
Viktor Kunőak 
 

School of Computer and Communication Sciences 

Laboratory for Automated Reasoning and Analysis 

http://lara.epfl.ch 

Your     Wish      is my   Command 

http://lara.epfl.ch/


wish 

11011001 01011101 
11011001 01011101 
11011001 01011101 
11011001 01011101 

Command(program)  

human effort 

compilation 



How far can  
άŀǳǘƻƳŀǘƛŎ ǇǊƻƎǊŀƳƳƛƴƎέ  

go beyond "formula translation" 
towards expressing the wishes  

even more productively? 

FORmula TRANslation 



wish 

11011001 01011101 
11011001 01011101 
11011001 01011101 
11011001 01011101 

human effort 

automatic 
compilation 

FORTRAN 1957 

LISP 1958  

Can we further reduce the 
human effort? 

Simula  1967  

specifications  
in  

Scala  



Example: Sorting 



Example: Sorting 

Sort a list of cars 
starting from lowest 



Given a list of numbers, make this list sorted 

8900 

6000 

24140 

2900 

2900 

6000 

8900 

24140 

Sorting as a Wish 

wish 

8900 > 6000 2900 < 6000 

6000 < 8900 

8900 < 24140 

Åspecification can be reasonably clear, with few alternatives 
Åmany algorithms implement the sorting specification 

(insertion sort, quick sort, merge sort, external sorts) 

input output 



Given a list of numbers, make this list sorted 

8900 

6000 

24140 

2900 

2900 

6000 

8900 

24140 

Sorting Specification as a Program 

wish 

8900 > 6000 2900 < 6000 

6000 < 8900 

8900 < 24140 

def sort_specification(input:List, output:List) : Boolean = 
  content(input)==content(output)  &&  isSorted(output) 

input output 

Specification here is a program that checks, for a  
given input, whether the given output is acceptable 



8900 

6000 

24140 

2900 

2900 

6000 

8900 

24140 

Specification vs Implementation 
def C(i : List, o : List) : Boolean =     // i.e. a constraint 
  content(i)==content(o)  &&  isSorted(o) 

input output 

implementation 

specification 

true / false 

def p(i : List) : List =  
    sort i using a sorting algorithm and return the result 

U p Ì C 

more behaviors 

fewer behaviors 



wish 

11011001 01011101 
11011001 01011101 
11011001 01011101 
11011001 01011101 

human effort 

automatic 
compilation 

implementation (program): p  

specification (constraint): C  

How do we bridge 
this (well-defined) gap between  

specifications and implementations? 



Approaches and Their Guarantees 

a) Check assertion while 
program p runs: C(i,p(i)) 

 

 
 
 
c) Constraint 
programming: once i is 
known, find o to satisfy a 
given constraint: find o 
such that C(i,o) 

b) Verify whether program 
always meets the spec:  
"i. C(i,p(i)) 
 
 
d) Synthesis: solve C 
symbolically to obtain 
program p that is correct 
by construction, for all 
inputs: find p such that  
"i.C(i,p(i))         i.e.    p Ì C 

run-time compile-time 

both specification C and program p are given: 

only specification C is given: 



Runtime Assertion Checking 

a) Check assertion while program p runs: C(i,p(i)) 

def content(lst : List) = lst match { 
  case Nil() ᵼ Set.empty 
  case Cons(x, xs) ᵼ Set(x) ++ content(xs) 
} 
def isSorted(lst : List) = lst match { 
  case Nil()                     ᵼ true 
  case Cons(_, Nil())     ᵼ true 
  case Cons(x, Cons(y, ys)) ᵼ  

      x < y && isSorted(Cons(y, ys)) 
} 

def p(i : List) : List = { 
    sort i using a sorting algorithm and return the result 
} ensuring (o ᵼ content(i)==content(o)  &&  isSorted(o)) 

Already works in Scala! 

Key design decision:  
   constraints are programs 

Must come up with example i-values 

(So, this is a way to do testing.) 

Can we give stronger guarantees? 

Č prove postcondition always true 



Verification: http://lara.epfl.ch/w/leon  

b) Verify that program always meets spec: "i. C(i,p(i)) 

def content(lst : List) = lst match { 
  case Nil() ᵼ Set.empty 
  case Cons(x, xs) ᵼ Set(x) ++ content(xs) 
} 
def isSorted(lst : List) = lst match { 
  case Nil()                     ᵼ true 
  case Cons(_, Nil())     ᵼ true 
  case Cons(x, Cons(y, ys)) ᵼ  

      x < y && isSorted(Cons(y, ys)) 
} 

def p(i : List) : List = { 
    sort i using a sorting algorithm and return the result 
} ensuring (o ᵼ content(i)==content(o)  &&  isSorted(o)) 

Type in a Scala program 
and watch it verified 

timeout 

proof of  
"i. C(i,p(i)) 

 

input i such that 
not C (i,p(i)) 

http://lara.epfl.ch/w/leon


Insertion Sort Verified as You Type It 

Web interface: http://lara.epfl.ch/leon 

J 

http://lara.epfl.ch/leon


Reported Counterexample in Case of a Bug 



Verification of Functional and Imperative 
Scala Code 

Etienne Kneuss 

Regis Blanc  

Philippe Suter 

http://lara.epfl.ch/~ekneuss/
http://lara.epfl.ch/~ekneuss/
http://people.epfl.ch/regis.blanc
http://lara.epfl.ch/~psuter/
http://lara.epfl.ch/~psuter/


Automated Verification: How 

2) Algebraic reasoning for formulas over theories: 
ïarithmetic, sets, lists, trees 

Technology: Satisfiability Modulo Theories (SMT) 
 SAT solver + decision procedures for theories 
ïLeonardo de Moura (Z3) 

ïAndrew Reynolds (CVC4), 18 September 14:15 (Wednesday) 

1) Induction: assume and prove specification: 

Eliminates recursive function being verified. 

def size(l : List) : Int = (l match { 
  case Nil() ᵼ 0 

  case Cons(_, xs) ᵼ 1 + size(xs) 
}) ensuring(res ᵼ (res җ л)) 

1)  л җ л 
2) if res1 җ 0 then 1 + res1 җ 0 

Verification conditions: 



def sortedIns(e: Int, l: List): List = {    // insertion into a sorted list 
  require(isSorted(l))     
  l match { 
    case Nil() ᵼ Cons(e,Nil()) 
    case Cons(x,xs) ᵼ if (x Җ e) Cons(x,sortedIns(e, xs)) else Cons(e, l) 
  } 
} ensuring(res ᵼ contents(res) == contents(l) ++ Set(e))  
                                                        // contents(l)  U {e} 

Recursive functions inside specifications 

Theorem provers for recursive functions? 

eliminated 

if content(res1)==content(xs) U {e} then 
  if όȄ Җ Ŝύ then content(Cons(x,res1))==content(Cons(x,xs)) U {e} 
                   else content(Cons(e,l))==content(l) U {e}                          ... 

remained 



Reasoning about abstraction functions 

Adding all recursive functions  f : Tree Ą Tree 

ïundecidable L Turing-complete formalism 

Consider abstraction functions:  m : Tree Ą N 

ïm defined by simple structural recursion on trees 
    m == fold(leaf_const, combination_function) 
     size == fold(0, _ + _ + _ ) 
     content == fold({}, _ U { _ } U _) 

ïsufficiently surjective, implies  card(m-1(n)) Ą қ 

3 

Χ 

m 

Fair function unfolding acts as a decision procedure for such m  J  
Intuition: after unfolding, innermost calls can be left un-interpreted 
Basis of the Leon verifier (along with induction and Z3 encoding) 

   ĄPhilippe Suter (PhD 2012, now IBM Research ¦{ύΥ tht[ΩмлΣ {!{Ωмм 



Constraint Solvers on top of  
b!{!Ωǎ aƻŘŜƭ /ƘŜŎƪŜǊ ŦƻǊ WŀǾŀ όWtCύ 

Generating not only one, but many values, using  
delayed non-determinism and heap symmetry detection 
Application: generate tests to exercise program behavior 
 
Test generation through programming in UDITA. ICSE 2010 
ÅFound correctness bugs in existing refactoring 

implementations of IDE tools Eclipse and Netbeans 
ÅDifferences in accepted programs in Eclipse compilers vs javac 
 
  Milos Gligoric    Tihomir Gvero       Vilas Jagannath   Sarfraz Khurshid   Darko Marinov 



Reasoning about New Theories 
Our sorting spec using sets allows mapping  

List(1,3,2,3,2) Ą List(1,1,1,2,3) 
Precise specification needs to use multisets (bags) 
  {|  1, 1, 2, 3 |}  U  {|  2  |}  =  {|  1, 1, 2, 2, 3 |} 
Algorithm for: given an expression with operations on 
multisets, are there values for which expression is true? 
Previously: algorithms in NEXPTIME or worse 
Our result:  algorithm running in NP     (NP-hardness is easy) 

 - enables verification of a larger class of programs 
Method: encode problem in integer linear arithmetic, use 
semilinear set bounds and integer Caratheodory theorem 
     Ruzica Piskac (PhD 2011) : /!±ΩлуΣ /{[ΩлуΣ ±a/!LΩлу 



Can we sort planets by distance? 
Gap between floating points and reality 
ïinput measurement error 
ïfloating-point round-off error 
ïnumerical method error 
ïall other sources of bugs 

x<y need not mean x*<y* 
Automated verification tools 
to compute upper error bound 
Applied to code fragments for 
Åembedded systems (car,train) 
Åphysics simulations 
 OOPSLA'11, RV'12, EMSOFT'13 

Eva Darulova 



Example: Where is the Moon? 

DŜƴŜǾŀ ƻōǎŜǊǾŀǘƻǊȅΩǎ ǎƻŦǘǿŀǊŜ ǘƻ  
compute position of the Moon 

ïrewritten from Python to Java (great performance) 

ïdifferent result computed in some cases! 

Which digits can we trust, if any? 

Results for date 2012-2-10: 
 

Java:   - 2h 36m 26.7796612 50681812   

Python:   - 2d 36m 26.7796612 5074235  



Example: Where is the Moon? 

DŜƴŜǾŀ ƻōǎŜǊǾŀǘƻǊȅΩǎ ǎƻŦǘǿŀǊŜ ǘƻ  
compute position of the Moon 

ïrewritten from Python to Java (great performance) 

ïdifferent result computed in some cases! 

Which digits can we trust, if any? 

Results for date 2012-2-10: 
 

Java:   - 2h 36m 26.7796612 50681812   

Python:   - 2d 36m 26.7796612 5074235  

provably correct 

digits  

AffineFloat:  - 2h 36m 26.7796 61250681812  (3.9991e - 07)  

QuadDouble:  - 2h 36m 26.7796612 340577158626981678...  

rigorous upper bound 

on error  



Beyond Functional: Verifying 
Imperative C and Concurrent Systems 

ÅKey idea: encode program and properties into  
recursive logical constraints (Horn clauses) 

ÅDecouple two non-trivial tasks: 
ïgeneration of constraints (language semantics, modeling approach) 
ïsolving of constraints (new verification algorithms) 

ÅCommunity standards for representation of programs and 
properties EU COST Action IC0901, http://RichModels.epfl.ch 
 

!¢±!ΩмнΣ   /!±Ωмо  Hossein Hojjat, PhD 2013 
  w/ Radu Iosif, Filip Koneőny, Philipp Ruemmer 
 
 
  

http://richmodels.epfl.ch/


Distributed Software ς Hardest of All 

Perform execution steering 
of software while it runs, 
using a continuously running 
model checker (CrystalBall) 

Prove correctness of 
distributed algorithms in a 
modular way using  
interactive theorem provers 
and model checkers. 

Speculative Linearizability, PLDI 2012 

Maysam Yabandeh 
Qatar CRI 

Giuliano Losa 
Rachid Guerraoui 

Dejan Kostiŏ 
IMDEA Networks 

NSDI'09,  TOCS'10 



Approaches and Their Guarantees 

a) Check assertion while 
program p runs: C(i,p(i)) 

 

 
 
 
c) Constraint 
programming: once i is 
known, find o to satisfy a 
given constraint: find o 
such that C(i,o) 

b) Verify that program 
always meets spec:  
"i. C(i,p(i)) 
 
 
d) Synthesis: solve C 
symbolically to obtain 
program p that is correct 
by construction, for all 
inputs: find p such that  
"i.C(i,p(i))         i.e.    p Ì C 

run-time compile-time 

Your wish is my command! 

Was your wish your command? 



Approaches and Their Guarantees 

a) Check assertion while 
program p runs: C(i,p(i)) 

 

 
 
 
c) Constraint 
programming: once i is 
known, find o to satisfy a 
given constraint: find o 
such that C(i,o) 

both specification C and program p are given: 

only specification C is given: 

b) Verify that program 
always meets spec:  
"i. C(i,p(i)) 
 
 
d) Synthesis: solve C 
symbolically to obtain 
program p that is correct 
by construction, for all 
inputs: find p such that  
"i.C(i,p(i))         i.e.    p Ì C 

run-time compile-time 



Programming without Programs 

c) Constraint programming: find a value that 
satisfies a given constraint: find o such that C(i,o) 

Method: use verification technology, try to prove 
that no such o exists, report counter-examples! 

Constraints as Control, POPL 2012 
Extension of Scala with  
constraint programming 

Philippe Suter Ali Sinan Köksal 



invariants - 
specification 

Implementation: 
next 30 pages 


