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Abstract

We describe a family of decision procedures that extend &e d
cision procedure for quantifier-free constraints on ragaralge-
braic data types (term algebras) to support recursive adigin
functions. Our abstraction functions are catamorphisms(tal-
gebra homomorphisms) mapping algebraic data type values in
values in other decidable theories (e.g. sets, multisists, inte-
gers, booleans). Each instance of our decision proceduoriyfes
sound; we identify a widely applicable many-to-one comditon
abstraction functions that implies the completeness. Qet@n-
stances of our decision procedure include the followingesziness
statements: 1) a functional data structure implementatitisfies a
recursively specified invariant, 2) such data structurdaroms to a
contract given in terms of sets, multisets, lists, sizefieights, 3)

a transformation of a formula (or lambda term) abstractasyiree
changes the set of free variables in the specified way.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1¢gics and Meaning
of Program$: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Algorithms, Languages, Verification

1. Introduction

Decision procedures for proving verification conditionsédiaeen
great practical success in recent years. Systems usingisaigion
procedures incorporated into SMT provelrs] 16,16, 4] weral tse
verify tens of thousands of lines of imperative coflel [14, B3 a
prove complex correctness conditions of imperative datectres
[67,50]. While much recent work on automation was invested i
imperative languages, it is interesting (50 years alfel) [@4con-
sider the reach of such decision procedures when appliathte

the recognized benefits of theorem provers is efficient sugpo
propositional operators and arithmetic. Our paper revamsther
direction where theorem provers can play a prominent rae-c
plete reasoning about certain families of functions opegadn al-
gebraic data types.

We embrace a functional language both as the implementation
language and as the specification language. In fact, ouepiep
are expressed as executable assertions. Among the immbdiat
efits is that the developer need not learn a new notation fau-pr
erties. Moreover, the developers can debug the propentigshe
code using popular testing approaches such as Quickdh@fchrid
bounded-exhaustive testirig[10] 23]. In using the programgan-
guage as the specification language, our work is in line wth s
typing approaches that originated in untyped functionagjleges
[L2], although we use ML-like type system as a starting pdint
cusing on properties that go beyond the ML types.

Purely functional implementations of data structurésl [52]
present a well-defined and interesting benchmark for auteina
reasoning about functional programs. Data structures owitie
well-understood specifications: they typically implemendered
or unordered collections of objects, or maps between abjdct
express the desired properties of data structures, we néed a
rich set of data types to write specifications. In particutas de-
sirable to have in the language not only algebraic data tymets
also finite sets and multisets. These data types can be used-to
cisely specify the observable behavior of data structuriés tie
desired level of under-specificatidn_|32] 89] 18]. Faregle,
if neither the order nor the repetitions of elements in the tnatter,
an appropriate abstract value is a set. An abstract descript an
add operation that inserts into a data structure is then

a(add(e, t)) = {e} Ual(t) 1)

Herea denotes an abstraction function mapping a tree into the set

tional programming languages, which were designed with the ease of elements stored in the tree. Other variants of the spatitfic

of reasoning as one of the explicit goals. Researchers xglared
the uses of advanced type systems to check expressive fesper
[19,[686], and have recently also applied satisfiability modhe-
ory solvers to localized type system constraintd [29, 59hoAg
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can use multisets or lists instead of sets.

An important design choice is how to specify such mappings
between the concrete and abstract data structure valuespugp
approachl[14-87] does not explicitly define a mappingut in-
stead introduces a fregfnostvariable to represent the value$t).
It then uses invariants to relate the ghost variable to tmermete
value of the data structure. Because developers explisigeify
values of ghost variables, such technique yields simpliéication
conditions. However, this technique can impose additianalbta-
tion overhead—for the tree example above it would requipplu
ing a set as an additional argument to each algebraic dagactyp
structor. To eliminate this overhead and to decouple theifipe-
tion from the implementation, we use recursively definedralbs
tion functions that compute the abstract value for each redac
data structure. As a result, our verification conditionstaonuser-
defined function definitions that manipulate rich data typdsng



with equations and disequations involving such functi@ns. goal
is to develop decision procedures that can reason abouétitey
fragments of such a language.

We present decision procedures for reasoning about algebra
data types with user-defined abstraction functions expceas a
fold, or catamorphism$146], over algebraic data types s€lkeci-
sion procedures subsume approaches for reasoning abebtaily
data types[[593] and add the ability to express constrainth@ab-
stract view of the data structure. When using sets as theaabst
view, our decision procedure can naturally be combined déiti-
sion procedures for reasoning about sets of elements inéiseipce
of cardinality bounds[36.-33]. It also presents a new exanopla
theory that fits in the recently described approach for combi
decision procedures that share sets of elemEnts [65].

Our decision procedures are not limited to using sets as an
abstract view of data structures. The most important camdfor
applicability is that the notion of a collection has a debiéaheory
in which the fold can be expressed. This includes in pasicul
arrays [Tl], multisets with cardinality bounds_[55] 56]dagven
option types over integer elements. Each abstract valudda®
different possibilities for defining the fold function.

We believe that we have identified an interesting region é th
space of automated reasoning approaches, because th&techn
turned out to be applicable more widely than we had expebtied.
intended to use the technique to verify the abstraction lfegaof
functional data structures using sets. It turned out treafiproach
works not only for sets but also for lists and multisets, anene
for abstractions that encode the truth-values of data tstreign-
variants. Beyond data structures used to implement setsapd,
we have found that computing bound variables, a common epera
tion on the representations of lambda terms and formuleases
amenable to our approach. We thus expect that our decis@n pr
cedure can help increase the automation of reasoning apetda-o
tional semantics and type systems of programming languages

Contribution. This paper presents a family of decision proce-
dures for the quantifier-free theory of algebraic data typids dif-
ferent fold functions (sectioid 4 aiibl 5). We establish thimdness

of the decision procedures, and provide sufficient conaition the
fold function that guarantee the completeness of the detjwioce-
dure (Sectiofid5). The intuition behind the completenesslitiom

is to require the inverse image of the fold to have sufficielaitge
cardinality for sufficiently large abstract values (Secfn3). We
list several examples of interest that satisfy this cooditi

2. Example

Figure[l shows Scal&[b1] code for a partial implementatiba o
set of integers using a binary search tree. The class higrarc

sealed abstract class Tree
private case class Leaf() extends Tree
private case class Node(left:Tree, value:E, right:Tree) extends Tree

describes an algebraic data typece with the alternativeNode
andLeaf. The use of therivate keyword implies that the alterna-
tives are not visible outside of the modB&TSet. The keyword

sealed means that the hierarchy cannot be extended outside of the

module. The modul8STSet provides its clients with functions to
create empty sets and to insert elements into existingBetause
the client has no information on the typeee, they use the abstrac-
tion function content to view these trees as sets. The abstraction
function is declared like any other function and is execlatabut
we assume that it obeys a syntactic restriction to make éeafold,
as described in the next section.

Functionsempty andadd are annotated with postconditions on
which the client can rely, without knowing anything abougith

object BSTSet {
type E = Int
type C = Set[E]
sealed abstract class Tree
private case class Leaf() extends Tree
private case class Node(left: Tree, value: E, right: Tree)
extends Tree

// abstraction function
def content(t: Tree): C = t match {
case Leaf() = Set.empty
case Node(l,e,r) = content(l) ++ Set(e) ++ content(r)

}

// returns an empty set
def empty: Tree = {
Leaf()
} ensuring (res = content(res) == Set.empty)

// adds an element to a set
def add(e: E, t: Tree): Tree = (t match {
case Leaf() = Node(Leaf(), e, Leaf())
case t @ Node(l,v,r) =
if (e < v) Node(add(e, 1), v, r)
else if (e==v) t
else Node(l, v, add(e, r))
}) ensuring (res = content(res) == content(t) ++ Set(e))

// user—defined equality on abstract data type (congruence)
def equals(tl : Tree, t2 : Tree) : Boolean =
(content(tl) == content(t2))

Figure 1. A part of a binary search tree implementation of a set

concrete implementation. These postconditions do notayiyen-
formation about the inner structure of binary search tresseh in-
formation would be useless to a user who has no access tdéhne
nal structure. Instead, the postconditions express pliep@n their
result in terms of the abstraction function. The advantafesich
an abstraction mechanism are well-known. By separatingjbe-
ification (functions signatures and contracts) from thelemgnta-
tion, developers obtain better opportunities for codeeensanual
proofs become simplef[24], and automated analysis of tsliee-
comes more tractablE]32].

The parametrized typBet[E], accessed through the type alias
C and used in the abstraction function and the specificatrefers
to the Scala library class for immutable sets. The operat@om-
putes a set consisting of the union of two sets, and the aatetr
Set(e) constructs the singleton sé¢} (containing containing the
element). We assume the implementation of the container library
to be correct, and map the container operations fg-yto the cor-
responding ones in the mathematical theory of finite sets (8.
when we reason about the programs.

The advantages of using an abstraction function in speeifica
tions are numerous, but they also require verification systenat
can reason about these user-defined functions—thesednsetp-
pear in contracts and therefore in verification conditid¢is.exam-
ple, consider the functioadd in Figure[l and apply the standard
technique to replace recursive function call with the fimrcicon-
tract. The result is a set of verification conditions inchgl{among
others) the condition:

n

Vt17t27t37t4 : Tree, €1,€2 : Int
t1 = Node(tQ, 61,t3) =
content(t4) = content(t2) U {e2} =
content(Node(t4, e1,t3)) = content(t1) U {e2}

)



Figure 2. lllustration of [@), where edges labeled ly denote
applications of theontent abstraction function

This formula is graphically represented in Figlile 2. It camab
constraints over algebraic data types and over finite setgekhas a
non-trivial connection given by the recursively definedtedugion
function content. It is therefore beyond the reach of currently
known decision procedures. In the following sections, vespnt a
new decision procedure which can handle such formulas.

3. Reasoning about Algebraic Data Types with

Abstraction Functions

Decision procedures for reasoning about algebraic datstiss,

[5] are concerned with proving and disproving quantifieeffer-
mulas that involve constructors and selectors of an algebiaa
type, such as the immutable version of heterogeneousHi&tsSiP.
They generalize the unification algorithms used in theoreswipg
[58] and Hindley-Milner type inference. Using the termiogy of
model theory, this problem can be described as the satigfjadi
quantifier-free first-order formulas in the theorytefm algebras
[25, Page 14, Page 67]. A term algebra structure has as a ”lomai
of interpretation ground terms over some set of functionlsyls)
calledconstructors The language of term algebras includes appli-
cation of constructors to build larger terms from smalleesrand
the only atomic formulas are comparing terms for equality.

In this paper, we extend the decision procedure for such alge
braic data types with the ability to specify abstract valueof
the data type. The abstract value can be, for example, aetat, r
tion, multiset (bag), or a list. A number of decision procexfuare
known for theories of such abstract valdes [36 56 55, 4D &h
values purposely ignore issues such as tree shape, ordarieen
the exact number of times an element appears in the dataustuc
In return, they come with powerful algebraic laws and degilda
ity properties that are often not available for algebraitadgpes
themselves, and they often provide the desired amount aéreind
specification for interfaces of data structures. The degigproce-
dures we describe enable proving formulas that relate data-s
tures implemented as algebraic data types to their abstahots
that specify the observable behavior of these data typesy Gan
thus increase the automation when verifying correctnedsraf-
tional data structures.

3.1 Instances of our Decision Procedure

Our decision procedures for different fold functions felldhe
same pattern, so we talk about them as instances of one generi
decision procedure. The choice of the type of data storethén t
tree in each decision procedure instance is largely unnst;

the procedures work for any infinitely countable parameéeti
data type, which we will denote hg in our discussion (it could

be extended to finite data types using techniques fforh [J0ig.
decision procedure is parameterized by 1) an elementdy2¢ a
collection typeC, and 3) an abstraction functien(generalizing the

object Lambda {
type ID = String
type C = Set[String]

sealed abstract class Term

case class Var(id: ID) extends Term

case class App(fun: Term, arg: Term) extends Term
case class Abs(bound: ID, body: Term) extends Term

def free(t: Term): C = t match {
case Var(id) = Set(id)
case App(fun, arg) = free(fun) ++ free(arg)
case Abs(bound, body) = free(body) -~ Set(bound)

H

Figure 4. Computing the set of free variables in\ecalculus term

content function in FigurddLl). We require the abstraction function
to be a catamorphism (generalized fold)l[46]. We focus orctse
of binary trees, so we require an abstraction function ofohe

def a(t: Tree): C = t match {
case Leaf() = empty
case Node(l,e,r) = combine(a(l), e, a(r))

for some functionempty : C andcombine : (C,&,C) —C.

Figure[3 summarizes some of the instances of our decision
procedure. It shows the type of the abstract valughe definition
of the functionempty andcombine that define the catamorphism,
some of the operations available on the lodle of C values,
and points to one of the references that can be used to show the
decidability of L¢. (The decision procedure falc is invoked as
the last step of our decision procedure.) Fiddre 3 showsdhat
decision procedure covers a wide range of collection attitres
of interest, as well as some other relevant functions defénad
folds. We describe some of these cases in more detail.

Set Abstractions. Thecontent function in Figurddl is an example
of a fold used as an abstraction function. In this casgty = 0
andcombine(t1, e,t2) = ¢1 U {e} U c2. We found this example
to be particularly useful and well-behaved, so we refer tsithe
canonical set abstraction

The canonical set abstraction is not the only interestirsgrab-
tion function whose result is a set. Figlile 4 shows anothemgie,
where the foldfree computes a set by adding and removing ele-
ments as the tree traversal goes. Such abstraction furgatiothen
be used to prove that, e.g., a rewriting step ok-e@alculus term
does not increase the set of free variables in the term.

Abstractions using Multisets and Lists. A set abstracts both the
order and the multiplicity (the number of occurrences) efents
in the data structure. A more precise abstraction is a netiiisag)
(Figure[3), which preserves the multiplicity. Moreovere tteci-
sion procedure for multisets [65.156] supports an abstradtinc-
tion that abstracts a multiset into the underlying set, Wiginables
simultaneous use of trees, multisets and sets in the sam#ispe
cation, giving a decision procedure for an interesting riragt of
the tree-list-bag-set hierarcHy|26]. Even more precisgrabtions
of trees use lists, supporting any chosen traversal ortey; tte-
duce to the decision procedure for the theory of lists (wWovdth
concatenatior[ [87].

Minimal Element. Some useful abstractions map trees into a
guantity rather than into a collectiofindMin in Figure[® for
instance is naturally expressed as a fold, and can be usedvue p
properties of data structures which maintain invariantsuatthe
position of certain particular elements (e.g. priority aes).



C empty | combine(cy, e, c2) abstract operations complexity | follows from
(apart froma, -, =)
Set [ a1 U{etUcy U, N, \, cardinality NP [36]
Multiset [ crWi{el Weo N, U, \, W, setof, cardinality NP 55, 56
N 0 c1+1+co (size) +,< NP
N 0 1 + max(c1, c2) (height) +,< NP
List List() a) ci++ List(e)++co  (in-order) ++(concal, List(-)(singletor) | PSPACE
List() b) List(e)++ci++c2  (pre-order)
List() c) ci++ co++ List(e)  (post-order)
Tree Leaf Node(c2,e,c¢1)  (mirror) Node, Leaf NP
Option None a) Some(e) Some, None NP
None b) (computing minimum) see Figurly Some, None, +, <, if NP 48 149, B4
(Option, (None,
Option, None, | ¢) (checking sortedness) see Figur€le
Boolean) true)

Figure 3. Example Instances of our Decision Procedure for Differeata@orphisms

object MinElement {
type E = Int

sealed abstract class Tree
case class Node(left: Tree, value: E, right: Tree) extends Tree
case class Leaf() extends Tree

def findMin(t: Tree): Option[E] = t match {
case Leaf() = None
case Node(l,v,r) =
(findMin(1),findMin(r)) match {
case (None,None) = Some(v)
case (Some(vl),None) = Some(min(v, vl))
case (None,Some(vr)) = Some(min(v, vr))
case (Some(vl),Some(vr)) = Some(min(v, vl, vr))

1}

Figure 5. Using the minimal element as an abstraction

object SortedSet {
type E = Int

sealed abstract class Tree
case class Leaf() extends Tree
case class Node(left: Tree, value: E, right: Tree) extends Tree

def sorted(t: Tree): (Option[Int],Option[Int],Boolean) =
t match {
case Leaf() = (None, None, true)
case Node(l, v, r) = {
(sorted(l),sorted(r)) match {
case ((-,_ false),_) = (None, None, false)
case (_,(-,false)) = (None, None, false)
case ((None,None,_),(None,None,_)) =
(Some(v), Some(v), true)
case ((Some(minL),Some(maxL),-),(None,None,_))
if (maxL < v) = (Some(minL),Some(v),true)
case ((None,None,.),(Some(minR),Some(maxR),_))
if (minR > v) = (Some(v), Some(maxR), true)
case ((Some(minL),Some(maxL),_),
(Some(minR),Some(maxR),_))
if (maxL < v && minR > v) =
(Some(minL),Some(maxR),true)
case _ = (None,None,false)

1}

Figure 6. A fold that checks that a tree is sorted

Sortedness of Binary Search TreesFold functions can also com-
pute properties about tree structures which apply to thepteta
set of nodes and go beyond the expression of a containemins ter
of another. Figurgl6 shows the abstraction functiened which,
when applied to a binary tree, returns a triple containingveel
and upper bound on the set of elements, and a boolean imdjcati
whether the tree is sorted. Although alternative specitinat of
sortedness are possible, this one directly conforms toatime 6f a
fold function; at the same time it is efficiently executable.

The code in Figurgl6 allows for trees with repeated elements.
By replacing the occurrences ¢f by the stricter< we obtain the
definition of sorted trees with distinct elements, which e&so be
handled by our decision procedure (the strict inequalitpgiout
to be a more complicated instance of the decision proceders,
SectioTRB).

This example also illustrates fold functions that returtuples,
which is a useful strategy to represent multiple mutualtursive
functions. We will therefore assume that we work with a sérfgld
function in our decision procedure.

4. The Decision Procedure

To simplify the presentation, we describe our decision edoce
for the specific algebraic data type of binary trees, coordng
to the case classes in Figlile 1. The procedure naturallpdxte
data types with more constructors.

If t1 andt2 denote values of typ@&ree, by t; = ¢> we denote
that¢; andt, are structurally equal that is, either they are both
leaves, or they are both nodes with equal values and equaéssb

As far as soundness is concerned, we can leave the collection
type C and the languagé€. of decidable constraints an largely
unconstrained. As explained in Sect[dn 5, the conditions6on-
pleteness are relatively easy to satisfy when the imageetsgthey
become somewhat more involved for e.g. multisets and lists.

In our exposition, we use the notation

L) I?(n))

as a syntactic shorthand for the following conjunction cfedjual-
ities

P 1 1 1 . .on
distinct(z1, 2, ..., T1(1); -+ 5015 -

noom IOIG)
A N N Nwi#
i=1j=i+1k=11=1

For exampledistinct(x, y; z) meansz # z Ay # z, whereas
distinct(z1; . . .; z») means that alk; are different.



For a conjunctionp of literals over the theory of trees parametrized

by [/C anda: IINOde(Th €, T2) = NOde( IITl]L [[e]]C7 HTQH)
o . [Leaf] = Leaf
1. apply purification to separaeinto ¢+ A ¢ A ¢ Where: [left(Node(T1,e,1%))] = [Ti]
e ¢, contains only literals over tree terms [right(Node(T1,e,72))] = [72] _
. v literal ¢ [ex(t) given by the catamorphism
e ¢¢ contains only literals over terms frofc [=T] = [0 =[]
e ¢p contains only literals of the form = «(t) wherec is a [T #T2] = [T] # [12]
variable from£¢ andt is a tree variable [Ci=C] = [Ci]. =[C],
2. flatten all terms and eliminate the selectefs andright E[[}-; - [[;%C
3. apply unification on the tree terms, detecting possibfatisfi- [o1x 2] = [é1] * [¢2]
ability within the term algebra theory wherex € {V, A, =, &}
4. if unification did not fail, project the constraints ondrerms
obtained from unification to the formulgc in the collection Figure 9. Semantics of the parametric logic

theory, yielding a new formulag

5. establish the satisfiability @f with a decision procedure fdi¢

X , terms of L when the tree terms occur as arguments of the abstrac-
applied top

tion functiona. It therefore suffices to replace all such applications
by fresh variables of ¢ and add the appropriate binding equalities
to the formula:

Fe ~ te=T Nce=al(te) ANFela(T) — cF

Figure 7. Overview of the decision procedure

= t| Leaf| que(T, E.T) Tree terms In the rewrite rule abovel’ denotes any tree termay andtr are
| left(T") | right(T") fresh in the new formula.
C == clat)|Z C-terms ) ) .
Fr = T=T|T#T Equations over trees Flattening of Tree Terms. We then flatten tree terms in a straight-
Fo == C=C|Fc Formulas ofCc forward way. Ift and ¢t denote tree variableq; and 7> non-
E == variables of type& variable tree terms ariff an arbitrary tree term, we repeatedly ap-
¢ == AFrAA\Fo Conjunctions ply the following five rewrite rules until none applies- (denotes
Y = ¢|-p|oVe|dAD Formulas one of {=, #}):
lo=0d|d= ¢ T = Node(Ty, E,T2) ~ tr =Ty AT = Node(tr, E, T>)
7c and F¢ represent terms and formulas 6§ respectively. For- T = Node(t, !, T2)  ~  tp =T> AT = Node(t, E, tr)
mulas are assumed to be closed under negation. T =left(T1) ~ te=T1 AT = left(tr)
T =right(Th) ~ te=T1 AT = right(tr)
Figure 8. Syntax of the parametric logic To=t ~ t=1T,
t#£Tr ~ te=TiNt#te
4.1 Overview of the Decision Procedure wheretr is always a fresh variable. It is straightforward to see that
FigurelT gives a high-level summary of the decision procediir this rewriting always terminates.
solves the constraints over trees using unification, theeteall Elimination of Selectors. The next step is to eliminate terms of
relevant consequences on the tgpef collections that abstrapts the the formleft(t) andright(t). We do this by applying the following
trees. In this way it reduces a formula over trees and theirratt rewrite rules:

Lc-values to alc .formula, for Which a decisiqn. procedure is t = left(t1) ~ 1 = Node(fL, e, tr) At =t
assumed to be available. We next define our decision problera m —right(f1) ~ &1 — Node(tL. e, tR) At =

precisely, then present the core steps of our decision gureeand ghtita ! b &R R

show its soundness. Sectibh 5 provides remaining subits ste Here we use an assumption that the original formula was well-
the decision procedure and proves its completeness fortaicer  typed, which ensures that selectors are not applidces6 nodes.

class of abstraction functions. Again, e, t, andtr denote fresh variables of the proper types.
) ) These first three steps yield a normalized conjunctive féamu
4.2 Syntax and Semantics of our Logic where all literals are in exactly one of following three cgiges:

Figure[d shows the syntax of our logic. FigUle 9 describes its 4 |iterals over tree terms, which are of one of the followingTis:
semantics. The description refers to the catamorphismas well

as the semantics |, of the parameter theorc. t1 =12, t=Node(ts, E,t2), 11 #t2
(Note that disequalities are always between variables.)
¢ binding literals, which are of the form:

4.3 Key Steps of the Decision Procedure
We describe a decision procedure for conjunctions of liseira

our parametric theory. To lift the decision procedure tarfolas c=a(t)
of arbitrary boolean structure it suffices to apply the DPLL(
approach[l24]. e literals over terms ofZc, which do not contain tree variables

or applications ofy, and whose specific form depends on the

Purification. In the first step of our decision procedure, we sepa- parameter theorgc.

rate the conjuncts of our formula into literals over treertgion one
side, literals ofC¢ on the other side, and finally the literals contain- Case Splitting. For simplicity of the presentation, we describe
ing the catamorphism to connect the two sides. By the synftax o our procedure non-deterministically by splitting the demn prob-

formulas, a literal in the formula can only combine tree termith lem into a collection of problems of simpler structure (this



Trivial:
TZTUP;S
P S
Symbol Clash:
Leaf=Node(...)UP’;S Node(...)=LeafUP'; S
I I

Orient:
{(nZtyuP,;s
#<nyupr;s

Occurs Check:

{(t<TIuP; S
1

if T4 is not a variable

if t appears " butt # T

Term Variable Elimination:
(<130 P;S
Plt—T|;St—TIU{t=T}
Element Variable Elimination:
{e1 ;62} upP;S
P'ler — ez]; S[er — e2] U{e1 = e2}

if ¢t does not appear i

Decomposition:
{Node(T1, e, T>) = Node(T7, ¢/, T5)} U P'; S
(ET T ET) et U P S

Figure 10. Unification Rules

is a non-deterministic polynomial process). Consider te¢ s
{t1,...,tn, Leaf} of tree variables appearing in the normalized
formula, augmented with the constant telceaf. We solve the de-
cision problem for each possible partitioning of this séb iequiva-
lence classes. Let denote an equivalence corresponding to such a
partitioning. We generate our subproblem by adding to tigral
problem, for each pair of term&7, 7;) in the set, the constraint
T, = T; if T; ~ T;, andT; # T} otherwise. Consider now the set
{e1,...,en} of variables denoting elements of tyfe We again
decompose our subproblem according to all possible pariitgs
over this set, adding equalities and disequalities forailigie;, e; )

in the same way as for tree variables. The original problesais
isfiable if and only if any of these subproblems is satisfialblee
remaining steps of the decision procedure are applied to st
problem separately.

Unification. At this point, we apply unification on the positive
tree literals. Following[[R], we describe the process ugifgrence
rules consisting of transformations @ystemsA system is the
pair, denotedP; S, of a setP of equations to unify, and a set
S of solution equations. Equations range over tree variahiebs
element variables. The special systdmrepresents failure. The
set of equationsS has the property that it is of the forft, =
Ti,...,tn = Tn,e1 = é€4,...,em = e;}, Where each tree
variablet; and each element variabte on the left-hand side of
an equality does not appear anywhere elsg.isuch a set is said
to be insolved formand we associate to it a substitution function
os. Overtree terms, itis defined by = {t — T'| (t =T) € S}.
The definition over element variables is similar. The infieerules
are the usual rules for unification adapted to our partictdae, and
are shown in FigurgZ10.

Any algorithm implementing the described inference system
will have the property that on a set of equations to unify, il w

either fail, or terminate with no more equations to unify amd
system; S describing a solution and its associate functign

If for any disequalityt; # t; or e; # ej;, we have that
respectivelyos(t;) = os(t;) or os(ei) = os(e;), then our
(sub)problem is unsatisfiable. Otherwise, the tree coinssrare
satisfiable and we move on to the constraints on the colletyize
C.

Normal Form After Unification. After applying unification, we
can represent the original formula as a disjunction of fdasu
in a normal form. Letos be the substitution function obtained
from unification. Leti be the vector ofs variablest; for which
os(t;) = t;; we call such variableparameter variablesLet

4 denote the vector of the remaining tree variables; for these
variableos (u;) is an expression built frorivariables usingNode
and Leaf, they are thus uniquely given as a function of parameter
variables. By the symbal; we denote a term variable that is either
a parameter variable or a non-parameter variable. Using this
notation, we can represent (a disjunct of) the original fdiain the
form:

i =T# AN(@, 1) AM(@,1,8) A Fg A Fo 3)
where

1. T are vectors of expressions in the language of algebraic data
types, expressing non-parameter term variahlés terms of
the parameter variables

2. N(i,t) denotes a conjunction of disequalities of term variables
u;, t; that, along withT’, completely characterize the equalities
and disequalities between the term variables. Specifjcally
contains:

(a) a disequalityt; # t; for every pair of distinct parameter
variables;

(b) a disequalityt; # u; for every pair of a parameter variable
and a non-parameter variable for which the t&frti) is not
identical tot;

(c) adisequalityt; # Leaf for each parameter variable

Note that for the remaining pairs of variables and u;, ei-
ther the equality holds and;(f) = 7y(t) or the disequal-
ity holds and follows from the other disequalities and the
fact that 7; # 7T;. Note that, if ¢ = wi,...,un and
{'=t1,...,tn, then the constrain¥ (, ¢) can be denoted by
distinct(u1, .. ., Um;t1;. .. ;tn; Leaf);

3. M (4,1, &) denotes a conjunction of formulas= a(v;) where
v; IS a term variable and; is a collection variable;

4. Fg is a conjunction of literals of the form;, = e; ande; # e;
for some element variables, e;;

5. F¢ is a formula of the logic of collections (Figu® 8).

Partial Evaluation of the Catamorphism. We next partially eval-
uate the catamorphism with respect to the substitutioms ob-
tained from unification. More precisely, we repeatedly gpple
following rewriting on terms to terms contained in the subfala
M(i, T, 0):

o(u) ~ afos(u)
a(Node(t1,e,t2)) ~ combine(a(t1), e, a(t2))
a(Leaf) ~  empty

After this transformationo applies only to parameter variables.
We introduce a variable; of L¢ to ensure that for each parameter
t; we have an equality of the formy = «/(¢;), unless such con-
junct is already present. After adding conjunets= «(t;) we can
replace all occurrences af(¢;) with ¢;. We can thus replace, with-



out chjinging the satisfiability of the formuld (3), the subfala
M (d,t, ¢) with
M (£,6) A F&

whereM?! contains only conjunctions of the form = «(t;) and
Flis aformula inZc.
ExampleThis is a crucial step of our decision procedure, and we
illustrate it with a simple example. I = T’(F) is simply the
formulau = Node(t1, e, t2), then a possible formul®/ is

distinct(t1; t2; u; Leaf)

A possible formulaM is ¢ a(u) A i = «aftr). After the
partial evaluation of the catamorphism and introducingaide c;
for a(t2), we can replac@/ with

c1 = at1) A ez = at2) A c = combine(ci, e, c2)

where we denote the first two conjunctsia/ (c1, c2) and the third
conjunct byF}. (Here,combine is an expression ifi¢c defining the
catamorphism.)

Normal form After Evaluating Catamorphism. We next replace
@ by T'(#) in @) and obtain formula of the form

DAE (4)

where
1D = N(T(1),1) A M'(t,¢)
2.E = FgANFc ANF}

Expressing Existence of Distinct Terms.Note that £ already
belongs to the logic of collectiodc. To reduce[[l) to a formula
in L¢, it therefore suffices to have a mapping frdito someLc-
formulaD,,. Observe that by usingue as D, we obtain a sound
procedure for proving unsatisfiability. While useful, sycbcedure
is not complete. To ensure completeness, we requirelthand
Dy are equisatisfiable. The appropriate mapping florno D
depends oiL¢, and the properties af. In Sectior b we give such
mappings that ensure completeness for a number of ldicand
catamorphisms.

Invoking Decision Procedure for Collections. Having reduced
the problem to a formula id¢ we invoke a decision procedure for
Le.

4.4  Soundness of the Decision Procedure

We show that each of our reasoning steps results in a logicall
sound conclusion. The soundness of the purification anefiiaig
steps is straightforward: each time a fresh variable i®éhiced, it

is constrained by an equality, so any model of the originahfda
will naturally extend to a model for the rewritten formula ian
contains additional fresh variables. Conversely, therigtgin of
any model for the rewritten formula to the initial set of \&bies
will be a model for the original formula.

Our decision procedure relies on two case splittings. Wé wil
give an argument for the splitting on the partitioning ofetnari-
ables. The argument for the splitting on the partitioningaftent
variables is then essentially the same. Let us ¢alhe formula
before case splitting. Observe that for each partitionihg,result-
ing subproblem contains a strict superset of the consgrainthe
original problem, that is, each subproblem is expressibla #or-
mula¢ A 1, wherety) does not contain variables not appearing in
¢. Therefore, if, for any of the subproblems, there exists aeho
M such thatM = ¢ A 9, thenM = ¢ and M is also a model
for the original problem. For the converse, assume theendst of
a modelM for the original problem. Construct the relatienover
the tree variables, . . ., t,, of ¢ as follows:

tivt; <= MEt =t

Clearly,~ is an equivalence relation and thus there is a subproblem
for which the equality over the tree variables is determibgd-.

It is not hard to see thatt is a model for that subproblem. It is
therefore sound to reduce the satisfiability of the main jemkto

the satisfiability of at least one of the subproblems.

Our unification procedure is a straightforward adaptatiomfa
textbook exposition of the algorithm and the soundnessnaegis
can be lifted from therd ]2, Page 451].

The soundness of the evaluationcofollows from its definition
in terms ofempty and combine. Introducing fresh variables;
in the form of equalitiess; = «(t;) is again sound, following
the same argument as for the introduction of tree variahleingl
flattening. The subsequent replacement of terms of the &)
by their representative variable is sound: any model for the
formula without the terma.(¢;) can be trivially extended to include
a valuation for them. Finally, the replacement of the tretatdes
i by the term&l'(Z) is sound, because unification enforces that any
model for the formula before the substitution must have Hraes
valuation foru,; and the corresponding teriy. Therefore, there is
a direct mapping between models for the formula before aredt af
the substitution.

4.5 Complexity of the Reduction

Our decision procedure reduces formulas to normal form im no
deterministic polynomial time because it performs guesses
equivalence relations on polynomially many variablessttine uni-
fication algorithm, and does partial evaluation of the catigohism

at most once for each appropriate term in the formula. Thaaed
tion is therefore in the same complexity class as the pureryhe
of algebraic data typeKI[5]. In addition to the reductiom, therall
complexity of the decision problem also depends on the ftamu
Dy, and on the complexity of solving the resulting constraints
the collection theory.

5. Completeness

We next describe the the strategy for computing the fornidila
from Sectio¥ for a broad class of catamorphisms. We praafeeth
computation following our strategy results in a sound emhplete
overall decision procedure.

5.1 Canonical Set Abstraction

We first give a complete procedure for the canonical setadtsbn,
where( is the structure of all finite sets with standard set algebra
operations, and is given by

empty = ()

combine(ci,e,c2) =c1 U{e} Uea

Observations abou. Note that, for each term## Leaf, a(t) #
(. Lete € £ and consider the sé&t = o' ({e}) of terms that map
to {e}. ThenS is the set of all non-leaf trees that havas the only
stored element, that, iS, is the least set such that

1. Node(Leaf, e, Leaf) € S, and
2. t1,t2 € S — Node(tl,e,tg) cS.
Thus,a™'({e}) is infinite. More generallyn ™" (¢) is infinite for

everyc # (), because each tree that maps into a one-element subset
of ¢ extends into some tree that maps into

Expressing Existence of Distinct Terms using SetsWe can now
specify the formulaDy, that is equisatisfiable with the formula

in @).



Definition 1. If ¢4, . .., ¢, are the free set variables iP, then (for
theoryC and«a given above) defin®,, as

/7\61' 75@
i=1

To argue why this simple choice @¥,; gives a complete deci-
sion procedure, we prove the following.

Lemma 2. Let D, be a conjunction of disequalities of terms built
from tree variables, . . ., t,» and symbolsVode, Leaf. Suppose
that Dy does not contain a trivial disequality” £ T for any
termT. If A1,..., A, are sets of trees such that;| > n for

all 1 < j < m,thenDy has a satisfying assignment such that for
eachy, the valuet; belongs toA;.

Proof. We first show that we can reduce the problem to a simpler
one where the disequalities all have the farm# T, then show
how we can construct a satisfying assignment for a conjonaif
such disequalities.

We start by rewriting each disequalify # T;’ in the form:

A ta=Caltaty-- s taky)
N

where the conjunction of equalities is obtained by unifyihg
termsT; andT;’. The conjunction is non-empty because the state-
ment of the lemma assumes thatand7;” are not syntactically
identical. Here, the expressions of the fofiiita, . . ., tqx, ) de-
note terms built usindlode, Leaf and the variables,1, . .., tak,,
where each of the variables appears at least once in the Adten.
applying this rewriting to all disequalities and convegtihe result-

ing formula to disjunctive normal form, we obtain a problehthe
form

\/le/\...ALm

Note that in each conjunction, there is exactly one conjuict
the formt¢, # Ca(ta1,...,tax,) for each of then disequalities
T; # T; of the original problem. Notice as well that each vari-
ablet, can be on the left-hand side of several disequalities in the
same conjunction. From the form of the equations obtain@tjus
unification, we know that the set of variablfls,1, . . ., tax, } never
containgt,. This formula is logically equivalent to the original one
from the statement of the lemma. To show that it is satisfjalée
pick an arbitrary disjunct and show that it is satisfiable.

We construct a satisfying assignment for such a conjuneton
follows. For the first step, we start by collecting the #etof all
disequalities of the form; # T, whereT is a ground term. We
pick for ¢; a valueT; in A; different from all suchT’s. This is
always possible because thereamdisequalities in the conjunction
and|A:| > n. We substitute in the entire formuld instead oft; .
Becauset; cannot appear on both left and right-hand side of an
equation, in the resulting formula, all ground disequeditresult
from the grounding of the disequalities i and reduce tarue.
We eliminate the disequalities &f; from the set of disequalities.

Forallindicesj € {2, ..., m} do the following. Collect the set
P; of all disequalities of the form; # 7" andT # C(¢;) (in the
second form(’'(¢;) denotes a term built witheaf, Node, at least
one occurrence af;, and no other variable). There are clearly no
more tham such disequalities i?;. For each of these disequality
literals L, there isat mostone valuev;, for ¢; which contradicts it:
it is either the ground terrfi’ or its subterm. Becausel,;| > n,
there exists a terff; € A; \ {v]},. SubstituteT; instead of
t; in the entire conjunction. This ensures that all disediesliin
P; hold. Remove the disequalities iy from the conjunction. We
then proceed with; ;. The procedure terminatesin steps with

an assignment mappirtg to 7; for 1 < j < m. Moreover, at this
point there are no ground equations left and no variabl¢ssiefall
conjuncts have been eliminated and satisted.

Remark. Lemmad2 above is a strengthening of the Independence
of Disequations Lemmd_[15, Page 17&[.1[42]. Namely, theestat
ment in [I5, Page 178] requires the sdtsto be infinite, whereas
we showed above (using a new, more complex proof) that itssfi

for A; to have more elements than there are disequalities. Wleile th
original weaker version suffices for Lemiida 3, we need oungto
statement in Sectidn3.3.

Lemma 3. For C denoting the structure of finite sets andyiven
as abovedt.D is equivalent taD ;.

Proof. Leti beti,...,t,. Fix valuesci,...,c,. We first show
3i.D implies Dy;. Pick valuesti, ..., t, for which D holds.
Thent; # Leaf holds because this conjunct is in. Therefore,
a(t;) # 0 by the above observations abeutBecause:; = a(t;)
is a conjunct inD, we concludec; # (). Therefore,Dy, holds as
well.

Conversely, suppos®,, holds. This means that; # () for
1<i<n.letA; =a '(¢)forl <i<n.Thenthe setsl; are
all infinite by the above observations abeutBy Lemma[® there
are values; € A; for 1 < i < n such that the disequalities
in N(7'(),%) hold. By definition of A;, M'(,&) is also true.
Therefore,D is true in this assignmeni.

Complexity for the Canonical Set Abstraction.We have ob-
served earlier that the reduction £@ is an NP process. There are
several decision procedures that support reasoning abtsubsel-
ements and support standard set operations. One of the imaxst d
approaches to obtain such a decision procedulie [35] is tarusa-
coding into first-order logic, and observe that the resglformu-
las belong to the Bernays-Schonfinkel-Ramsey class ofdidgr
logic with a single universal quantifier. Checking satisfigbof
such formulas is NP-completél [9]. It is also possible to rdtehis
logic to allow stating that two sets have the same cardinaditd
the resulting logic is still within NP[[36]. Because the retan,
the generation o)), and the decision problem fatc are all in
NP, we conclude that the decision problem for algebraic tgias
with the canonical set abstraction belongs to NP.

5.2

The canonical set abstraction is a special case of what we cal
infinitely surjective abstractionsor which we can compute the
formulaDyy.

Infinitely Surjective Abstractions

Definition 4 (Infinitely Surjective Abstraction) If S is a set of
trees, we call a domaif and a catamorphisn an infinitely
surjectiveS-abstraction if and only it~ *(a(t)) is finite fort € S
and infinite fort ¢ S.

The canonical set abstraction is an infinitely surjec{ilzeaf}-
abstraction. Other infinitely surjectivid_eaf}-abstractions are the
tree size abstraction, which for a given tree computes s as
the number of internal nodes, the tree height abstractiod,tlae
sortedness abstraction of Figlile 6.

An example of infinitely surjectiv@-abstractions is the function
FV(t) that computes the set of free variables in an abstract syntax
treet representing a lambda expression or a formula. Indeed, for
each finite set of variables (including = 0), there exist infinitely
many termg such thafV(t) = s.

We can computeD,; for an infinitely surjectiveS-abstraction
wheneverS is finite. The general idea is to add the elements
T, ...,Ty of S into the unification algorithm and guess arrange-
ments over them. This will ensure that, in the resulting falan
the terms containing variables are distinct fromzll The formula



Dy then states the conditiohy, . g c; # (). We omit the details
because they are subsumed by the more general construetion b
low, but we note that the above algorithm f{reaf}-abstractions
also works forf)-abstractions.

5.3 Sufficiently Surjective Abstractions

We next present a more general completeness result, witjohres
collections to be classified either as being an image of serffily
many terms, or as having one of finitely many shapes.

Definition 5 (Tree Shape and Size).etSLeaf be a new constant
symbol andSNode(¢1,t2) a new constructor symbol. Trehape
of a treet, denoteds(¢), is a ground term built fronbLeaf and
SNode(_, ) as follows:

3(Leaf) = SLeaf
3(Node(T1,e,T2)) = SNode(5(11), 5(13))
We define thsizeof a shape as:
size(SLeaf) =0
size(SNode(s1, s2)) = 1 + size(s1) + size(s2)
By extension, we define the size of a treebe the size of its shape.

Definition 6 (Shape Instantiation) Theinstantiationof the shape
of a treet produces a copy afwhere the values stored in the nodes
are replaced by fresh variables:

inst(t,4) = inst’(¢,4, 1)
inst’(SNode(s1, s2),4, j) = Node(inst'(s1,4, 1 + j), v},
inst’(sz2,4, 1 4 j + size(s1)))
inst’(SLeaf, 4, j) = Leaf

In the instantiation function, determines the names of the fresh
variables: the variables introduced by the instantiaien (s, 1)
range fromwj to v}, ,,. Consequently, if # j, then the terms
inst(t,4) andinst(¢, 7) have no common variables. Note that for
an abstraction function and a tree shape the terma(inst(s, 7))
contains no tree variables, so it can be rewritten (by cotalyle
evaluatingw) into a term in the collection theory with the free
variablesvi, . .. 71;;“(8). Note finally that for every tree terf,
the formulainst(3(7"), ) = T is satisfiable.

Definition 7 (Sufficient Surjectivity) We call an abstraction func-
tion sufficiently surjectiveif and only if, for each natural number
p > 0 there exist, computable as a functionpof

e afinite set of shapes,
e a closed formulal/, in the collection theory such that/, (c)
implies|a*(c)| > p

such that, for every termy M, («(t)) or §(t) € Sp.

Note that M, can introduce fresh variables as long as it is
existentially closed and the decision procedure for théectibn
theory can handle positive occurrences of existential tfiens.

The definition above implies:

. . —1
plLH;o §(t1)l;1zfsp o™ (a(t))| = o0

We now show how we can build a formula,, equisatisfiable
with the formulaD of @) provided the aforementioned assump-
tions hold. We keep the notational convention that the patam
variablest range from; tot,, and that the term®(Z) built around
them range fron®’ (£) to 7, (). We also assume that for all vari-
ablest;, the conjunct; = «(t;) is present inD. This is consistent
with the normal form we presented earlier, up to renaminchef t
variables.

In the following we takep = (%) + n - m, wheren is the
dimension of the vector of term variablesdiin D, andm is the

dimension of the vectof(Z) for derived terms inD. Consider the
formula:

P

=

My(ci) V \/ inst(s, ) = t;
1 SES)

m
A
j=1

Note thata(T}(Z)) can be rewritten as a term in the collection
theory using the variables Note that existentially quantifying
over the variables introduced kyst gives a formula that is always
true, by the assumptions dv,, and.S,. Let P’ be the disjunctive
normal form of P. For every disjunctP? of P’, observe that for
eacht;, eitherM, (a(t;)) is a conjunct ofP?, orinst(s, ) = t; is

a conjunct for exactly onein S,,. The same observation holds for
the termsT; (2).

We proceed as follows for each disjuriet of P’. We run uni-
fication over the equalities between terms. This can eiult in
a clash (because the shape assigned to a T&(#) is in contra-
diction with the shapes assigned to the variable§),ar produce
new equalities between the freshly introduced elemenakibeso.

If there was a clash, we simply repla&¥ by false and eliminate
it from the formula. Otherwise, we add ¢ the new equalities
produced by unification, yielding a disjungg.

We next add additional conjuncts 4 to obtain a formulaD?
equisatisfiable withD A P2, as follows. Recall thaD contains
conjuncts of the forms:

ot £, as part of N (7'(1), 1),
ot; £ T;(t) aspartofN(T(%),1), and
eci =aft;) aspartofM(Z,3).

Initially, we setD? to be the formulaP&. Then, for each dis-
equalityT # T” in D (whereT andT” can represent either vari-
ables or constructed terms), if iR we haveinst(s,i) = 7" and
inst(s, j) = 7" for the same shapg we add as a conjunct B¢
the disjunctionV/, _, -, () vk # vi. Finally, we replace i) all
the equalities of the forrimst(s, i) = T by a(inst(s,4)) = a(T).
As we already observed,(inst(s,¢)) can always be rewritten to a
term in the collection theory by evaluating In the case wher@’
is a variablet;, a(T') is simplyc;. If it is a term T} (%), a(T") can
be rewritten in terms of by partially evaluatingy.

The resulting formulaD, is \/, D*. We claim thatDy; is
equisatisfiable wittD.

Proof. (Preliminary transformationsiConjoining P to D does not
change the satisfiability of the formula, and neither doestithns-
formation to disjunctive normal form, sb is equisatisfiable with
DA \/p P2, The unification procedure is equivalence preserving,
so the formula after unification is still equisatisfiabletHerefore
suffices to show thab A Pg is equisatisfiable witD<.

(From trees to collectionskirst, observe thaD? is a conse-
quence ofD A P¢. Indeed,\/ v, # v follows from T # T,
inst(s,7) = T, andinst(s, j) = T". Also, a(inst(s,7)) = a(T)
follows frominst(s, ) = T, and partial evaluation af is equiva-
lence preserving. Therefore, B A P2 has a model, the®? as a
consequence holds in this model. THDS has a model. It remains
to show the converse.

(From collections to treespssume M is a model for D,
which specifies the values for element and collection viegat\e
construct an extension g¥1 with values for tree variableSsuch
thatD A Pg holds.

7

My(a(Ty@) v \/ inst(s,5 +n) = T,(0)
SES)



For those termsT for which P2 contains a conjunct
inst(s,7) = T, we assigri’ to be the value ofnst(s, 7) in M (in-
deed, M specifies the values of all free variablesin inst(s, )).
In this assignment, the literals if¢ of the forma(T') = ¢; are true
for such term&". Furthermore, all disequalities between such terms
hold. Indeed, terms of different shape are distinct, andefons of
equal shape the formul®? contains a disjuncy/ vi, # vj, ensur-
ing that the terms differ in at least one element.

It remains to define values for the tréBsor which P2 does not
contain a conjunct of the forrimst(s,7) = 7 in such a way that
the literals containing these trees are true. These arejdifiey
literals, as well as literals of the form(7") = ¢;, whenT is a
variable t;. For each such tre&, the formuIaP{} contains the
conjunct M, («(T")), by construction of the disjunctive normal
form. From the assumptions av,,, from M, (a(T")) we conclude
|a~!(a(T))| > p. Therefore, there are at leastt 1 treesTy
such thata(7%) = «(T). The number of disequalities iy is
at most (%) + n - m. Becausep = () + n - m, we can apply
Lemmd2 to choose values for (at mostirees satisfying (at most)
p disequations from sets of size at least 1. This choice of trees
completes the assignment for the remaining tree variablesthat
all conjuncts ofD?¢ hold.m

Model Construction. Lemmal2 is constructive, so the proof
above also gives model construction whenever 1) the undgrly
decision procedure for the collection provides model aosion,
and 2) there is an algorithm to compute, for eaethereM,(c), a
finite set of containing elementg such thaix(¢) = c.

Worst-Case Complexity of the Decision ProblemThe reduction
from the starting formula to the theory of collections is anno
deterministic polynomial-time algorithm that invokes tb@mpu-
tation of the setS;, and the formulal/,. WhenS,, and M, can be
computed in polynomial time, then each of the disjuncts itbns
ered is of polynomial size. Our decision procedure is thiecan
NP reduction. This case applies to the three examples bélten
the satisfiability for the collection theory is in NP (e.gr foultisets
and sortedness), the overall satisfiability problem is ai9dP.

5.4 Application to Multisets, Lists, and Sortedness

We now show that the list and multiset abstraction are s#fiity
surjective abstractions, as is the sortedness abstraftiiotiees
with distinct elements. (The set of these examples is nohhiede
exhaustive.) In the following, lef’,, denote the number of binary
trees withn elements, and lek’,,, denote a its inverse, that is, the
smallest natural number such thatC,, > m. The functionsC),
and K,,, are monotonic and computable.

Lists. Consider the catamorphism for infix traversal of the tree,
for which we haveempty = List() and combine(ci,e,c2) =

c1 ++ List(e) ++ c2. (Catamorphisms for pre-order and post-order
traversal can be handled analogously.) We can use the faljow
definitions forS, and M,:

o Sp = {s] size(s) < Kp}

® My(c) =3er,...,ex, . 3¢ .c=List(e1,...,ex,) ++c

Sp is the set of shapes with less thd@, nodes, whileM,(c)
expresses that the ligthas at least, elements, so clearly for
any treet, either its shap&(t) in is Sp, or it has more tharf,
nodes and therefor®/,, («(t)) holds. Finally, observe that for a list
c of n elementsp maps exactlyC,, distinct trees ta:. Therefore,
for any ¢ such thatM,,(c) holds, we havéa~'(c)| = Ck,, and
Ck, > p by construction. Therefore, the infix traversal abstractio
is sufficiently surjective and our completeness argumeplies

Multisets. Consider the multiplicity-preserving multiset abstrac-
tion, which is given byempty ¢ and combine(c1,e,c2) =
c1 W {e} Wca. We then take

o S, ={s] size(s) < K}

o My(c) =3eq,...
For a multiset with n elements (counting repetitions), there ate

leastC,, trees mapped by to ¢, so the same argumentation as for
lists applies.

/ /
vex, -3¢ .c={e1,...,ex, } Wc

Sortedness. Finally, consider the abstraction function described
in Section[31L that checks the sortedness of trees. We meudtio
in Sectior &P that the version which allowed repeated ehtsris
infinitely surjective. In contrast, in the case where therelats of
the trees have to be distinct, it is not infinitely surjectiVie reason

is that the catamorphism also computes the minimal and nexim
elements of the tree, and there are only finitely many soresbt
with distinct elements between a given minimum and maximum.
The catamorphism is nevertheless sufficiently surjectivdeed,
we can take

o Sp = {s] size(s) < Kp}
o My((a,b,6))=1+b—a>K,

where(a, b, <) is the triple of the minimum, the maximum, and the
sortedness of the tree, as computed by the catamorphisi,. Her
essentially says that the range of values in the tree is mufflg
wide, so that enough distinct trees mapping(&b,s) can be
constructed. In conclusion, the catamorphisms that mas reo
lists, multisets, or sortedness property are also inssfurevhich
our decision procedure is complete.

6. Related Work

One reason why we find our result useful is that it can leveeage
number of existing decidability results. Il [5] the authpresent
an abstract approach that can be used to obtain efficierie-stra
gies for reasoning about algebraic data types (withoutrattsdn
functions). For reasoning about sets and multisets onesssijve
approach is the use of the decidable array fragmient [11]i- Opt
mal complexity bounds for reasoning about sets and mustiget
the presence of cardinality constraints have been establis
[36,[58]. Building on these results, extensions to certaierations
on vectors has been presentedlinl [40]. Reasoning aboutiitts
concatenation can be done using Makanin’s algorithrh [4di]iem
improvements[][57]. A different class of constraints useb string
operations but imposes bounds on string lenfth [8]. Rekeesc
have identified a number of laws in the area of manual program
derivation, including laws that relate trees, lists, bagel sets[26].
The present paper can be viewed as a step towards automatileg s
of these laws. Another example in this direction is the coratary
array logic [17], which supports map operations on arraysibas
not support the cardinality operator.

Our parameterized decision procedure is an example of an ap-
proach to combine logics (e.g. the logic of algebraic dgta@syand
a logic of collections). Standard results in this field ardshe-
Oppen combinatior[48]. Nelson-Oppen combination is néfi-su
cient to encode catamorphisms because the disjointnedgioos
are not satisfied, but is very useful in obtaining interestiecid-
able theories to which the catamorphism can map an algetaac
type; such compound domains are especially of interest whieig
catamorphisms to encode invariants. There are combingggrits
that lift the stable infiniteness restriction of the Nel€®@ppen ap-
proach [[62[23D["20] as well as disjointness condition sutiea
local finiteness conditior.[22]. An approach that allowsotfes
to share set algebra with cardinalities is presented_ih. [§6he



of these results by itself handles the problem of reasonbuyta
a catamorphism from the theory of algebraic data types. Jdud
our canonical set abstraction of algebraic data types is&/&BAdA-
reducible theory that fits into the framewofk165].

A technique for connecting two theories through homomarphi
functions has been explored [ [1]. We were not able to dexive
decision procedure froni][1], because the combination figclen
in [A] requires the homomorphism to hold between two copfes o
some shared theor§2, that is locally finite, but our homomor-
phisms (i.e. catamorphisms) are defined on term algebrashwh
are not locally finite.

Related to our partial evaluation of the catamorphism iptie
nomenon of local theory extensiofs]27], where axioms s®&in
tiated only to terms that already exist syntactically in fibenula.

In our case of tree data types, the decision procedure mpist dye
axioms also to some consequences of the formula, obtained us
unification, so the extented version of the local theory famrk is
needed. Concurrently with our result, the machinery ofllduaory
extensions has been extended to certain homomorphismsnin te
algebras[[6l1], although without considering homomorplsishat
compute sets, multisets, or lists. We plan to investigaifyimg the
results in[[61] with our notion of sufficiently surjective stbaction.

The proof decidability for term powerE[34] introduces heamo
morphic functions that map a term into 1) a simplified “shateein
that ignores the stored elements and 2) the set of elementsish
the term. However, this language was meant to address liagson
about structural subtyping and not transformation of algetdata
types. Therefore, it does not support the comparison of ehefs
elements stored in distinct terms, and it would not be appleto
the verification conditions we consider in this paper. Femtfore,
it does not apply to multisets or lists.

In researchers describe a decision procedure for edgeb
data types with size constraints and[inl[43] a decision phoefor
trees with numeric constraints that model invariants ofbktk
trees. Our decision procedure supports reasoning aboubntpt
size, but also the content of the data structure. We rematK&g]
covers also the case of a finite number of atoms, whereas vee hav
chosen to focus on the case of infinite set of eleménfBerm al-
gebras have an extensively developed theory, and enjoy oeny
sirable properties, including quantifier eliminatiéni[#ghiantifier
elimination also carries over to many extensions of ternelalgs
[15,[32,[6D[ 6P 68]. Note that in examples such as multiséts w
cardinality, we cannot expect quantifier elimination tochibécause
the quantified theory is undecidable]55, Section 6].

Some aspects of our decision procedure are similar to fpldin
and unfolding performed when using types to reason about dat
structures [[29_63._50._59. 166]. One of our goals was to under-
stand the completeness or possible sources of incompssterie
such techniques. We do not aim to replace the high-levelaguaiel
available in such successful systems, but expect that sultsecan
be used to further improve such techniques.

Several decision procedures are suitable for data stesior
imperative programd [38, B, 1451641 47]. These logics afaile

results present a case in favor of incorporating such datstinto
standard formats. Our new decidability results also sugpheridea
of using rich specification languages that admit certainngeely
defined functions.

7. Conclusions

We have presented a decision procedure that extends the well
known decision procedure for algebraic data types. Thenside
enables reasoning about the relationship between thesvafitbe
data structure and the values of a recursive function (catainism)
applied to the data structure. The presence of catamorplgsras
great expressive power and provides connections to otlcédatde
theories, such as sets, multisets, lists. It also enabesdmpu-
tation of certain recursive invariants. Our decision pthoe has
several phases: the first phase performs unification anésade
recursive data structure parts, the second applies thesreeunc-
tion to the structure generated by unification. The final phas
more subtle, is optional from the perspective of soundrimsgsen-
sures completeness of the decision procedure.

Automated decision procedures are widely used for reagonin
about imperative programs. Functional programs are clditoe
be more amenable to automated reasoning—this was among the
original design goals of functional programming, and hasnbe
supported by experience from type systems and interactivef p
assistants. Our decision procedure further supports thisicby
showing a wide range of properties that can be predictaldyeat
about functional data structures.
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