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Abstract

In this paper multigrid technique is adapted for solving standing one-dimensional

wave equation with radiation boundary conditions. Solver, consisting of wave cycle

and ray cycle, uses Gauss-Seidel and Kaczmarz relaxation sweeps and is aimed to

work efficiently for all error components.

1 Introduction

Multigrid technique is an efficient method for solving differential and integral equations,

eigenvalues problems, etc. [1]. In this paper the multigrid technique is used to solve the

discrete problems, obtained by discretization of standing wave equations.

1.1 Wave Equation

If we consider solution of the one dimensional wave equation

∂2v(x, t)

∂x2
=

1

c2(x)

∂2v(x, t)

∂t2
(1)

in the form v(x, t) = g(t)u(x) and substitute it in (1), we get g(t)d2u(x)
dx2 = u(x)

c2(x)
d2g(t)

dt2

which after separation of variables can be written in the form c2(x)
u(x)

d2u(x)
dx2 = 1

g(t)
d2g(t)

dt2
.

Substituting −ω2 =
d2g(t)

dt2

g(t) and k2(x) = ω2

c2(x)
leads to the standing wave equation

d2u(x)

dx2
+ k2(x)u(x) = 0. (2)

We shall look for the solution in the so-called ray form

u(x) = a(x)eikx + b(x)e−ikx (3)

where a(x) and b(x) are smooth. Functions a(x) and b(x) are called ray functions. We

impose the radiation boundary conditions as a(−∞) = a0, b(+∞) = b0. Substituting (3)

in (2) we obtain a system of equations

a′′(x) + 2ika′(x) = 0 (4)



b′′(x) − 2ikb′(x) = 0. (5)

1.2 Discretization

In order to solve equation (2) on interval [a, b], we approximate it by a system of linear

equations. Solution of the one-dimensional discrete problem is a vector of equidistant

points whose values approximate the continuous solution of the differential problem. So-

lution u(x) is approximated by ul = u(hl), where h = b−a
N+1 is a meshsize and N is number

of interior points.

The discrete operator for (2) is of the form

(Lhuh)l =
ul−1 − 2ul + ul+1

h2
+ k2

l ul (6)

where l = 1, .., N . The solution of the discrete problem satisfies the system of linear

equations

Lhuh = 0. (7)

The exact solution of the discrete problem differs from the solution of differential problem

due to discretization error. For (7) the most important aspect of the discretization error

is phase error. Solution of (7) is of the form

uh
l = ale

ikhhl + ble
−ikhhl (8)

where kh =
arccos(1− k2h2

2
)

h
. To enable discrete solution to be an accurate approximation to

the differential one along the interval [a, b], the meshsize h should be chosen to provide

|2π
k
− 2π

kh |(b − a) k
2π

≪ π
k
.

2 Methods

2.1 Relaxation Methods

Discretization of the differential problem leads to a system of N equations with N un-

knowns. Exact solution of the system can be obtained by matrix inversion or Gauss

elimination. Such methods, however, require a lot of work. Work can be decreased by

using relaxation techniques, which produce solution with required accuracy and can be

used as part of powerful and efficient multigrid techniques. By this, we can significantly

reduce computation cost, especially in higher-dimensional problems.

Consider a system of linear equations Au = b. Let ũ be a current solution, v = u− ũ error

and r = b − Au a residual. Our solver uses Gauss-Seidel relaxation with update rule

ũnew
l =

1

all

(bl −
l−1∑

i=1

aliũ
new
i −

N∑

i=l+1

aliũ
old
i )



and Kaczmarz relaxation which uses update rule

ũnew
l = ũold

l − ail(bi −
N∑

j=1

aij ũ
old
j )/

N∑

j=1

aijaij

for each l = 1, .., N to force i-th equation residual to zero.

Relaxation efficiency can be estimated by analysis of Fourier error components reduction.

Analysis shows that, generally, relaxation methods efficiently reduce error components

that are high-frequency on current grid. For smooth error components both Kaczmarz

and Gauss-Seidel relaxation may have very small convergence (Gauss-Seidel can even

diverge in some cases).

2.2 Multigrid Cycles

The idea of the multigrid is to transfer smooth errors to coarser grid, where they become

higher-frequency and can be efficiently reduced, investing a little work.

We shall enumerate grid levels by d (d = 0 for coarsest grid). If we choose each coarser grid

meshsize H = 2h total amount of work will be proportional to amount of work on finest

level (which will be equal to the cost of a few relaxation sweeps). According to Fourier

analysis, solver decides which relaxation to use and calculates number of sweeps for each

grid so that error reduction is approximately 10 for each level. FAS V-cycle algorithm used

by our solver is a special case of multigrid cycle algorithm which uses FAS (Full Approx-

imation Scheme) intergrid transfer scheme and can be described by following pseudo-code:

FUNCTION VCycle(d, h, ũh
old , bh) RETURNS ũh

new

ũh
new = ũh

old

αd times DO IF GaussSeidel is efficient

THEN ũh
new = GaussSeidelRelaxation(ũh

new, h, bh)

ELSE ũh
new = KaczmarzRelaxation(ũh

new, h, bh)

IF d > 0 THEN

H = 2h

Use FAS transfer scheme to obtain approximate initial guess ũH
old and

right-hand side for coarse grid bH :

ũH
old = IH

h ũh
new

bH = IH
h rh + LH ũH

old

ũH
new = V Cycle(d − 1,H, ũH

old, b
H)

ũh
new = ũh

new + Ih
H(ũH

new − ũH
old)

βd times DO IF GaussSeidel is efficient

THEN ũh
new = GaussSeidelRelaxation(ũh

new, h, bh)

ELSE ũh
new = KaczmarzRelaxation(ũh

new, h, bh)

END VCycle.

The IH
h operator transfers from a finer to a coarser grid either by averaging or injec-



tion, and Ih
H denotes interpolation from a coarser to a finer grid (which in our case is

linear but can be cubic if necessary).

2.3 Multigrid Adaptation for Specific Problem

Our solver consists of the wave cycle and the ray cycle functions. The wave cycle is a

V-cycle applied to (7). It uses Kaczmarz and Gauss-Seidel relaxation schemes. For error

of the form vl = Aθe
iθl, where |θ| ∈ (π

2 , π) and Aθ is Fourier component amplitude, Gauss-

Seidel has convergence rate
Anew

θ

Aold
θ

= µ(θ) = 1√
p2+2p cos θ+1

and Kaczmarz has convergence

rate µ(θ) = |eiθ+2p|
|(e−iθ+p)2+2|

where p = k2h2 − 2. It can be verified that this cycle is efficient

for all error frequencies except for |θ| ∈ (kh
2 , 3kh

2 ).

The approximate solution and the unreduced error after the wave cycle can be represented

in the ray form (3). The ray approach is used to improve an approximation to a(x) and

b(x) on the coarse grids, and, by this, to improve the wave solution. After discretization

of (4) and (5) we get two systems of equations

(Lh
+ah)l =

al−2 − 2al−1 + al

h2
+ 2ik

al − al−1

h
= 0 (9)

(Lh
−bh)l =

bl+2 − 2bl+1 + bl

h2
− 2ik

bl+1 − bl

h
= 0 (10)

Ray cycle is a V-cycle applied to (9), (10). Unlike wave cycle, ray cycle uses only Kaczmarz

relaxation. For each problem it uses one boundary condition which is introduced on the

coarsest level. Since ray cycle is efficient enough for error frequencies |θ| ∈ (kh
2 , 3kh

2 ), we

can obtain an efficient solver for the standing wave equation by combining wave cycle with

ray cycle. Having obtained approximate solution by the wave cycle, we can use separation

process described in [2] to find initial approximations for a and b and apply ray cycle to

improve them. Improved ã and b̃ values are used to correct the wave solution ũ. For

efficient work of ray cycle finest meshsize h is chosen to be h ≈ π
k

so that amount of

work is as little as possible, and error components which need the ray representation are

high-frequency, but still approximated well enough on this grid.

3 Results

In order to avoid as much program coding errors as possible, programs were developed and

tested stage by stage. In order to make process efficient we used MatLab language. Jacobi,

Gauss-Seidel (lexicographical and red-black order) and Kaczmarz relaxation functions were

implemented. Correction scheme V-cycle for simpler discrete operator was coded and its

results were compared to FAS V-cycle. To check multigrid efficiency FMG cycle (see [1])

was written. Wave cycle was implemented. Its approximative solution and residual factors

were checked. Ray cycle was written, and its efficiency was tested for frequencies where

wave cycle is inefficient.



3.1 Wave Cycle Results

We tested our wave cycle, varying k, N , h and the initial guess in order to check its

behaviour in different cases. Efficiency measure used was residual factor f defined as

f = ||rold||
||rnew|| where rold and rnew are the residuals, calculated on the finest wave level,

before and after V-cycle. Residual norms are given by:

||r||2 =
1

N

N∑

i=1

|ri|2.

To verify efficiency of our solver we choose eiωhl as the initial guess, setting the initial

error frequency to ω, and tested f(ω) dependency. A representative graph for N = 63,

hfinest = 1
64 and k = 6 is printed below. For this example the solver decided to perform

3 Gauss-Seidel sweeps on the finest level and 5 Kaczmarz sweeps on each of the coarser

levels.
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As expected from the analysis, nearly no convergence was obtained for |ω| ∈ (k
2 , 3k

2 ),

whereas for all other frequencies there is acceptable residual factor.

3.2 Ray Cycle Results

The ray cycle was tested in a similar manner as wave cycle. However, residual factors

obtained are about 102. Since residual factors do not take into account boundary condi-

tion which is not introduced yet (because it is introduced on the coarsest level) in order

to determine convergence rate we used error norm. This is of course possible only when

we know the exact solution, but is useful for testing purposes. We used again N = 63,

hfinest = 1
64 and k = 6. For ray cycle the program chose 5 Kaczmarz sweeps for each of

the three finest levels and 4 sweeps on the remaining coarser levels.



Figure 2
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Figure 2 shows efficiency for a(x) ray cycle. Points very close to k are not plotted because

their value is extremely high due to nearly constant initial guess. It can be seen that good

convergence is obtained for interval |ω| ∈ (k
2 , 3k

2 ) which is the only part where wave cycle

is not efficient.

4 Discussion

By combination of wave cycle and ray cycle an efficient solver can be produced that reduces

all error frequencies and is of linear complexity. The last step in producing the solver would

be implementation of separation procedure which would merge the two cycles. For the

particular one-dimensional problem there are algorithms of comparable efficiency, but the

multigrid approach can be adapted for multidimensional problem where its efficiency is

the best possible.
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