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Abstract. We apply and evaluate polynomial-time algorithms to com-
pute two different normal forms of propositional formulas arising in veri-
fication. One of the normal form algorithms is presented for the first time.
The algorithms compute normal forms and solve the word problem for
two different subtheories of Boolean algebra: orthocomplemented bisemi-
lattice (OCBSL) and ortholattice (OL). Equality of normal forms decides
the word problem and is a sufficient (but not necessary) check for equiva-
lence of propositional formulas. Our first contribution is a quadratic-time
OL normal form algorithm, which induces a coarser equivalence than the
OCBSL normal form and is thus a more precise approximation of propo-
sitional equivalence. The algorithm is efficient even when the input for-
mula is represented as a directed acyclic graph. Our second contribution
is the evaluation of OCBSL and OL normal forms as part of a verification
condition cache of the Stainless verifier for Scala. The results show that
both normalization algorithms substantially increase the cache hit ratio
and improve the ability to prove verification conditions by simplification
alone. To gain further insights, we also compare the algorithms on hard-
ware circuit benchmarks, showing that normalization reduces circuit size
and works well in the presence of sharing.

1 Introduction

Algorithms and techniques to solve and reduce formulas in propositional logic
(and its generalizations) are a major field of study. They have prime relevance in
SAT and SMT solving algorithms [2,8,31], in optimization of logical circuit size
in hardware [25], in interactive theorem proving where propositional variables
can represent assumptions and conclusions of theorems [23,35,43], for decision
procedures in automated theorem proving [13,26,37,41,42], and in every sub-
field of formal verification in general [27]. The propositional problem of satis-
fiability is NP-complete, whereas validity and equivalence are coNP-complete.
While heuristic techniques give useful results in practice, in this paper we investi-
gate guaranteed worst-case polynomial-time deterministic algorithms. Such algo-
rithms can serve as building blocks of more complex functionality, without cre-
ating an unpredictable dependency.

Recently, researchers proposed the use of certain non-distributive comple-
mented lattice-like structures to compute normal forms of formulas [20]. These
results appear to have a practical potential, but they have not been experi-
mentally evaluated. Moreover, the proposed completeness characterization is in
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terms of “orthocomplemented bisemilattices” (OCBSL), which have a number
of counterintuitive properties. For example, the structure is not a lattice and
does not satisfy the absorption laws x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x. As
a consequence, there is no natural semantic ordering on formulas corresponding
to implication, with x ∧ y = x and x ∨ y = y inducing two different relations.

Inspired by these limitations, we revisit results on lattices, which are much
better behaving structures. We strengthen the OCBSL structure with the
absorption law to consider the class of ortholattices, as summarized in Table 1.
Ortholattices (OL) have a natural partial order for which ∧,∨ act as the great-
est lower bound and the least upper bound. They also satisfy de Morgan’s law,
allowing the elimination of one of the connectives in terms of the other two. On
the other hand, ortholattices do not, in general, satisfy the distributivity law,
which sets them apart from Boolean algebras.

We present a new algorithm that computes a normal form for OL in quadratic
time. The normal form is strictly stronger than the one for OCBSL: there are
terms in the language {∧,∨,¬} that are distinct in OCBSL, but are equal in OL.
Checking equality of OL normal forms thus more precisely approximates propo-
sitional formula equivalence. Both normal forms can be thought of as strength-
ening of the negation normal form.

Table 1. Laws of algebraic structures with signature (S,∧,∨, 0, 1,¬). Structures satis-
fying laws L1–L8 and L1’–L8’ were called orthocomplemented bisemilattices (OCBSL)
in [20]. Those OCBSL that additionally satisfy L9 and L9’ are ortholattices (OL).

L1: x ∨ y = y ∨ x L1’: x ∧ y = y ∧ x

L2: x ∨ (y ∨ z) = (x ∨ y) ∨ z L2’: x ∧ (y ∧ z) = (x ∧ y) ∧ z

L3: x ∨ x = x L3’: x ∧ x = x

L4: x ∨ 1 = 1 L4’: x ∧ 0 = 0

L5: x ∨ 0 = x L5’: x ∧ 1 = x

L6: ¬¬x = x L6’: same as L6

L7: x ∨ ¬x = 1 L7’: x ∧ ¬x = 0

L8: ¬(x ∨ y) = ¬x ∧ ¬y L8’: ¬(x ∧ y) = ¬x ∨ ¬y
L9: x ∨ (x ∧ y) = x L9’: x ∧ (x ∨ y) = x

Example 1. Consider the formula x ∧ (y ∨ z). An OCBSL algorithm finds it
equivalent to

x ∧ ¬(¬y ∧ ¬z) ∧ x

but it will consider these two formulas non-equivalent to

x ∧ (u ∨ x) ∧ (y ∨ z)

The OL algorithm will identify the equivalence of all three formulas, thanks to
the laws (L9, L9’). It will nonetheless consider them non-equivalent to

(x ∧ y) ∨ (x ∧ z)

which a complete but exponential worst-case time algorithm for Boolean algebra
equalities, such as one implemented in SAT solvers, will identify as equivalent.
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A major practical question is the usefulness of such O(n log(n)2) (OCBSL)
and O(n2) (OL) algorithms in verification. Are they as predictably efficient as
the theoretical analysis suggests? What benefits do they provide as a component
of verification tools? To answer these questions, we implement both OCBSL and
OL algorithms on directed acyclic graph representations of formulas. We deploy
the algorithms in tools that manipulate formulas, most notably verification con-
ditions in a program verifier, as well as combinational Boolean circuits.

Contributions. We make the following contributions:

– We present the first algorithm computing a normal form of ortholattice (OL)
terms. The algorithm preserves the quadratic time for the decision problem
of equality in free ortholattices [7]. The quadratic time remains even when
the formula is given in a shared (DAG) representation.

– We implement and experimentally evaluate both the new algorithm for the
OL normal form and a previously known (weaker) OCBSL algorithm (shown
to run in quasilinear time). Our evaluation (Sect. 6) includes:

• behavior on randomly generated formulas;
• scalability evaluation on normalizing circuits of size up to 108 gates;
• normalization for simplification and caching of verification conditions

when using the Stainless verifier, with both hard benchmarks (such as
a compression algorithm) and collections of student submissions for pro-
gramming assignments.

We show that OCBSL and OL both have notable potential in practice.

1.1 Related Work

The overarching perspective behind our paper is understanding polynomial-time
normalization of boolean algebra terms. Given (co)NP-hardness of problems
related to Boolean algebras, we look at subtheories given by a subset of Boolean
algebra axioms, including structures such as lattices. Lattices themselves have
many uses in program abstraction, including abstract interpretation [11] and
model checking [14,18]. The theory of the word problem for lattices has been
studied already by Whitman [44], who proposed a quadratic solution for the
word problem for free lattices. Lattices alone do not incorporate the notion of a
complement (negation). Whitman’s algorithm has been adapted and extended
to finitely presented lattices [17] and other variants, and then to free ortholat-
tices by Bruns [7]. We extend this last result to not only decide equality, but
also to compute a normal form for free ortholattices and to circuit (DAG) rep-
resentation of terms. An efficient normal form does not follow from an efficient
equivalence checking, as there are many formulas in the same equivalence class.
Normal form is particularly useful in applications such as formula caching, which
we evaluate in Sect. 6. For a weaker theory of OCBSL, the normal form algo-
rithm was introduced in [20], without any experimental evaluation. The theory
of ortholattices, even if it adds only one more axiom, is notably stronger and
better understood. The underlying lattice structure makes it possible to draw on
the body of work on using lattices to abstract systems and enable algorithmic
verification. The support for graphs (instead of only terms) as a representation
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is of immense practical relevance, because expanding circuits into trees without
the use of auxiliary variables creates structures of astronomical size (Sect. 6).

A notable normal form that decides equality for propositional logic (thus also
accounting for the distributivity law) are reduced ordered binary decision dia-
grams (ROBDDs) [9]. ROBDDs are of great importance in verification, but can
be exponential in the size of the initial formula. Circuit synthesis and verification
tools such as ABC [6] use SAT solvers to optimize sub-circuits [45], which is an
approach to choose a trade-off between the completeness and cost of exponential-
time algorithm. Boolean algebras are in correspondence with boolean rings,
which replace the least upper bound operation ∨ with the symmetric differ-
ence ⊕ (defined as (p∧¬q)∨ (¬p∧ q) and satisfying x⊕x = 0, corresponding to
the exclusive or in the two-element case). There have been proposals to exploit
the boolean ring structure in verification [12]. Polynomials over rings can also be
used to obtain a normal form, but the polynomial canonical forms that we are
aware of are exponential-sized. SMT solvers [2,34] extend SAT solvers, which
makes them worst-case exponential (at best). We expect that our approach and
algorithms could be used for preprocessing or representation, especially in non-
clausal variants of SMT solvers [24,39]. In our evaluation, we apply formula
normal forms to the problem of caching of verification conditions. Caching is
often used in verification tools, including Dafny [28] and Stainless [22]. Our
caching works on formulas and preserves the API of a constraint solver. It is
thus fine grained and can be added to a program verifier or analyzer, regardless
of whether it uses any other, domain-specific, forms of caching [29].

2 Preliminaries

We present definitions and results necessary for the presentation of the ortho-
lattice (OL) normal form algorithm. We assume familiarity with term rewriting
and representation of terms as trees and directed acyclic graphs [15,20]. We use
first-order logic with equality (whose symbol is =). We write A |= F to mean
that a first-order logic formula F is a consequence of (thus provable from) the
set of formulas A.

Definition 1 (Terms). Consider an algebraic signature S. We use TS(X) to
denote the set of terms over S with variables in X (typically an arbitrary count-
ably infinite set, unless specified otherwise). Terms are constructed inductively
as trees. Leaves are labeled with constant symbols or variables. Nodes are labeled
with function symbols. If the label of a node is a commutative function, the chil-
dren of the node are considered as a set (non-ordered) and otherwise as a list
(ordered). We assume that commutative symbols are denoted as such in the sig-
nature.

Definition 2 (The Word Problem). Consider an algebraic signature S and
a set of equational axioms E on S (for example the theory of lattices or ortholat-
tices). The word problem for E is the problem of determining, given two terms
t1 and t2 ∈ TS(X), whether E � t1 = t2.
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Definition 3 (Normal Form). Consider an algebraic signature S and a set of
equational axioms E on S. A function f : TS(X) �→ TS(X) produces a normal
form for E iff: ∀t1, t2 ∈ TS(X), E |= t1 = t2 is equivalent to f(t1) = f(t2).

For Z an arbitrary non-empty set and (∼) ⊆ Z × Z an equivalence relation on
X we use a common notation: if x ∈ Z then [x]∼ = {y ∈ Z | x ∼ y}. Let
Z/∼ = {[x]∼ | x ∈ Z}.

We now briefly review key concepts of free algebras. Let S be a signature
and E be an equational theory over this signature. Consider an equivalence
relation on terms p ∼E q ⇐⇒ (E |= p = q), and note that TS(X)/∼E

is itself
an E-algebra. A freely generated E-algebra, denoted FE(X), is an algebra
generated by variables in X and isomorphic to TS(X)/∼E

, i.e. in which only
the laws of all E-algebra hold. There is always a homomorphism from a freely
generated E-algebra to any other E-algebra over X.

The set of terms TS(X) is also called the term algebra over S. It is the alge-
bra of all terms that contains no identity other than syntactic equality. Given a
(possibly free) algebra A over S and generated by X, there is a natural homomor-
phism κA, in a sense an evaluation function, from TS(X) to A. The word problem
for a theory E then consists in, given p, q ∈ TS(X), deciding if E |= p = q, that
is, κFE

(t1) = κFE
(t2).

In the sequel, we continue to use = to denote the equality symbol inside
formulas as well as the usual identity of mathematical objects. We use == to
specifically denote the computer-performed operation of structural equality on
trees and sets, whereas === denotes reference equality of objects, meaning that
a === b if and only if a and b denote the same object in memory. The distinction
between == and === is relevant because == is a larger relation but may take
linear or worse time to compute, whereas we assume === is constant time.

Lattices. Lattices [4] are well-studied structures with signature (∧,∨) satisfying
laws L1–L3, L9, L1’–L3’ and L9’ from Table 1. In particular, they do not have
a complement operation, ¬, in the signature. Lattices can also be viewed as a
special kind of partially ordered sets with an order relation defined by (a ≤
b) ⇐⇒ (a ∧ b = a), where the last condition is also equivalent to (a ∨ b = b),
given the axioms of lattices. When applied to two-element Boolean algebras,
this order relation corresponds to logical implication in propositional logic. A
bounded lattice is a lattice with maximal and minimal elements 1 and 0. The
word problem for lattices has been solved by Whitman [44] through an algorithm
to decide the ≤ relation and is based on the following properties of free lattices:

(1) s1 ∨ ... ∨ sm ≤ t ⇐⇒ ∀i.si ≤ t
(2) s ≤ t1 ∧ ... ∧ tn ⇐⇒ ∀j.s ≤ tj
(3) s1 ∧ ... ∧ sm ≤ y ⇐⇒ ∃i.si ≤ y
(4) x ≤ t1 ∨ ... ∨ tn ⇐⇒ ∃j.x ≤ tj

s ≤ t ⇐⇒ (∃i.si ≤ t) ∨ (∃j.s ≤ tj),
with s = (s1 ∧ ... ∧ sm) and t = (t1 ∨ ... ∨ tn) (w)
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where x and y denote variables and s and t terms. The first four properties are
direct consequences of the axioms of lattices. (w) above is Whitman property and
holds in free lattices (not in all lattices). Applying the above rules recursively
decides the ≤ relation.

Orthocomplemented Bisemilattices (OCBSL). OCBSL [20] are also a
weakening of Boolean algebras (and, in fact, a subtheory of ortholattices). They
satisfy laws L1–L8, L1’–L8’ but not the absorption law (L9, L9’). This implies
in particular that OCBSL do not have a canonical order relation as lattices do,
but rather have two, in general distinct, relations:

a ≤ b ⇐⇒ a ∧ b = a
a � b ⇐⇒ a ∨ b = b

If we add absorption axioms, a ∧ b = a implies a ∨ b = (a ∧ b) ∨ b = b (and
dually), so the structure becomes a lattice. The algorithm presented in [20] does
not rely on lattice properties. Instead, it is proven that the axioms of OCBSL
can be extended to a term rewriting system which is confluent and terminating,
and hence admits a normal form. Using variants of algorithms on labelled trees
to handle commutativity, this normal form can be computed in quasilinear time
O(n log2(n)). In contrast, in the case of free lattices, there exists no confluent
and terminating term rewriting system [16].

3 Deriving an Ortholattice Normal Form Algorithm

Ortholattices [3, Chapter II.1] are structures satisfying laws L1–L9, L1’–L9’ of
Table 1. An ortholattice (OL) need not be a Boolean algebra, nor an orthomod-
ular lattice; the smallest example of such OL is “Benzene” (O6), with elements
{0, a, b,¬b,¬a, 1} where a ≤ b [5]. The word problem for free ortholattices, which
checks if a given equation is true, has been shown to be solvable in quadratic
time by Bruns [7]. In this section, we go further by presenting an efficient com-
putation of normal forms, which reduces the word problem to syntactic equality.
In addition, normal forms can be efficiently used for formula simplification and
caching, unlike equality procedure itself.

Definition 4. For a set of variables X, we define a disjoint set of the same
cardinality X ′ with a bijective function (·)′ : X �→ X ′. Denote by L the theory of
bounded lattices and OL the theory of ortholattices. Define FL, FOL to be their
free lattices and TL and TOL to be the sets of terms over their respective signature.
Define ≤L as the relation on TL such that s ≤L t ⇐⇒ κFL

(s) ≤ κFL
(t) and

≤OL analogously by s ≤OL t ⇐⇒ κFOL
(s) ≤ κFOL

(t), where κ denotes natural
homomorphisms as introduced in the previous section.

Note: p ≤OL q ⇐⇒ (EOL |= (p ∧ q = q)) where EOL is the set of axioms of
Table 1.
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3.1 Deciding ≤OL by Reduction to Bounded Lattices

We consider TL(X ∪ X ′) as a subset of TOL(X) via the injective inclusion on
variables mapping x �→ x and x′ �→ ¬x. We also define a function δ : TOL(X) →
TL(X ∪X ′) as transformation into negation normal form, using laws L6 (double
negation elimination), L8 and L8’ (de Morgan’s laws).

We define a set R ⊆ TL(X ∪X ′) of terms reduced with respect to the contra-
diction laws (L7 and L7’). These imply that, e.g., given a term a∨b, if ¬b ≤ (a∨b),
then from as b ≤ a ∨ b, we have 1 = b ∨ ¬b ≤ (a ∨ b). The following inductive
definition induces an algorithm to check x ∈ R, meaning that such reductions
do not apply inside x:

0, 1, x, x′ ∈ R (for x ∈ X)
a ∨ b ∈ R ⇐⇒ a ∈ R, b ∈ R, δ(¬a) �L a ∨ b, δ(¬b) �L a ∨ b
a ∧ b ∈ R ⇐⇒ a ∈ R, b ∈ R, δ(¬a) �L a ∧ b, δ(¬b) �L a ∧ b

Above, ≤L is the order relation on lattices, x ≥L y denotes y ≤L x, and �L,
�L are the negations of those conditions: x �L y iff not x ≤L y, whereas x �L y
iff not y ≤L x.

We also define β : TL(X ∪ X ′) → R by:

β(0) = 0, β(1) = 1, β(x) = x, β(x′) = x′ (for x ∈ X)

β(a ∨ b) =

{
β(a) ∨ β(b) if β(a) ∨ β(b) ∈ R

1 otherwise

β(a ∧ b) =

{
β(a) ∧ β(b) if β(a) ∧ β(b) ∈ R

0 otherwise

Example 2. We have β((x∧¬y)∨(¬x∨y)) = 1 because δ(¬(x∧¬y)) = ¬x∨y
and ¬x ∨ y ≤L (x ∧ ¬y) ∨ ¬x ∨ y.

Note that it is generally not sufficient to check only for δ(¬a) �L b for
larger examples. In particular, if δ(¬a) is itself a conjunction, by Whitman’s
property, the condition δ(¬a) � (a ∨ b) is not in general equivalent to having
either δ(¬a) �L b or δ(¬a) �L a.

We next reformulate the theorem from Bruns [7]. A key construction from
the proof is the following Lemma.

Lemma 1. R/∼L
is an ortholattice isomorphic to FOL(X).

Theorem 1. Let s, t ∈ TOL(X). Then, s ≤OL t ⇐⇒ β(δ(s)) ≤L β(δ(t)).

Proof. We sketch and adapt the original proof. Intuitively, computing β(δ(s)) ≤L

β(δ(t)) should be sufficient to compute the ≤OLrelation: δ reduces terms to
normal forms modulo rules L6 (double negation elimination) and L8, L8’ (De
Morgan’s Law), and then β takes care of rule L7 (contradiction). The only
rules left are rules from (bounded) lattices, which should be dealt with by
≤L. From Lemma 1, the fact that β factors in the evaluation function κFOL
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(i.e. is equivalence preserving) and properties of free algebras, it can be shown
that κFOL

= γ ◦ N∼L
◦ β ◦ δ, where N∼L

(x) = [x]∼L
, and γ : R/∼L

→ FOL(X) is
an isomorphism. Hence

κFOL
(s) ≤ κFOL

(t) ⇐⇒ β(δ(s))/∼L
≤ β(δ(t))/∼L

which is equivalent to s ≤OL t ⇐⇒ β(δ(s)) ≤L β(δ(t)).

3.2 Reduction to Normal Form

To obtain a normal form for TOL(X), we will compose δ and β with a normal
form function for TL(X ∪ X ′). A disjunction a = a1 ∨ ... ∨ am (and dually for a
conjunction) is in normal form for ≤L if and only if the following two properties
hold [15, p. 17]:

1. if ai = (ai1 ∧ ... ∧ ain), then for all j, aij �≤ a
2. (a1, ..., an) forms an antichain (if i �= j then ai � aj)

We now show how to reduce a term in R so that it satisfies both properties
using function ζ that enforces property 1, and then η that additionally enforces
property 2. The functions operate dually on ∧ and ∨; we specify them only on
∨ cases for brevity.

Enforcing Property 1. Define ζ : R → R recursively such that:

ζ(a1 ∨ ... ∨ am) =

⎧⎪⎨
⎪⎩

ζ(a1 ∨ ... ∨ aij ∨ ... ∨ am) if ai = (ai1 ∧ ... ∧ ain)
and aij ≤L a1 ∨ ... ∨ am

ζ(a1) ∨ ... ∨ ζ(am) otherwise

(dually for ∧). It follows that s ∼L ζ(s) for every term s because aij ≤L a1 ∨
...∨am implies a1 ∨ ...∨am = a1 ∨ ...∨am ∨aij and ai ∨aij = aij by absorption.

Enforcing Property 2 (Antichain). Define η : R → R such that

η(a1 ∨ ... ∨ am) =

{
η(a1 ∨ ... ∨ ai−1 ∨ ai+1 ∨ ... ∨ am) if ai ≤L aj , i �= j

η(a1) ∨ ... ∨ η(am) otherwise

We have s ∼L η(s) for every term s because ai ≤L aj means ai ∨ aj = aj .

Example 3. We have: η(ζ( [(a ∨ b) ∧ (a ∨ c)] ∨ b )) = η((a ∨ b) ∨ b) = a ∨ b.
Indeed, the first equality follows from

(a ∨ b) ≤L [(a ∨ b) ∧ (a ∨ c)] ∨ b

and the second from b ≤L (a ∨ b).
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Denote by R′ the subset of R containing the terms satisfying property 1 and
R′′ the subset of R′ of terms satisfying property 2. It is easy to see that ζ is
actually R → R′ and η can be restricted to R′ → R′′. Moreover s, t ∈ R′′ and
s ∼L t implies s = t. Recall that ∀w ∈ TOL(X).β(δ(w)) ∈ R. Since β and δ are
equivalence preserving, ∀w1, w2 ∈ TOL(X)

w1 ∼OL w2 ⇐⇒ β(δ(w1)) ∼OL β(δ(w2))

Moreover, since (by Lemma 1) R/∼L
is an ortholattice, we have

β(δ(w1)) ∼OL β(δ(w2)) ⇐⇒ β(δ(w1)) ∼L β(δ(w2))

i.e. in R, ∼OL≡∼L. Then,

β(δ(w1)) ∼L β(δ(w2)) ⇐⇒ η(ζ(β(δ(w1))) ∼L η(ζ(β(δ(w2))))

and since both η(ζ(β(δ(w1))) ∈ R′′ and η(ζ(β(δ(w2))) ∈ R′′

η(ζ(β(δ(w1))) = η(ζ(β(δ(w2))))

We finally conclude:

Theorem 2. NFOL = η ◦ ζ ◦ β ◦ δ is a computable normal form function for
ortholattices.

3.3 Complexity and Normal Form Size

Before presenting the algorithm in more detail, we argue why the normal form
function from the previous section can be computed efficiently. We assume a
RAM model and hence that creating new nodes in the tree representation of
terms can be done in constant time.

Note that the size of the output of each of δ, β, ζ and η is linearly bounded
by the size of the input. Thus, the asymptotic runtime complexity of the com-
position is the sum of the runtimes of these functions. Recall that δ (negation
normal form) is computable in linear time and ζ and η are both computable
in worst-case quadratic time, plus the time needed to compute ≤L. Then, β,
R and ≤L are each computable in constant time plus the time needed for the
mutually recursive calls. While a direct recursive implementation would be expo-
nential, observe that the computation time of R and β is proportional to the
total number of times they get called on. If we store (memoize) the results of the
functions for each different input, this time can be bounded by the total num-
ber of different sub-nodes that are part of the input or which we create during
the algorithm’s execution. Similarly, ≤L needs to be applied to, at worst, every
pair of such sub-nodes. Consequently, if we memoize the result of each of these
functions at all their calls, we may expect to obtain at most quadratic time to
compute them on all the sub-nodes of a formula.

The above argument is, however, not entirely sufficient, because comput-
ing R(a ∧ b) requires creating the new nodes ¬a and ¬b and then computing
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their negation normal form, which again creates new nodes. Indeed, note that,
for memoization, we need to rely on reference (pointer) equality, as structural
equality would take a linear amount of time to compute (for a total cubic time).
Hence, to obtain quadratic time and space, we need to be able to negate a node
in negation normal form without creating new nodes too many new nodes in
memory. To do so, define op : TL(X ∪ X ′) → TL(X ∪ X ′) by

op(x) = x′ op(a ∧ b) = op(a) ∨ op(b)
op(x′) = x op(a ∨ b) = op(a) ∧ op(b)

op(a) is functionally equal to δ(¬a), but has the crucial property that

children(op(τ)) === op[children(τ)]

Where τ denotes a formal conjunction or disjunction and children(τ) is the set
of children of τ as a tree. op can be efficiently memoized. Moreover, it can be
bijectively memoized: if op(a) = b we shall also store op(b) = a. We thus obtain
op(children(op(τ))) === children(τ). In this approach we are guaranteed to
never instantiate any node beyond the n subnodes of the original formula (in
negation normal form) and their opposite for a total of 2n nodes. Hence, we only
ever needed to call op, R and β on up to 2n different inputs and ≤ on up to 4n2

different inputs, guaranteeing a final quadratic running time.

Minimal Size. Finally, as none of δ, β, ζ and η ever increase the size of the for-
mula (in terms of the number of literals, conjunctions and disjunctions), neither
does NFOL. Consequently, for any term w, NFOL(w) is one of the smallest terms
equivalent to w. Indeed, let wmin = w such that wmin is a term of smallest size
in the equivalence class of w. In particular, NFOL(wmin) cannot be smaller than
wmin (because wmin is minimal in the class) nor larger (because NFOL is size
non-increasing). Since NFOL(w) = NFOL(wmin), NFOL(w) is of minimal size.

Theorem 3. The normal form from Theorem 2 can be computed by an algo-
rithm running in time and space O(n2). Moreover, the resulting normal form is
guaranteed to be smallest in the equivalence class of the input term.

4 Algorithm with Memoization and Structure Sharing

To obtain a practical realization of Theorem 3, we need to address two main
challenges. First, as explained in the previous section, we need to memoize the
result of some functions to avoid exponential blowup. Second, we want to make
the procedure compatible with structure sharing, since it is an important feature
for many applications.

By memoization we mean modifying a function so that it saves the result of
the calls for each argument, so that they can be found without future recompu-
tations. Results of function calls can be stored in a map. For single-argument
functions we find it is typically more efficient to introduce a field in each object
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to hold the result of calling a function on it. Under structure sharing we under-
stand the possibility to reuse subformulas multiple times in the description of a
logical expression. In case of signature ∧,∨,¬, such expressions can be viewed as
combinational Boolean circuits. We represent such terms using directed acyclic
graph (DAG) reference structures instead of tree structures.

Circuits can be exponentially more succinct than equivalent formulas, but not
all formula rewrites are efficient in the presence of structure sharing (consider
for example, rules with substitution such as x ∧ F � x ∧ F [x := 1], where F
may also be referred to somewhere else). Structure sharing is thus non-trivial to
maintain throughout all representations and transformations. Indeed, making a
naive recursive modification of a circuit will unfold the DAG into a tree, often
causing an exponential increase in space. Doing so optimally also requires the
use of memoization. Moreover, the choice of representations and datastructures
is critical.

We show that it is possible to make both algorithms fully compatible with
structure sharing without ever creating node duplicates. The algorithm ensures
that the resulting circuits will contain a smaller number of subnodes, preserve
equivalence, and enforce that two circuits have the same representation if and
only if they describe the same term (by the laws of OL).

Algorithm 1: Datastructure for Formulas

1 numberOfFormulas ← 0
2 Datastructure AIGFormula
3 val uniqueId: Int ← numberOfFormulas++ // get fresh ID on node creation

4 var inverse:AIGFormula ← null

5 var normal:AIGFormula ← null
6 var smaller: Set[Int] ← ∅ // sparse bitset

7 var notSmaller: Set[Int] ← ∅ // sparse bitset

8 case Variable(id:String, polarity:Bool) of AIGFormula
9 case Literal(polarity:Bool) of AIGFormula

10 case Conjunction(children:List[AIGFormula], polarity:Bool) of AIGFormula

11 val Positive: Bool = True; val Negative: Bool = False

Algorithm 2: Computing Negations

1 def inverse( τ) // AIGFormula -> AIGFormula

2 if isDefined( τ .inverse) then

3 return τ .inverse

4 else
5 τ̄ ← τ .copy(polarity = !τ .polarity)

6 τ .inverse ← τ̄

7 τ̄ .inverse ← τ
8 return τ̄
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Algorithm 3: Computing ≤
1 def ≤( τ , π) // AIGFormula -> AIGFormula -> Bool

2 if τ .smaller contains π.uniqueId then return True

3 else if τ .notSmaller contains π.uniqueId then return False

4 else
5 r ← match (τ , π) :

6 case (lhs, Conjunction(children, Positive)) :

7 ∀c ∈ children. τ≤c
8 case (Conjunction(children, Negative), rhs) :

9 ∀c ∈ children. inverse(c)≤π
10 case (Variable(id), Conjunction(children, Negative) :
11 ∃c ∈ children. τ≤inverse(c)

12 case (Conjunction(children, Positive), Variable(id)) :
13 ∃c ∈ children. c≤π

14 case (Conjunction(tauCh, Positive), Conjunction(piCh, Negative)) :

// would cause exponential explosion without memoization:

15 (∃c ∈ tauCh. c≤π) ∨ (∃c ∈ piCh. τ≤inverse(c))

16 case (Variable(id1), Variable(id2)) :

17 id1 == id2

18 if r then τ .smaller += π.uniqueId

19 else τ .notSmaller += π.uniqueId
20 return r

Pseudocode. Algorithms 1, 2, 3, 4 present pseudocode implementation of the
normal form function from Theorem 2. To more easily maintain structure shar-
ing and gain performance, we move away from the negation normal form rep-
resentation and prefer to use a representation of formulas similar to AIG (And-
Inverter Graph) where a formula is either a Conjunction, a Variable or a Literal
and contains a boolean value telling if the formula is positive or negative (see
Algorithm 1). This implies that δ needs to transform arbitrary Boolean formulas
into AIGFormulas instead of negation normal forms. Fortunately, AIGFormula
can be efficiently translated to NNF (and back) so we can view them as an
alternative representation of terms in TL(X ∪ X ′). For the sake of space, we do
not show the reduction from general formula trees on the signature (∧,∨,¬) and
work directly with AIGFormulas, but the implementation needs memoization to
avoid exponential duplication in presence of structure sharing.

Recall that computing R requires taking the negation of some formulas, and
projecting them back into TL(X ∪ X ′) with δ. Using AIGFormula makes it
possible to always take the negation of a formula in constant time and space.
The corresponding function inverse( τ) is in Algorithm 2, and corresponds to
the op function from the previous section. The memoization ensures that for
all τ , inverse(inverse(τ)) === τ , and our choice of data structure ensures that
children(inverse(τ)) === children(τ). Those two properties guarantee that any
sequence of access to children and inverses of τ will always yield a formula object
within the original DAG, or its single inverse copy. In particular, regardless of
structure sharing in the input structure, we never need to store in memory more
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than twice the total number of formula nodes in the input. As explained in
Sect. 3.3, a similar condition could be made to hold with NNF, but we believe it
is more complicated and less efficient when implemented.

Function ≤ in Algorithm 3 is based on Whitman’s algorithm adapted to
AIGFormula. For memoization, because the function takes two arguments, we
store in each node the set of nodes it is smaller than or not using two sets. Note
that storing and accessing values in a set (even a hash set) is only as efficient as
computing the equality relation on two objects is. Because structural equality
== takes linear time to compute, we use referential equality with the uniqueId
of each formula (declared in Algorithm 1). We found that using sparse bit sets
yields the best performances.

The simplify function in Algorithm 4 makes a one-level simplification of a
conjunction node, assuming that its children have already been simplified. We
present the case when τ is positive. It works in three steps. The subfunction zeta
corresponds to the ζ function from the previous section. It both flattens consecu-
tive positive conjunctions and applies a transformation based on a strengthened
version of the absorption law. Then at line 13, we filter out the nodes which are
smaller than some other node, for example if c ≤ b then a ∧ b ∧ c becomes a ∧ c.
This corresponds to function η. Finally, line 16 applies the contradiction law, i.e.
if a∧ b∧ c ≤ ¬a then a∧ b∧ c becomes 0. Note again that checking only if either
b ≤ ¬a or c ≤ ¬a holds is not sufficient (see for example the case a = (¬b ∨ ¬c).
This corresponds to the β function. The correspondence with the three functions
ζ, η and β is not exact; all computations are done in a single traversal over the
structure of the formula, rather than in separate passes as the composition ◦ of
functions in Theorem 2 might suggest.

Importance of Structure Sharing. As detailed in Sect. 6, our implementation
finished in a few tenths of a second on circuits containing approximately 105 And
gates, but whose expanded formula would have size over 102000, demonstrating
the compatibility of the algorithm with structure sharing. For this, we must
ensure at every phase and for every intermediate representation, from parsing of
the input to exporting the solution, that no duplicate node is ever created. This is
achieved, again, using memoization. The complete and testable implementation
of both the OL and OCBSL algorithms in Scala is available at https://github.
com/epfl-lara/lattices-algorithms.

5 Application to More Expressive Logics

This section outlines how we use OCBSL and OL algorithms in program verifica-
tion. Boolean Algebra is not only relevant for pure propositional logic; it is also
the coreof more complex logics, such as the ones used for verification of software.

https://github.com/epfl-lara/lattices-algorithms
https://github.com/epfl-lara/lattices-algorithms
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Algorithm 4: Computing normal form

1 def simplify( τ) // Conjunction -> AIGFormula

// Assume τ is positive

// (In negative cases, some nodes must be inverted and ≤ reversed.)

2 newChildren ← List()
3 def zeta( child)

4 match child :

5 case PositiveConjunction :
6 newChildren.add(child.Children)

7 case child:NegativeConjunction :

8 gc ← child.children.find(gc 	→ τ≤ gc)
9 if isDefined( gc) then zeta( gc)

10 else newChildren.add(child)

11 for child ← τ .children do

12 zeta( child)

13 children’ ← // filter out redundant children smaller than another child

14 if children’.size == 0 then return Literal(True)

15 else if children’.size == 1 then return children’.head

16 else if ∃ c ∈ children’. τ≤ inverse( c) then return Literal(False)
17 else return Conjunction(newChildren)

18

19 def NFOL( τ) // AIGFormula -> AIGFormula

20 if isDefined( τ .normal) then return τ .normal
21 else

22 τ .normal ← match τ :
23 case Variable(id, True): τ
24 case Variable(id, False): inverse(NFOL( inverse( τ)))

25 case Conjunction(children, polarity): simplify( children map NFOL

polarity)

26 return τ .normal

Propositional terms appear as subexpressions of the program (as members of the
Boolean type), but also in verification conditions corresponding to correctness
properties. This section highlights key aspects of such a deployment.

We consider programs containing let bindings, pattern matching, algebraic
data types, and theories including numbers and arrays. Let bindings typically
arise when a variable is set in a program, but is also introduced in program
transformations to prevent exponential increase in the size of program trees.
Since OCBSL and OL are compatible with a DAG representation—fulfilling a
similar role to let bindings—they can similarly “see through” bindings without
breaking them or duplicating subexpressions.

If-then-else and pattern matching conditions can be analyzed and used by the
algorithms, possibly leading to dead-branch removal or condition simplification.
Extending OCBSL and OL to reason about ADT sorts further increases the
simplification potential for pattern matching. For instance, given assumptions
φ, a scrutinee s and an ADT constructor identifier id of sort S, we are interested
in determining whether s is an instance of the constructor id. A trivial case
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includes checking the form of s. Otherwise, we can run OCBSL or OL to check
whether φ =⇒ (s is id) holds. If φ =⇒ (s is id) fails, we instead test
whether φ =⇒ ¬(s is id′) for all id′ �= id ∈ S. We may also negatively
answer to the query if φ =⇒ (s is id′) for some id′ �= id ∈ S.

The original OCBSL algorithm presented in [20] achieves quasi-linear time
complexity by assigning codes to subnodes such that equivalent nodes (by the
laws of OCBSL) have the same codes. This is not required for the OL algorithm
as it is quadratic anyway, but can still be done to allow common subexpres-
sion elimination. This is similar to hash-consing, but more powerful, as it also
eliminates expressions which are equivalent with respect to OCBSL or OL.

Of particular relevance is the inclusion of underlying theories such as numbers
or arrays. OL has an advantage over OCBSL in terms of extensibility. Namely,
OL makes it possible to implement more properties of theories through expan-
sion of its ≤OL relation (Algorithm 3) with inequalities between syntactically
distinct atomic formulas. For example, if <I and ≤I are relations on mathe-
matical integers in the theory of the SMT solver, our implementation deduces
that (x <I y) ≤OL (x ≤I y) using the rule z + a <I 0 =⇒ z + b ≤I 0
when b ≤I a + 1, instantiated with z = x − y and a = b = 0. In one of
our benchmarks, this simple rule led OL to simplify a verification condition
(VC) of the form ¬(x <I y ∧ φ1 ∧ x >I y ∧ φ2) to true, which was of interest
because φ1, φ2 were large. This simplification is performed at line 16 of Algo-
rithm 4 with τ = x <I y ∧ x >I y ∧ φ, where we have c = x >I y because
τ ≤OL (x ≤I y) ⇐= (x <I y) ≤OL (x ≤I y). In contrast, OCBSL was not able
to do the simplification because it is not able to systematically check for inequal-
ities of subterms. For arrays, our implementation also checks for the property
i �= j ≤OL a[i := v](j) = a(j). Combined with two other rules, related to con-
gruence, OL performs particularly well for array-intensive benchmarks such as
SortedArray. Note that in OCBSL we may encode a weak form of implication
by specifying (giving the same code to) φ ∧ ψ = φ or φ ∨ ψ = ψ, but unlike the
OL encoding, this does not even allow simplifying formulas such as φ ∧ τ ∧ ¬ψ
without a specific check, which would require quadratic time in general.

Other Extensions. Beyond program verification, we suspect OL or OCBSL
based techniques to be extendable in applications such as type checkers, inter-
active and automated theorem provers using first order, higher order, temporal
and modal logics, SMT solvers or lattice problems in abstract interpretation.
Unidirectional rules which may be particularly relevant for automated theorem
proving include [f(x) = f(y)] ≤OL [x = y], [∀x, P (x)] ≤OL P (t), and P ≤OL Q
when P → Q is a known theorem. In the context of quantified logics and lambda
calculus, both algorithms are compatible with de Bruijn index representation of
bound variables. Both algorithms can be used as partial simplification before or
while applying more powerful but possibly incomplete heuristic simplification
methods, such has the simplification rule x ∧ F [x] � x ∧ F [x := 1] (which, if
viewed as an equality axiom, turns OL into Boolean algebra).
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6 Evaluation

Our experimental evaluation comprises three parts. First, we analyze the behav-
ior of the OL and OCBSL algorithms on large random formulas, to understand
the feasibility of using them for normalization. Second, we evaluate the algo-
rithms on combinatorial circuits [1]. Third and most importantly, we show their
impact through a new simplifier for verification conditions of the Stainless [22]
verifier. The goal of the simplifier is to avoid the need to invoke a solver for some
of the formulas by reducing them to True, as well as to normalize them before
storing them in a persistent cache file. The cache avoids the need to repeatedly
prove previously proven verification conditions. By improving normalization, we
improve the cache hit rate. We conduct all experiments on a server with 2×
Intel�Xeon�CPU E5-2680 v2 at 2.80 GHz, 40 cores including hyperthreading
and 64 GB of memory.

6.1 Randomly Generated Propositional Formulas

We first evaluate the two algorithms on randomly generated formulas. We mea-
sure the running time and the reduction in formula size. We build the random
formulas as follows.

Definition 5. A random formula is parameterized by a size s and a set of avail-
able variables X = {x1, ..., xn}. Given a size s, if s ≤ 1 then pick uniformly at
random a variable from X or its negation and return it. Otherwise, pick t such
that 0 < t < s − 1 and generate two formulas φ1 and φ2 of sizes t and s − 1 − t.
Return uniformly at random And(φ1, φ2) or Or(φ1, φ2).

Running Time. We show in Fig. 1a the approximate running time of both
algorithms for various sizes of formulas. We ran the experiment 21 times for each
formula size category and took the median. For comparison with a theoretically
linear time process, we also give the running time of the corresponding negation
normal form transformation. These implementations do not come with low-level
optimizations and are intended for demonstrating usability in practice, and do
not serve as a competitive indicator.

Fig. 1. (a) Median running time of NNF and the two algorithms (log-log scale). (b)
Median size of the normalized formulas relative to the original in NNF. |X| = 50
variables.
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Size Reduction. For a fairer comparison, we apply a basic simplification (flat-
tening and transformation into negation normal form) to random formulas before
computing their size. We compare the number of connectors before and after the
simplification for both algorithms. We show the relative improvements of the OL
and OCBSL algorithms compared to the original formulas for various sizes of
formulas and 50 variables. We have run both algorithms 21 times and report the
median results in Figs. 1b.

It is interesting to note that the OL normal form is consistently and signif-
icantly smaller than the OCBSL normal form, i.e. the Absorption law actually
allows non-trivial reductions in size. This confirms that, in general, there is a
trade-off between the two algorithms between speed and simplification strength.

6.2 Computing Normal Forms for Hardware Circuits

Moving towards more realistic formulas, we assess the scalability of OCBSL and
OL on the EPFL Combinatorial Benchmark [1] comprising 10 arithmetic circuits
designed to challenge optimization tools, with up to 108 gates.

Table 2. Results on the EPFL Combinatorial Benchmark. OL times-out for hyp after
1h.

adder bar div hyp log2 max mult sin sqrt square

# of gates 50173 72704 107 108 107 107 107 106 107 107

OCBSL Ratio 1.00 0.703 0.777 0.961 0.700 0.861 0.867 0.652 0.661 0.927

OL Ratio 1.00 0.703 0.777 – 0.697 0.861 0.865 0.647 0.661 0.927

OCBSL Time [s] 0.142 0.182 0.866 2.06 0.564 0.189 0.442 0.255 0.362 0.365

OL Time [s] 0.276 0.338 706 – 339 0.319 73.8 15.7 256 36.0

We run the experiment five times. We report the median running time and
the relative size after optimization in Table 2. We observe that the OCBSL algo-
rithm is close to as good as the OL algorithm in all cases, and, moreover, that it
is very time-efficient even for problems with hundreds of millions of gates. The
OL algorithm sometimes performs slightly better and is pretty much as time-
efficient for not too large inputs, but becomes significantly more time-consuming
for inputs with more than approximately 106 gates. Those results suggest on one
hand that OCBSL may be a more suitable reduction technique on some appli-
cations with very large formulas, depending on their internal structures. It also
suggests that both algorithms work well in practice with Boolean circuits mak-
ing heavy use of structure sharing. Indeed, the expanded form of, for example,
the adder circuit would have about 22000 nodes.

6.3 Caching Verification Conditions in Stainless

We implement the approach described in Sect. 5 by modifying the Stainless veri-
fier [22,40]1, a publicly available tool for building formally verified Scala programs.
1 https://github.com/epfl-lara/stainless/.

https://github.com/epfl-lara/stainless/
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Our implementation adds two new simplifiers to Stainless: OCBSL-backed
and OL-backed. They are part of Stainless release v0.9.82 and are selectable by
the command line options --simplifier=ocbsl and --simplifier=ol respec-
tively. For the OL simplifier, we have extended the ≤OL relation with 12 simple
arithmetic and array rules.

We experimentally compare the two new simplifiers to the existing one (which
we denote Old). We use two groups of benchmarks: (1) six Stainless case studies
from the Bolts repository3 that take a significant amount of time to verify,
and (2) nine benchmark sets from automated grading of student assignments.
Together, this constitutes around 84’000 lines of Scala code, specifications, and
auxiliary assertions. We report the following metrics: the size of the VCs after
simplification, the number of cache hits, the number of VCs simplified to 1, the
wall-clock time and the cumulative solving time. The wall-clock time comprises
the full Stainless pipeline, from parsing the program to outputting the result,
passing by solver calls and VC simplification.

Fig. 2. VCs (tree) size scatter plot from all benchmarks for Old, OCBSL and OL.

Evaluation on Bolts Case Studies. We consider the following case studies
from the mentioned Bolts repository:

– LongMap (9613 VCs, 7091 LOC), a mutable hash map, 64-bit integer keys,
open addressing, formalized by Samuel Chassot (EPFL) and proven to behave
equivalently to a list of (key, value) pairs.

– A type checker for System F [19] (5040 VCs, 2501 LOC) formalized in Stain-
less by Andrea Gilot and Noé De Santo (EPFL). Among the key properties
proven are type judgment uniqueness, preservation and progress.

– QOI (4487 VCs, 2812 LOC), an implementation of the Quite OK Image for-
mat. Decoding an encoded image is shown to yield the original image [10].

– RedBlack, a red-black tree (764 VCs, 796 LOC).
– SortedArray (472 VCs, 429 LOC), a mutable array preserving order on inser-

tion. Developed for use in a simplified model of part of a file system [21].

2 https://github.com/epfl-lara/stainless/releases/tag/v0.9.8.
3 https://github.com/epfl-lara/bolts.

https://github.com/epfl-lara/stainless/releases/tag/v0.9.8
https://github.com/epfl-lara/bolts
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– ConcRope (408 VCs, 621 LOC), a Conc-Tree rope [36], supporting amortized
constant time append and prepend operation, based on a Leon formalization
[30].

We report the VCs size measurement in Fig. 2, where we aggregate the results
from all benchmarks. Figure 2a reveals a couple of VCs with an increased size.
Inspection of these VCs shows the reason is due to the new simplifiers always
inlining “simple expressions”, such as field projection on free variables, instead
of having them bound. On average, OCBSL and OL decrease the size of the VCs
by 37% compared to Old. OL reduces the size of the VCs slightly compared to
OCBSL (Fig. 2b).

(a) Cache hits in a single run (b) VCs simplified to 1

(c) Cumulative solving time

(d) Wall-clock time

Fig. 3. Old, OCBSL and OL results for cache hits, VCs reduced to 1, solving and run-
ning time. (c), (d) are normalized with respect to Old. In (c), the gray boxes represent
the time spared due to extra cache hits and VCs reduced to 1 compared to Old.

In Fig. 3a, we report the cache hit ratio. For the new simplifiers, reducing the
formula size has the desired effect of noticeably increasing the hit ratio, especially
for 4 out of 6 benchmarks. The additional power of OL helps for System F and
SortedArray.

We report in Fig. 3c not only the solving time for the two simplifiers (normal-
ized with respect to Old), but also the solving time saved thanks to additional
cache hits and VCs simplified to 1. ConcRope and RedBlack do not benefit
from the new simplifiers, while the other benchmarks do in various degrees. For
LongMap, adding the two ratios yields a ratio of ≈ 1, implying the reduced solving
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time is due to extra caching. The solver did not benefit from the new simplifiers
for non-cached VCs. The System F benchmark shows a ratio exceeding 1, mean-
ing that OCBSL and OL did not help the solver more than the extra time they
took to run. For QOI and SortedArray, the combined ratio is less than 1: the
new simplifiers helped the solver for non-cached VCs. OL performs significantly
better than OCBSL in the SortedArray benchmark, thanks to the extension of
the ≤OL relation with array rules. We note that 25% of QOI VCs have a size of
more than 880, against 480 for the second benchmark (SortedArray), and 450
for the third (LongMap).

Turning our attention to Fig. 3d, we note that the time spared to solver calls
is essentially compensated for more work on the new simplifiers on three of the
benchmarks. Moreover, LongMap, SortedArray and especially QOI have a net
benefit over Old.

OCBSL and OL simplifiers show the greatest improvement on large VCs.
Note that the outcome of a Stainless run highly depends on user-provided asser-
tions, which were hand-tuned under the Old simplifier. It is thus possible that
new simplifiers have a disadvantage because they were not used during the ver-
ification process. The additional power provided by the new simplifiers may
make writing such intermediate assertions easier and faster, so we expect the
full advantage of new simplifiers in newly developed verified software.

Table 3. Results on programming assignments

Benchmark filter max mirror mem sigma nat uniq formula lambda

# Submissions 210 216 96 136 734 381 147 677 782

Cumulative LOC 2367 3452 1165 1987 8347 8950 3648 19226 17958

# VCs 820 844 387 560 1528 2653 1352 9865 5922

Solver Calls Old 28 81 44 77 75 133 264 1037 1115

OCBSL 19 79 43 75 58 133 251 1033 1069

OL 18 79 42 74 50 131 251 1032 1066

# VCs reduced to 1 Old 211 302 95 151 4 886 381 1322 1320

OCBSL 211 302 95 151 6 890 381 1327 1322

OL 213 302 95 151 794 890 381 1332 1322

Cache Hits Old 581 461 248 332 1449 1634 707 7506 3487

OCBSL 590 463 249 334 1464 1630 720 7505 3531

OL 589 463 250 335 684 1632 720 7501 3534

VCs (tree) Size Old 6705 5576 3077 5097 47759 15378 12144 126968 78962

OCBSL 6479 5546 3073 5063 49775 14514 11465 125289 75837

OL 6457 5546 2982 5000 34173 14482 11444 125037 75307

Solving Time [s] Old 2.48 5.61 3.72 5.79 4.17 7.97 14.27 118.61 108.42

OCBSL 1.91 5.22 3.52 5.75 3.43 5.73 14.27 102.48 104.27

OL 1.70 4.92 3.06 5.34 3.66 7.03 13.57 134.73 104.60

Total Time [m:s] Old 0:27 0:36 0:16 0:21 0:59 14:02 1:36 51:01 115:39

OCBSL 0:29 0:38 0:17 0:22 1:04 14:33 1:37 50:08 120:48

OL 0:29 0:38 0:16 0:22 1:10 14:43 1:46 58:05 116:09
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Evaluation on Programming Assignments. We additionally evaluate our
approach on benchmarks consisting of many student solutions for several pro-
gramming assignments. We consider benchmarks from [32,33], obtained by trans-
lation of student solutions in OCaml [38]. In this evaluation, we only prove ter-
mination of all student solutions, which is one of the bottlenecks when proving
correctness of students solutions. We annotated all benchmarks with explicit
decreasing measures. Stainless generates verification conditions that require the
measure to decrease in recursive calls. Caching is particularly desirable in this
scenario, with many programs and a high degree of similarity. Table 3 shows our
evaluation results, comparing the two new simplifiers (OCBSL and OL) to the
old one.

First, we note that moving from Old to OCBSL to OL reduces the number of
calls to the solver. Furthermore, many new VCs are proven valid by normaliza-
tion alone (reduced to 1). The largest benefit of OL is in the sigma benchmark,
where the subsumption of linear arithmetic literals in the simplifier substan-
tially increases the number of formulas proven by normalization: from 6 (0.4%)
in OCBSL to 794 (52%) for OL.

The new simplifiers improve the number of cache hits, even if not as much
as for the Bolts case studies. The smaller reduction is because there is a high
degree of similarity across the submissions, so the Old simplifier already achieves
a large percentage of cache hits. Note also that a smaller number of cache hits
in the sigma benchmark is because many of the VCs are proven valid by the
simplifier, avoiding the need to consult the cache or the solver in first place.

Second, we notice a slight reduction in the overall VC size, with a couple of
exceptions where OCBSL resulted in a size increase due to inlining. Thanks to
formulas proven by normalization and improved cache hits, the overall solving
time decreases in several benchmarks. The wall clock running time is approxi-
mately unchanged, but we expect such benefits in the future.

7 Conclusion

We proposed a new approach to simplify and reason about formulas, based on
algorithms which are sound and complete for the normal form problem (and the
word problem) of two subtheories of Boolean algebra. These algorithms are sound
but incomplete for Boolean algebras (and thus for the two-element boolean alge-
bra of propositional logic). We introduced and proved the correctness of a new
algorithm to compute normal forms in a theory of ortholattices, which do not
enforce the distributivity law but only its weaker variation, absorption. Our algo-
rithm runs in time O(n2). A weaker subtheory, OCBSL, gives up the absorption
law. The disadvantage of OCBSL is a weaker normal form, whereas the advan-
tage is that we know of an algorithm running in subquadratic time, O(n log(n)2).
We evaluated both algorithms, using them to reduce the size of large random
formulas and combinatorial circuits, showing that they work well with structure
sharing. We also implemented the algorithms in the Stainless verifier, where
computing normal forms reduced the size of formulas given to the solver and
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improved the cache hit ratio. Our experimental evaluation confirmed that the
tradeoff between normal form strength and the asymptotic complexity remains
visible in practice. We found both algorithms useful in practice. OCBSL normal-
ization has excellent running time even for very large circuits, so we believe it
can replace the simpler negation normal form and syntactic equality checking at
low cost in essentially all applications. The quadratic cost of the OL algorithm
is too prohibitive on circuits over 107 gates. However, this was not a problem for
its application to verification conditions in Stainless, where its added precision
and the ability to compare atomic formulas made it more effective in normal-
izing certain formulas to True and increasing cache hits. In some of the most
difficult case studies, such as Quite OK Image Format [10], these improvements
translated into substantial reduction of the wall clock time. Such measurable
improvements, combined with theoretical guarantees, make the OL and OCBSL
algorithms an appealing building block for verification systems.
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