
Development and Evaluation of LAV: an
SMT-Based Error Finding Platform?

System Description

Milena Vujošević-Janičić1 and Viktor Kuncak2

1 Faculty of Mathematics, Studentski trg 16, 11000 Belgrade, Serbia
milena@matf.bg.ac.rs

2 School of Computer and Communication Sciences, EPFL, Station 14, CH-1015
Lausanne, Switzerland viktor.kuncak@epfl.ch

Abstract. We present design and evaluation of LAV, a new open-source
tool for statically checking program assertions and errors. LAV integrates
into the popular LLVM infrastructure for compilation and analysis. LAV
uses symbolic execution to construct a first-order logic formula that mod-
els the behavior of each basic blocks. It models the relationships between
basic blocks using propositional formulas. By combining these two kinds
of formulas LAV generates polynomial-sized verification conditions for
loop-free code. It uses underapproximating or overapproximating un-
rolling to handle loops. LAV can pass generated verification conditions
to one of the several SMT solvers: Boolector, MathSAT, Yices, and Z3.
Our experiments with small 200 benchmarks suggest that LAV is com-
petitive with related tools, so it can be used as an effective alternative for
certain verification tasks. The experience also shows that LAV provides
significant help in analyzing student programs and providing feedback
to students in everyday university practice.

1 Introduction

In this paper we present LAV, a tool for finding bugs (such as buffer overflows
and division by zero) and for checking functional correctness conditions given
by assertions.3 We evaluated our approach primarily on programs in the C pro-
gramming language (where the opportunities for errors are abundant), but it
can be also used for other languages. LAV works on the LLVM low-level inter-
mediate representation, and applies to other similar representations. LLVM4 is
a compiler framework widely used for compilation tasks, but also for verification
as in tools KLEE [10], Calysto [2], and LLBMC [20]. LLVM has front-ends for C,
C++, Ada and Fortran, and there are further external projects for translating
a number of other languages to LLVM.

? This work was partially supported by the Serbian Ministry of Science grant 174021
and by Swiss National Science Foundation grant SCOPES IZ73Z0 127979/1.

3 LAV stands for LLVM Automated Verifier. LAV also means lion in Serbian.
4 http://llvm.org/

http://llvm.org/

The approach we propose combines symbolic execution [17], SAT encoding of
program’s control-flow, and elements of bounded model checking [6]. LAV rep-
resents program meaning using first-order logic (FOL) formulas and generates
final verification conditions as FOL formulas. Each block of code is represented
by a FOL formula obtained through symbolic execution (blocks have no inter-
nal branchings and no loops). Symbolic execution, however, is not performed
between different blocks. Instead, relationships between blocks are modeled by
propositional variables encoding transitions between blocks. LAV constructs for-
mulas that encode block semantics once for each block. It then combines these
formulas with propositional formulas encoding the transitions between blocks.
The resulting compound FOL formulas describe correctness and incorrectness of
individual instructions. LAV checks them using one of the several SMT solvers.
If a command cannot be proved to be safe, LAV translates a potential coun-
terexample from the solver into a program trace that exhibits this error. It also
extracts the values of relevant program variables along this trace. Our experi-
ments with 200 benchmarks suggest that LAV is competitive with related tools.
The experience also shows that LAV provides significant help in analyzing stu-
dent programs, providing feedback to students in everyday university practice.

2 Motivating Example

Verification tools based on symbolic execution proved to be very efficient for
many verification tasks. However, they also have weaknesses that make them, in
some cases, less applicable than desired. As a simple example, consider the code
in Figure 1. There are four paths to be explored to check whether the program
has division by zero bug in line 10. If, in line 9, div is assigned a0 + a1 + 2, then
the bug occurs in the first of these four paths (assuming that else branches are
considered first). If, on the other hand, div was assigned a0 + a1 − 2, then the
bug occurs in the last of these four paths. If div was assigned a0 + a1 + 3, then
there is no division by zero bug in the line 10. In summary, if there is no bug,
or the bug is found in the last path, then all paths need to be explored.

If we generalize the example from Figure 1 to have n instead of two variables,
and to have n instead of two if commands, then there are 2n paths to consider.5

This is the well-known problem of path explosion. Instead of considering all paths
separately, our approach models the control flow in a more compact way that
uses symbolic execution only within fragments (blocks) without branching. The
size of a formula in this approach is polynomial in the number of blocks. Con-
sequently, the path explosion does not occur in the verification tool itself. The
exploration of many possible paths is transferred to a reasoner (i.e. theorem
prover) which receives case splits only implicitly in form of disjunctions within
a formula representing verification condition. Thanks to the use of learning, the
reasoner typically solves such formula much more efficiently than by considering

5 Code with this control structure is not unrealistic. Many real-world functions, such
as lexical analyzers and parsers, contain a large number of if commands [16].

0: int main() line 10: UNSAFE
1: {
2: int a0, a1, k, div = 1; function: main
3: if(a0>0) error: division_by_zero
4: a0 = 1; 3: a0 == 0, a1 == 0, div == 1
5: else a0 = -1; 5: a0 == -1, a1 == 0, div == 1
6: if(a1>0) 6: a0 == -1, a1 == 0, div == 1
7: a1 = 1; 8: a0 == -1, a1 == -1, div == 1
8: else a1 = -1; 10: a0 == -1, a1 == -1, div == 0
9: div = a0+a1+2; // div = a0+a1-2; // div = a0+a1+3;
10: k = 1/div;
11: }

LAV KLEE
ifs & # paths bug in bug in bug in bug in
vars the first the last no the first the last no

path path bug path path bug

2 4 0.07 0.07 0.07 < 1 0.05 0.05
5 32 0.18 0.19 0.18 < 1 0.55 0.55

10 1’024 0.41 0.46 0.38 < 1 45.00 45.00
11 2’048 0.42 0.54 0.43 < 1 107.00 107.00
12 4’096 0.50 0.67 0.50 < 1 268.00 268.00

20 1’048’576 0.73 1.82 0.72 < 1 TO TO

60 260 25.00 39.00 4.18 ≈ 1 TO TO

100 2100 153.00 111.00 15.00 ≈ 1 TO TO

Fig. 1. Code example (left-hand side, up) and LAV output for div = a0 + a1 + 2
(right-hand side, up). The table shows the number of if-s and variables, the number
of paths, the time spent by LAV and then by KLEE if a bug occurs in: the first path,
the last path, and if there was no bug. Times are given in seconds. TO means timeout.

all cases. Using this approach, we avoid the path explosion problem using mod-
ern, powerful theorem provers, such as SMT solvers. This observations motivated
our approach, and shows good results in our examples. In the above example,
as n increases, the time spent by our tool increases polynomially, instead of the
clearly exponential growth for the symbolic execution tool KLEE [10], as shown
in the table in Figure 1. The table shows that the verification of a program (in
the case where there are no bugs) with large number of paths is infeasible for
KLEE. The table also shows that the time needed by KLEE to find a bug (if it
exists) heavily depends on the path that leads to it. Neither of these holds for
our tool: verification of a correct program or finding a bug both follow a con-
struction of a single first order formula that is passed to an SMT solver. Certain
differences in the solving times (for bugs occurring in different paths) are not
consequences of the modeling process, but rather of the internal operation of the
solver.

3 Modelling Variables, Data Types, and Blocks

Store and Blocks. Each program function consists of blocks, while each block is a
sequence of commands. The execution can enter a block only at its entry point,
and exit only through the last command of the block. A store of a program
is a map from variables to values given by variable’s type. Each instruction

transforms the store and may add constraints over variables. In our approach,
symbolic execution is used to compute a FOL formula Transformation(b) that
describes how the block b transforms the store of the program.

Denote by s(b, v) the value of a variable v at the entry point of the block
b and by e(b, v) the value of v at the exit point. After the block is symbol-
ically executed, the formula Transformation(b) is constructed based on the
values of the variables at the end of the block. In the general case it is given by∧

v∈V (e(b, v) = ev)
∧
AdditionalConstraints(b), where V is the set of variables

and where ev is the value of v at the end of the block expressed in terms of
initial values s(b, v). The formulas AdditionalConstraints(b) are introduced for
modeling certain operations (as described in the rest of this section). Another
formula Transformation(b, i) is defined analogously, but considering only the
first i instructions of the block b.

Buffers, Structures and Unions. Buffers are sequences of memory allocated
statically or dynamically and accessible by a pointer and an offset. While these
pointers are treated in our tool as any other simple variables, they are also
associated with sizes of corresponding buffers. To deal with buffer sizes, we in-
troduce two functions: left(p) and right(p) for numbers of bytes reserved for
the pointer p on its left and its right hand side. For example, the command
*(p+i) introduces a buffer overflow iff left(p) ≤ i · sizeof(int) < right(p) is
false. The argument of the functions left and right can be a pointer or a sum of
a pointer and an offset (which is of the integer type), in accordance with prop-
erties of pointers in C. Note that it always holds left(p + n) = left(p)− n and
right(p+n) = right(p)−n. These equalities can be considered as axioms about
the functions left and right, but, instead of introducing a universally quantified
formula into the generated formula, we add only its relevant instances to the
set of additional constraints attached to the block. More complex types, such as
structures and unions, are also treated as sequences of individual bytes.

Memory Contents. For simplicity and precision, LAV uses a flat memory
model: it treats the entire memory as an array mem of memory locations, that
may get updated during the symbolic execution, just as any other variable. For
modeling commands that access the memory via pointers we use the theory of
arrays. The theory of arrays provides functions for storing a value at a certain
index in the array (store) and for reading a value at a certain index in the array
(select). Also, if there is a reference operator on a local variable within a function,
then this variable is not tracked through its slot in the store, as other variables,
but is tracked through the memory content. A run-time library guarantees that
during the program execution all active variables and dynamic objects are as-
signed non-overlapping memory locations. Instead of adding conditions of the
form p 6= q for each pair (p, q) of addresses of variables or dynamic objects, a
more efficient approach is used: each address p is assigned (within correctness
conditions) a unique fixed number (or magic number [19]).

Global Variables. Global variables are accessible in all functions (and, hence,
in all blocks), but instead of representing them individually within all functions,
they are modeled by the variable modeling memory. The reasoning involving the

theory of arrays can be expensive, but if there are not many updates of global
variables, this model can still be more suitable. If there are many updates of
global variables, then, in some cases, global variables are tracked through their
slots in the store, just as local variables.

Function Calls. Function calls are modeled according to the available infor-
mation about the function. If a contract (i.e., a summary) of the function is
available, then the current store is updated and additional constraints are added
according to this contract. If a contract of the function is not available, while the
definition of function is, then an interprocedural analysis is required (performed
as described in the next section). If neither a contract nor the definition of the
function are available, then the memory contents (i.e. the current array mem)
is set to a new (fresh) variable as an effect of the function call.

4 Modelling Control Flow

Intraprocedural Loop-free Control Flow. Whereas single blocks are represented by
FOL formulas constructed using symbolic execution, LAV encodes relationships
between blocks by propositional variables and SAT formulas.

Assume, for a moment, that the program has no loops in the control-flow
graph. A path in this graph is then determined by the sequence of nodes (rep-
resenting blocks) and edges (representing transitions from one block to an-
other). For each block and for each transition we introduce a propositional vari-
able that denotes whether the corresponding node or transition is in the path.
Valid paths through the graph are encoded by entry conditions (represented by
EntryCond(b)) and exit conditions (ExitCond(b)). Entry conditions are condi-
tions that must hold at the entry point of the block b — b is in the path iff there
is a transition to b from some of its predecessors; if the block b is reached from the
block pred, then the initial values of the variables within the block b are equal to
the values of the variables at the exit point of the block pred. Exit conditions are
conditions that must hold at the exit point of the block b — each block must lead
somewhere (either to some other block or to the exit of the function). If the block
b was active and if the exit condition ci of the block b was met, then the control
is passed to the successor succi. The final formula Description(b) describing the
block b is defined as EntryCond(b) ∧ Transformation(b) ∧ ExitCond(b).

Loops. Loops are eliminated by unrolling. This way, the control flow graph of
the function has no cycles and the above modeling mechanism can be applied.
Our system supports two techniques for dealing with loops: underapproximation
of loops and overapproximation of loops. In the former case, loops are unrolled
a fixed number of times n, as in bounded model checking. If the unrolled code
verifies successfully, it means that the original code has no bugs for n or less
passes through the loop. In the latter case, the unrolled code simulates first n
and last m entries to the loop, where n and m are configurable parameters. After
the first n unrollings, we insert a block of code which simulates execution of an
arbitrary loop iteration by resetting the values of each loop target (i.e. the value
of each variable that is updated by any statement in any block in the loop),

similarly as, for instance, in [4]. This resetting of the values may cause loss of
precision and therefore may introduce false alarms. To overcome this problem,
it is necessary to have loop invariants annotated in the program (or to use
techniques that infer them automatically in some cases). If the overapproximated
code is verified, then the original code has no bugs too.

Interprocedural Control Flow. Starting with block descriptions as building
blocks, and given that there is a unique entry and a unique exit point for each
function, 6 the description of a function is constructed as a conjunction of de-
scriptions of the function blocks. Recursive function calls can be unrolled in a
similar way as loops.

5 Correctness Conditions

To check whether a command leads to an error LAV builds two formulas, of
the form C ⇒ (¬)safe(c). Here C is a formula describing a context: in the
empty context (i.e., if the command is considered on its own), C equals >, in
the block context, C equals Transformation(b, i) (if c is i-the instruction in b),
and in the function context, C equals

∧
Description(b′) for all function’s blocks

b′ that precede b. (¬)safe(c) is a formula describing (in)correctness condition
of a command — it can be given by a bug definition (division by zero, buffer
overflow, dereferencing null pointers) or it can be given by an annotation in the
form of C logical expressions within assert commands.

If safe(c) holds (under assumption C), then the command is safe and if
¬safe(c) holds, the command c is flawed. If both safe(c) and ¬safe(c) hold for
some context C (i.e. if C is inconsistent), then the command c is unreachable.7

If neither safe(c) nor ¬safe(c) hold in a general case, then the command c is
considered unsafe. The difference between a flawed and an unsafe command is
that the flawed command always leads to an error in the program (if it is reach-
able), while unsafe command leads to an error only in some cases, depending on
the context of the command, i.e., to the path condition leading to the command.
Each command is first checked within the empty context. If it gets the unsafe
status, the command is then checked within the block context. If it keeps the
unsafe status within the block context, then it is checked within the function
context. If a command is detected to be safe or flawed at some stage, then this
status for the command is final and wider contexts are not considered. For each
function call, correctness conditions for all unsafe commands from the called
function are checked in the calling context.

Checking the status of the command c in the context C can always be done
within one or two prover calls. After the context is added into the solver, the
safety property of the command is first checked. If the solver proves it, then this
means that it is either safe or unreachable. In both cases, it is not flawed or
unsafe so there is no need for any further checks. If the solver cannot prove it,

6 This can be ensured, as in the LLVM code.
7 Note that, even if it was proved that the command c is safe, unsafe or flawed in some

context, it still does not mean that it is reachable in some wider context.

then the negation of the safety property is checked and according to the answer
of the prover it can be concluded if it is a flawed or an unsafe command. If one
does not want to distinguish between flawed and unsafe commands (by selecting
this tool’s option, in case when trade-off of solving time and precision is needed),
then this second call is omitted.

When proving different (in)correctness conditions in one function context,
formulas corresponding to unnecessary but already considered blocks can be
kept in the context (thanks to deductive monotonicity). This enables incremental
approach, suitable for SMT solvers that can typically take advantage of the
results learned from the previous proof attempts [5].

6 Transforming a Code Model into an SMT Goal

The quantifier-free formula that models program code typically involves arith-
metic, logical, and relational operators, but also functions such as left and right.
We model integers by arbitrary-precision numbers (using linear arithmetic) or,
if so selected by a command-line argument, by finite-precision numbers in bit-
vector arithmetic. The functions left and right are considered to be uninter-
preted functions, with their specific properties added to the correctness condi-
tions. These functions are dealt by: (i) the theory of uninterpreted functions or
by (ii) Ackermannizing the goal [1]. Each of these options can lead to more effi-
cient reasoning in some cases [8]. Memory contents are represented by the theory
of arrays, or can be just ignored (leading to a less precise reasoning) because of a
high computational cost. Overall, the models of code typically require: bit-vector
arithmetic (or linear arithmetic), theory of uninterpreted functions (or, alterna-
tively, Ackermannization), and optionally theory or arrays. There are several
SMT solvers that provide support for such combinations of theories.

7 Implementation

The approach described in previous sections is implemented in C++ as a tool
LAV. The tool is publicly available and open-source.8 The tool is built on top
of LLVM that serves as a front-end to input programs. LLVM is developed
primarily for the programming language C, but can be used for other languages
as well. Thanks to this universality, LAV successfully handled several non trivial
examples in Fortran. (Dealing with object oriented languages requires certain
additions to our tool, which are planned for our future work.)

The LLVM programs are processed and the formulas representing correctness
conditions are generated following the approach described in the sections 3 and
4. As the default parameters, loop unrolling simulates the first two and the last
one passes through the loop, but this can be changed by the user. Correctness
conditions, built as described in Section 5, can be translated to a number of
theories and their combinations, as described in Section 6. Currently, there is

8 http://argo.matf.bg.ac.rs/?content=lav

http://argo.matf.bg.ac.rs/?content=lav

support for export to linear arithmetic, bit-vector arithmetic, the theory of un-
interpreted functions (and Ackermannization, as its alternative), and the theory
of arrays. Recursive function calls and support for floating point number arith-
metic are not implemented yet. Automated inference of loop invariants is not
part of LAV. There is currently no general notation for function contracts, but
contracts of certain memory-safety-critical functions such as malloc, calloc,
realloc, free, strcpy are encoded directly in C++, within LAV implementa-
tion. In addition, statements or assumptions (concerning loops or function calls)
can be given in the form of C logical expression within assume function call.

The generated formulas are passed to SMT solvers, by using function calls
from their APIs. Currently, supported solvers are Boolector [7] (for the theories
BVA and ARRAYS), Yices [15] and MathSAT [9] (LA, BVA and EUF) and
Z3 [14] (LA, BVA, EUF, ARRAYS). For unsafe and flawed commands, a coun-
terexample which includes program trace and values of program variables along
this trace is extracted from the model generated by a solver (if a corresponding
option is used).

8 Evaluation and Comparison to Related Tools

Related tools. CBMC [12] and ESBMC [13] are bounded model checkers for ANSI
C programs. As a front-end, ESBMC uses CBMC, which, in turn, uses goto-cc,
a compiler from C and C++ into GOTO-programs. On the other hand, LAV
uses LLVM, which is a multi language platform. CBMC and ESBMC unwind
program loops, while LAV supports both underapproximation and overapproxi-
mation of loops. CBMC translates correctness conditions to propositional logic
and instances of SAT. Like LAV, ESBMC converts verification conditions using
different background theories and passes them directly to an SMT solver.

KLEE, Calysto, S2E, and LLBMC use the LLVM compiler infrastructure as
a front-end to input programs. KLEE [10] is a symbolic execution tool, which
employs a variety of constraint solving optimizations, represents program states
compactly and uses search heuristics to improve code coverage. KLEE is used
within other verification tools, such as the S2E platform [11] for developing an-
alyzers. S2E introduces selective symbolic execution, relaxed execution consis-
tency models, and supports analysis of binaries. Calysto [2] is a static checker for
NULL pointer dereferencing and user-provided assertions. Calysto preserves the
structure of the analyzed program in the phase of symbolic execution and uses
it as an automatic abstraction/refinement framework for filtering verification
conditions. It handles loops and pointers in an unsound manner; for example,
loops are unrolled only once. The above tools are closely integrated with their
theorem provers and with theories that these provers use. This is in contrast
to LAV, which can chose amongst different SMT solvers and theories. LLBMC
[20] is a tool for low-level bounded model checking of C programs, which was
developed in parallel with our work. It focuses on covering memory consistency
constraints; it models control flow of a program in a similar way as LAV and
uses Boolector (the theory of bit-vectors and arrays) as the back-end solver.

Table 1 summarizes the front ends, supported theories, and solvers used by
considered tools.

Tool LAV CBMC ESBMC KLEE LLBMC CALYSTO PEX

Frontend LLVM goto-cc goto-cc LLVM LLVM LLVM .NET

Theories - PL - - - - -
LA - LA - - - LA
BV - BV BV BV BV BV

EUF - EUF - - - EUF
ARRAYS - ARRAYS ARRAYS ARRAYS - ARRAYS

Solvers MathSAT MiniSAT2 CVC STP - Spear -
Boolector - Boolector - Boolector - -

Z3 - Z3 - - - Z3
Yices - - - - - -

Table 1. Frontends, supported theories and solvers for considered tools

Experimental Comparison. We describe experimental comparison of LAV
with KLEE, CBMC and ESBMC. At the time of writing, LLBMC and Calysto
are not publicly available, so we were not able to include them in this evaluation.
We also did not include the symbolic execution tool PEX [21], because it deals
with C# and not with C.

The experimental comparison of LAV with the related tools was based on the
NECLA static analysis benchmarks [19]. These benchmarks contain C programs
that demonstrate common programming situations that arise in practice such as
interprocedural data-flow, aliasing, array allocation modes, array size propaga-
tion, string library usage and so on. The ability of different techniques to prove
them (in)correct is an indication of their areas of strengths and weaknesses. All
ANSI C programs from the NECLA static analysis benchmarks are included in
our evaluation except those that contain recursive function calls, string library
usage and which depend on floating point number calculations (44 out of 57
benchmarks are included).

All the tools checked the benchmarks for pointer errors, buffer overflows,
division by zero, and user-defined assertions. The tools terminated (with an
appropriate report) when a first flawed command was found or when the code was
verified. The experiments were performed with default parameters for each tool.
We consider the results obtained with default parameters the most indicative
since the user does not have to examine the code in order to determine unwinding
and other parameters. If some tool, for its default parameters, produced an
irregular output (such as an error message, a false alarm or time out), then it
was invoked again with a loop unwinding parameter — with the upper bound
of the loop, if it exists. If that call produced an irregular output or the upper
bound of the loop does not exist, then a small loop bound was used. LAV and
ESBMC were used with a solver for the theory of bit-vectors and arrays (because
for KLEE this is the only option).

Experiments were performed on a system running Ubuntu, with Intel pro-
cessor on 1.6GHz and with 1GB of RAM memory. The results are given in Table
2. The table contains a name of the benchmark (bnc), the number of code lines
(#L), the number of loop unwindings (#UNW), whether or not the program con-
tains some flawed commands (F/V), the name of the tool and the name of the
solver used (for some tools, in some cases, the verification did not require in-
voking a solver). Abbreviations used are: B – Boolector, NA – not applicable,
FA – false alarm, UB – missed (not discovered) bug, U – unreachable bug, * –
SAT/SMT solver was not called, ERR – error, TO — time out, and Z3 – solver Z3
was called instead of Boolector. The summary of the results is given in Table 3.

F
/ LAV CBMC ESBMC KLEE

bnc. #L #UNW V B Z3 B Z3

ex1 21 def V FA FA 5.02* 5.02* 5.02* 0.19
513 V TO TO 5.02* 5.02* 5.02* NA
3 V 0.90 0.35 0.14* 0.14* 0.14* NA

ex2 40 def V 0.63 0.54 TO TO TO ERR
1024 V TO TO ERR Z3 67.48 NA

3 V 1.03 0.47 ERR Z3 0.27 NA
ex3 24 def F 0.04 0.06 0.08 0.09 0.09 0.04
ex4 16 def F 0.13 0.24 0.14 0.15 0.18 0.02
ex5 18 - V 0.02 0.02 0.06* 0.06* 0.06* 0.02
ex6 21 - V 0.07 0.11 0.07 Z3 0.07 0.03
ex7 28 def V 0.22 0.22 TO TO TO ERR

3 V 0.21 0.15 ERR Z3-FA FA NA
ex8 20 def F 0.13 0.15 TO TO TO ERR

3 F 0.14 0.14 FA ERR ERR NA
ex9 43 def V 1.34 0.85 TO TO TO ERR

1024 V TO TO ERR Z3-TO TO NA
3 V 2.93 0.62 ERR Z3-FA FA NA

ex10 72 def F 1.32 0.59 TO TO TO 0.03
17 F TO 10.47 0.31 UB UB NA
3 F 4.02 1.14 0.13 UB UB NA

ex11 25 def V FA FA TO TO TO TO
3 V 0.05 0.08 0.06* 0.06* 0.06* NA

ex12 24 def F 0.12 0.16 0.12 0.10 0.10 0.03
ex13 10 - F 0.03 0.44 0.07 0.06 0.13 TO
ex14 16 def V 0.10 0.13 0.08* 0.08* 0.08* 0.03
ex15 35 - V 0.56 0.34 FA Z3 0.09 0.03
ex16 35 def U 0.09F 0.10F TO TO TO TO

2 U 0.08F 0.09F 0.08*V 0.08*V 0.08*V NA
ex17 45 def V 1.56 0.68 0.34* 0.24* 0.24* 0.02
ex18 30 def V FA FA TO TO TO ERR

100 V TO TO ERR ERR ERR NA
10 V 1.30 3.0 ERR ERR ERR NA

ex19 29 def V FA FA TO TO TO TO
3 V 0.14 0.08 0.10 0.08 0.09 NA

ex20 33 def F FA FA TO TO TO 0.12
1024 F 455 TO 40.98 40.0 206 NA

3 F 0.21 0.32 0.25 0.09 0.11 NA
ex21 26 def V 0.45 0.36 FA Z3 1.68 0.02
ex22 39 def V 12.22 4.1 0.64 Z3 0.81 0.06
ex23 26 def V FA FA 16.49 0.16 0.18 0.69

36 V 25.14 6.46 16.49 0.16 0.18 NA
ex25 27 def V 0.26 0.27 TO TO TO TO

3 V 0.21 0.20 0.10* 0.08* 0.08* NA
ex26 30 def F 1.88 0.62 6.42 Z3 4.79 UB
ex27 40 def F 25.34 5.28 3.40 Z3 3.24 0.09
ex30 44 def F 0.15 0.24 TO TO TO ERR

Continued on next page

Table 2 – continued from previous page
F
/ LAV CBMC ESBMC KLEE

bnc. #L #UNW V B Z3 B Z3
100 F TO TO ERR Z3-UB UB NA

ex31 14 def V FA FA TO 0.08* 0.08* 0.02
7 V 1.38 5.62 0.57 0.08* 0.08* NA

ex32 27 def V 0.78 0.5 2.30* Z3 4.11 0.18
ex34 25 - V 0.08 0.24 0.10 0.12 0.14 0.16
ex37 30 - F 0.16 0.20 FA Z3-UB UB ERR
ex39 27 def F 0.06 0.08 TO TO TO ERR

3 F 0.07 0.07 UB 0.09 0.09 NA
ex40 20 def V 0.09 0.12 TO TO TO 0.02

3 V 0.08 0.10 0.12 0.08 0.08 NA
ex41 23 def F 0.25 0.25 TO TO TO 17

3 F 0.49 0.44 0.25 0.07 0.10 NA
ex43 113 def F 28.56 17.91 FA Z3 25.15 0.06
ex46 38 def F 6.57 5.75 TO TO TO ERR

2 F 37.43 TO FA Z3-FA FA NA
ex47 35 def F 3.71 2.32 TO TO TO ERR

2 F 4.40 1.38 FA Z3-FA FA NA
ex49 16 def F 0.18 0.11 TO TO TO TO

3 V 0.06 0.08 0.08 0.07 0.08 NA
inf1 36 - F 0.12 0.22 0.18 UB 0.15 0.13
inf2 63 - F 4.84 1.25 FA Z3-FA FA UB
inf4 62 - F 0.23 0.38 0.11 0.12 0.19 0.40
inf5 62 - F 0.09 0.15 0.11 0.12 0.15 0.06
inf6 43 - V 0.29 0.12 0.41 Z3 0.40 0.06
inf8 44 - V 0.16 0.19 0.11 FA 0.12 0.06

Table 2: Experimental results.

Analysis of Results. False alarms and bugs undiscovered by CBMC can be
explained by the way it models memory and control-flow of the programs. For
example, CBMC assumes that each dynamic memory allocation will succeed,
although this is not valid assumption. Also, CBMC does not precisely model
the memory assigned to global arrays and pointers to pointers so this explains
some false alarms. Concerning control-flow, imprecisions may arise after loop
unwinding. If CBMC cannot prove that the unwinding is performed for the
upper loop bound, it dismisses all current information about memory allocations
for arrays, no matter if these allocations were static or dynamic. Since CBMC
reports only flawed commands (and not commands that cannot prove to be safe),
this may lead to undiscovered bugs. CBMC does not check/report unreachable
bugs. Therefore, it can miss a bug if it is unreachable for all CBMC-feasible
unwinding parameters.9

ESBMC inherits program modeling of CBMC, but also introduces some im-
provements. ESBMC models memory more precisely and it exhibits less false
alarms than CBMC. It models that dynamically allocation may not succeed, but
it still may miss some NULL-dereferencing bugs. Concerning solvers, it seems
that ESBMC does not have support for Ackermannization and it calls the Z3

9 For instance, in example 39.c, CBMC encounters time out for its default parameters,
and for a small number of loop unwindings it does not discover the bug. The bug in
this example, which is reachable as a consequence of a possible integer overflow, is
discovered by LAV even for a small number of loop unwindings because LAV finds
that the command itself is flawed so its reachability is not further checked.

Tool LAV CBMC ESBMC KLEE

Best times with default params. 45% 2% 0 47%

Best times with upp.bound 0% 22% 56% NA

Best times with unw.bound 66% 17% 44% NA

Timeouts 11% 26% 26% 13%

False alarms 9% 11% 8% 0%

Errors 0% 11% 4% 23%

Undiscovered bugs 0% 1% 7% 4%
Table 3. Summary

solver instead of Boolector whenever the theory of uninterpreted functions is
involved (Boolector does not support the theory of uninterpreted functions).
Also, it is likely that there are some errors in solver interfaces since ESBMC can
give different results when different solvers for the same theory are used for the
same problem. ESBMC exhibits the largest number of timeouts and the largest
number of undiscovered bugs. ESBMC with its default parameters was not best
for any benchmark time, but it has the largest number of best times when the
upper loop bound was specified.

The usage of KLEE is somewhat different than the usage of LAV, CBMC
and ESBMC. Unlike these tools, for KLEE it is necessary to annotate programs
with claims which variables should be treated as symbolic. It is not possible to
have dynamic memory allocation with a size represented by a symbolic value,
so KLEE reports error messages for some benchmarks. Also, it is not possible
to simulate nondeterministic choice as a loop entry parameter. KLEE does not
terminate when it finds a first error (as other tools do) and there is no option to
do so. However, this behavior does not affect the best times reported in the table.
As a symbolic execution tool, the number of loop unwindings cannot be specified
to KLEE, but the number of states considered can. Since this is not comparable
to number of loop unwindings, we compare KLEE to other tools only with its
default parameters. KLEE had six time outs, ten errors, two undiscovered bugs
and no false alarms. It has the largest number of best times. KLEE was the
most efficient on examples where there is only one possible path through the
program, because it efficiently finds it and the symbolic execution in these cases
take almost the same as a real execution. Other tools, because of the different
nature of modeling, do not take the advantage of having just one path through
the code. However, in practical applications, this is rarely the case.

LAV has no timeouts for its default parameters. This comes with a price of
the biggest number of false alarms for default parameters. These false alarms
are due to the policy of LAV that reports all commands that are potentially
unsafe (that could not be proved to be safe). So, all the false alarms come with a
message that the command is potentially unsafe, and never with a message that
the command is flawed, which makes the difference to tools that have no ranking
of potential bugs. If we change this policy, and if LAV reports only commands
which are proved to be flawed, then LAV would not have so many false alarms

but would have undiscovered bugs. In more than half cases when LAV reported
false alarm, the other tools had timeouts, therefore, neither tool exhibited desired
behavior. Concerning timeouts, most of the timeouts that LAV exhibited were
due to the high loop unwinding parameter. In most cases, the default parameters
already gave good results so there was no need for the unwinding with the upper
loop bound. LAV has no error messages, undiscovered bugs and has no false
alarms for a fixed number of unwindings. If we compare Boolector and Z3, we
can see that efficiency of LAV with Boolector is very similar to the efficiency
obtained with Z3, except that there are two cases when Z3 encountered timeout
when Boolector did not and only one case when Boolector encountered timeout
and Z3 did not.

We believe that these results present a useful experimental comparison of
existing tools. They also suggest that LAV is an interesting point in the design
space of verification and bug finding tools.

9 Application in Education

Software verification tools have different areas of application. One typical area
of application are safety-critical computer programs. On the other hand, verifi-
cation tools can be very beneficial in checking computer programs that are far
from being safety-critical but are massive in number and have other nature of
importance. In this section we consider one such application: computer programs
developed by students within programming courses in high schools and univer-
sities. A tool that could help students and teachers to notice errors in programs
would have multiple benefits. For students, such tool would be helpful when
there is no teacher to check the solution (which is, most of the time, the case).
For teachers, such tool would be helpful in marking exams, at least for pointing
to standard errors. For both, such tool would be illustrative and would demon-
strate power of verification tools, to which students should get accustomed and
ready to adopt in their professional work.

With this motivation in mind, we performed another set of experiments with
our tool—we analyzed programs written by students that took an introductory
C programming course at the University of Belgrade. Our corpus consists of 157
programs which were written by the students at test exams along the course.10

We divided the corpus into three groups. The first group consists of solutions
of problems that involve numerical calculations and manipulation of command
line arguments. The second group consists of solutions of problems that involve
manipulation with arrays and matrices. The third group consists of solutions
of problems that involve manipulation of strings and data structures. LAV was
set to use its default parameters and the time that LAV spent in analyzing the
programs was typically negligible. Some of the programs from the corpus did
not meet the given specification, but we considered only bugs and not functional
correctness. LAV discovered 423 genuine bugs in 121 programs and had 32 false
alarms in 8 programs.

10 The corpus can be found at the LAV web page.

The results of our experiments are summarized in Table 4. In the first two
groups, the largest number of bugs were possible buffer overflows (225 bugs were
discovered in 81 programs), while the next most frequent bug was division by
zero (22 bugs in 22 programs). In the third group, the largest number of bugs
were possible null pointer dereferencing (46 bugs in 15 programs), while the next
most frequent bug was buffer overflow (30 bugs in 15 programs).

Avg. Avg. Avg.
Problem # Solutions Lines Reported Bugs False Alarms

calculations 60 30 0.82 0.05

arrays and matrices 71 46 4.20 0

strings and structures 26 60 2.92 1.11

Summary 157 42 2.69 0.20
Table 4. Application in education: the table contains the number of solutions con-
sidered for the given problem, the average number of lines per solution, the average
number of reported bugs per solution, and the average number of false alarms per
solution.

The vast majority of bugs that students produced follow wrong expectations
— for instance, expectations that input parameters of their programs will meet
certain constraints and that memory allocation will always succeed. In many
cases, omission of a necessary check (e.g. whether an input parameter meets the
constraints) produces several bugs in the rest of the program. This explains the
large number of bugs in the corpus — adding only one check in a program would
typically eliminate several bugs. Apart from these sources of bugs, there were
just a few bugs with other origin (such as uninitialized variables or accessing
memory that was not allocated). Concerning false alarms, all false alarms were
consequences of overapproximations of loops or of the absence of support within
LAV for some functions from the standard library. It was beyond the scope of
this experiment to manually annotate all existing bugs so we cannot report on
the number of bugs that LAV missed to report.

A simplified example of a program from the corpus is given in Figure 9. This
example illustrates several typical students’ bugs: two possible buffer overflows
(lines 18 and 19) and one division by zero (line 12). Models generated by LAV
(given at the right-hand side of the figure) can help in correcting these bugs.
Although these are only preliminary experiments, the experience suggest that
LAV can be useful in everyday practice of an introductory programming course.

10 Conclusions and Further Work

We presented a new software verification approach and a corresponding tool,
LAV, for bug finding and for checking correctness conditions. LAV uses the
compiler intermediate language, LLVM, code. Therefore, LAV need not deal

line 12: UNSAFE
1: #include<stdio.h> line 18: UNSAFE
2: #include<stdlib.h> line 19: UNSAFE
3: int power(int n) line 20: 12: UNSAFE
4: {
5: int i, pow; function: get_digit
6: for(i=0, pow=1; i<n; i++, pow*=10); error: division_by_zero
7: return pow; line 12: d == 1073741824,
8: }
9: function: main
10: int get_digit(int n, int d) error: buffer_overflow
11: { line 18: argc == 1, argv == 1
12: return (n/power(d))%10;
13: } function: main
14: error: buffer_overflow
15: int main(int argc, char** argv) line 19: argc == 2, argv == 1
16: {
17: int n, d; function: main
18: n = atoi(argv[1]); error: division_by_zero
19: d = atoi(argv[2]); line 20: 12: argc == 512,
20: printf("%d\n", get_digit(n, d)); argv == 1,
21: } d == 1073741824, n == 0

Fig. 2. A simplified version of a program from the corpus (shown on the left) and the
LAV output (shown on the right). The shown output for this program is generated
by invoking LAV with default parameters, so the loop in line 6 is over-approximated.
The output states that lines 12, 18 and 19 are unsafe in general, and that the line 12
is unsafe when the function get digit is called from the line 20. LAV also shows the
nature of a possible error and the values of relevant variables.

with the specifics of C, and can be used for analysis of programs in several pro-
gramming languages. In addition, the approach can be used with any similar
low-level code representation. The approach combines symbolic execution, SAT
encoding of program’s behavior and bounded model checking. Individual blocks
of the code are modeled by first-order logic formulas constructed by symbolic
execution, and relationships between blocks are modeled by propositional for-
mulas. Formulas that describe blocks’ behavior are combined with correctness
conditions for individual commands to produce correctness conditions of the pro-
gram to be verified. These conditions are passed on to an SMT solver covering
a suitable combination of theories. The proposed approach is implemented as
an open-source tool LAV. Currently, several SMT solvers (Boolector, MathSAT,
Yices, and Z3) are supported. Our experiments suggest that the presented ap-
proach is competitive with related tools. We believe that our approach can be
a useful component of tools that combine multiple analysis and model checking
approaches (as suggested by recent tools [3]).

In the future we plan to further improve the modeling power and efficiency
of the tool. We plan to modify the implementation to use multi-core processor
design. We also plan to improve our interprocedural analysis and the robustness
of the tool. We are interested in further experiments with other benchmark suites
(such as, for example, [22] and [18]). We plan to make a number of extensions,
such as an improved user interface using a web client, more descriptive bug

explanations, and automated test-case generation. We expect that these features
will make LAV even more applicable in education and practice.

References

1. W. Ackermann. Solvable cases of the decision problem. North Holland, 1954.
2. D. Babić and A. J. Hu. Calysto: Scalable and Precise Extended Static Checking.

In ICSE’08, pages 211–220. ACM, May 2008.
3. G. Balakrishnan, M. K. Ganai, A. Gupta, F. Ivancic, V. Kahlon, W. Li, N. Maeda,

N. Papakonstantinou, S. Sankaranarayanan, N. Sinha, and C. Wang. Scalable and
precise program analysis at nec. In FMCAD, 2010.

4. M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs.
ACM Sigsoft Software Engineering Notes, 31:82–87, 2006.

5. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theo-
ries. In Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, pages 825–885. IOS Press, 2009.

6. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 58, 2003.

7. R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors
and arrays. In TACAS, volume 5505 of LNCS. Springer, 2009.

8. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, A. Santuari, and R. Sebas-
tiani. To ackermannize or not to ackermannize? In LPAR 2006, volume 4246 of
LNCS, pages 557–571. Springer, 2006.

9. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The
MathSAT 4 SMT solver. In CAV, volume 5123 of LNCS, pages 299–303. 2008.

10. C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, 2008.

11. V. Chipounov, V. Kuznetsov, and G. Candea. S2e: a platform for in-vivo multi-
path analysis of software systems. SIGARCH Comput. Archit. News, 39, 2011.

12. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ansi-c programs. In In
TACAS, pages 168–176. Springer, 2004.

13. L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-based bounded model checking
for embedded ansi-c software. In ASE, 0:137–148, 2009.

14. L. De Moura and N. Bjorner. Z3: An Efficient SMT Solver. In TACAS, pages
337–340, 2008.

15. B. Dutertre and L. de Moura. The Yices SMT solver. Tool paper at http://-
yices.csl.sri.com/tool-paper.pdf, August 2006.

16. C. Flanagan, J.B. Saxe. Avoiding exponential explosion: generating compact ver-
ification conditions. In Proc. ACM SIGPLAN POPL, January 2001.

17. J. C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

18. K. Ku, T. E. Hart, M. Chechik, and D. Lie. A buffer overflow benchmark for
software model checkers. In Proceedings of ASE ’07. ACM, 2007.

19. S. Sankaranarrayanan. Necla static analysis benchmarks, http://www.nec-
labs.com/research/system, 2009.

20. C. Sinz, S. Falke, and F. Merz. The low-level bounded model checker llbmc: A
precise memory model for llbmc. In SSV, 2010.

21. N. Tillmann and J. Halleux. Pex white box test generation for .net. In Proc. of
TAP 2008, volume 4966 of LNCS, pages 134–153. Springer, 2008.

22. M. Zitser, R. Lippmann, and T. Leek. Testing static analysis tools using exploitable
buffer overflows from open source code. SIGSOFT Softw. Eng. Notes, 29, 2004.

	Development and Evaluation of LAV: an SMT-Based Error Finding Platform

