
Viktor Kunčak

School of Computer and Communication Sciences

Laboratory for Automated Reasoning and Analysis

http://lara.epfl.ch

Your Wish is my Command

http://lara.epfl.ch/

wish

11011001 01011101
11011001 01011101
11011001 01011101
11011001 01011101

Command(program)

human effort

compilation

How far can
“automatic programming”

go beyond "formula translation"
towards expressing the wishes

even more productively?

FORmula TRANslation

wish

11011001 01011101
11011001 01011101
11011001 01011101
11011001 01011101

human effort

automatic
compilation

FORTRAN 1957

LISP 1958

Can we further reduce the
human effort?

Simula 1967

specifications
in

Scala

Example: Sorting

Example: Sorting

Sort a list of cars
starting from lowest

Given a list of numbers, make this list sorted

8900

6000

24140

2900

2900

6000

8900

24140

Sorting as a Wish

wish

8900 > 6000 2900 < 6000

6000 < 8900

8900 < 24140

• specification can be reasonably clear, with few alternatives
• many algorithms implement the sorting specification

(insertion sort, quick sort, merge sort, external sorts)

input output

Given a list of numbers, make this list sorted

8900

6000

24140

2900

2900

6000

8900

24140

Sorting Specification as a Program

wish

8900 > 6000 2900 < 6000

6000 < 8900

8900 < 24140

def sort_specification(input:List, output:List) : Boolean =
 content(input)==content(output) && isSorted(output)

input output

Specification here is a program that checks, for a
given input, whether the given output is acceptable

8900

6000

24140

2900

2900

6000

8900

24140

Specification vs Implementation
def C(i : List, o : List) : Boolean = // i.e. a constraint
 content(i)==content(o) && isSorted(o)

input output

implementation

specification

true / false

def p(i : List) : List =
 sort i using a sorting algorithm and return the result

U p C

more behaviors

fewer behaviors

wish

11011001 01011101
11011001 01011101
11011001 01011101
11011001 01011101

human effort

automatic
compilation

implementation (program): p

specification (constraint): C

How do we bridge
this (well-defined) gap between

specifications and implementations?

Approaches and Their Guarantees

a) Check assertion while
program p runs: C(i,p(i))

c) Constraint
programming: once i is
known, find o to satisfy a
given constraint: find o
such that C(i,o)

b) Verify whether program
always meets the spec:
i. C(i,p(i))

d) Synthesis: solve C
symbolically to obtain
program p that is correct
by construction, for all
inputs: find p such that
i.C(i,p(i)) i.e. p C

run-time compile-time

both specification C and program p are given:

only specification C is given:

Runtime Assertion Checking

a) Check assertion while program p runs: C(i,p(i))

def content(lst : List) = lst match {
 case Nil() ⇒ Set.empty
 case Cons(x, xs) ⇒ Set(x) ++ content(xs)
}
def isSorted(lst : List) = lst match {
 case Nil() ⇒ true
 case Cons(_, Nil()) ⇒ true
 case Cons(x, Cons(y, ys)) ⇒

 x < y && isSorted(Cons(y, ys))
}

def p(i : List) : List = {
 sort i using a sorting algorithm and return the result
} ensuring (o ⇒ content(i)==content(o) && isSorted(o))

Already works in Scala!

Key design decision:
 constraints are programs

Must come up with example i-values

(So, this is a way to do testing.)

Can we give stronger guarantees?

 prove postcondition always true

Verification: http://lara.epfl.ch/w/leon

b) Verify that program always meets spec: i. C(i,p(i))

def content(lst : List) = lst match {
 case Nil() ⇒ Set.empty
 case Cons(x, xs) ⇒ Set(x) ++ content(xs)
}
def isSorted(lst : List) = lst match {
 case Nil() ⇒ true
 case Cons(_, Nil()) ⇒ true
 case Cons(x, Cons(y, ys)) ⇒

 x < y && isSorted(Cons(y, ys))
}

def p(i : List) : List = {
 sort i using a sorting algorithm and return the result
} ensuring (o ⇒ content(i)==content(o) && isSorted(o))

Type in a Scala program
and watch it verified

timeout

proof of
i. C(i,p(i))

input i such that
not C (i,p(i))

http://lara.epfl.ch/w/leon

Insertion Sort Verified as You Type It

Web interface: http://lara.epfl.ch/leon

http://lara.epfl.ch/leon

Reported Counterexample in Case of a Bug

Verification of Functional and Imperative
Scala Code

Etienne Kneuss

Regis Blanc

Philippe Suter

http://lara.epfl.ch/~ekneuss/
http://lara.epfl.ch/~ekneuss/
http://people.epfl.ch/regis.blanc
http://lara.epfl.ch/~psuter/
http://lara.epfl.ch/~psuter/

Automated Verification: How

2) Algebraic reasoning for formulas over theories:
– arithmetic, sets, lists, trees

Technology: Satisfiability Modulo Theories (SMT)
 SAT solver + decision procedures for theories

– Leonardo de Moura (Z3)

– Andrew Reynolds (CVC4), 18 September 14:15 (Wednesday)

1) Induction: assume and prove specification:

Eliminates recursive function being verified.

def size(l : List) : Int = (l match {
 case Nil() ⇒ 0

 case Cons(_, xs) ⇒ 1 + size(xs)
}) ensuring(res ⇒ (res ≥ 0))

1) 0 ≥ 0
2) if res1 ≥ 0 then 1 + res1 ≥ 0

Verification conditions:

def sortedIns(e: Int, l: List): List = { // insertion into a sorted list
 require(isSorted(l))
 l match {
 case Nil() ⇒ Cons(e,Nil())
 case Cons(x,xs) ⇒ if (x ≤ e) Cons(x,sortedIns(e, xs)) else Cons(e, l)
 }
} ensuring(res ⇒ contents(res) == contents(l) ++ Set(e))
 // contents(l) U {e}

Recursive functions inside specifications

Theorem provers for recursive functions?

eliminated

if content(res1)==content(xs) U {e} then
 if (x ≤ e) then content(Cons(x,res1))==content(Cons(x,xs)) U {e}
 else content(Cons(e,l))==content(l) U {e} ...

remained

Reasoning about abstraction functions

Adding all recursive functions f : Tree Tree

– undecidable Turing-complete formalism

Consider abstraction functions: m : Tree N

– m defined by simple structural recursion on trees
 m == fold(leaf_const, combination_function)
 size == fold(0, _ + _ + _)
 content == fold({}, _ U { _ } U _)

– sufficiently surjective, implies card(m-1(n)) ∞

3

…

m

Fair function unfolding acts as a decision procedure for such m
Intuition: after unfolding, innermost calls can be left un-interpreted
Basis of the Leon verifier (along with induction and Z3 encoding)

 Philippe Suter (PhD 2012, now IBM Research US): POPL’10, SAS’11

Constraint Solvers on top of
NASA’s Model Checker for Java (JPF)

Generating not only one, but many values, using
delayed non-determinism and heap symmetry detection
Application: generate tests to exercise program behavior

Test generation through programming in UDITA. ICSE 2010
• Found correctness bugs in existing refactoring

implementations of IDE tools Eclipse and Netbeans
• Differences in accepted programs in Eclipse compilers vs javac

 Milos Gligoric Tihomir Gvero Vilas Jagannath Sarfraz Khurshid Darko Marinov

Reasoning about New Theories
Our sorting spec using sets allows mapping

List(1,3,2,3,2) List(1,1,1,2,3)
Precise specification needs to use multisets (bags)
 {| 1, 1, 2, 3 |} U {| 2 |} = {| 1, 1, 2, 2, 3 |}
Algorithm for: given an expression with operations on
multisets, are there values for which expression is true?
Previously: algorithms in NEXPTIME or worse
Our result: algorithm running in NP (NP-hardness is easy)

 - enables verification of a larger class of programs
Method: encode problem in integer linear arithmetic, use
semilinear set bounds and integer Caratheodory theorem
 Ruzica Piskac (PhD 2011) : CAV’08, CSL’08, VMCAI’08

Can we sort planets by distance?
Gap between floating points and reality

– input measurement error
– floating-point round-off error
– numerical method error
– all other sources of bugs

x<y need not mean x*<y*
Automated verification tools
to compute upper error bound
Applied to code fragments for
• embedded systems (car,train)
• physics simulations
 OOPSLA'11, RV'12, EMSOFT'13

Eva Darulova

Example: Where is the Moon?

Geneva observatory’s software to
compute position of the Moon

– rewritten from Python to Java (great performance)

– different result computed in some cases!

Which digits can we trust, if any?

Results for date 2012-2-10:

Java: -2h 36m 26.779661250681812

Python: -2d 36m 26.77966125074235

Example: Where is the Moon?

Geneva observatory’s software to
compute position of the Moon

– rewritten from Python to Java (great performance)

– different result computed in some cases!

Which digits can we trust, if any?

Results for date 2012-2-10:

Java: -2h 36m 26.779661250681812

Python: -2d 36m 26.77966125074235

provably correct

digits

AffineFloat: -2h 36m 26.779661250681812 (3.9991e-07)

QuadDouble: -2h 36m 26.7796612340577158626981678...

rigorous upper bound

on error

Beyond Functional: Verifying
Imperative C and Concurrent Systems

• Key idea: encode program and properties into
recursive logical constraints (Horn clauses)

• Decouple two non-trivial tasks:
– generation of constraints (language semantics, modeling approach)
– solving of constraints (new verification algorithms)

• Community standards for representation of programs and
properties EU COST Action IC0901, http://RichModels.epfl.ch

ATVA’12, CAV’13 Hossein Hojjat, PhD 2013
 w/ Radu Iosif, Filip Konečny, Philipp Ruemmer

http://richmodels.epfl.ch/

Distributed Software – Hardest of All

Perform execution steering
of software while it runs,
using a continuously running
model checker (CrystalBall)

Prove correctness of
distributed algorithms in a
modular way using
interactive theorem provers
and model checkers.

Speculative Linearizability, PLDI 2012

Maysam Yabandeh
Qatar CRI

Giuliano Losa
Rachid Guerraoui

Dejan Kostić
IMDEA Networks

NSDI'09, TOCS'10

Approaches and Their Guarantees

a) Check assertion while
program p runs: C(i,p(i))

c) Constraint
programming: once i is
known, find o to satisfy a
given constraint: find o
such that C(i,o)

b) Verify that program
always meets spec:
i. C(i,p(i))

d) Synthesis: solve C
symbolically to obtain
program p that is correct
by construction, for all
inputs: find p such that
i.C(i,p(i)) i.e. p C

run-time compile-time

Your wish is my command!

Was your wish your command?

Approaches and Their Guarantees

a) Check assertion while
program p runs: C(i,p(i))

c) Constraint
programming: once i is
known, find o to satisfy a
given constraint: find o
such that C(i,o)

both specification C and program p are given:

only specification C is given:

b) Verify that program
always meets spec:
i. C(i,p(i))

d) Synthesis: solve C
symbolically to obtain
program p that is correct
by construction, for all
inputs: find p such that
i.C(i,p(i)) i.e. p C

run-time compile-time

Programming without Programs

c) Constraint programming: find a value that
satisfies a given constraint: find o such that C(i,o)

Method: use verification technology, try to prove
that no such o exists, report counter-examples!

Constraints as Control, POPL 2012
Extension of Scala with
constraint programming

Philippe Suter Ali Sinan Köksal

invariants -
specification

Implementation:
next 30 pages

Sorting a List Using Specifications
def content(lst : List) = lst match {
 case Nil() ⇒ Set.empty
 case Cons(x, xs) ⇒ Set(x) ++ content(xs)
}
def isSorted(lst : List) = lst match {
 case Nil() ⇒ true
 case Cons(_, Nil()) ⇒ true
 case Cons(x, Cons(y, ys)) ⇒ x < y && isSorted(Cons(y,ys))
}

((l : List) ⇒ isSorted(lst) && content(lst) == Set(0, 1, -3))
.solve

> Cons(-3, Cons(0, Cons(1, Nil())))

Implicit Programming (ERC project)

specification
(constraint)

implicit

implementation
(function)

explicit

x2 + y2 = 1

y = sqrt(1-x2) compute a satisfying assignment for i

(SAT solver implementation) - NP

i is a propositional formula and

o is an assignment making i true - P

x

y

i

o

i

o

x

U U

Approaches and Their Guarantees

a) Check assertion while
program p runs: C(i,p(i))

c) Constraint
programming: once i is
known, find o to satisfy a
given constraint: find o
such that C(i,o)

both specification C and program p are given:

only specification C is given:

b) Verify that program
always meets spec:
i. C(i,p(i))

d) Synthesis: solve C
symbolically to obtain
program p that is correct
by construction, for all
inputs: find p such that
i.C(i,p(i)) i.e. p C

run-time compile-time

Synthesis for Theories

 3 i + 2 o = 13 o = (13 – 3 i)/2
• Wanted: "Gaussian elimination" for programs

– for linear integer equations: extended Euclid’s algorithm
– need to handle disjunctions, negations, more data types

• For every formula in Presburger arithmetic
– synthesis algorithm terminates
– produces the most general precondition

(assertion characterizing when the result exists)
– generated code always terminates and gives correct result

• If there are multiple or no solutions for some input
parameters, the algorithm identifies those inputs

• Works not only for arithmetic but also for e.g.
sets with sizes and for trees

• Goal: lift everything done for SMT solvers to synthesizers

assert(i % 2 == 1)

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 choose((h: Int, m: Int, s: Int) ⇒ (
 h * 3600 + m * 60 + s == totalSeconds
 && h ≥ 0
 && m ≥ 0 && m < 60
 && s ≥ 0 && s < 60))

Synthesis for Linear Arithmetic

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 val t1 = totalSeconds div 3600
 val t2 = totalSeconds -3600 * t1
 val t3 = t2 div 60
 val t4 = totalSeconds - 3600 * t1 - 60 * t3
 (t1, t3, t4)

close to a wish

could infer from types

Synthesis for sets (BAPA)

def splitBalanced[T](s: Set[T]) : (Set[T], Set[T]) =
 choose((a: Set[T], b: Set[T]) ⇒ (
 a.size – b.size ≤ 1 &&
 b.size – a.size ≤ 1 &&
 a union b == s && a intersect b == empty
))

def splitBalanced[T](s: Set[T]) : (Set[T], Set[T]) =
 val k = ((s.size + 1)/2).floor
 val t1 = k
 val t2 = s.size – k
 val s1 = take(t1, s)
 val s2 = take(t2, s minus s1)
 (s1, s2) a

b

s

Philippe
Suter

Ruzica
Piskac

Mikael
Mayer

balanced

partition

we can conjoin specs

Automata-Based Synthesis for Arithmetic

• Result does not depend on the syntax of input formula but only
on the relation that the formula defines

• Data complexity for synthesized code: always linear in input
• Modular arithmetic and bitwise operators: can synthesize bit

manipulations for unbounded number of bits, uniformly
• Supports quantified constraints

– including optimization constraints: find best value
FMCAD 2010, IJCAR 2012

Barbara Jobstmann
EPFL, Jasper DA

Jad Hamza
ENS Cachan

Andrej Spielmann

Given a constraint, generate finite-state automaton
that reads input bits and directly emits result bits.

Foreword to the Research Highlights Article
in the Communications of the ACM

I predict that as we identify more such restricted
languages and integrate them into general-purpose
(Turing-complete) languages, we will make
programming more productive and programs more
reliable.

Rastislav Bodik

Professor, UC Berkeley

Upcoming talk on 27 September 2013

Partial Specs + Interaction to Synthesize Expressions

Tihomir Gvero Ivan Kuraj Ruzica Piskac

Extend type inhabitation with
• enumeration of all inhabitants
• quantitative ranking of inhabitants
• learning ranking from corpus of code

PLDI 2013

Iulian Dragoș

http://lara.epfl.ch/w/insynth

http://lara.epfl.ch/w/insynth

Collaboration with LAMP

Martin Odersky

Hubert Plociniczak

Lukas Rytz Miguel Garcia

Jovanovic Vojin

http://lamp.epfl.ch/~odersky/
http://lamp.epfl.ch/~odersky/
http://chara.epfl.ch/~plocinic/
http://chara.epfl.ch/~plocinic/
http://lamp.epfl.ch/~rytz/
http://lamp.epfl.ch/~rytz/
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/
http://people.epfl.ch/vojin.jovanovic
http://people.epfl.ch/vojin.jovanovic
http://people.epfl.ch/vojin.jovanovic

Combining Approaches: Synthesis in Leon

Ivan Kuraj Philippe Suter Etienne Kneuss
OOPSLA 2013:
Synthesis Modulo Recursive Functions

http://lara.epfl.ch/w/leon

http://lara.epfl.ch/w/leon

Results for Synthesis in Leon
Techniques used:

– Leon’s verification capabilities

– synthesis for theory of trees

– recursion schemas

– case splitting

– symbolic exploration of the
space of programs

– synthesis based on type
inhabitation

– fast falsification using previous
counterexamples

– learning conditional
expressions

– cost-based search over
possible synthesis steps

From In-Memory to External Sorting

Transform functional specification of data base operations
into algorithms that work when not all data fits into
memory (sort -> external sort) SIGMOD’13

Approach:

• transformation rules for list algebra

• exploration of equivalent algorithms through
performance estimation w/ non-linear constraint solving

Ioannis Klonatos Christoph Koch Andres Nötzli Andrej Spielmann

wish

11011001 01011101
11011001 01011101
11011001 01011101
11011001 01011101

human effort

automatic
compilation

Scala implementation

Scala specification

verification
and synthesis

Can we help with designing specification
themselves, to make programming

accessible to non-experts?

Programming by Demonstration

http://www.youtube.com/watch?v=bErU--8GRsQ

Try "Pong Designer" in Android Play Store

 Mikael Mayer and Lomig Mégard

Describe functionality by demonstrating and modifying
behaviors while the program runs

– demonstrate desired actions by moving back in time and
referring to past events

– system generalizes demonstrations into rules

SPLASH Onward'13

http://www.youtube.com/watch?v=bErU--8GRsQ
http://www.youtube.com/watch?v=bErU--8GRsQ
http://www.youtube.com/watch?v=bErU--8GRsQ
http://www.youtube.com/watch?v=bErU--8GRsQ

1954

wish

11011001 01011101
11011001 01011101
11011001 01011101
11011001 01011101

human effort

automatic
compilation

Scala implementation

Scala specification

verification
and synthesis

interactive
software development tools

http://lara.epfl.ch
Thank you for listening!

http://lara.epfl.ch/

