
Decision Procedures for Algebraic
Data Types with Abstractions

Philippe Suter Mirco Dotta Viktor Kuncak∗

School of Computer and Communication Sciences (I&C) -École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{firstname.lastname}@epfl.ch

Abstract
We describe a family of decision procedures that extend the de-
cision procedure for quantifier-free constraints on recursive alge-
braic data types (term algebras) to support recursive abstraction
functions. Our abstraction functions are catamorphisms (term al-
gebra homomorphisms) mapping algebraic data type values into
values in other decidable theories (e.g. sets, multisets, lists, inte-
gers, booleans). Each instance of our decision procedure family is
sound; we identify a widely applicable many-to-one condition on
abstraction functions that implies the completeness. Complete in-
stances of our decision procedure include the following correctness
statements: 1) a functional data structure implementationsatisfies a
recursively specified invariant, 2) such data structure conforms to a
contract given in terms of sets, multisets, lists, sizes, orheights, 3)
a transformation of a formula (or lambda term) abstract syntax tree
changes the set of free variables in the specified way.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Algorithms, Languages, Verification

1. Introduction
Decision procedures for proving verification conditions have seen
great practical success in recent years. Systems using suchdecision
procedures incorporated into SMT provers [16, 6, 4] were used to
verify tens of thousands of lines of imperative code [14, 3] and
prove complex correctness conditions of imperative data structures
[67, 50]. While much recent work on automation was invested into
imperative languages, it is interesting (50 years after [44]) to con-
sider the reach of such decision procedures when applied tofunc-
tional programming languages, which were designed with the ease
of reasoning as one of the explicit goals. Researchers have explored
the uses of advanced type systems to check expressive properties
[19, 66], and have recently also applied satisfiability modulo the-
ory solvers to localized type system constraints [29, 59]. Among

∗ This research is supported in part by the Swiss National Science Founda-
tion Grant #120433 “Precise and Scalable Analyses for Reliable Software”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’10, January 17–23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

the recognized benefits of theorem provers is efficient support for
propositional operators and arithmetic. Our paper revivesanother
direction where theorem provers can play a prominent role: com-
plete reasoning about certain families of functions operating on al-
gebraic data types.

We embrace a functional language both as the implementation
language and as the specification language. In fact, our properties
are expressed as executable assertions. Among the immediate ben-
efits is that the developer need not learn a new notation for prop-
erties. Moreover, the developers can debug the properties and the
code using popular testing approaches such as Quickcheck [13] and
bounded-exhaustive testing [10, 23]. In using the programming lan-
guage as the specification language, our work is in line with soft
typing approaches that originated in untyped functional languages
[12], although we use ML-like type system as a starting point, fo-
cusing on properties that go beyond the ML types.

Purely functional implementations of data structures [52]
present a well-defined and interesting benchmark for automated
reasoning about functional programs. Data structures comewith
well-understood specifications: they typically implementordered
or unordered collections of objects, or maps between objects. To
express the desired properties of data structures, we oftenneed a
rich set of data types to write specifications. In particular, it is de-
sirable to have in the language not only algebraic data types, but
also finite sets and multisets. These data types can be used tocon-
cisely specify the observable behavior of data structures with the
desired level of under-specification [32, 39, 70, 18]. For example,
if neither the order nor the repetitions of elements in the tree matter,
an appropriate abstract value is a set. An abstract description of an
add operation that inserts into a data structure is then

α(add(e, t)) = {e} ∪ α(t) (1)

Hereα denotes an abstraction function mapping a tree into the set
of elements stored in the tree. Other variants of the specification
can use multisets or lists instead of sets.

An important design choice is how to specify such mappingsα
between the concrete and abstract data structure values. A popular
approach [14, 67] does not explicitly define a mappingα but in-
stead introduces a freshghostvariable to represent the valuesα(t).
It then uses invariants to relate the ghost variable to the concrete
value of the data structure. Because developers explicitlyspecify
values of ghost variables, such technique yields simple verification
conditions. However, this technique can impose additionalannota-
tion overhead—for the tree example above it would require supply-
ing a set as an additional argument to each algebraic data type con-
structor. To eliminate this overhead and to decouple the specifica-
tion from the implementation, we use recursively defined abstrac-
tion functions that compute the abstract value for each concrete
data structure. As a result, our verification conditions contain user-
defined function definitions that manipulate rich data types, along

with equations and disequations involving such functions.Our goal
is to develop decision procedures that can reason about interesting
fragments of such a language.

We present decision procedures for reasoning about algebraic
data types with user-defined abstraction functions expressed as a
fold, or catamorphisms [46], over algebraic data types. These deci-
sion procedures subsume approaches for reasoning about algebraic
data types [53] and add the ability to express constraints onthe ab-
stract view of the data structure. When using sets as the abstract
view, our decision procedure can naturally be combined withdeci-
sion procedures for reasoning about sets of elements in the presence
of cardinality bounds [36, 33]. It also presents a new example of a
theory that fits in the recently described approach for combining
decision procedures that share sets of elements [65].

Our decision procedures are not limited to using sets as an
abstract view of data structures. The most important condition for
applicability is that the notion of a collection has a decidable theory
in which the fold can be expressed. This includes in particular
arrays [11], multisets with cardinality bounds [55, 56], and even
option types over integer elements. Each abstract value provides
different possibilities for defining the fold function.

We believe that we have identified an interesting region in the
space of automated reasoning approaches, because the technique
turned out to be applicable more widely than we had expected.We
intended to use the technique to verify the abstraction of values of
functional data structures using sets. It turned out that the approach
works not only for sets but also for lists and multisets, and even
for abstractions that encode the truth-values of data structure in-
variants. Beyond data structures used to implement sets andmaps,
we have found that computing bound variables, a common opera-
tion on the representations of lambda terms and formulas, isalso
amenable to our approach. We thus expect that our decision pro-
cedure can help increase the automation of reasoning about opera-
tional semantics and type systems of programming languages.

Contribution. This paper presents a family of decision proce-
dures for the quantifier-free theory of algebraic data typeswith dif-
ferent fold functions (sections 4 and 5). We establish the soundness
of the decision procedures, and provide sufficient conditions on the
fold function that guarantee the completeness of the decision proce-
dure (Section 5). The intuition behind the completeness condition
is to require the inverse image of the fold to have sufficiently large
cardinality for sufficiently large abstract values (Section 5.3). We
list several examples of interest that satisfy this condition.

2. Example
Figure 1 shows Scala [51] code for a partial implementation of a
set of integers using a binary search tree. The class hierarchy

sealed abstract class Tree
private case class Leaf() extends Tree
private case class Node(left:Tree, value:E, right:Tree) extends Tree

describes an algebraic data typeTree with the alternativesNode
andLeaf. The use of theprivate keyword implies that the alterna-
tives are not visible outside of the moduleBSTSet. The keyword
sealed means that the hierarchy cannot be extended outside of the
module. The moduleBSTSet provides its clients with functions to
create empty sets and to insert elements into existing sets.Because
the client has no information on the typeTree, they use the abstrac-
tion functioncontent to view these trees as sets. The abstraction
function is declared like any other function and is executable, but
we assume that it obeys a syntactic restriction to make it a tree fold,
as described in the next section.

Functionsempty andadd are annotated with postconditions on
which the client can rely, without knowing anything about their

object BSTSet {
type E = Int
type C = Set[E]
sealed abstract class Tree
private case class Leaf() extends Tree
private case class Node(left: Tree, value: E, right: Tree)

extends Tree

// abstraction function
def content(t: Tree): C = t match {

case Leaf() ⇒ Set.empty
case Node(l,e,r) ⇒ content(l) ++ Set(e) ++ content(r)

}

// returns an empty set
def empty: Tree = {

Leaf()
} ensuring (res ⇒ content(res) == Set.empty)

// adds an element to a set
def add(e: E, t: Tree): Tree = (t match {

case Leaf() ⇒ Node(Leaf(), e, Leaf())
case t @ Node(l,v,r) ⇒

if (e < v) Node(add(e, l), v, r)
else if (e == v) t
else Node(l, v, add(e, r))

}) ensuring (res ⇒ content(res) == content(t) ++ Set(e))

// user−defined equality on abstract data type (congruence)
def equals(t1 : Tree, t2 : Tree) : Boolean =

(content(t1) == content(t2))
}

Figure 1. A part of a binary search tree implementation of a set

concrete implementation. These postconditions do not giveany in-
formation about the inner structure of binary search trees—such in-
formation would be useless to a user who has no access to the inter-
nal structure. Instead, the postconditions express properties on their
result in terms of the abstraction function. The advantagesof such
an abstraction mechanism are well-known. By separating thespec-
ification (functions signatures and contracts) from the implementa-
tion, developers obtain better opportunities for code reuse, manual
proofs become simpler [24], and automated analysis of clients be-
comes more tractable [32].

The parametrized typeSet[E], accessed through the type alias
C and used in the abstraction function and the specifications,refers
to the Scala library class for immutable sets. The operator++ com-
putes a set consisting of the union of two sets, and the constructor
Set(e) constructs the singleton set{e} (containing containing the
elemente). We assume the implementation of the container library
to be correct, and map the container operations (e.g.++) to the cor-
responding ones in the mathematical theory of finite sets (e.g. ∪)
when we reason about the programs.

The advantages of using an abstraction function in specifica-
tions are numerous, but they also require verification systems that
can reason about these user-defined functions—these functions ap-
pear in contracts and therefore in verification conditions.For exam-
ple, consider the functionadd in Figure 1 and apply the standard
technique to replace recursive function call with the function con-
tract. The result is a set of verification conditions including (among
others) the condition:

∀t1, t2, t3, t4 : Tree, e1, e2 : Int
t1 = Node(t2, e1, t3) ⇒
content(t4) = content(t2) ∪ {e2} ⇒
content(Node(t4, e1, t3)) = content(t1) ∪ {e2}

(2)

Figure 2. Illustration of (2), where edges labeled byα denote
applications of thecontent abstraction function

This formula is graphically represented in Figure 2. It combines
constraints over algebraic data types and over finite sets, as well as a
non-trivial connection given by the recursively defined abstraction
function content. It is therefore beyond the reach of currently
known decision procedures. In the following sections, we present a
new decision procedure which can handle such formulas.

3. Reasoning about Algebraic Data Types with
Abstraction Functions

Decision procedures for reasoning about algebraic data types [53,
5] are concerned with proving and disproving quantifier-free for-
mulas that involve constructors and selectors of an algebraic data
type, such as the immutable version of heterogeneous lists in LISP.
They generalize the unification algorithms used in theorem proving
[58] and Hindley-Milner type inference. Using the terminology of
model theory, this problem can be described as the satisfiability of
quantifier-free first-order formulas in the theory ofterm algebras
[25, Page 14, Page 67]. A term algebra structure has as a domain
of interpretation ground terms over some set of function symbols,
calledconstructors. The language of term algebras includes appli-
cation of constructors to build larger terms from smaller ones, and
the only atomic formulas are comparing terms for equality.

In this paper, we extend the decision procedure for such alge-
braic data types with the ability to specify anabstract valueof
the data type. The abstract value can be, for example, a set, rela-
tion, multiset (bag), or a list. A number of decision procedures are
known for theories of such abstract values [36, 56, 55, 40, 28]. Such
values purposely ignore issues such as tree shape, ordering, or even
the exact number of times an element appears in the data structure.
In return, they come with powerful algebraic laws and decidabil-
ity properties that are often not available for algebraic data types
themselves, and they often provide the desired amount of under-
specification for interfaces of data structures. The decision proce-
dures we describe enable proving formulas that relate data struc-
tures implemented as algebraic data types to their abstractvalues
that specify the observable behavior of these data types. They can
thus increase the automation when verifying correctness offunc-
tional data structures.

3.1 Instances of our Decision Procedure

Our decision procedures for different fold functions follow the
same pattern, so we talk about them as instances of one generic
decision procedure. The choice of the type of data stored in the
tree in each decision procedure instance is largely unconstrained;
the procedures work for any infinitely countable parameterized
data type, which we will denote byE in our discussion (it could
be extended to finite data types using techniques from [30]).The
decision procedure is parameterized by 1) an element typeE , 2) a
collection typeC, and 3) an abstraction functionα (generalizing the

object Lambda {
type ID = String
type C = Set[String]

sealed abstract class Term
case class Var(id: ID) extends Term
case class App(fun: Term, arg: Term) extends Term
case class Abs(bound: ID, body: Term) extends Term

def free(t: Term): C = t match {
case Var(id) ⇒ Set(id)
case App(fun, arg) ⇒ free(fun) ++ free(arg)
case Abs(bound, body) ⇒ free(body) -- Set(bound)

}}

Figure 4. Computing the set of free variables in aλ-calculus term

content function in Figure 1). We require the abstraction function
to be a catamorphism (generalized fold) [46]. We focus on thecase
of binary trees, so we require an abstraction function of theform

def α(t: Tree): C = t match {
case Leaf() ⇒ empty
case Node(l,e,r) ⇒ combine(α(l), e, α(r))

}

for some functionsempty : C andcombine : (C, E ,C)→C.
Figure 3 summarizes some of the instances of our decision

procedure. It shows the type of the abstract valueC, the definition
of the functionsempty andcombine that define the catamorphism,
some of the operations available on the logicLC of C values,
and points to one of the references that can be used to show the
decidability ofLC. (The decision procedure forLC is invoked as
the last step of our decision procedure.) Figure 3 shows thatour
decision procedure covers a wide range of collection abstractions
of interest, as well as some other relevant functions definable as
folds. We describe some of these cases in more detail.

Set Abstractions. Thecontent function in Figure 1 is an example
of a fold used as an abstraction function. In this case,empty = ∅
andcombine(t1, e, t2) = c1 ∪ {e} ∪ c2. We found this example
to be particularly useful and well-behaved, so we refer to itas the
canonical set abstraction.

The canonical set abstraction is not the only interesting abstrac-
tion function whose result is a set. Figure 4 shows another example,
where the foldfree computes a set by adding and removing ele-
ments as the tree traversal goes. Such abstraction functioncan then
be used to prove that, e.g., a rewriting step on aλ-calculus term
does not increase the set of free variables in the term.

Abstractions using Multisets and Lists.A set abstracts both the
order and the multiplicity (the number of occurrences) of elements
in the data structure. A more precise abstraction is a multiset (bag)
(Figure 3), which preserves the multiplicity. Moreover, the deci-
sion procedure for multisets [55, 56] supports an abstraction func-
tion that abstracts a multiset into the underlying set, which enables
simultaneous use of trees, multisets and sets in the same specifi-
cation, giving a decision procedure for an interesting fragment of
the tree-list-bag-set hierarchy [26]. Even more precise abstractions
of trees use lists, supporting any chosen traversal order; they re-
duce to the decision procedure for the theory of lists (words) with
concatenation [57].

Minimal Element. Some useful abstractions map trees into a
quantity rather than into a collection.findMin in Figure 5 for
instance is naturally expressed as a fold, and can be used to prove
properties of data structures which maintain invariants about the
position of certain particular elements (e.g. priority queues).

C empty combine(c1, e, c2) abstract operations
(apart from∧,¬,=)

complexity follows from

Set ∅ c1 ∪ {e} ∪ c2 ∪,∩, \, cardinality NP [36]
Multiset ∅ c1 ⊎ {e} ⊎ c2 ∩,∪, \,⊎, setof, cardinality NP [55, 56]

N 0 c1 + 1 + c2 (size) +,≤ NP [54]
N 0 1 + max(c1, c2) (height) +,≤ NP [54]

List List() a) c1++ List(e)++ c2 (in-order) ++(concat), List()(singleton) PSPACE [57]
List() b) List(e)++c1++ c2 (pre-order)
List() c) c1++ c2++ List(e) (post-order)

Tree Leaf Node(c2, e, c1) (mirror) Node, Leaf NP [53]
Option None a) Some(e) Some,None NP [49]

None b) (computing minimum) see Figure 5 Some,None,+,≤, if NP [48, 49, 54]
(Option,
Option,
Boolean)

(None,
None,
true)

c) (checking sortedness) see Figure 6

Figure 3. Example Instances of our Decision Procedure for Different Catamorphisms

object MinElement {
type E = Int

sealed abstract class Tree
case class Node(left: Tree, value: E, right: Tree) extends Tree
case class Leaf() extends Tree

def findMin(t: Tree): Option[E] = t match {
case Leaf() ⇒ None
case Node(l,v,r) ⇒

(findMin(l),findMin(r)) match {
case (None,None) ⇒ Some(v)
case (Some(vl),None) ⇒ Some(min(v, vl))
case (None,Some(vr)) ⇒ Some(min(v, vr))
case (Some(vl),Some(vr)) ⇒ Some(min(v, vl, vr))

}}}

Figure 5. Using the minimal element as an abstraction

object SortedSet {
type E = Int

sealed abstract class Tree
case class Leaf() extends Tree
case class Node(left: Tree, value: E, right: Tree) extends Tree

def sorted(t: Tree): (Option[Int],Option[Int],Boolean) =
t match {
case Leaf() ⇒ (None, None, true)
case Node(l, v, r) ⇒ {

(sorted(l),sorted(r)) match {
case ((, ,false),) ⇒ (None, None, false)
case (,(, ,false)) ⇒ (None, None, false)
case ((None,None,),(None,None,)) ⇒

(Some(v), Some(v), true)
case ((Some(minL),Some(maxL),),(None,None,))

if (maxL ≤ v) ⇒ (Some(minL),Some(v),true)
case ((None,None,),(Some(minR),Some(maxR),))

if (minR > v) ⇒ (Some(v), Some(maxR), true)
case ((Some(minL),Some(maxL),),

(Some(minR),Some(maxR),))
if (maxL ≤ v && minR > v) ⇒

(Some(minL),Some(maxR),true)
case ⇒ (None,None,false)

}}}}

Figure 6. A fold that checks that a tree is sorted

Sortedness of Binary Search Trees.Fold functions can also com-
pute properties about tree structures which apply to the complete
set of nodes and go beyond the expression of a container in terms
of another. Figure 6 shows the abstraction functionsorted which,
when applied to a binary tree, returns a triple containing a lower
and upper bound on the set of elements, and a boolean indicating
whether the tree is sorted. Although alternative specifications of
sortedness are possible, this one directly conforms to the form of a
fold function; at the same time it is efficiently executable.

The code in Figure 6 allows for trees with repeated elements.
By replacing the occurrences of≤ by the stricter< we obtain the
definition of sorted trees with distinct elements, which canalso be
handled by our decision procedure (the strict inequality turns out
to be a more complicated instance of the decision procedure,see
Section 5.3).

This example also illustrates fold functions that returnn-tuples,
which is a useful strategy to represent multiple mutually recursive
functions. We will therefore assume that we work with a single fold
function in our decision procedure.

4. The Decision Procedure
To simplify the presentation, we describe our decision procedure
for the specific algebraic data type of binary trees, corresponding
to the case classes in Figure 1. The procedure naturally extends to
data types with more constructors.

If t1 andt2 denote values of typeTree, by t1 = t2 we denote
that t1 and t2 are structurally equal that is, either they are both
leaves, or they are both nodes with equal values and equal subtrees.

As far as soundness is concerned, we can leave the collection
typeC and the languageLC of decidable constraints onC largely
unconstrained. As explained in Section 5, the conditions for com-
pleteness are relatively easy to satisfy when the image are sets; they
become somewhat more involved for e.g. multisets and lists.

In our exposition, we use the notation

distinct(x1
1, x

1
2, . . . , x

1
I(1); . . . ;x

n
1 , . . . , x

n
I(n))

as a syntactic shorthand for the following conjunction of disequal-
ities

n̂

i=1

n̂

j=i+1

I(i)
^

k=1

I(j)
^

l=1

xi
k 6= xj

l

For example,distinct(x, y; z) meansx 6= z ∧ y 6= z, whereas
distinct(x1; . . . ;xn) means that allxi are different.

For a conjunctionφ of literals over the theory of trees parametrized
byLC andα:

1. apply purification to separateφ intoφT ∧ φB ∧ φC where:

• φT contains only literals over tree terms

• φC contains only literals over terms fromLC

• φB contains only literals of the formc = α(t) wherec is a
variable fromLC andt is a tree variable

2. flatten all terms and eliminate the selectorsleft andright

3. apply unification on the tree terms, detecting possible unsatisfi-
ability within the term algebra theory

4. if unification did not fail, project the constraints on tree terms
obtained from unification to the formulaφC in the collection
theory, yielding a new formulaφ′

C

5. establish the satisfiability ofφ with a decision procedure forLC

applied toφ′
C

Figure 7. Overview of the decision procedure

T ::= t | Leaf | Node(T,E, T) Tree terms
| left(T) | right(T)

C ::= c | α(t) | TC C-terms
FT ::= T = T | T 6= T Equations over trees
FC ::= C = C | FC Formulas ofLC

E ::= variables of typeE
φ ::=

V

FT ∧
V

FC Conjunctions
ψ ::= φ | ¬φ | φ ∨ φ | φ ∧ φ Formulas

| φ⇒ φ | φ⇔ φ

TC andFC represent terms and formulas ofLC respectively. For-
mulas are assumed to be closed under negation.

Figure 8. Syntax of the parametric logic

4.1 Overview of the Decision Procedure

Figure 7 gives a high-level summary of the decision procedure. It
solves the constraints over trees using unification, then derives all
relevant consequences on the typeC of collections that abstracts the
trees. In this way it reduces a formula over trees and their abstract
LC-values to aLC formula, for which a decision procedure is
assumed to be available. We next define our decision problem more
precisely, then present the core steps of our decision procedure and
show its soundness. Section 5 provides remaining subtle steps of
the decision procedure and proves its completeness for a certain
class of abstraction functions.

4.2 Syntax and Semantics of our Logic

Figure 8 shows the syntax of our logic. Figure 9 describes its
semantics. The description refers to the catamorphismα, as well
as the semanticsJ K

C
of the parameter theoryLC.

4.3 Key Steps of the Decision Procedure

We describe a decision procedure for conjunctions of literals in
our parametric theory. To lift the decision procedure to formulas
of arbitrary boolean structure it suffices to apply the DPLL(T)
approach [21].

Purification. In the first step of our decision procedure, we sepa-
rate the conjuncts of our formula into literals over tree terms on one
side, literals ofLC on the other side, and finally the literals contain-
ing the catamorphism to connect the two sides. By the syntax of
formulas, a literal in the formula can only combine tree terms with

JNode(T1, e, T2)K = Node(JT1K, JeKC, JT2K)
JLeafK = Leaf

Jleft(Node(T1, e, T2))K = JT1K
Jright(Node(T1, e, T2))K = JT2K

Jα(t)K given by the catamorphism
JT1 = T2K = JT1K = JT2K
JT1 6= T2K = JT1K 6= JT2K
JC1 = C2K = JC1KC = JC2KC

JFCK = JFCK
C

J¬φK = ¬JφK
Jφ1 ⋆ φ2K = Jφ1K ⋆ Jφ2K

where⋆ ∈ {∨,∧,⇒,⇔}

Figure 9. Semantics of the parametric logic

terms ofLC when the tree terms occur as arguments of the abstrac-
tion functionα. It therefore suffices to replace all such applications
by fresh variables ofLC and add the appropriate binding equalities
to the formula:

FC ; tF = T ∧ cF = α(tF) ∧ FC [α(T) 7→ cF]

In the rewrite rule above,T denotes any tree term,cF and tF are
fresh in the new formula.

Flattening of Tree Terms. We then flatten tree terms in a straight-
forward way. If t and tF denote tree variables,T1 and T2 non-
variable tree terms andT an arbitrary tree term, we repeatedly ap-
ply the following five rewrite rules until none applies (

.
= denotes

one of{=, 6=}):

T
.
= Node(T1, E, T2) ; tF = T1 ∧ T

.
= Node(tF, E, T2)

T
.
= Node(t, E, T2) ; tF = T2 ∧ T

.
= Node(t, E, tF)

T
.
= left(T1) ; tF = T1 ∧ T

.
= left(tF)

T
.
= right(T1) ; tF = T1 ∧ T

.
= right(tF)

T1
.
= t ; t

.
= T1

t 6= T1 ; tF = T1 ∧ t 6= tF

wheretF is always a fresh variable. It is straightforward to see that
this rewriting always terminates.

Elimination of Selectors. The next step is to eliminate terms of
the formleft(t) andright(t). We do this by applying the following
rewrite rules:

t = left(t1) ; t1 = Node(tL , e, tR) ∧ t = tL
t = right(t1) ; t1 = Node(tL , e, tR) ∧ t = tR

Here we use an assumption that the original formula was well-
typed, which ensures that selectors are not applied toLeaf nodes.
Again,e, tL andtR denote fresh variables of the proper types.

These first three steps yield a normalized conjunctive formula
where all literals are in exactly one of following three categories:

• literals over tree terms, which are of one of the following forms:

t1 = t2, t = Node(t1, E, t2), t1 6= t2

(Note that disequalities are always between variables.)

• binding literals, which are of the form:

c = α(t)

• literals over terms ofLC, which do not contain tree variables
or applications ofα, and whose specific form depends on the
parameter theoryLC.

Case Splitting. For simplicity of the presentation, we describe
our procedure non-deterministically by splitting the decision prob-
lem into a collection of problems of simpler structure (this

Trivial:

T
?
=T ∪ P ′;S

P ′;S

Symbol Clash:

Leaf
?
=Node(. . .) ∪ P ′;S

⊥

Node(. . .)
?
= Leaf ∪ P ′;S

⊥

Orient:

{T1
?
= t} ∪ P ′;S

{t
?
=T1} ∪ P ′;S

if T1 is not a variable

Occurs Check:

{t
?
=T} ∪ P ′;S

⊥
if t appears inT but t 6= T

Term Variable Elimination:

{t
?
=T} ∪ P ′;S

P ′[t 7→ T];S[t 7→ T] ∪ {t = T}
if t does not appear inT

Element Variable Elimination:

{e1
?
= e2} ∪ P

′;S

P ′[e1 7→ e2];S[e1 7→ e2] ∪ {e1 = e2}

Decomposition:

{Node(T1, e, T2)
?
=Node(T ′

1, e
′, T ′

2)} ∪ P
′;S

{T1
?
=T ′

1, T2
?
=T ′

2, e
?
= e′} ∪ P ′;S

Figure 10. Unification Rules

is a non-deterministic polynomial process). Consider the set
{t1, . . . , tn, Leaf} of tree variables appearing in the normalized
formula, augmented with the constant termLeaf. We solve the de-
cision problem for each possible partitioning of this set into equiva-
lence classes. Let∼ denote an equivalence corresponding to such a
partitioning. We generate our subproblem by adding to the original
problem, for each pair of terms(Ti, Tj) in the set, the constraint
Ti = Tj if Ti ∼ Tj , andTi 6= Tj otherwise. Consider now the set
{e1, . . . , em} of variables denoting elements of typeE . We again
decompose our subproblem according to all possible partitionings
over this set, adding equalities and disequalities for all pairs(ei, ej)
in the same way as for tree variables. The original problem issat-
isfiable if and only if any of these subproblems is satisfiable. The
remaining steps of the decision procedure are applied to each sub-
problem separately.

Unification. At this point, we apply unification on the positive
tree literals. Following [2], we describe the process usinginference
rules consisting of transformations onsystems. A system is the
pair, denotedP ;S, of a setP of equations to unify, and a set
S of solution equations. Equations range over tree variablesand
element variables. The special system⊥ represents failure. The
set of equationsS has the property that it is of the form{t1 =
T1, . . . , tn = Tn, e1 = ei, . . . , em = ej}, where each tree
variableti and each element variableei on the left-hand side of
an equality does not appear anywhere else inS. Such a set is said
to be insolved form, and we associate to it a substitution function
σS . Over tree terms, it is defined byσS = {t 7→ T | (t = T) ∈ S}.
The definition over element variables is similar. The inference rules
are the usual rules for unification adapted to our particularcase, and
are shown in Figure 10.

Any algorithm implementing the described inference system
will have the property that on a set of equations to unify, it will

either fail, or terminate with no more equations to unify anda
system∅;S describing a solution and its associate functionσS .

If for any disequalityti 6= tj or ei 6= ej , we have that
respectivelyσS(ti) = σS(tj) or σS(ei) = σS(ej), then our
(sub)problem is unsatisfiable. Otherwise, the tree constraints are
satisfiable and we move on to the constraints on the collection type
C.

Normal Form After Unification. After applying unification, we
can represent the original formula as a disjunction of formulas
in a normal form. LetσS be the substitution function obtained
from unification. Let~t be the vector ofn variablesti for which
σS(ti) = ti; we call such variablesparameter variables. Let
~u denote the vector of the remainingm tree variables; for these
variableσS(uj) is an expression built from~t variables usingNode
andLeaf, they are thus uniquely given as a function of parameter
variables. By the symbolvi we denote a term variable that is either
a parameter variableti or a non-parameter variableui. Using this
notation, we can represent (a disjunct of) the original formula in the
form:

~u = ~T (~t) ∧N(~u,~t) ∧M(~u,~t,~c) ∧ FE ∧ FC (3)

where

1. ~T are vectors of expressions in the language of algebraic data
types, expressing non-parameter term variables~u in terms of
the parameter variables~t;

2. N(~u,~t) denotes a conjunction of disequalities of term variables
ui, ti that, along with~T , completely characterize the equalities
and disequalities between the term variables. Specifically, N
contains:

(a) a disequalityti 6= tj for every pair of distinct parameter
variables;

(b) a disequalityti 6= uj for every pair of a parameter variable
and a non-parameter variable for which the termTj(~t) is not
identical toti

(c) a disequalityti 6= Leaf for each parameter variableti.

Note that for the remaining pairs of variablesui anduj , ei-
ther the equality holds andTi(~t) = Tj(~t) or the disequal-
ity holds and follows from the other disequalities and the
fact that Ti 6= Tj . Note that, if ~u = u1, . . . , um and
~t = t1, . . . , tn, then the constraintN(~u,~t) can be denoted by
distinct(u1, . . . , um; t1; . . . ; tn; Leaf);

3. M(~u,~t,~c) denotes a conjunction of formulasci = α(vi) where
vi is a term variable andci is a collection variable;

4. FE is a conjunction of literals of the formei = ej andei 6= ej

for some element variablesei, ej ;

5. FC is a formula of the logic of collections (Figure 8).

Partial Evaluation of the Catamorphism. We next partially eval-
uate the catamorphismα with respect to the substitutionσS ob-
tained from unification. More precisely, we repeatedly apply the
following rewriting on terms to terms contained in the subformula
M(~u,~t,~c):

α(u) ; α(σS(u))
α(Node(t1, e, t2)) ; combine(α(t1), e, α(t2))

α(Leaf) ; empty

After this transformation,α applies only to parameter variables.
We introduce a variableci of LC to ensure that for each parameter
ti we have an equality of the formci = α(ti), unless such con-
junct is already present. After adding conjunctsci = α(ti) we can
replace all occurrences ofα(ti) with ci. We can thus replace, with-

out changing the satisfiability of the formula (3), the subformula
M(~u,~t,~c) with

M1(~t,~c) ∧ F 1
C

whereM1 contains only conjunctions of the formci = α(ti) and
F 1

C is a formula inLC.
Example.This is a crucial step of our decision procedure, and we
illustrate it with a simple example. If~u = ~T (~t) is simply the
formulau = Node(t1, e, t2), then a possible formulaN is

distinct(t1; t2;u; Leaf)

A possible formulaM is c = α(u) ∧ c1 = α(t1). After the
partial evaluation of the catamorphism and introducing variablec2
for α(t2), we can replaceM with

c1 = α(t1) ∧ c2 = α(t2) ∧ c = combine(c1, e, c2)

where we denote the first two conjuncts byM1(c1, c2) and the third
conjunct byF 1

C . (Here,combine is an expression inLC defining the
catamorphism.)

Normal form After Evaluating Catamorphism. We next replace
~u by ~T (~t) in (3) and obtain formula of the form

D ∧E (4)

where

1. D ≡ N(~T (~t),~t) ∧M1(~t,~c)

2. E ≡ FE ∧ FC ∧ F 1
C

Expressing Existence of Distinct Terms.Note thatE already
belongs to the logic of collectionLC. To reduce (4) to a formula
in LC, it therefore suffices to have a mapping fromD to someLC-
formulaDM . Observe that by usingtrue asDM we obtain a sound
procedure for proving unsatisfiability. While useful, suchprocedure
is not complete. To ensure completeness, we require thatD and
DM are equisatisfiable. The appropriate mapping fromD to DM

depends onLC , and the properties ofα. In Section 5 we give such
mappings that ensure completeness for a number of logicsLC and
catamorphismsα.

Invoking Decision Procedure for Collections. Having reduced
the problem to a formula inLC we invoke a decision procedure for
LC.

4.4 Soundness of the Decision Procedure

We show that each of our reasoning steps results in a logically
sound conclusion. The soundness of the purification and flattening
steps is straightforward: each time a fresh variable is introduced, it
is constrained by an equality, so any model of the original formula
will naturally extend to a model for the rewritten formula which
contains additional fresh variables. Conversely, the restriction of
any model for the rewritten formula to the initial set of variables
will be a model for the original formula.

Our decision procedure relies on two case splittings. We will
give an argument for the splitting on the partitioning of tree vari-
ables. The argument for the splitting on the partitioning ofcontent
variables is then essentially the same. Let us callφ the formula
before case splitting. Observe that for each partitioning,the result-
ing subproblem contains a strict superset of the constraints of the
original problem, that is, each subproblem is expressible as a for-
mulaφ ∧ ψ, whereψ does not contain variables not appearing in
φ. Therefore, if, for any of the subproblems, there exists a model
M such thatM |= φ ∧ ψ, thenM |= φ andM is also a model
for the original problem. For the converse, assume the existence of
a modelM for the original problem. Construct the relation∼ over
the tree variablest1, . . . , tn of φ as follows:

ti ∼ tj ⇐⇒ M |= ti = tj

Clearly,∼ is an equivalence relation and thus there is a subproblem
for which the equality over the tree variables is determinedby ∼.
It is not hard to see thatM is a model for that subproblem. It is
therefore sound to reduce the satisfiability of the main problem to
the satisfiability of at least one of the subproblems.

Our unification procedure is a straightforward adaptation from a
textbook exposition of the algorithm and the soundness arguments
can be lifted from there [2, Page 451].

The soundness of the evaluation ofα follows from its definition
in terms of empty and combine. Introducing fresh variablesci
in the form of equalitiesci = α(ti) is again sound, following
the same argument as for the introduction of tree variables during
flattening. The subsequent replacement of terms of the formα(ti)
by their representative variableci is sound: any model for the
formula without the termsα(ti) can be trivially extended to include
a valuation for them. Finally, the replacement of the tree variables
~u by the terms~T (~t) is sound, because unification enforces that any
model for the formula before the substitution must have the same
valuation forui and the corresponding termTi. Therefore, there is
a direct mapping between models for the formula before and after
the substitution.

4.5 Complexity of the Reduction

Our decision procedure reduces formulas to normal form in non-
deterministic polynomial time because it performs guessesof
equivalence relations on polynomially many variables, runs the uni-
fication algorithm, and does partial evaluation of the catamorphism
at most once for each appropriate term in the formula. The reduc-
tion is therefore in the same complexity class as the pure theory
of algebraic data types [5]. In addition to the reduction, the overall
complexity of the decision problem also depends on the formula
DM , and on the complexity of solving the resulting constraintsin
the collection theory.

5. Completeness
We next describe the the strategy for computing the formulaDM

from Section 4 for a broad class of catamorphisms. We prove that a
computation following our strategy results in a sound andcomplete
overall decision procedure.

5.1 Canonical Set Abstraction

We first give a complete procedure for the canonical set abstraction,
whereC is the structure of all finite sets with standard set algebra
operations, andα is given by

empty = ∅

combine(c1, e, c2) = c1 ∪ {e} ∪ c2

Observations aboutα. Note that, for each termt 6= Leaf, α(t) 6=
∅. Let e ∈ E and consider the setS = α−1({e}) of terms that map
to {e}. ThenS is the set of all non-leaf trees that havee as the only
stored element, that, is,S is the least set such that

1. Node(Leaf, e, Leaf) ∈ S, and

2. t1, t2 ∈ S→Node(t1, e, t2) ∈ S.

Thus,α−1({e}) is infinite. More generally,α−1(c) is infinite for
everyc 6= ∅, because each tree that maps into a one-element subset
of c extends into some tree that maps intoc.

Expressing Existence of Distinct Terms using Sets.We can now
specify the formulaDM that is equisatisfiable with the formulaD
in (4).

Definition 1. If c1, . . . , cn are the free set variables inD, then (for
theoryC andα given above) defineDM as

n̂

i=1

ci 6= ∅

To argue why this simple choice ofDM gives a complete deci-
sion procedure, we prove the following.

Lemma 2. LetD0 be a conjunction ofn disequalities of terms built
from tree variablest1, . . . , tm and symbolsNode, Leaf. Suppose
that D0 does not contain a trivial disequalityT 6= T for any
term T . If A1, . . . , Am are sets of trees such that|Aj | > n for
all 1 ≤ j ≤ m, thenD0 has a satisfying assignment such that for
eachj, the valuetj belongs toAj .

Proof. We first show that we can reduce the problem to a simpler
one where the disequalities all have the formta 6= Tb, then show
how we can construct a satisfying assignment for a conjunction of
such disequalities.

We start by rewriting each disequalityTi 6= Ti
′ in the form:

¬

0

@

. . .
∧ ta = Ca(ta1, . . . , taka

)
∧ . . .

1

A

where the conjunction of equalities is obtained by unifyingthe
termsTi andTi

′. The conjunction is non-empty because the state-
ment of the lemma assumes thatTi andTi

′ are not syntactically
identical. Here, the expressions of the formC(ta1, . . . , taka

) de-
note terms built usingNode, Leaf and the variablesta1, . . . , taka

,
where each of the variables appears at least once in the term.After
applying this rewriting to all disequalities and converting the result-
ing formula to disjunctive normal form, we obtain a problem of the
form

_

s

Ls1 ∧ . . . ∧ Lsn

Note that in each conjunction, there is exactly one conjunctof
the form ta 6= Ca(ta1, . . . , taka

) for each of then disequalities
Ti 6= Ti

′ of the original problem. Notice as well that each vari-
ableta can be on the left-hand side of several disequalities in the
same conjunction. From the form of the equations obtained using
unification, we know that the set of variables{ta1, . . . , taka

} never
containsta. This formula is logically equivalent to the original one
from the statement of the lemma. To show that it is satisfiable, we
pick an arbitrary disjunct and show that it is satisfiable.

We construct a satisfying assignment for such a conjunctionas
follows. For the first step, we start by collecting the setP1 of all
disequalities of the formt1 6= T , whereT is a ground term. We
pick for t1 a valueT1 in A1 different from all suchTs. This is
always possible because there aren disequalities in the conjunction
and|A1| > n. We substitute in the entire formulaT1 instead oft1.
Becauset1 cannot appear on both left and right-hand side of an
equation, in the resulting formula, all ground disequalities result
from the grounding of the disequalities inP1 and reduce totrue.
We eliminate the disequalities ofP1 from the set of disequalities.

For all indicesj ∈ {2, . . . ,m} do the following. Collect the set
Pj of all disequalities of the formtj 6= T andT 6= C(tj) (in the
second form,C(tj) denotes a term built withLeaf, Node, at least
one occurrence oftj , and no other variable). There are clearly no
more thann such disequalities inPj . For each of these disequality
literalsLk, there isat mostone valuevj

k for tj which contradicts it:
it is either the ground termT or its subterm. Because|Aj | > n,
there exists a termTj ∈ Aj \ {vj

k}k. SubstituteTj instead of
tj in the entire conjunction. This ensures that all disequalities in
Pj hold. Remove the disequalities inPj from the conjunction. We
then proceed withtj+1. The procedure terminates inm steps with

an assignment mappingtj to Tj for 1 ≤ j ≤ m. Moreover, at this
point there are no ground equations left and no variables left, so all
conjuncts have been eliminated and satisfied.

Remark. Lemma 2 above is a strengthening of the Independence
of Disequations Lemma [15, Page 178], [42]. Namely, the state-
ment in [15, Page 178] requires the setsAj to be infinite, whereas
we showed above (using a new, more complex proof) that it suffices
forAj to have more elements than there are disequalities. While the
original weaker version suffices for Lemma 3, we need our stronger
statement in Section 5.3.

Lemma 3. For C denoting the structure of finite sets andα given
as above,∃~t.D is equivalent toDM .

Proof. Let ~t be t1, . . . , tn. Fix valuesc1, . . . , cn. We first show
∃~t.D implies DM . Pick valuest1, . . . , tn for which D holds.
Then ti 6= Leaf holds because this conjunct is inD. Therefore,
α(ti) 6= ∅ by the above observations aboutα. Becauseci = α(ti)
is a conjunct inD, we concludeci 6= ∅. Therefore,DM holds as
well.

Conversely, supposeDM holds. This means thatci 6= ∅ for
1 ≤ i ≤ n. LetAi = α−1(ci) for 1 ≤ i ≤ n. Then the setsAi are
all infinite by the above observations aboutα. By Lemma 2 there
are valuesti ∈ Ai for 1 ≤ i ≤ n such that the disequalities
in N(~T (~t),~t) hold. By definition ofAi, M1(~t,~c) is also true.
Therefore,D is true in this assignment.

Complexity for the Canonical Set Abstraction.We have ob-
served earlier that the reduction toLC is an NP process. There are
several decision procedures that support reasoning about sets of el-
ements and support standard set operations. One of the most direct
approaches to obtain such a decision procedure [35] is to usean en-
coding into first-order logic, and observe that the resulting formu-
las belong to the Bernays-Schönfinkel-Ramsey class of first-order
logic with a single universal quantifier. Checking satisfiability of
such formulas is NP-complete [9]. It is also possible to extend this
logic to allow stating that two sets have the same cardinality, and
the resulting logic is still within NP [36]. Because the reduction,
the generation ofDM and the decision problem forLC are all in
NP, we conclude that the decision problem for algebraic datatypes
with the canonical set abstraction belongs to NP.

5.2 Infinitely Surjective Abstractions

The canonical set abstraction is a special case of what we call
infinitely surjective abstractions, for which we can compute the
formulaDM .

Definition 4 (Infinitely Surjective Abstraction). If S is a set of
trees, we call a domainC and a catamorphismα an infinitely
surjectiveS-abstraction if and only ifα−1(α(t)) is finite fort ∈ S
and infinite fort /∈ S.

The canonical set abstraction is an infinitely surjective{Leaf}-
abstraction. Other infinitely surjective{Leaf}-abstractions are the
tree size abstraction, which for a given tree computes its size as
the number of internal nodes, the tree height abstraction, and the
sortedness abstraction of Figure 6.

An example of infinitely surjective∅-abstractions is the function
FV(t) that computes the set of free variables in an abstract syntax
treet representing a lambda expression or a formula. Indeed, for
each finite sets of variables (includings = ∅), there exist infinitely
many termst such thatFV(t) = s.

We can computeDM for an infinitely surjectiveS-abstraction
wheneverS is finite. The general idea is to add the elements
T1, . . . , Tm of S into the unification algorithm and guess arrange-
ments over them. This will ensure that, in the resulting formula,
the terms containing variables are distinct from allTi. The formula

DM then states the condition
V

t∈S ci 6= α(t). We omit the details
because they are subsumed by the more general construction be-
low, but we note that the above algorithm for{Leaf}-abstractions
also works for∅-abstractions.

5.3 Sufficiently Surjective Abstractions

We next present a more general completeness result, which requires
collections to be classified either as being an image of sufficiently
many terms, or as having one of finitely many shapes.

Definition 5 (Tree Shape and Size). Let SLeaf be a new constant
symbol andSNode(t1, t2) a new constructor symbol. Theshape
of a treet, denoteďs(t), is a ground term built fromSLeaf and
SNode(,) as follows:

š(Leaf) = SLeaf

š(Node(T1, e, T2)) = SNode(š(T1), š(T2))

We define thesizeof a shape as:

size(SLeaf) = 0

size(SNode(s1, s2)) = 1 + size(s1) + size(s2)

By extension, we define the size of a treet to be the size of its shape.

Definition 6 (Shape Instantiation). The instantiationof the shape
of a treet produces a copy oft where the values stored in the nodes
are replaced by fresh variables:

inst(t, i) = inst′(t, i, 1)

inst′(SNode(s1, s2), i, j) = Node(inst′(s1, i, 1 + j), vi
j ,

inst′(s2, i, 1 + j + size(s1)))

inst′(SLeaf, i, j) = Leaf

In the instantiation function,i determines the names of the fresh
variables: the variables introduced by the instantiationinst(s, i)
range fromvi

1 to vi
size(s). Consequently, ifi 6= j, then the terms

inst(t, i) and inst(t, j) have no common variables. Note that for
an abstraction functionα and a tree shapes, the termα(inst(s, i))
contains no tree variables, so it can be rewritten (by completely
evaluatingα) into a term in the collection theory with the free
variablesvi

1, . . . , v
i
size(s). Note finally that for every tree termT ,

the formulainst(š(T), i) = T is satisfiable.

Definition 7 (Sufficient Surjectivity). We call an abstraction func-
tion sufficiently surjectiveif and only if, for each natural number
p > 0 there exist, computable as a function ofp,

• a finite set of shapesSp

• a closed formulaMp in the collection theory such thatMp(c)
implies|α−1(c)| > p

such that, for every termt,Mp(α(t)) or š(t) ∈ Sp.

Note thatMp can introduce fresh variables as long as it is
existentially closed and the decision procedure for the collection
theory can handle positive occurrences of existential quantifiers.

The definition above implies:

lim
p→∞

inf
š(t)/∈Sp

|α−1(α(t))| = ∞

We now show how we can build a formulaDM equisatisfiable
with the formulaD of (4) provided the aforementioned assump-
tions hold. We keep the notational convention that the parameter
variables~t range fromt1 to tn and that the terms~T (~t) built around
them range fromT1(~t) to Tm(~t). We also assume that for all vari-
ablesti, the conjunctci = α(ti) is present inD. This is consistent
with the normal form we presented earlier, up to renaming of the
variables.

In the following we takep =
`

n
2

´

+ n · m, wheren is the
dimension of the vector of term variables in~t in D, andm is the
dimension of the vector~T (~t) for derived terms inD. Consider the
formula:

P ≡
n̂

i=1

0

@Mp(ci) ∨
_

s∈Sp

inst(s, i) = ti

1

A

∧
m̂

j=1

0

@Mp(α(Tj(~t))) ∨
_

s∈Sp

inst(s, j + n) = Tj(~t)

1

A

Note thatα(Tj(~t)) can be rewritten as a term in the collection
theory using the variables~c. Note that existentially quantifyingP
over the variables introduced byinst gives a formula that is always
true, by the assumptions onMp andSp. Let P ′ be the disjunctive
normal form ofP . For every disjunctP d of P ′, observe that for
eachti, eitherMp(α(ti)) is a conjunct ofP d, or inst(s, i) = ti is
a conjunct for exactly ones in Sp. The same observation holds for
the termsTj(~t).

We proceed as follows for each disjunctP d of P ′. We run uni-
fication over the equalities between terms. This can either result in
a clash (because the shape assigned to a termTj(~t) is in contra-
diction with the shapes assigned to the variables of~t), or produce
new equalities between the freshly introduced element variablesv.
If there was a clash, we simply replaceP d by false and eliminate
it from the formula. Otherwise, we add toP d the new equalities
produced by unification, yielding a disjunctP d

U .
We next add additional conjuncts toP d

U to obtain a formulaDd

equisatisfiable withD ∧ P d
U , as follows. Recall thatD contains

conjuncts of the forms:
• ti 6= tj as part ofN(~T (~t),~t),
• ti 6= Tj(~t) as part ofN(~T (~t),~t), and
• ci = α(ti) as part ofM1(~t,~c).

Initially, we setDd to be the formulaP d
U . Then, for each dis-

equalityT 6= T ′ in D (whereT andT ′ can represent either vari-
ables or constructed terms), if inP d

U we haveinst(s, i) = T and
inst(s, j) = T ′ for the same shapes, we add as a conjunct toDd

the disjunction
W

1≤k≤size(s) v
i
k 6= vj

k. Finally, we replace inDd all
the equalities of the forminst(s, i) = T byα(inst(s, i)) = α(T).
As we already observed,α(inst(s, i)) can always be rewritten to a
term in the collection theory by evaluatingα. In the case whereT
is a variableti, α(T) is simply ci. If it is a termTj(~t), α(T) can
be rewritten in terms of~c by partially evaluatingα.

The resulting formulaDM is
W

d D
d. We claim thatDM is

equisatisfiable withD.

Proof. (Preliminary transformations)ConjoiningP toD does not
change the satisfiability of the formula, and neither does the trans-
formation to disjunctive normal form, soD is equisatisfiable with
D ∧

W

p P
d. The unification procedure is equivalence preserving,

so the formula after unification is still equisatisfiable. Ittherefore
suffices to show thatD ∧ P d

U is equisatisfiable withDd.
(From trees to collections)First, observe thatDd is a conse-

quence ofD ∧ P d
U . Indeed,

W

vi
k 6= vj

k follows from T 6= T ′,
inst(s, i) = T , andinst(s, j) = T ′. Also,α(inst(s, i)) = α(T)
follows from inst(s, i) = T , and partial evaluation ofα is equiva-
lence preserving. Therefore, ifD ∧ P d

U has a model, thenDd as a
consequence holds in this model. ThusDd has a model. It remains
to show the converse.

(From collections to trees)AssumeM is a model forDd,
which specifies the values for element and collection variables. We
construct an extension ofM with values for tree variables~t such
thatD ∧ P d

U holds.

For those termsT for which P d
U contains a conjunct

inst(s, i) = T , we assignT to be the value ofinst(s, i) in M (in-
deed,M specifies the values of all free variablesvi

j in inst(s, i)).
In this assignment, the literals inP d

U of the formα(T) = ci are true
for such termsT . Furthermore, all disequalities between such terms
hold. Indeed, terms of different shape are distinct, and forterms of
equal shape the formulaDd contains a disjunct

W

vi
k 6= vj

k ensur-
ing that the terms differ in at least one element.

It remains to define values for the treesT for whichP d
U does not

contain a conjunct of the forminst(s, i) = T in such a way that
the literals containing these trees are true. These are disequality
literals, as well as literals of the formα(T) = ci, whenT is a
variable ti. For each such treeT , the formulaP d

U contains the
conjunctMp(α(T)), by construction of the disjunctive normal
form. From the assumptions onMp, fromMp(α(T)) we conclude
|α−1(α(T))| > p. Therefore, there are at leastp + 1 treesTk

such thatα(Tk) = α(T). The number of disequalities inD is
at most

`

n
2

´

+ n · m. Becausep =
`

n
2

´

+ n · m, we can apply
Lemma 2 to choose values for (at most)n trees satisfying (at most)
p disequations from sets of size at leastp+ 1. This choice of trees
completes the assignment for the remaining tree variables such that
all conjuncts ofDd hold.

Model Construction. Lemma 2 is constructive, so the proof
above also gives model construction whenever 1) the underlying
decision procedure for the collection provides model construction,
and 2) there is an algorithm to compute, for eachc whereMp(c), a
finite set of containingp elementst such thatα(t) = c.

Worst-Case Complexity of the Decision Problem.The reduction
from the starting formula to the theory of collections is a non-
deterministic polynomial-time algorithm that invokes thecompu-
tation of the setSp and the formulaMp. WhenSp andMp can be
computed in polynomial time, then each of the disjuncts consid-
ered is of polynomial size. Our decision procedure is this case an
NP reduction. This case applies to the three examples below.When
the satisfiability for the collection theory is in NP (e.g. for multisets
and sortedness), the overall satisfiability problem is alsoin NP.

5.4 Application to Multisets, Lists, and Sortedness

We now show that the list and multiset abstraction are sufficiently
surjective abstractions, as is the sortedness abstractionfor trees
with distinct elements. (The set of these examples is not meant to be
exhaustive.) In the following, letCn denote the number of binary
trees withn elements, and letKm denote a its inverse, that is, the
smallest natural numbern such thatCn > m. The functionsCn

andKm are monotonic and computable.

Lists. Consider the catamorphism for infix traversal of the tree,
for which we haveempty = List() and combine(c1, e, c2) =
c1 ++ List(e) ++ c2. (Catamorphisms for pre-order and post-order
traversal can be handled analogously.) We can use the following
definitions forSp andMp:

• Sp = {s | size(s) < Kp}

• Mp(c) ≡ ∃e1, . . . , eKp
. ∃c′ . c = List(e1, . . . , eKp

) ++ c′

Sp is the set of shapes with less thanKp nodes, whileMp(c)
expresses that the listc has at leastKp elements, so clearly for
any treet, either its shapěs(t) in is Sp, or it has more thanKp

nodes and thereforeMp(α(t)) holds. Finally, observe that for a list
c of n elements,α maps exactlyCn distinct trees toc. Therefore,
for any c such thatMp(c) holds, we have|α−1(c)| = CKp

, and
CKp

> p by construction. Therefore, the infix traversal abstraction
is sufficiently surjective and our completeness argument applies.

Multisets. Consider the multiplicity-preserving multiset abstrac-
tion, which is given byempty = ∅ and combine(c1, e, c2) =
c1 ⊎ {e} ⊎ c2. We then take

• Sp = {s | size(s) < Kp}

• Mp(c) ≡ ∃e1, . . . , eKp
. ∃c′ . c = {e1, . . . , eKp

} ⊎ c′

For a multisetc with n elements (counting repetitions), there areat
leastCn trees mapped byα to c, so the same argumentation as for
lists applies.

Sortedness. Finally, consider the abstraction function described
in Section 3.1 that checks the sortedness of trees. We mentioned
in Section 5.2 that the version which allowed repeated elements is
infinitely surjective. In contrast, in the case where the elements of
the trees have to be distinct, it is not infinitely surjective. The reason
is that the catamorphism also computes the minimal and maximal
elements of the tree, and there are only finitely many sorted trees
with distinct elements between a given minimum and maximum.
The catamorphism is nevertheless sufficiently surjective.Indeed,
we can take

• Sp = {s | size(s) < Kp}

• Mp((a, b, ς)) ≡ 1 + b− a ≥ Kp

where(a, b, ς) is the triple of the minimum, the maximum, and the
sortedness of the tree, as computed by the catamorphism. Here,Mp

essentially says that the range of values in the tree is sufficiently
wide, so that enough distinct trees mapping to(a, b, ς) can be
constructed. In conclusion, the catamorphisms that map trees into
lists, multisets, or sortedness property are also instances for which
our decision procedure is complete.

6. Related Work
One reason why we find our result useful is that it can leveragea
number of existing decidability results. In [5] the authorspresent
an abstract approach that can be used to obtain efficient strate-
gies for reasoning about algebraic data types (without abstraction
functions). For reasoning about sets and multisets one expressive
approach is the use of the decidable array fragment [11]. Opti-
mal complexity bounds for reasoning about sets and multisets in
the presence of cardinality constraints have been established in
[36, 56]. Building on these results, extensions to certain operations
on vectors has been presented in [40]. Reasoning about listswith
concatenation can be done using Makanin’s algorithm [41] and its
improvements [57]. A different class of constraints uses rich string
operations but imposes bounds on string length [8]. Researchers
have identified a number of laws in the area of manual program
derivation, including laws that relate trees, lists, bags,and sets [26].
The present paper can be viewed as a step towards automating some
of these laws. Another example in this direction is the combinatory
array logic [17], which supports map operations on arrays but does
not support the cardinality operator.

Our parameterized decision procedure is an example of an ap-
proach to combine logics (e.g. the logic of algebraic data types and
a logic of collections). Standard results in this field are Nelson-
Oppen combination [48]. Nelson-Oppen combination is not suffi-
cient to encode catamorphisms because the disjointness conditions
are not satisfied, but is very useful in obtaining interesting decid-
able theories to which the catamorphism can map an algebraicdata
type; such compound domains are especially of interest whenusing
catamorphisms to encode invariants. There are combinationresults
that lift the stable infiniteness restriction of the Nelson-Oppen ap-
proach [62, 30, 20] as well as disjointness condition subject to a
local finiteness condition [22]. An approach that allows theories
to share set algebra with cardinalities is presented in [65]. None

of these results by itself handles the problem of reasoning about
a catamorphism from the theory of algebraic data types. Thatsaid,
our canonical set abstraction of algebraic data types is a new BAPA-
reducible theory that fits into the framework [65].

A technique for connecting two theories through homomorphic
functions has been explored in [1]. We were not able to deriveour
decision procedure from [1], because the combination technique
in [1] requires the homomorphism to hold between two copies of
some shared theoryΩ0 that is locally finite, but our homomor-
phisms (i.e. catamorphisms) are defined on term algebras, which
are not locally finite.

Related to our partial evaluation of the catamorphism is thephe-
nomenon of local theory extensions [27], where axioms are instan-
tiated only to terms that already exist syntactically in theformula.
In our case of tree data types, the decision procedure must apply the
axioms also to some consequences of the formula, obtained using
unification, so the extented version of the local theory framework is
needed. Concurrently with our result, the machinery of local theory
extensions has been extended to certain homomorphisms in term
algebras [61], although without considering homomorphisms that
compute sets, multisets, or lists. We plan to investigate unifying the
results in [61] with our notion of sufficiently surjective abstraction.

The proof decidability for term powers [34] introduces homo-
morphic functions that map a term into 1) a simplified “shape”term
that ignores the stored elements and 2) the set of elements stored in
the term. However, this language was meant to address reasoning
about structural subtyping and not transformation of algebraic data
types. Therefore, it does not support the comparison of the set of
elements stored in distinct terms, and it would not be applicable to
the verification conditions we consider in this paper. Furthermore,
it does not apply to multisets or lists.

In [69] researchers describe a decision procedure for algebraic
data types with size constraints and in [43] a decision procedure for
trees with numeric constraints that model invariants of red-black
trees. Our decision procedure supports reasoning about notonly
size, but also the content of the data structure. We remark that [69]
covers also the case of a finite number of atoms, whereas we have
chosen to focus on the case of infinite set of elementsE . Term al-
gebras have an extensively developed theory, and enjoy manyde-
sirable properties, including quantifier elimination [42]; quantifier
elimination also carries over to many extensions of term algebras
[15, 34, 60, 69, 68]. Note that in examples such as multisets with
cardinality, we cannot expect quantifier elimination to hold because
the quantified theory is undecidable [55, Section 6].

Some aspects of our decision procedure are similar to folding
and unfolding performed when using types to reason about data
structures [29, 63, 50, 59, 66]. One of our goals was to under-
stand the completeness or possible sources of incompleteness of
such techniques. We do not aim to replace the high-level guidance
available in such successful systems, but expect that our results can
be used to further improve such techniques.

Several decision procedures are suitable for data structures in
imperative programs [38, 37, 45, 64, 47]. These logics alonefail
to describe algebraic data types because they cannot express ex-
tensional equality and disequality of entire tree data structure in-
stances, or the construction of new data structures from smaller
ones. Even verification systems reason about imperative programs
[3, 7, 31, 67] typically use declarative constructs and datatypes
within specification annotations. Our decision procedure extends
the expressive power of imperative specifications that can be han-
dled in a predictable way.

The SMT-LIB standard [4] for SMT provers currently does not
support algebraic data types, even though several provers support it
in their native input languages [6, 16]. By providing new opportu-
nities to use decision procedures based on algebraic data types, our

results present a case in favor of incorporating such data types into
standard formats. Our new decidability results also support the idea
of using rich specification languages that admit certain recursively
defined functions.

7. Conclusions
We have presented a decision procedure that extends the well-
known decision procedure for algebraic data types. The extension
enables reasoning about the relationship between the values of the
data structure and the values of a recursive function (catamorphism)
applied to the data structure. The presence of catamorphisms gives
great expressive power and provides connections to other decidable
theories, such as sets, multisets, lists. It also enables the compu-
tation of certain recursive invariants. Our decision procedure has
several phases: the first phase performs unification and solves the
recursive data structure parts, the second applies the recursive func-
tion to the structure generated by unification. The final phase is
more subtle, is optional from the perspective of soundness,but en-
sures completeness of the decision procedure.

Automated decision procedures are widely used for reasoning
about imperative programs. Functional programs are claimed to
be more amenable to automated reasoning—this was among the
original design goals of functional programming, and has been
supported by experience from type systems and interactive proof
assistants. Our decision procedure further supports this claim, by
showing a wide range of properties that can be predictably proved
about functional data structures.

References
[1] F. Baader and S. Ghilardi. Connecting many-sorted theories. In

CADE, pages 278–294, 2005.

[2] F. Baader and W. Snyder. Unification theory. InHandbook of
Automated Reasoning. Elsevier, 2001.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: An overview. InCASSIS: Int. Workshop on Construction and
Analysis of Safe, Secure and Interoperable Smart devices, 2004.

[4] C. Barrett, S. Ranise, A. Stump, and C. Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB).http://www.SMT-LIB.org ,
2009.

[5] C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure
for satisfiability in the theory of recursive data types.Electronic Notes
in Theoretical Computer Science, 174(8):23–37, 2007.

[6] C. Barrett and C. Tinelli. CVC3. InCAV, 2007.

[7] B. Beckert, R. Hähnle, and P. H. Schmitt, editors.Verification of
Object-Oriented Software: The KeY Approach. LNCS 4334. Springer,
2007.

[8] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis
for string-manipulating programs. InTACAS, pages 307–321, 2009.

[9] E. Börger, E. Grädel, and Y. Gurevich.The Classical Decision
Problem. Springer-Verlag, 1997.

[10] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing
based on Java predicates. InISSTA, 2002.

[11] A. R. Bradley and Z. Manna.The Calculus of Computation. Springer,
2007.

[12] R. Cartwright and M. Fagan. Soft typing. InPLDI, 1991.

[13] K. Claessen and J. Hughes. Quickcheck: a lightweight tool for
random testing of haskell programs. InICFP, pages 268–279, 2000.

[14] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M.Moskal,
T. Santen, W. Schulte, and S. Tobies. VCC: A practical systemfor
verifying concurrent c. InTPHOLs, 2009.

[15] H. Comon and C. Delor. Equational formulae with membership
constraints.Information and Computation, 112(2):167–216, 1994.

http://www.SMT-LIB.org

[16] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. InTACAS,
pages 337–340, 2008.

[17] L. de Moura and N. Bjørner. Generalized, efficient arraydecision
procedures. InFMCAD, 2009.

[18] J. Dunfield. A Unified System of Type Refinements. PhD thesis,
Carnegie Mellon University, 2007. CMU-CS-07-129.

[19] J. Dunfield and F. Pfenning. Tridirectional typechecking. In POPL,
pages 281–292, 2004.

[20] P. Fontaine. Combinations of theories and the Bernays-Schönfinkel-
Ramsey class. InVERIFY, 2007.

[21] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
DPLL(T): Fast decision procedures. InCAV, 2004.

[22] S. Ghilardi. Model theoretic methods in combined constraint
satisfiability. J. Automated Reasoning, 33(3-4):221–249, 2005.

[23] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and
D. Marinov. On test generation through programming in UDITA.
Technical Report LARA-REPORT-2009-05, EPFL, Sep. 2009.

[24] C. A. R. Hoare. Proof of correctness of data representations. Acta
Informatica, 1(4):271–281, 1971.

[25] W. Hodges.Model Theory, volume 42 ofEncyclopedia of Mathemat-
ics and its Applications. Cambridge University Press, 1993.

[26] P. F. Hoogendijk and R. C. Backhouse. Relational programming laws
in the tree, list, bag, set hierarchy.Sci. Comput. Program., 22(1-2),
1994.

[27] C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local
reasoning in verification. InTACAS, pages 265–281, 2008.

[28] J. Jaffar. Minimal and complete word unification.Journal of the
ACM, 37(1):47–85, 1990.

[29] M. Kawaguchi, P. M. Rondon, and R. Jhala. Type-based data structure
verification. InPLDI, pages 304–315, 2009.

[30] S. Krstić, A. Goel, J. Grundy, and C. Tinelli. Combinedsatisfiability
modulo parametric theories. InTACAS, 2007.

[31] V. Kuncak. Modular Data Structure Verification. PhD thesis, EECS
Department, Massachusetts Institute of Technology, February 2007.

[32] V. Kuncak, P. Lam, K. Zee, and M. Rinard. Modular pluggable
analyses for data structure consistency.IEEE Transactions on
Software Engineering, 32(12), December 2006.

[33] V. Kuncak, H. H. Nguyen, and M. Rinard. Deciding booleanalgebra
with presburger arithmetic.J. Automated Reasoning, 2006.

[34] V. Kuncak and M. Rinard. Structural subtyping of non-recursive
types is decidable. InLICS, 2003.

[35] V. Kuncak and M. Rinard. Decision procedures for set-valued fields.
In International Workshop on Abstract Interpretation of Object-
Oriented Languages, 2005.

[36] V. Kuncak and M. Rinard. Towards efficient satisfiability checking
for Boolean Algebra with Presburger Arithmetic. InCADE, 2007.

[37] S. Lahiri and S. Qadeer. Back to the future: revisiting precise program
verification using SMT solvers. InPOPL, 2008.

[38] S. K. Lahiri and S. Qadeer. Verifying properties of well-founded
linked lists. InPOPL, 2006.

[39] P. Lam, V. Kuncak, and M. Rinard. Generalized typestatechecking
for data structure consistency. InVMCAI, 2005.

[40] P. Maier. Deciding extensions of the theories of vectors and bags. In
VMCAI, 2009.

[41] G. Makanin. The problem of solvability of equations in afree
semigroup.Math. USSR Sbornik, pages 129–198, 1977. (In AMS,
(1979)).

[42] A. I. Mal’cev. Chapter 23: Axiomatizable classes of locally free
algebras of various types. InThe Metamathematics of Algebraic
Systems, volume 66. North Holland, 1971.

[43] Z. Manna, H. B. Sipma, and T. Zhang. Verifying balanced trees. In
LFCS, pages 363–378, 2007.

[44] J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part 1.Comm. A.C.M., 3:184–195, 1960.

[45] S. McPeak and G. C. Necula. Data structure specifications via local
equality axioms. InCAV, pages 476–490, 2005.

[46] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. InFPCA, volume
523 ofLNCS, 1991.

[47] A. Møller and M. I. Schwartzbach. The Pointer AssertionLogic
Engine. InProc. PLDI, 2001.

[48] G. Nelson and D. C. Oppen. Simplification by cooperatingdecision
procedures.TOPLAS, 1(2):245–257, 1979.

[49] G. Nelson and D. C. Oppen. Fast decision procedures based on
congruence closure.Journal of the ACM, 27(2):356–364, 1980.

[50] H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automated
verification of shape, size and bag properties via separation logic.
In VMCAI, 2007.

[51] M. Odersky, L. Spoon, and B. Venners.Programming in Scala: a
comprehensive step-by-step guide. Artima Press, 2008.

[52] C. Okasaki. Purely Functional Data Structures. Cambridge
University Press, 1998.

[53] D. C. Oppen. Reasoning about recursively defined data structures. In
POPL, pages 151–157, 1978.

[54] C. H. Papadimitriou. On the complexity of integer programming.
Journal of the ACM, 28(4):765–768, 1981.

[55] R. Piskac and V. Kuncak. Decision procedures for multisets with
cardinality constraints. InVMCAI, number 4905 in LNCS, 2008.

[56] R. Piskac and V. Kuncak. Linear arithmetic with stars. In CAV, 2008.

[57] W. Plandowski. Satisfiability of word equations with constants is in
PSPACE.Journal of the ACM, 51(3), 2004.

[58] J. A. Robinson. A machine-oriented logic based on the resolution
principle. J. ACM, 12(1), 1965.

[59] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI,
pages 159–169, 2008.

[60] T. Rybina and A. Voronkov. A decision procedure for termalgebras
with queues.ACM Transactions on Computational Logic (TOCL),
2(2):155–181, 2001.

[61] V. Sofronie-Stokkermans. Locality results for certain extensions of
theories with bridging functions. InCADE, 2009.

[62] C. Tinelli and C. Zarba. Combining nonstably infinite theories.
Journal of Automated Reasoning, 34(3), 2005.

[63] D. Walker and G. Morrisett. Alias types for recursive data structures.
In Workshop on Types in Compilation, 2000.

[64] T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. Field
constraint analysis. InVMCAI, 2006.

[65] T. Wies, R. Piskac, and V. Kuncak. Combining theories with shared
set operations. InFroCoS: Frontiers in Combining Systems, 2009.

[66] H. Xi. Dependently typed pattern matching.Journal of Universal
Computer Science, 9(8):851–872, 2003.

[67] K. Zee, V. Kuncak, and M. Rinard. Full functional verification of
linked data structures. InPLDI, 2008.

[68] T. Zhang, H. B. Sipma, and Z. Manna. The decidability of the
first-order theory of Knuth-Bendix order. InCADE, 2005.

[69] T. Zhang, H. B. Sipma, and Z. Manna. Decision proceduresfor term
algebras with integer constraints.Inf. Comput., 204(10):1526–1574,
2006.

[70] D. Zhu and H. Xi. Safe programming with pointers throughstateful
views. InPADL, 2005.

	Introduction
	Example
	Reasoning about Algebraic Data Types with Abstraction Functions
	Instances of our Decision Procedure

	The Decision Procedure
	Overview of the Decision Procedure
	Syntax and Semantics of our Logic
	Key Steps of the Decision Procedure
	Soundness of the Decision Procedure
	Complexity of the Reduction

	Completeness
	Canonical Set Abstraction
	Infinitely Surjective Abstractions
	Sufficiently Surjective Abstractions
	Application to Multisets, Lists, and Sortedness

	Related Work
	Conclusions

