exercises. We deployed the exercises in the last week of the course, one month
before the final exam. This decision was made in part to avoid interfering with
other aspects of the course, which was given for the first time in this form. We
provided a dedicated section of the course’s forum for questions and discussions
about these optional exercises.

Students were invited to participate in the study by submitting their solu-
tions, with an option to permit the public release of those submissions. The
code was automatically graded by running tests and formal equivalence checks
against our reference solution. We initially deployed one reference solution per
exercise. During the experiment, we added another reference solution for the
drop exercise, as discussed in Section 4. For each submission, students received
automated feedback generated by our system. They were permitted to re-submit
their solutions any number of times.

At the end of the course, we further examined the submissions using Stainless
as a grading assistant on the instructor side. We gathered all the submissions
proven correct, together with the reference solutions, and all the submissions
that passed the tests, but the equivalence proof timed out against the reference
solution. We then run the equivalence checking for each pair of programs in the
entire set, to identify and analyse clusters of provably equivalent submissions.

Section 3.3 describes our deployment and Section 3.4 summarizes the results.

6 D. Milovančević, M. Bucev, M. Wojnarowski, S. Chassot and V. Kunčak

Table 1: Four exercises deployed in our experiment. #P: number of submissions
per exercise. #F and LOC: average number of functions and lines of code per
submission, respectively.

Name Description #P #F LOC

drop Drop every n-th element from a list 373 1.8 13
gcd Find the greatest common divisor 80 1.3 11
prime Check if an integer is prime 220 3.7 19
infix Implement infix boolean operators 46 7.8 17

3.3 Setting Up Stainless as a Grader

We next describe how we adapted the Stainless verifier to be used as a scalable
on-premise grading service.
Grading Infrastructure. Our students use the Moodle educational platform to
obtain and submit graded assignments. An internal Kubernetes service evaluates
the submissions by running specified tests and uploading the grade and the
feedback to Moodle. Naturally, we integrate our optional autograded exercises as
Moodle assignments. This setup yields a simple process for the students, as there
is no need to learn and use additional platforms. We use a custom Moodle plugin
to automatically run Stainless as a service upon each assignment submission and
to report grades and feedback to students. We create a dedicated Docker image
for each exercise, packaged with Stainless and Z3 solver. An orchestrating script
collects submissions, feeds them into Stainless along with the reference solutions,
and produces feedback from the output of Stainless.
Exercise Setup. To illustrate the usability of our approach, we detail the steps
needed to prepare each exercise:

1. Write the problem statement as a markdown file.
2. Set up a dedicated Scala project with the source files.
3. Write the reference solution(s).
4. Write MUnit tests for students to run their solutions locally.
5. Write a configuration file listing the name of the function(s) and the reference

solution(s) for the equivalence checking.
6. Compile everything into a Docker image linked to Moodle.

Here, only Step 5 is specific to formal equivalence checks. The other steps were
already in place for the existing testing-based grader.
Feedback Generation. For each submission, students receive a numerical grade,
a feedback file with comments for each function, and a log file disclosing a de-
tailed output of Stainless. The feedback file either contains a congratulation
message, in case the submission is proven correct, or otherwise an explanation of
the encountered error(s), such as in our example shown in Figure 2. We report
custom feedback for the following errors, allowing students to iteratively improve
their code until they solve each problem:

Formal Autograding in a Classroom 7

Submission

Student

Submission files

Moodle platform
Feedback files

Stainless autograder
Docker image Submissions

server

SSH backup

Anonymization

Fig. 3: Data collection pipeline.

– User errors – such as an incorrectly named file or an incorrect function
signature

– Safety errors – such as division by zero or integer overflow
– Counterexample errors – a counterexample input was found, proving that

the submission is incorrect
– Termination errors – a function could not be proven terminating within

the specified timeout for SMT queries
– Equivalence errors – a function could not be proven equivalent to any

reference solution within the specified timeout for SMT queries

Data Collection. Figure 3 shows our data collection pipeline. Upon each sub-
mission, the data is directly anonymized and copied out. Each submission is
initially identified by a UUID, also included on Moodle to create a one-way link,
allowing us to remove collected samples in case a student opts-out of participa-
tion.

3.4 Results

Table 1 shows the total number of submissions per exercise. Our data set com-
prising 709 Scala programs is available as supplementary material of this anony-
mous submission, and will be made publicly available under a permissive licence.
We hope that the data set will be useful to evaluate future research on program-
ming education, which lacks public data sets.2

We export the generated feedback and present the results per exercise in
Table 2. Out of the 400 students taking the course, 201 students agreed to
participate in the study. Several students actively engaged in discussions on the
course forum, with over 70 posts total. While solving the exercises, some students
submitted many attempts, and some students skipped some exercises, resulting
in a total of 719 submissions. After removing byte-identical files, we were left
with 709 submissions. Around one third of the submissions are not of interest due
to compilation errors (Column S), resulting in 480 syntactically valid programs.

2 In a recent systematic review [38], the authors analyse 121 research papers in the
field and remark that, indeed, only 10 of them have publicly available data sets.
We are grateful to our university’s ethics committee and colleagues for their help
throughout this study and to our students for allowing us to share their submissions.
The overall process involved a significant administrative overhead, which may partly
explain the scarcity of public data sets in the literature on programming education.

8 D. Milovančević, M. Bucev, M. Wojnarowski, S. Chassot and V. Kunčak

Table 2: Results of our experiment. S indicates submissions that could not be
processed due to compilation errors, or due to students submitting wrong files.
TS indicates submissions where Stainless could not prove safety checks. I and
C show numbers of submissions proven incorrect and correct, respectively. TO
indicates submissions where the equivalence check times out, left for clustering
analysis. The last two columns show numbers of non-singleton and singleton
clusters.

Name S TS I C TO Non-Singleton Singleton

drop 60 56 169 14 70 10 26
gcd 21 2 8 3 42 2 12
prime 146 9 40 1 22 4 11
infix 2 0 2 42 0 1 0

Column I shows the number of incorrect submissions, evidenced by a coun-
terexample (46%). Column C shows the number of submissions that our verifier
proved equivalent to the reference solution, and therefore correct (13%). The re-
maining submissions are neither provably correct nor provably incorrect (42%),
and are left for further manual inspection and clustering analysis.

The last two columns show the results of our clustering analysis. Column
“Non-Singleton” refers to the number of clusters with two or more equivalent
submissions. Column “Singleton” denotes the number of submissions that are
not provably equivalent to any other submission, and thus form a singleton
cluster of their own.

4 Discussion and Lessons Learned

In this section, we interpret the results of our experiment and summarize our
takeaways. Figure 4 depicts the clusters of submissions, where nodes represent
submissions and edges represent direct equivalence proofs between submissions.
Solution Variations. We find that the verifier’s success rate is lower than in
the evaluation in an offline setting [39], with the majority of correct submissions
timing out. We believe that this difference is due to the scarcity of reference
solutions: in our experiment, we only provided one reference solution per exer-
cise. Based on student feedback, this issue already became apparent during the
semester. We addressed this problem by adding another reference solution for
the drop exercise midway through the experiment, which improved the success
rate.

Figure 4a shows the non-singleton clusters of submissions for the drop exer-
cise. Our initial reference solution (node R) is in a cluster of size 7. Our additional
reference solution (node R’), is in another cluster of size 17. The main difference
between the two clusters is in counting to each n-th element, with solutions in the
smaller cluster counting backwards from n down to 1 and solutions in the larger
cluster counting forward from 1 to n. Another variation of the algorithm counts

Formal Autograding in a Classroom 9

(a) Clusters of submissions for the drop ex-
ercise. The initial reference solution (node
R) is in a cluster of size 7. The second ref-
erence solution (node R’) is in the largest
cluster.

(b) Clusters of submissions for the gcd ex-
ercise. The reference solution from Fig-
ure 1a is in the smaller cluster (node R).
Submissions from Figure 1b are in the
larger cluster (nodes W, X, Y, Z).

(c) Clusters of submissions for the prime
exercise. The submissions in the largest
cluster compute non-optimized checks for
division by each positive integer all the way
to the input number.

(d) Clusters of submissions for the infix ex-
ercise, consisting of 8 non-recursive func-
tions. All the submissions are in the same
cluster because there is no recursion to dif-
ferentiate the structure.

Fig. 4: Non-singleton clusters of submissions originally classified as correct or
timed-out for all four exercises. Nodes represent submissions and edges repre-
sent direct equivalence proofs. The supplementary material contains .gexf files
allowing further interactive inspection and graph manipulation via open-source
tools such as https://gephi.org/gephi-lite/.

https://gephi.org/gephi-lite/

10 D. Milovančević, M. Bucev, M. Wojnarowski, S. Chassot and V. Kunčak

forward until the end of the list, computing each time the counter modulo n.
This variation is problematic for potential overflows and for termination checks,
although in practice we can assume that the size of the input list is smaller than
Int.MaxValue.

We next consider the non-singleton clusters of submissions for the gcd exercise
(Figure 4b). Programs from the smaller cluster (7 programs, 2 of which are
shown in Figure 1a) use the subtraction-based Euclid’s algorithm. Programs
from the larger cluster (27 programs, 4 of which are shown in Figure 1b) use the
modulo-based variation. Both clusters correspond to valid solutions for the gcd
exercise. Furthermore, neither approach can be considered strictly better than
the other. Takeaway: Even in introductory exercises, a single reference solution
is not sufficient to capture the variety in student submissions. One should aim
to provide a diverse set of reference solutions to reflect the diversity of student
submissions.

Unique Solutions. Some submissions have a unique recursive structure and
thus form a cluster of their own (column “Singleton” in Table 2). In the Ask-Elle
studies [19], the authors devote particular attention to submissions that do not
get matched against any reference solution and belong to a separate “correct (but
no match)” category. Singleton clusters also appear in the Rainfall study [15],
where they end up in a dedicated “other/unclear composition” category. We
inspect the singleton clusters of submissions for the gcd exercise and identify the
underlying causes for this classification:

– unique solution, identified by its unique recursion schema (Figure 1c)
– limitations of equivalence checking in Stainless (Figure 5a)
– limitations of formal equivalence checking (Figure 5b)

Despite passing all the tests, upon manual inspection, we were able to identify
suboptimal implementations among those submissions. In introductory program-
ming courses, such submissions could nevertheless be rewarded the maximum
grade, but they are still worthy of custom feedback. On the other hand, in topics
such as data science, where performance is of interest, such submissions should
preferably be discouraged and only rewarded with partial points [53]. Takeaway:
By failing to automatically classify certain supposedly correct submissions, the
grader can reveal the submissions that require further manual inspection, and
help detect suboptimal solutions.

The Role of Instructors. Our grader helped us identify not only unique so-
lutions, but also whole clusters of suboptimal solutions. For example, consider
the non-singleton clusters of submissions for the prime exercise (Figure 4c). Our
reference solution (node R) checks if the input integer n is prime by dividing n
by each positive integer up to the square root of n, or until a divisor is found.
Interestingly, the most popular solution strategy among students turned out to
be checking all the way to n instead.3 Stainless could not prove this strategy

3 This was also the case for the majority of submissions discarded due to compilation
errors, implementing the same technique using for-comprehensions.

Formal Autograding in a Classroom 11

def gcd(a: Int, b: Int): Int =
require(a >= 0 && b >= 0)
def h(a : Int, b: Int, c: Int = b): Int =

require(a >= 0 && b >= 0)
if a < b then gcd(b,a)
else if c == 0 then a
else if b == 0 then a
else if a == b then a
else if (a%c==0)&&(b%c==0) then c
else h(a, b, c−1)

h(a,b)

(a) Limitations of Stainless. This program
uses the same algorithm as the program in
Figure 1c. Yet, the two programs did not
end up in the same cluster, due to Stainless
attempting at proving the equivalence by
decomposing programs into equivalent func-
tions. However, the two inner functions are
unfortunately not equivalent, making it im-
possible for Stainless to conclude the proof.

def gcd(a: Int, b: Int): Int =
require(a >= 0 && b >= 0)
if a == b then a
else if a < b then gcd(b, a)
else if a == 0 then b
else if b == 0 then a
else

val r = a % b
val q = (a − r) / (a / b)
gcd(q, r)

(b) Limitations of formal equivalence
checking. Due to an unusual choice
of one student to recompute b as
(a − a%b) / (a/b) on line 9, Stainless
was unable to prove the equivalence of
this submission to any other submis-
sion. Other equivalence checking tools,
namely REVE [13] and RVT [21], also
resulted in a timeout.

Fig. 5: Singleton clusters from the gcd exercise, pointing to submissions that
require further manual inspection.

equivalent to our reference solution, forming a separate cluster of size 7. Take-
away: Every submission that results in a timeout (passes the tests but is not
provably correct) should be checked by instructors. With the help of clustering,
the number of manual checks reduces to one representative submission check
per cluster. Upon manual inspection, correct submissions can be promoted to
reference solutions. This way, the set of tests and reference solutions grows over
time, to the point where only new singleton submissions are checked manually.

Library Functions. To tame the disparity between the Scala List class and
the Stainless List class4, we provide a stripped version of Stainless List with the
handout, asking the students to use this version instead of Scala’s. This way, we
were able to exploit the benefits of formal verification without discouraging stu-
dents from using library functions. For example, in the drop exercise, we observe
submissions using library functions such as foldLeft, length, and size, each forming
a separate cluster. One cluster of size two contains tail-recursive programs that
use list concatenations. Takeaway: Some grading assistants introduce restric-
tions on using library functions [9]. Yet, support for library functions is crucial,

4 The implementation of the List class in the Scala library internally mutates the tail
for efficiency. To facilitate verification, the Stainless library provides two simpler
implementations (an invariant and a covariant list) .

12 D. Milovančević, M. Bucev, M. Wojnarowski, S. Chassot and V. Kunčak

as it allows exercising functional programming abstractions. Library functions
also lead to more diversity in student submissions.
Rigorous Autograding. Our students receive feedback for each (re)submission,
allowing them to make progress from safety errors to logical errors, and finally
to error-free programs. This descriptive feedback was well received by the stu-
dents. Several students reported on the course forum that the grader found bugs
in their code that they did not detect locally by running the test suite. For ex-
ample, in the gcd exercise, 7 out of 8 incorrect submissions are due to safety
errors in auxiliary functions, that could not be detected by the test suite. The
authors of the LAV verifier make similar observations [61]. In their evaluation
on C programming assignments, they show that, out of 266 submissions, LAV
found 35 incorrect submissions that successfully passed the test suite, mainly
due to subtle buffer overflows.

Whereas it is clear that programming assignments are not safety-critical on
their own, teaching programming means teaching potential future authors of
safety-critical software. Our study advocates for rigorous autograding, in a way
that is completely transparent for students (push-button verification [44,58,40]).
Namely, students are encouraged to think rigorously about program correctness,
without the need for any in-depth knowledge about formal methods. This set-
ting is in line with the vision of formal methods thinking in computer science
education put forward by B. Dongol et al. [12] Takeaway: Formal verification
enriches the feedback given to students. It provides feedback for errors that pre-
vent correctness even if they cannot be formulated easily as counterexamples to
program safety.

5 Limitations and Threats to Validity

In this section, we consider some limitations of our approach and our study in
the context of practical automated grading.
Compilation Errors. We attribute large numbers of compilation errors to stu-
dents only having local access to the Scala compiler, and not Stainless.5 To
reduce the number of compilation errors, we should allow students to run Stain-
less on their local machines. In each problem statement, we should clearly specify
which language constructs are supported and which ones are forbidden. Ideally,
we should provide local access to Stainless without safety and termination checks.
This point is supported by previous research on the role of feedback, which sug-
gests that introducing some form of delay is better for learning purposes, as
immediate feedback is prone to undesirable trial-and-error solving strategies [7].
We notice similar concerns in a related report on the Learn-OCaml web plat-
form [25], posing the question whether limiting the number of resubmissions
would reduce the number of trivial and syntactic errors.
Syntax and Style. While it would be possible to further incorporate techniques
for syntax and style checking [25,28], in this report, we focus on semantic pro-
5 Stainless supports a subset of Scala (Section 2).

Formal Autograding in a Classroom 13

gram structure defined by recursion schemas. For example, the infix exercise is
non-recursive, and therefore all the submissions are in the same cluster, despite
students using a mixture of if-then-else, pattern matching, built-in boolean and
bitwise operators, and custom (non-recursive) boolean functions. Furthermore,
program clustering by recursion schemas does not differentiate purely functional
programs from programs with loops and mutations. For example, submission
gcdY with a while loop and variable mutation6 is proven equivalent to purely
functional submission gcdW, and thus placed in the same cluster (Figure 1b).
General Approach. Our analysis only uses data from 709 submissions from
one course at our university, and does not necessarily represent the general trend
in programming education. We found this setting (200 students, 4 exercises) to
be a reasonable size for a pilot study, which enabled us to identify interesting
aspects of in-class deployment.

While our study uses the Scala language and the Stainless verifier, our ap-
proach applies to other languages and verifiers. In particular, equivalence proofs
by functional induction are applicable to recursive programs in general [37]
(notable examples include functional induction in Coq [30], recursion induc-
tion [43] or computation induction [42] in Isabelle, default induction heuristic
in ACL2 [32]). Furthermore, tools such as REVE [13], RVT [21] or SymDiff [33]
have shown that equivalence checking is also feasible for imperative programs.

The nature of equivalence checking restricts our experiment to exercises with
well-defined input-output behaviour, and does not cover open-ended problems.

6 Related Work

In this section, we describe related work on functional programming education,
state-of-the-art clustering-based grading assistants, and applications of formal
verification tools in programming courses.
Functional Programming Education. The Rainfall problem [55], originally
studied in the field of imperative programming education, has recently become
an insightful benchmark in functional programming education. In [15], the au-
thor takes over 200 solutions to the Rainfall problem across five functional-first
courses and manually splits the solutions based on structure. The Rainfall stud-
ies later inspired evaluation of techniques for scaling program classification using
machine learning, assuming that an instructor has indicated categories of inter-
est [10]. In contrast, our approach automatically discovers clusters of submissions
using equivalence proofs.

Learn-OCaml is an online grading platform for the OCaml MOOC [6]. Re-
searchers have proposed extensions to the platform allowing assessment of style
and test quality [25], as well as understanding how students interact with the
grader [18]. Learn-OCaml’s ability to keep track of metrics such as grades, the
number of syntax errors and the time spent on each question enables clustering
6 Stainless supports a limited form of side effects, such as mutation to mostly non-

aliased state, and internally handles loops by transformations to recursive functions.

14 D. Milovančević, M. Bucev, M. Wojnarowski, S. Chassot and V. Kunčak

of students into four fixed interaction strategies. In contrast, we consider cluster-
ing of submissions, and dynamic discovery of clusters. It would be interesting to
combine techniques from Lean-Ocaml with our approach and relate interaction
strategies to underlying program structures.

Ask-Elle [19] is an online tutor for introductory Haskell exercises, providing
feedback and incremental hints using property-based testing and strategy-based
tracing. Like in our experiment, the case studies on Ask-Elle observe differ-
ent patterns in student submissions, and show how Ask-Elle benefits from hav-
ing multiple reference solutions that provide strategy-specific guidance. Custom
feedback in Ask-Elle and Learn-OCaml comes at a cost of significant manual
effort to set up a grader. In Ask-Elle, the instructor provides annotations for
reference solutions and manually specifies QuickCheck [8] properties. Similarly,
for each new Learn-OCaml exercise, the instructor has to specify custom syntax
checks, predict unusual solutions, and write mutants to evaluate student-written
tests. In contrast, in our deployment, we only had to provide a reference solution
for each new exercise, along with optional MUnit tests.

Program Clustering in Grading Assistants. The idea of using equivalence
checking to detect algorithmic similarity was previously explored in the ZEUS
grading assistant [9]. Like our grader, ZEUS also relies on SMT solving, but
while we use functional induction, ZEUS uses inference rules that simulate re-
lationships between expressions. ZEUS is thus more restricted with respect to
recursion and introduces limitations for programs with library functions. While
both [9] and [39] focus on empirical evaluation of equivalence checking, the fo-
cus of our analysis is on understanding the resulting clusters and corresponding
program structures.

OverCode [20] is a grading assistant for large scale courses, providing an inter-
active user interface for visualizing clusters of solutions. OverCode supports man-
ual manipulation of program clusters, e.g., merging clusters by adding rewrite
rules. However, unlike our approach, OverCode performs neither automated test-
ing nor verification to check for program correctness. Neither OverCode nor
ZEUS provide counterexamples for incorrect programs. Complementing our ap-
proach with OverCode’s user interface and merge rules could be beneficial to
ease manipulation of program clusters and counterexamples.

Verification Tools as Grading Assistants. LEGenT [1] is a tool for personal-
ized feedback generation, using Clara [24] for program clustering and REVE [13]
to identify provably correct submissions. LAV [61] is a verification tool evaluated
on imperative programming assignments. Unlike our approach, which supports
recursion, both LEGenT and LAV are targeting non-recursive programs.

Dracula [46,59,47] combines the ACL2 theorem prover [32] with the DrScheme
graphical interface [14], in introductory programming and software engineering
courses. The authors have used Dracula in undergraduate courses on functional
programming and software engineering, like is the case in our case study. The
main difference is that, in their setting, the goal is to tech students to formu-
late theorems (programming and proving). In contrast, in our approach, we do
not go as far as asking students to systematically prove program properties, or

Formal Autograding in a Classroom 15

even state them. Instead, in our study, we provide a setting that encourages
students to think rigorously about program correctness, without any in-depth
knowledge about formal methods. Furthermore, unlike our approach, Dracula
does not perform program clustering. Both ACL2 and Stainless have support
for automated functional induction, which suggests that it would be possible to
perform a similar study in ACL2, even if ACL2 is not higher-order.

Recently, researchers are increasingly sharing their experience on using proof
assistants for teaching [3], both for mathematics and computer science programs.
Proof assistants have been increasingly finding their way in specialized gradu-
ate courses [48,41,31], in undergraduate courses [29,17,50,16,36], and even high
schools [23,4]. The question remains whether theorem provers can offer an ade-
quate sufficiently high-level interface for students to write proofs without having
to learn the proof assistant itself.

7 Conclusions

We have reported our experience in using a formal verifier for evaluation of
assignments in an undergraduate programming course. We found that formal
verification enriches the feedback given to students. Moreover, verification based
on functional induction allowed us to differentiate between solutions, even when
solutions exhibit the same input-output behaviour. It allowed us to propose
additional reference solutions, and to focus our attention on unusual solutions.
We are therefore confident that this approach represents a useful addition to
automating assignment evaluation.

We have shared our main takeaways and our deployment process in detail,
with the hope that our study will provide inspiration for others trying to in-
corporate program verifiers and program clustering in assignment assessment in
their own courses. In the future, we will progressively use the approach on more
exercises of our course. To improve the quality of feedback reported to students,
we will continuously grow the set of reference solutions and provide more refined
verification outcome summaries.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Agarwal, N., Karkare, A.: LEGenT: Localizing Errors and Generating Testcases
for CS1. In: Proceedings of the Ninth ACM Conference on Learning @ Scale. p.
102–112. L@S’22, Association for Computing Machinery (2022). https://doi.org/
10.1145/3491140.3528282

2. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A Versatile and Industrial-
Strength SMT Solver. In: Tools and Algorithms for the Construction and Analysis
of Systems. pp. 415–442 (2022). https://doi.org/10.1007/978-3-030-99524-9_24

https://doi.org/10.1145/3491140.3528282
https://doi.org/10.1145/3491140.3528282
https://doi.org/10.1145/3491140.3528282
https://doi.org/10.1145/3491140.3528282
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24

16 D. Milovančević, M. Bucev, M. Wojnarowski, S. Chassot and V. Kunčak

3. Bartzia, E., Meyer, A., Narboux, J.: Proof assistants for undergraduate mathemat-
ics and computer science education: elements of a priori analysis. In: Trigueros, M.
(ed.) INDRUM 2022: Fourth conference of the International Network for Didactic
Research in University Mathematics. Reinhard Hochmuth, HAL, Hanovre, Ger-
many (Oct 2022), https://hal.science/hal-03648357

4. Bertot, Y., Guilhot, F., Pottier, L.: Visualizing Geometrical Statements with
GeoView. Electr. Notes Theor. Comput. Sci. 103, 49–65 (11 2004). https://doi.
org/10.1016/j.entcs.2004.09.013

5. Blanc, R.W.: Verification by Reduction to Functional Programs p. 191 (2017).
https://doi.org/https://doi.org/10.5075/epfl-thesis-7636

6. Canou, B., Di Cosmo, R., Henry, G.: Scaling up functional programming education:
under the hood of the OCaml MOOC. Proc. ACM Program. Lang. 1(ICFP) (aug
2017). https://doi.org/10.1145/3110248

7. Chevalier, M., Giang, C., El-Hamamsy, L., Bonnet, E., Papaspyros, V., Pellet,
J.P., Audrin, C., Romero, M., Baumberger, B., Mondada, F.: The role of feedback
and guidance as intervention methods to foster computational thinking in educa-
tional robotics learning activities for primary school. Computers & Education 180,
104431 (2022). https://doi.org/10.1016/j.compedu.2022.104431

8. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming. p. 268–279. ICFP ’00 (2000). https:
//doi.org/10.1145/351240.351266

9. Clune, J., Ramamurthy, V., Martins, R., Acar, U.A.: Program Equivalence for As-
sisted Grading of Functional Programs. Proc. ACM Program. Lang. 4(OOPSLA)
(nov 2020). https://doi.org/10.1145/3428239

10. Crichton, W., Sampaio, G.G., Hanrahan, P.: Automating Program Structure Clas-
sification. In: Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education. p. 1177–1183. SIGCSE ’21 (2021). https://doi.org/10.1145/
3408877.3432358

11. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. p. 337–340.
TACAS’08/ETAPS’08 (2008), https://doi.org/10.1007/978-3-540-78800-3_24

12. Dongol, B., Dubois, C., Hallerstede, S., Hehner, E., Morgan, C., Müller, P., Ribeiro,
L., Silva, A., Smith, G., de Vink, E.: On Formal Methods Thinking in Computer
Science Education. Form. Asp. Comput. (2024). https://doi.org/10.1145/3670419,
https://doi.org/10.1145/3670419, just Accepted

13. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
Regression Verification. In: Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering. p. 349–360. ASE ’14 (2014).
https://doi.org/10.1145/2642937.2642987

14. Findler, R.B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler,
P., Felleisen, M.: DrScheme: a programming environment for Scheme. J. Funct.
Program. 12(2), 159–182 (2002). https://doi.org/10.1017/S0956796801004208

15. Fisler, K.: The recurring rainfall problem. In: Proceedings of the Tenth Annual
Conference on International Computing Education Research. p. 35–42. ICER’14
(2014). https://doi.org/10.1145/2632320.2632346

16. From, A., Jacobsen, F., Villadsen, J.: SeCaV: A sequent calculus verifier in Is-
abelle/HOL. In: Proceedings of 16th Logical and Semantic Frameworks with Appli-
cations. Electronic Proceedings in Theoretical Computer Science, EPTCS, vol. 357,
pp. 38–55 (2022). https://doi.org/10.4204/EPTCS.357.4

https://hal.science/hal-03648357
https://doi.org/10.1016/j.entcs.2004.09.013
https://doi.org/10.1016/j.entcs.2004.09.013
https://doi.org/10.1016/j.entcs.2004.09.013
https://doi.org/10.1016/j.entcs.2004.09.013
https://doi.org/https://doi.org/10.5075/epfl-thesis-7636
https://doi.org/https://doi.org/10.5075/epfl-thesis-7636
https://doi.org/10.1145/3110248
https://doi.org/10.1145/3110248
https://doi.org/10.1016/j.compedu.2022.104431
https://doi.org/10.1016/j.compedu.2022.104431
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3428239
https://doi.org/10.1145/3428239
https://doi.org/10.1145/3408877.3432358
https://doi.org/10.1145/3408877.3432358
https://doi.org/10.1145/3408877.3432358
https://doi.org/10.1145/3408877.3432358
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3670419
https://doi.org/10.1145/3670419
https://doi.org/10.1145/3670419
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1017/S0956796801004208
https://doi.org/10.1017/S0956796801004208
https://doi.org/10.1145/2632320.2632346
https://doi.org/10.1145/2632320.2632346
https://doi.org/10.4204/EPTCS.357.4
https://doi.org/10.4204/EPTCS.357.4

Formal Autograding in a Classroom 17

17. Gambhir, S., Guilloud, S., Milovančević, D., Rümmer, P., Kunčak, V.: Lisa tool
integration and education plans (2023)

18. Geng, C., Xu, W., Xu, Y., Pientka, B., Si, X.: Identifying Different Student Clus-
ters in Functional Programming Assignments: From Quick Learners to Struggling
Students. In: Proceedings of the 54th ACM Technical Symposium on Computer
Science Education. p. 750–756. SIGCSE 2023 (2023). https://doi.org/10.1145/
3545945.3569882

19. Gerdes, A., Heeren, B., Jeuring, J., van Binsbergen, L.T.: Ask-Elle: an Adapt-
able Programming Tutor for Haskell Giving Automated Feedback. International
Journal of Artificial Intelligence in Education 27 (2016). https://doi.org/10.1007/
s40593-015-0080-x

20. Glassman, E.L., Scott, J., Singh, R., Guo, P.J., Miller, R.C.: Overcode: Visualizing
variation in student solutions to programming problems at scale. ACM Trans.
Comput.-Hum. Interact. 22(2) (2015). https://doi.org/10.1145/2699751, https://
doi.org/10.1145/2699751

21. Godlin, B., Strichman, O.: Regression verification: Proving the equivalence of sim-
ilar programs. Software Testing Verification and Reliability 23, 241–258 (2013).
https://doi.org/10.1002/stvr.1472

22. Griswold, W.G.: Experience Report: Meet the Professor - A Large-Course Inter-
vention for Increasing Rapport. In: Proceedings of the 55th ACM Technical Sym-
posium on Computer Science Education V. 1. p. 415–421. SIGCSE 2024 (2024).
https://doi.org/10.1145/3626252.3630844

23. Guilhot, F.: Formalisation en Coq et visualisation d’un cours de géométrie pour le
lycée. Technique et Science Informatiques 24, 1113–1138 (2005). https://doi.org/
10.3166/tsi.24.1113-1138

24. Gulwani, S., Radiček, I., Zuleger, F.: Automated clustering and program re-
pair for introductory programming assignments. In: Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation. p. 465–480. PLDI 2018 (2018). https://doi.org/10.1145/3192366.3192387,
https://doi.org/10.1145/3192366.3192387

25. Hameer, A., Pientka, B.: Teaching the art of functional programming using auto-
mated grading (experience report). Proc. ACM Program. Lang. 3(ICFP) (2019).
https://doi.org/10.1145/3341719

26. Hamza, J., Felix, S., Kunčak, V., Nussbaumer, I., Schramka, F.: From Verified
Scala to STIX File System Embedded Code Using Stainless. In: Deshmukh, J.V.,
Havelund, K., Perez, I. (eds.) NASA Formal Methods. pp. 393–410. Springer
International Publishing, Cham (2022). https://doi.org/https://doi.org/10.1007/
978-3-031-06773-0_21

27. Hamza, J., Voirol, N., Kunčak, V.: System FR: Formalized foundations for the
Stainless verifier. Proc. ACM Program. Lang. 3(OOPSLA) (2019). https://doi.
org/10.1145/3360592

28. Hart, R., Hays, B., McMillin, C., Rezig, E.K., Rodriguez-Rivera, G., Turkstra, J.A.:
Eastwood-Tidy: C Linting for Automated Code Style Assessment in Programming
Courses. In: Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. p. 799–805. SIGCSE 2023 (2023). https://doi.org/10.1145/
3545945.3569817

29. Henz, M., Hobor, A.: Teaching Experience: Logic and Formal Methods with Coq.
In: Jouannaud, J.P., Shao, Z. (eds.) Certified Programs and Proofs. pp. 199–215.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25379-9_16

https://doi.org/10.1145/3545945.3569882
https://doi.org/10.1145/3545945.3569882
https://doi.org/10.1145/3545945.3569882
https://doi.org/10.1145/3545945.3569882
https://doi.org/10.1007/s40593-015-0080-x
https://doi.org/10.1007/s40593-015-0080-x
https://doi.org/10.1007/s40593-015-0080-x
https://doi.org/10.1007/s40593-015-0080-x
https://doi.org/10.1145/2699751
https://doi.org/10.1145/2699751
https://doi.org/10.1145/2699751
https://doi.org/10.1145/2699751
https://doi.org/10.1002/stvr.1472
https://doi.org/10.1002/stvr.1472
https://doi.org/10.1145/3626252.3630844
https://doi.org/10.1145/3626252.3630844
https://doi.org/10.3166/tsi.24.1113-1138
https://doi.org/10.3166/tsi.24.1113-1138
https://doi.org/10.3166/tsi.24.1113-1138
https://doi.org/10.3166/tsi.24.1113-1138
https://doi.org/10.1145/3192366.3192387
https://doi.org/10.1145/3192366.3192387
https://doi.org/10.1145/3192366.3192387
https://doi.org/10.1145/3341719
https://doi.org/10.1145/3341719
https://doi.org/https://doi.org/10.1007/978-3-031-06773-0_21
https://doi.org/https://doi.org/10.1007/978-3-031-06773-0_21
https://doi.org/https://doi.org/10.1007/978-3-031-06773-0_21
https://doi.org/https://doi.org/10.1007/978-3-031-06773-0_21
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3545945.3569817
https://doi.org/10.1145/3545945.3569817
https://doi.org/10.1145/3545945.3569817
https://doi.org/10.1145/3545945.3569817
https://doi.org/10.1007/978-3-642-25379-9_16
https://doi.org/10.1007/978-3-642-25379-9_16
https://doi.org/10.1007/978-3-642-25379-9_16
https://doi.org/10.1007/978-3-642-25379-9_16

18 D. Milovančević, M. Bucev, M. Wojnarowski, S. Chassot and V. Kunčak

30. INRIA: Functional Induction in Coq. https://coq.inria.fr/refman/using/libraries/
funind.html (2021)

31. Jacobsen, F., Villadsen, J.: On exams with the isabelle proof assistant. Electronic
Proceedings in Theoretical Computer Science 375, 63–76 (03 2023). https://doi.
org/10.4204/EPTCS.375.6

32. Kaufmann, M., Moore, J.S., Manolios, P.: Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, USA (2000), https://doi.org/10.1007/
978-1-4615-4449-4

33. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: A Language-
Agnostic Semantic Diff Tool for Imperative Programs. In: Proceedings of the
24th International Conference on Computer Aided Verification. p. 712–717.
CAV’12, Springer-Verlag, Berlin, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31424-7_54

34. LARA: Stainless. https://github.com/epfl-lara/stainless (2023)
35. Lee, J., Song, D., So, S., Oh, H.: Automatic Diagnosis and Correction of Logi-

cal Errors for Functional Programming Assignments. Proc. ACM Program. Lang.
2(OOPSLA) (2018). https://doi.org/10.1145/3276528

36. Maxim, H., Kaliszyk, C., van Raamsdonk, F., Wiedijk, F.: Teaching logic using a
state-of-art proof assistant. Acta Didactica Napocensia 3 (2010)

37. McCarthy, J.: A basis for a mathematical theory of computation. In: Braffort,
P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, Studies in
Logic and the Foundations of Mathematics, vol. 35, pp. 33–70. Elsevier (1963).
https://doi.org/10.1016/S0049-237X(08)72018-4

38. Messer, M., Brown, N.C.C., Kölling, M., Shi, M.: Automated Grading and Feed-
back Tools for Programming Education: A Systematic Review. ACM Trans. Com-
put. Educ. 24(1) (2024). https://doi.org/10.1145/3636515

39. Milovančević, D., Kunčak, V.: Proving and Disproving Equivalence of Functional
Programming Assignments. Proc. ACM Program. Lang. 7(PLDI) (2023). https:
//doi.org/10.1145/3591258

40. Nelson, L., Sigurbjarnarson, H., Zhang, K., Johnson, D., Bornholt, J., Torlak, E.,
Wang, X.: Hyperkernel: Push-Button Verification of an OS Kernel. In: Proceedings
of the 26th Symposium on Operating Systems Principles. p. 252–269. SOSP ’17,
Association for Computing Machinery, New York, NY, USA (2017). https://doi.
org/10.1145/3132747.3132748

41. Nipkow, T.: Teaching semantics with a proof assistant: No more lsd trip proofs. In:
Kuncak, V., Rybalchenko, A. (eds.) Verification, Model Checking, and Abstract
Interpretation. pp. 24–38. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

42. Nipkow, T.: Programming and Proving in Isabelle/HOL. https://isabelle.in.tum.
de/dist/Isabelle2022/doc/prog-prove.pdf (2022)

43. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-
order logic, vol. 2283. Springer Science & Business Media (2002), https://doi.org/
10.1007/3-540-45949-9

44. Oberhauser, J., Chehab, R.L.d.L., Behrens, D., Fu, M., Paolillo, A., Oberhauser,
L., Bhat, K., Wen, Y., Chen, H., Kim, J., Vafeiadis, V.: Vsync: push-button ver-
ification and optimization for synchronization primitives on weak memory mod-
els. In: Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. p. 530–545. AS-
PLOS ’21, Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3445814.3446748

https://coq.inria.fr/refman/using/libraries/funind.html
https://coq.inria.fr/refman/using/libraries/funind.html
https://doi.org/10.4204/EPTCS.375.6
https://doi.org/10.4204/EPTCS.375.6
https://doi.org/10.4204/EPTCS.375.6
https://doi.org/10.4204/EPTCS.375.6
https://doi.org/10.1007/978-1-4615-4449-4
https://doi.org/10.1007/978-1-4615-4449-4
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/978-3-642-31424-7_54
https://github.com/epfl-lara/stainless
https://doi.org/10.1145/3276528
https://doi.org/10.1145/3276528
https://doi.org/10.1016/S0049-237X(08)72018-4
https://doi.org/10.1016/S0049-237X(08)72018-4
https://doi.org/10.1145/3636515
https://doi.org/10.1145/3636515
https://doi.org/10.1145/3591258
https://doi.org/10.1145/3591258
https://doi.org/10.1145/3591258
https://doi.org/10.1145/3591258
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748
https://isabelle.in.tum.de/dist/Isabelle2022/doc/prog-prove.pdf
https://isabelle.in.tum.de/dist/Isabelle2022/doc/prog-prove.pdf
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/3445814.3446748

Formal Autograding in a Classroom 19

45. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, Fourth Edition (A
comprehensive step-by-step guide). Artima, Sunnyvale, CA, USA (2019), https:
//www.artima.com/shop/programming_in_scala_4ed

46. Page, R.: Engineering software correctness. In: Proceedings of the 2005 Workshop
on Functional and Declarative Programming in Education. p. 39–46. FDPE’05
(2005). https://doi.org/10.1145/1085114.1085123

47. Page, R., Eastlund, C., Felleisen, M.: Functional programming and theorem proving
for undergraduates: a progress report. In: Proceedings of the 2008 International
Workshop on Functional and Declarative Programming in Education. p. 21–30.
FDPE’08 (2008). https://doi.org/10.1145/1411260.1411264

48. Pierce, B.C.: Lambda, the ultimate ta: using a proof assistant to teach program-
ming language foundations. In: Proceedings of the 14th ACM SIGPLAN Interna-
tional Conference on Functional Programming. p. 121–122. ICFP ’09 (2009). https:
//doi.org/10.1145/1596550.1596552, https://doi.org/10.1145/1596550.1596552

49. Pu, Y., Narasimhan, K., Solar-Lezama, A., Barzilay, R.: Sk_p: A neural pro-
gram corrector for moocs. In: Companion Proceedings of the 2016 ACM SIG-
PLAN International Conference on Systems, Programming, Languages and Ap-
plications: Software for Humanity. p. 39–40. SPLASH Companion 2016 (2016).
https://doi.org/10.1145/2984043.2989222

50. Rousselin, P.: Mathematics with Coq for first-year undergraduate students (2023)
51. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer

arithmetic. In: Logic for Programming, Artificial Intelligence, and Reasoning. pp.
274–289 (2008). https://doi.org/https://doi.org/10.1007/978-3-540-89439-1_20

52. Schmid, G.S., Kuncak, V.: Generalized arrays for stainless frames. In: Finkbeiner,
B., Wies, T. (eds.) Verification, Model Checking, and Abstract Interpretation -
23rd International Conference, VMCAI 2022, Philadelphia, PA, USA, January 16-
18, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13182, pp. 332–354.
Springer (2022). https://doi.org/10.1007/978-3-030-94583-1_17

53. Singh, A., Fariha, A., Brooks, C., Soares, G., Henley, A.Z., Tiwari, A., M, C.,
Choi, H., Gulwani, S.: Investigating student mistakes in introductory data sci-
ence programming. In: Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1. p. 1258–1264. SIGCSE 2024 (2024). https:
//doi.org/10.1145/3626252.3630884

54. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for
introductory programming assignments. SIGPLAN Not. 48(6), 15–26 (2013).
https://doi.org/10.1145/2499370.2462195

55. Soloway, E.: Learning to program = learning to construct mechanisms and explana-
tions. Commun. ACM 29(9), 850–858 (1986). https://doi.org/10.1145/6592.6594

56. Song, D., Lee, M., Oh, H.: Automatic and scalable detection of logical errors in
functional programming assignments. Proc. ACM Program. Lang. 3(OOPSLA)
(2019). https://doi.org/10.1145/3360614

57. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs.
In: Yahav, E. (ed.) Static Analysis. pp. 298–315 (2011). https://doi.org/10.1007/
978-3-642-23702-7_23

58. Tao, R., Shi, Y., Yao, J., Li, X., Javadi-Abhari, A., Cross, A.W., Chong, F.T., Gu,
R.: Giallar: push-button verification for the qiskit quantum compiler. In: Proceed-
ings of the 43rd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation. p. 641–656. PLDI 2022, Association for Com-
puting Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3519939.
3523431

https://www.artima.com/shop/programming_in_scala_4ed
https://www.artima.com/shop/programming_in_scala_4ed
https://doi.org/10.1145/1085114.1085123
https://doi.org/10.1145/1085114.1085123
https://doi.org/10.1145/1411260.1411264
https://doi.org/10.1145/1411260.1411264
https://doi.org/10.1145/1596550.1596552
https://doi.org/10.1145/1596550.1596552
https://doi.org/10.1145/1596550.1596552
https://doi.org/10.1145/1596550.1596552
https://doi.org/10.1145/1596550.1596552
https://doi.org/10.1145/2984043.2989222
https://doi.org/10.1145/2984043.2989222
https://doi.org/https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-030-94583-1_17
https://doi.org/10.1007/978-3-030-94583-1_17
https://doi.org/10.1145/3626252.3630884
https://doi.org/10.1145/3626252.3630884
https://doi.org/10.1145/3626252.3630884
https://doi.org/10.1145/3626252.3630884
https://doi.org/10.1145/2499370.2462195
https://doi.org/10.1145/2499370.2462195
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/3360614
https://doi.org/10.1145/3360614
https://doi.org/10.1007/978-3-642-23702-7_23
https://doi.org/10.1007/978-3-642-23702-7_23
https://doi.org/10.1007/978-3-642-23702-7_23
https://doi.org/10.1007/978-3-642-23702-7_23
https://doi.org/10.1145/3519939.3523431
https://doi.org/10.1145/3519939.3523431
https://doi.org/10.1145/3519939.3523431
https://doi.org/10.1145/3519939.3523431

20 D. Milovančević, M. Bucev, M. Wojnarowski, S. Chassot and V. Kunčak

59. Vaillancourt, D., Page, R., Felleisen, M.: ACL2 in DrScheme. In: Proceedings of the
Sixth International Workshop on the ACL2 Theorem Prover and Its Applications.
p. 107–116. ACL2’06 (2006). https://doi.org/10.1145/1217975.1217999

60. Voirol, N., Kneuss, E., Kuncak, V.: Counter-example complete verification for
higher-order functions. In: Proceedings of the 6th ACM SIGPLAN Symposium
on Scala. p. 18–29. SCALA 2015 (2015). https://doi.org/10.1145/2774975.2774978

61. Vujošević-Janičić, M., Nikolić, M., Tošić, D., Kuncak, V.: Software verification and
graph similarity for automated evaluation of students’ assignments. Inf. Softw.
Technol. 55(6), 1004–1016 (2013). https://doi.org/10.1016/j.infsof.2012.12.005

62. Wang, K., Singh, R., Su, Z.: Search, align, and repair: Data-driven feedback gen-
eration for introductory programming exercises. SIGPLAN Not. 53(4), 481–495
(2018). https://doi.org/10.1145/3296979.3192384

63. Wrenn, J., Krishnamurthi, S., Fisler, K.: Who tests the testers? In: Proceedings
of the 2018 ACM Conference on International Computing Education Research. p.
51–59. ICER’18, Association for Computing Machinery (2018). https://doi.org/10.
1145/3230977.3230999

https://doi.org/10.1145/1217975.1217999
https://doi.org/10.1145/1217975.1217999
https://doi.org/10.1145/2774975.2774978
https://doi.org/10.1145/2774975.2774978
https://doi.org/10.1016/j.infsof.2012.12.005
https://doi.org/10.1016/j.infsof.2012.12.005
https://doi.org/10.1145/3296979.3192384
https://doi.org/10.1145/3296979.3192384
https://doi.org/10.1145/3230977.3230999
https://doi.org/10.1145/3230977.3230999
https://doi.org/10.1145/3230977.3230999
https://doi.org/10.1145/3230977.3230999

	Formal Autograding in a Classroom

