On Complete Functional Synthesis

LARA-REPORT-2009-006

Philippe Suter

Ruzica Piskac

Mikaél Mayer Viktor Kuncak

School of Computer and Communication Sciences (I&E}ele Polytechnique Fédérale de Lausanne (EPFL), Stitmb
firstname.lastname@epfl.ch

Abstract

Synthesis of program fragments from specifications can make
programs easier to write and easier to reason about. To inte-

grate synthesis into programming languages, synthesisigilms

should behave in a predictable way—they should succeed for a

well-defined class of specifications. They should also stippo

bounded data types such as numbers and data structuresoWe pr

pose to generalize decision procedures into predictalidecam-
plete synthesis procedures. Such procedures are guatdattyed
code that satisfies the specification if such code existsebiar,
we identify conditions under which synthesis will statlgalecide
whether the solution is guaranteed to exist, and whetheuitique.
We demonstrate our approach by extending decision proesdor
integer linear arithmetic and data structures into syrghpoce-
dures, and establishing results on the size and the efficigittie
synthesized code. We show that such procedures are usefldmas
guage extension with implicit value definitions, and we slmw
to extend a compiler to support such definitions. Our coottru
provide the benefits of synthesis to programmers, withogtiire
ing them to learn new concepts or give up a deterministicuti@t
model.

1. Introduction
Synthesis of software from specifications [Manna and Walelin

1980, 1971] promises to make programmers more productige. D

spite substantial recent progress [Solar-Lezama et ab,2ZD8;
Srivastava et al. 2010; Vechev et al. 2009], synthesis igdafrto
small pieces of code. We expect that this will continue to e t
case for some time in the future, for two reasons: 1) syrghiesil-
gorithmically a difficult problem, and 2) synthesis reqgsidetailed
specifications, which for large programs become difficulivtite
(and may be harder to debug than the code itself).

We therefore expect that practical applications of synshis
in its integration into the compilers of general-purposegoam-
ming languages. To make this integration feasible, we aiiddn-
tify well-defined classes of expressions and synthesisrighgas
guaranteed to succeed for these classes of expressionstafiing
point for such synthesis algorithms afecision procedures

A decision procedure for satisfiability of a class of fornsue-

cepts a formula in its class and checks whether the formgaaha

solution. On top of this necessary functionality, many dieci pro-
cedure implementations additionally generate a satigfgissign-
ment (a model) in case the given formula is satisfiable. Sumthain
generation functionality has many uses, from better erpoit-

* The author list has been sorted according to the inversabdtital order;
this should not be used to determine the extent of authorstribations.

This research is supported in part by the Swiss Nationah8ei€oundation
Grant #120433 “Precise and Scalable Analyses for Reliabfvare”.

Page:l

ing in verification, to test-case generation. This funciidy could
also be used as an advanced computation mechanism, whieh, gi
a set of values for some of the variables, finds the valueswdire
ing variables such that a given constraint holds. Such aine-
mechanism is promising in supporting declarative programgm
style. However, it involves expensive and unpredictabrdeat
run-time, and requires the deployment of a decision praeeds
part of the run-time system. Our goal is to provide the benefit
the declarative approach in a more controlled way: we aimcar
decision procedure abmpile timeand use it to generate code that
computes the desired values of variables at run-time. fgsoach
can generate more efficient code that is specific to the ainstr
that needs to be solved at a given program point. Furthernitore
does not require the decision procedure to be present dtrmen-
and gives the developer static feedback by checking theitbomsl
under which the generated solution exists and is unique.

We demonstrate this approach by describing synthesis algo-
rithms for domains of linear arithmetic and for collectiaofsob-
jects. We have found that, using these expressions we wkréaab
express a number of program fragments in a more natural vedy, s
ing the invariants that the program should satisfy as opptsthe
computation details of how these invariants are estaldishe

In the area of integer arithmetic, we obtain a language exten
sion that can implicitly define integer variables to satigfyen
constraints. The applications of integer arithmetic sgatker in-
clude conversions of quantities expressed in terms of pleltinits,
as well as a substantially more general notion of patterrciirag
on integers, going well beyond matching on constant@wof k)-
patterns of Haskellttp: //haskell.org).

In the area of data structures, we describe a synthesiscuaze
that can compute sets of elements subject to constraintessqx
in terms of basic set operations (union, intersection, stefrdnce,
subset, equality) as well as linear constraints on sizegtsf $Ve
have found these constraints to be useful for implicitlymiafj sets
of objects in algorithms, from simple operations such aoshny
an element from a set and returning the rest, to picking fresh
elements or splitting sets subject to given size consgaint

We have implemented these synthesis algorithms and deploye
them as a compiler extension of the Scala programming layjggua
[Odersky et al. 2008].

Contributions. This paper makes the following contributions.

¢ We describe an approach for deploying algorithms for synthe
sis within programming languages. Our approach introdaces
higher-order library functiorhoose of type (aw = bool) = «,
which takes as an argument a functiBrf typea = bool. Our
compiler extension rewrites calls thoose into efficient code
that finds a value of typea such thatF'(z) is true. Building on
thechoose primitive, we also show how to support substantially

2010/1/25

more expressive pattern matching expressions in progragimi
languages.

pointing to the fact that the constraint has no solutionsdorlarge
parametetotsec.

In addition to thechoose function, programmers can use syn-
thesis for more flexible pattern matching on integers. Irstixi
deterministic programming languages, matching on integither
tests on constant types, or, in the case of Haskell’s k) patterns,

)]) o on some very special forms of patterns. The following cotlesl
We describe synthesis procedures for rational and integgear trates the use of synthesis to describe a fast exponentfatiction

arithmetic, as well as a logic of sets with size constraints. by doing case analysis on whether the argument is even or odd:
We show that, compared to invocations of constraint solvers
def pow(base : Int, p : Int) = {

at run-time, the synthesized code can have better worst-cas d i) g .

L) o ef fp(m : Int, b : Int, i : Int) = i match {
complexity in the number of variables. This is because our case 0 = m
synthesis procedure converts the given constraint (at iemp case 2+j = fp(m, bxb, j)

We describe a methodology to convert decision procedures fo
a class of formulas into synthesis procedures that can teewri
the corresponding class of expressions into efficient dabbal
code.

time) into a solved form that can be executed while avoiding case 2xj+1 = fp(mxb, bsxb, j)

most of the search. The synthesized code is guaranteed to be }

correct by construction.

fp(1,base,p)

¢ We describe our experience of using synthesis as a plugin for }

the Scala compiler. Our implementation is publicly avaieb

2. Example

We first illustrate the use of a synthesis procedure for etéigear
arithmetic. Consider the following example to break downveig
number of seconds (stored in the variahletsec) into hours,
minutes, and leftover seconds.

val (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) = (
h % 3600 + m * 60 + s == totsec

&& 0 < m&& m < 60

&& 0 < s && s < 60))

Our synthesizer succeeds, because the constraint is geimteear
arithmetic. However, the synthesizer emits the followireymng:

Synthesis predicate has multiple solutions

for variable assignment: totsec = 0
Solution 1: h =0, m =0, s =0
Solution 2: h = -1, m = 59, s = 60

The reason for this warning is that the boundsors are not strict.
After replacingm <= 60 withm < 60 ands <= 60 withs < 60,
the synthesizer emits no warnings. The generated codespomds
to the following:

val (hours, minutes, seconds) = {
val locl = totsec div 3600
val num2 = totsec + ((—3600) * locl)
val loc2 = min(num2 div 60, 59)
val loc3 = totsec + ((—3600) * locl) 4+ (—60 * loc2)
(locl, loc2, loc3)

The absence of a warning guarantees that the solution al-
ways exists and that it is unique. By writing the code in

this style, the developer directly ensures that the caoliti
h * 3600 + m * 60 + s == totsec Will be satisfied, which
eases the understanding of the program. Note that, if thelalser

imposes the constraint

val (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) = (
h * 3600 + m * 60 4 s == totsec

&& 0< h<24

&& 0 <m&& m < 60

&& 0 < s && s < 60))

our system emits the following warning:

Synthesis predicate is not satisfiable
for variable assignment: totsec = 86400

Ihttp://lara.epfl.ch/dokuwiki/comfusy

Page2

The correctness of the function follows from the observatitat
fp(m,b,7) = mb*, which we can prove by induction. Indeed, if
we consider the casex j + 1, we observe:

fp(m,b,i) = f£p(m,b,2j+ 1) = £p(mb,b”,)
(byind. hyp.) = mb(b*) = mb* ! = mb’

Note how the pattern matching on integer arithmetic exjpoass
exposes the equations that make the inductive proof simpiher
pattern matching compiler generates the code that decanpos
into the appropriate new exponentMoreover, it checks that the
pattern matching is exhaustive. The construct supportranp
expressions of linear integer arithmetic, and can provetleag the
set of patterng x k, 3« k,6 x k — 1, 6 x k + 1 is exhaustive. The
system also accepts implicit definitions, such as

val 42 x x + 5 xy =2z

The system ensures that the above definition matches evegein
z, and emits the code to computeandy from z.

In addition to integer linear arithmetic, other decidalbiedries
are amenable to synthesis and provide similar benefits. i@ams
the problem of splitting a set collection in a balanced waye T
following code attempts to do that:
val (al,a2) = choose((al:Set[0],a2:Set[0]) =

al union a2 == s && al intersect a2 == empty &&
al.size == a2.size)

There are cases where the constraint above has no soltisn. |
possible to decide whether this is the case and generatearpéx
value of a set for which there is no solution (any set of odd size).
If instead we weaken the requirement to:

val (al,a2) = choose((al:Set[0],a2:Set[O]) =

al union a2 == s && al intersect a2 == empty &&
al.size — a2.size < 1 &&

a2.size — al.size < 1)

the system can prove that the code has a solution for all fdessi
input setss. The nature of sets is such that there are typically
many solutions for such constraints. Our synthesizer vesdhese
choices at compile time, which means that the generated isode
deterministic.

Another example of synthesis is efficient support for more ex
pressive algebraic data type patterns, including norafipatterns.
Such support reduces to the decision procedure for algeteaa
types [Barrett et al. 2007; Oppen 1978; Suter et al. 2010].

3. From Decision- to Synthesis Procedures

We next define the notion of synthesis procedure and desitribe
general terms our approach for deploying predictable ®gith
procedures based on decision procedures.

2010/1/25

The choose programming language constructWe integrate into
a programming language a construct of the form

7 = choose(Z = F(Z,q))

@)

Here F(Z, @) is a formula in a decidable logic, which has variables
Z and parameter®. The parameter@are program variables known
at the time the statement is executed, wheiea® values that need
to be computed so thdt (%, @) holds.

We can translate thehoose construct into the following se-
guence of commands in the guarded command languages fijkst
1976]:

assert (37.F (&, d));
havoc (7);
assume(F(7,Q));

The simplicity of the translation of thehoose construct also means
that such construct is easier to use in verification systeros as
[Barnett et al. 2004; Cohen et al. 2009; Flanagan et al. 2A6g2;
et al. 2008, 2009] compared to the standard imperative duate t
would have the same effect.

Model-generating decision proceduresAs a starting point for
our synthesis algorithms we consider model-generatingsidec
procedures. We assume that a decision procedure works ass cl
of first-order formulad-ormulas defined in terms of term$erms.
The formulas can contain free variables, and we deRbtg") the
set of free variables in a formulB. By F[x := ¢] we denote the
result of replacing the free occurrencesaoby e in F. Given a
substitutiono : FV(F) — Terms, we write F'o for the result of
substituting each: € FV(F') with o(z). Formulas are interpreted
over elements of a first-order structuPewith a countable domain
D. We assume that for eaghe D there exists a ground term
whose interpretation i is e; let C' = {c. | e € D}. We further
assume that i’ € Formulas then alsoF' [z := c.] € Formulas
(the class of formulas is closed under partial groundind wan-
stants). Giver¥” € Formulas we expect a model-generating deci-
sion procedur@ to produce either

a) a substitutiorr : FV(F) — C such thatF'o is a true, or
b) a special valuaensat indicating that the formula is unsatisfiable.

We assume that the decision procedure is deterministic eimaMes
as a functions. We write §(F')=c or 6(F)=unsat to denote the
result of applying the decision proceduréo F'.

Baseline: invoking a decision procedure at run-time.Just like
an interpreter can be considered as a baseline implemanfatia
compiler, deploying a decision procedure at runtime carobsid-
ered as a baseline for our approach. In this scenario, waaepthe
invocation of (1) with

F = makeFormulaTree(makeVars(Z), makeGroundTerms(&));
7 = (6(F) match {

case o = (o(z1),...,0(zn))

case unsat = throw new Exception(” No solution exists")

1

The dynamic invocation approach is flexible and useful. h ca
give some advantages of constraint logic programmingddaffd

Maher 1994] and can also be done using e.g. the Z3 SMT solver

[de Moura and Bjgrner 2008] with quotations of theg# language
[Syme et al. 2007]. However, there are important advantafjée
compilation approach in terms of performance and predidtab
as we discuss next.

Synthesis based on decision procedure©ur goal is to explore
a compilation approach where a modified decision procedsire i
invoked at compile time, converting the formulé(z, @) into a

Page3

solved formz = \ff(d) that implies the formula. More precisely,
we have the following definitions.

Preliminaries. Let FV(q) denotes the set of free variables in a
formula or termg. If & = (z1,...,zx») thenZs denotes the set of
variables{z1, ..., z,}. If gisatermorformulag = (z1,...,zn)

a vector of variables and = (t1,...,t,) a vector of terms,
then ¢[Z := %] denotes the term resulting from subsstituting in
q free variablese, . . ., z, with termst,, ..., t,, respectively. If
we introduceq by writing ¢(Z) then we sometimes also denote
gz := 1] by ¢(t). Below we only identify the output variables
Z. Where needed, we wrifeV(F') \ Z, to denoted.

DEFINITION 1 (Synthesis Procedure)Ve denote an invocation of
a synthesis procedure i, F'] = (pre, ¥). A synthesis procedure
takes as input a formul&’ and a vector of variableg and outputs
a pair of

1. a precondition formulgre with FV(pre) C FV(F) \ &5

2. atuple of terma with FV(¥) C FV(F) \ &,

such that the following two implications are valid:

dZ.F — pre
pre — F[Z := V]

OBSERVATION 2. The above definition implies that the the three
formulas3Z.F, pre, and F[Z := ¥] are all equivalent, because
the third implication always holds:

F[Z:= U] — 3Z.F

Consequently, if we can define a functiwitn(Z, F) = T with
FV(¥) C FV(F) \ @, such thaZ.F is equivalent taF [T := V],
then we can define

[Z, F] = (F[Z := witn(Z, F)], witn(Z, F'))

The reason we use the translation that compptesn addition to
witn(Z, F') is that the synthesizer performs simplifications when
generatingre, which can produce a formula faster to evaluate than
F[Z := witn(Z, F)].

The synthesizer emits the termds in compiler intermediate
representation and compiles them along with the rest of tide.c
We identify the syntax tree off with its meaning as a function
fromato 7.

The overall compile-time processing of the choose staté(ign
involves the following:

e emit a non-feasibility warning if the formutapre is satisfiable,
reporting the counterexample for which the synthesis bl
has no solutions;

e emit a non-uniqueness warning if the formula
FAFZ:=yINZ#Y
is satisfiable, reporting the values of all free variablesaas
counterexample showing that there are at least two sokjtion
e as the compiled code, emit the code that behaves as

assert(pre)

7=

In practice it is often the case that the computatio@ozﬂready
raises an exception in cagee does not hold, so there is no need
for an explicit assert.

The existence of a model-generating decision procedurkamp
the existence of a trivial synthesis procedure (in the seh&efi-
nition 1), which simply invokes the decision procedure attime.

2010/1/25

The usefulness of the notion of synthesis procedure corosstfre
fact that we can use domain knowledge of the decision praeedu
to create compiled code that avoids this trivial solutiomang the
potential advantages of the compilation approach are:

e improved run-time efficiency because part of the reasorsng i
done at compile-time;

e improved error reporting: the existence and uniquenesslof s
tions can be checked at compile time;

¢ simpler deployment: the emitted code can be compiled to finy o

the targets of the compiler, and requires no additionaltinne-
support.

This paper therefore pursues the compilation approach.ifAs
processing of more standard programming language cotstwe
do believe that there is space in the future for mixed appresc
such as just-in-time and profiling-guided synthesis.)

Efficiency of synthesis. We introduce the following measures to
quantify the behavior of our synthesis procedure:

¢ time to synthesize the code, as a functiorFof

¢ size of the synthesized code, as a functiod'of

¢ running time of the synthesized code as a functio'aind a
measure of the run-time values af

When usingF' as the argument of the above measures, we often

consider not only the size of, but also the dimension of the
variable vectorr and the parameter vectdatin F'.

From quantifier elimination to synthesis. The preconditiorpre
can be viewed as a result of applying quantifier eliminatisee(
e.g. [Nipkow 2008]) to remover from F, with the following
differences.

1. Synthesis procedures strengthen quantifier elimingiioce-
dures by identifying not onlyre but also emitting the cod&
that efficiently computes a witness far

2. Quantifier elimination is typically applied to arbitraguanti-
fied formulas of first-order logic and aims to successiveimel
inate all variables. Thereforpre must be in the same language
of formulas asF'. This condition is not required in our case.
Whatever the language @fe, it is still very useful for it to

lowing translation scheme:

[0, F] = (F,.0)

[[(xl,“.,mn),F]] =
let ¥,, = witn(zn, F)

pre,, = simplify(F [z, := ¥,,])
(pre, (\Ifl, ey \I’n—l)) = [[(xl, ey Z‘n_l), pren]]
in
(pre, (\1’1, ey \I/n—h \I’n[xl = \Ifl, ceeyTp—1 1= \I’n—l]))

Note that in practice we use local variable definitions iadtef
substitutions. Given (1), we generate dasa Scala code block

val xT1 =V,

val Tno1=Vn_1
valz, =Y,
T

where the variables i¥,, directly refer to variables computed in
Uy,...,¥,_; and whereFV(¥;) C FV(F) \ {zs,...,zn}. A
consequence of this recursive translation pattern is ti@asynthe-
sized code computes values in the reverse order comparée to t
steps of a quantifier elimination procedure. This obsemvatan be
helpful in understanding the output of our synthesis procesl

4.2 One-Point Rule Synthesis
If z ¢ FV(t) we can define
witn(z, z =t A F) =t

If the formula does not have the form = ¢ A F', we can often
transform it into such form using theory-specific reasoning
4.3 Output-Independent Preconditions
Note that if we can apply the following synthesis rule

[Z, i AFy] = 1et (pre,¥) = [Z, F2] in

(pre A F1,)

wheneverFV(F1) N Z, = 0. We assume that this rule is applied
whenever applicable and do not explicitly mention it in teesal.
4.4 Propositional Connectives in First-Order Theories

Consider a quantifier-free formula in some first-order theamd
suppose first that we wish to check formula satisfiability plg

havesomedecision procedure, to enable accurate generation of quantifier elimination. We can then transform the formulalie

compile-time warnings about the existence of solutions.
3. Worst-case bounds on quantifier elimination algorithnes:m

junctive normal form and process each disjunct indepehgddrttis
allows us to focus on handling conjunctions of literals apaged

sure the size of the generated formula and the time needed tol© arbitrary propositional combination.

generate it, but not the size &f or the time to evaluatd.

Despite the differences, we have found that we can natueaHly
tend existing quantifier elimination procedures with esiplcom-
putation of witnesses that constitute the program

4. Selected Generic Technigues

We next describe some basic observations and techniquegrfor
thesis that are independent of a particular theory.

4.1 Synthesis for Multiple Variables

Suppose we have functievitn(z, F') that corresponds to construc-
tive quantifier elimination step for one variable and preetua
term ¥ such thatF'[z := ¥] holds iff 3x.F holds. We then lift

witn(z, F') to synthesis for any number of variables, using the fol-

Page4

We can similarly apply disjunctive normal form transforinat
to synthesis. LeDs, .. ., D,, be the disjuncts in disjunctive normal
form of a formula. We then apply synthesis to edehyielding a
preconditionpre, and the solved formb,. We generate code with
conditionals that selects the firgt, that applies:

[Z,D1V...VD,]=
let (prel, \Ifl) = [[57 Dlﬂ

(pren7 \I_;n) = [[f7 Dnﬂ

if (pre;) U
n else if(pre,) W
pre;,§ . -
i:\/l “)elseif(pre,) ¥,
else
throw new Exception(“No solution”)

2010/1/25

While the disjunctive normal form can be exponentially &rg
than the original formula, the transformation to disjunethormal
formis used in practice [Pugh 1992] and has advantagesmstef
the quality of synthesized code generated for individusjudicts.
What further justifies this approach is that we expect a smati-
ber of disjuncts in our specifications, and expect to neefirelif
ent synthesized values for variables in different disjan@ther
methods can have better worst-case quantifier eliminaton-c
plexity [Cooper 1972; Ferrante and Rackoff 1979; Nipkow &00
Weispfenning 1997] and we also discuss their propertiekdrse-
quel, but disjunctive normal form is the method we currentg in
our implementation.

4.5 Synthesis for Propositional Logic

Our paper focuses on synthesis for formulas awdvoundeddo-
mains. However, to illustrate the potential asymptotiagzfi pre-
computation in synthesis, consider the following simplerapch
when F' is a propositional formula (see e.g. [Kukula and Shiple
2000] for a more sophisticated approach). Supposetisae out-
put variables and are the remaining propositional variables (pa-
rameters).

Build an ordered binary decision diagram (OBDD) [Bryant
1986] for F', treating bothd and & as variables for OBDD con-
struction, and using a variable ordering that puts all patansa
before all output variableg. Then split the OBDD graph at the
point where all the decisions ahhave been made. That is, con-
sider the set of nodes that appear after all decisiors fmave been
made and no decisions ahhave been made. For each of these
OBDD nodes, we precompute whether this node reacheg ke
sink node. As the result of synthesis, emit the code thatistnsf
nested if-then-else tests encoding the decisiong,dollowed by
the code that, for each node that reactras emits one path to the
true node.

Although the size of the code can be singly exponential, the
code executes in time linear in the total number of varialales
and Z. This is in contrast to NP-hardness of finding a satisfying
assignment for a propositional formula, which would occur in
the baseline approach of invoking a SAT solver at run-tinme. |
summary, for propositional synthesis we can precomputgisals
to an NP-hard problem and generate code that computes unknow
propositional values in polynomial time.

In the next several sections, we describe synthesis proggdu
for several useful decidable logics ovafinite domains (numbers
and data structures) and discuss the efficiency improvenadieret to
synthesis.

5. Synthesis for Linear Rational Arithmetic

We next consider synthesis for quantifier-free formulasirgdr
arithmetic over rationals. In this theory, variables ranger ratio-
nal numbers, terms are linear expressieng cix1 + . . . + cnn,
and the relations in the language ateand=. Synthesis for this
theory can be used to describe exact fractional arithmetiepo-
tations or prototype floating-point computations. It aleoves as
an introduction to the more complex problem of integer anittic
synthesis.

Given a quantifier-free formula, we can efficiently transfiat
to negation-normal form. Furthermore, we observe that < t2)
is equivalent to(t; < ¢1) V (t1 = t2) and that—=(¢ty = ¢2) is
equivalent to(t1 < t2) V (t2 < t1). Therefore, there is no need
to consider negations in the formula. We can also normaliee t
equalities to the formt = 0 and the inequalities to the fortn< t¢.

Page5

5.1 Solving Conjunctions of Literals

Given the observations in Section 4.4, we consider conijpmgtof
literals. The method follows Fourier-Motzkin eliminati¢8chri-
jver 1998]. Consider the elimination of a variahle

Equalities. If x occurs in an equality constraint = 0, then
solve the constraint for and rewrite it ast = ' wheret’ does
not containxz. Then apply one-point rule synthesis (Section 4.2).
This step is Gaussian elimination, and we use it wheneves it i
applicable. We therefore eliminate first those variabled ttcur

in some equalities and only then proceed to inequalities.

Inequalities. Next, suppose that occurs only in strict inequali-
ties0 < t. Depending on the sign af in ¢, we can rewrite these
inequalities intaz, < z orz < b, for some terms.,,, b,. Consider
the more general case when there is both at least one lowadbou
ap and at least one upper boubg We can then define:

witn(z, F) = (m;lx{ap} + mqin{bq})/2

As one would expect from quantifier elimination, thes corre-
sponding to this case results framMby replacing the conjunction
of all inequalities containing: with the conjunction

/\ap<bq
P,q

In case there are no lower bounds, we definewitn(z, F) =
ming{bs} — 1; if there are no upper bounds,, we define
witn(z, F') = maxp{ap} + 1.

Complexity of synthesis for conjunctions.Consider a formula
with N inequality literals,E equality literals,A input variables
and V' output variables (with/ > FE) whose values need to be
synthesized.

The number of operations required to synthesize a program is
bounded from above (modulo multiplication by a constant) by

2V(A+V) N2

922V -1

+V(A+V)(E+N)

This bound is explained in details in appendix A.1.
The size of the generated program is bounded by:

o (v £+ s))

The generated program is a sequence of linear arithmetic op-
erations; if we assume that the arithmetic operations takstant
time, its execution time is proportional to program size.

Note that the algorithm has good efficiency in the absence of
inequalities. In any case, it is polynomial whe&nis constant (e.g.
synthesizing individual variable that satisfies a constjai

2V+H1_g

22V+1i_2

5.2 Time-Efficient Code for Linear Rational Arithmetic

One way to lift synthesis for rational arithmetic from comftions
of literals to arbitrary propositional combinations is tpply the
disjunctive normal form method of Section 4.4. We then abtai
complexity that is one exponential higher in formula sizartihe
complexity of synthesis for conjunctions.

In the rest of this section we consider an alternative tadisj
tive normal form. This alternative synthesizes code thatmacute
exponentially faster (even though it is not smaller) coregdo the
approach of Section 4.4.

The starting point of this method is quantifier eliminatiech-
nique that avoids disjunctive normal form transformatisee e.g.
[Ferrante and Rackoff 1979], [Nipkow 2008], [Bradley andrivia
2007, Section 7.3]. To remove a variable from negation nbrma
form, this method finds relevant lower boungsand upper bounds

2010/1/25

by in the formula, then computes the values, = (ap + bq)/2
and replaces a variable; with the values from the s€tmpg}p.q
extended with “sufficiently small” and “sufficiently large/alues
[Nipkow 2008]. This quantifier elimination method gives ugay
to computepre.

To extend this method to synthesis (computatiowioh (zZ, F')),
we propose to do the following. Whenever applying a sultsbitu
that replaces:; with m in quantifier elimination, attach a special
substitution syntactic fornx; — m as an additional auxiliary
information to the literal. When using this process to efiate one
variable, the size of the formula can increase quadrayicafter
removing all variables, the size of the formylee is bounded by
n2%" Note that, although it is doubly exponential A, this
guantity is not exponential in. Build a decision tree that evaluates

the values of alln?”"” literals in pre. On each complete path
of this tree, we can statically determine whether the trighies
of literals imply thatpre is true; this is reduces to evaluating the
truth value of a propositional formula in a given assignnterl|
variables. In the cases when the literals imply tpat holds, we
use the attached substitution — m in true literals to recover
the synthesized values of variables Such decision tree has depth

n2°""” and we return it as the result aiitn(Z, F'). For a constant
number of variabled’, this tree represents a synthesized program
whose running time is polynomial in.

6. Synthesis for Linear Integer Arithmetic

We next describe our main algorithm, which performs syrithes
for quantifier-free formulas of Presburger arithmeticdger linear
arithmetic). In this theory variables range over integ&esms are
linear expressions of the form + ciz1 + ... + chn, n > 0, ¢

is an integer constant and is an integer variable. Atoms are built
using relations>, = and|. The atonx|t is interpreted as true iff an
integer constant divides term¢. We also sometimes uge< b as a
shorthand for < bA—(a = b). We describe a synthesis algorithm
which works for conjunction of literals.

Pre-processing. We first apply the following pre-processing steps
to eliminate negations and divisibility constraints. Waoe nega-
tions by transforming a formula into its negation-normatficand
translating negative literals into equivalent positiveesm-(¢; >
t2) is equivalent tat; > t1 + 1 and—(t1 = t2) is equivalent to
(t1 > t2+ 1) V (t2 > t1 + 1). We also normalize equalities into
the form¢ = 0 and inequalities into the form> 0.

We transform divisibility constraints of a forajt into equalities
while adding a fresh variabld, The obtained value of the fresh
variablel is ignored in the final synthesized program:

[Z, (clt) A F] =

let (pre, (¥, ¥ni1)) = [(Z,q), t = cg A F]

in (pre, ¥)
The negation of divisibility-(c|t) can be handled in a similar way
by introducing two fresh variablesandr:

[Z,=(clt) A F] =

F' t+r=cgN1<r<c—1AF
(pre, (‘ij \Ijn+17 \Ijn+2)) = [(fv q, 7“), F/ﬂ

in (pre, ¥)

let

In the rest of this section we consider a formula without tiega
or divisibility constraints.

6.1 Equality Constraints

Because equality constraints are suitable for deternmdréitnina-
tion of variables, our procedure groups all equalities frmmmon-

Page6

junction and solves them first. For this we use ¢h8yn algorithm
described in Section 6.1.1. We can formalize this trarstatis a
generalization of the scheme in Section 4.1 that solves tdtipte
variables and returnes a solution parameterized by a snmaife-
ber of variables. In the followingy are variables that are solved
using equations ané are fresh variables introduced to represent
the parameterized space of solutionsgor

[(7,2), E A Fj] =

let (prey,¥y,2) =
F' = simplify(F[§ := Uy]
(pre, (U7, Ux)) =
prey = prey [Z :
\f/y() = ‘f/y[f =

®
Q

7]
<

5
P

in
(preyo A pre, (Wyo, Vx))
6.1.1 Reducing the Number of Output Variables

In this section we describe the algorithegSyn. Let X3, 3;b; +
¥i_1v5y; = 0 be an equality. We assume that the equality is al-
ready simplified in the sense thatd(01,. .., 0m,Y1,. ..,) =
1, wheregcd stands for the greatest common divisor.

First we consider the case when there is only one outputhiaria
in the equality. In that case the algorittegSyn returns:

eqSyn(XiZ,8ibi + vy =0) =
(v = B4 8ibi, t = (=3518:bi)/v, ()

From now on we assume that there is more than one output vari-
able in the equality. Out goal is to derive an alternativerdtidin
of the setK = {i | X}, fibi + Xj=17;y; = 0} which will allow
a simple and effective computation of elementginNote that the
set K describes the set of all solutions of a Presburger aritlemeti
formula and following [Ginsburg and Spanier 1964, 1966} ¢his
a semilinear set describing it .emilinear sets finite union of lin-
ear sets. Given an integer vectoand a finite set of integer vectors
S, alinear setisaset{Z | # = b+ 51 +...4 8n; s € S;n > 0}.
Vectorb is called a base vector while vectors $nare called step
vectors. Every semilinear set is a solution of some Preslarith-
metic formula. Ginsburg and Spanier showed that converkis ho
as well: the set of all solutions of a Presburger arithmetrotula
can be described with a semilinear set. However, we cannot ap
ply this result immediately because there are also inpuiabkas
whose values are not known until the execution time. We @raec
this problem by introducing witnesses. We now explain iradet
three steps in defining a set describing Ket

Given the equality=i™ ; 8;b; + X7_17v,y; = 0 in the first step
we define the sefy = {7 | X}7_,v;y; = 0} which describes a
solution set of a homogeneous equality. This is a linear rsetita
hasaform{y | ¥ = a1 81 + ... + axSk; a; € Z}. Vectorss; are
known and their effective computation is described in S&ci.1.2.
What is important is that the number afvectors is strictly smaller
thann.

In the second step we compute a witness vegtoFor this we
use generalization of Bézout's identity: for any numbers . ., k,,
with greatest common divisai there exist integersv, ..., an,
such thatv1 k1 + - - - + ank, = d. Afast algorithm for computing
those integers is described in Section 6.1.3.

Letd = gcd(y1,...,7n) and letI = X%, 3;b;. Note that
this means that/|I and this fact should be output as a required
precondition. Let/ = I/d. We apply Bézout's identity on numbers
1, -..,7vn and compute numbets, . .., v, such thatl = vy +
-+ 4+ vpvn. Multiplying this equality withJ results ind = J =
v % J %Y1+ -+ op x J *y,. We definew; = —v; x J and form
vectord. It can easily be verified that vectar belongs toK'.

2010/1/25

Inthe last step we show that = Sy +{w},ieye K & ¢ =
Yn+WAY, € Su. If ¥ € K, we need to show thgt—w € Sy . Let
zi = yi —w;. Applying few simple computation steps we show that
X7 _17;2; = 0 and thus? € Sg. The other direction is analogous.

In summary, the algorithneqSyn returns three pieces of in-
formation: the preconditiod|>;2, 3;b;, the list of termst;, and
the list of fresh variables,;. Using the computed values for gen-
erators of setSy and a witnessd, termst; are computed as:
ti = w; + A\1S1; + ... + Ag Sk

6.1.2 Efficient Computation of Linear Sets

To complete handling of equalities in our linear integetramietic
synthesizer, the last hurdle we need to address is an effdemn
putation of a set describing the set of solutions of an eqoati
¥ 1viy: = 0. Following the Omega test [Pugh 1992], we know
the structure of this set. It is a linear set wiitas the base vector
and at most —1 step vectors{a1 §1+. . .+ an—18n—1 | i € Z}.
The Omega test is an algorithm which describes, among others
computation of those step vectors. However, we find it toofgemn
for our purposes, so here we propose direct computationoskth
step vectors without applying the Omega test.

Let S = {7 | ¥i-1vy: = 0}. Note thatS is always a non-
empty set, sincd € S. We will show that$ is equal to the
following set:

Kn Ki(n-1

+ ...t an-1 o, €L

Knl Kn(nfl)
where integer valueK’;; are computed as follows:
eifi<j, Kij=0
oo oged((ve)ke>41)
* Kjj = ged((Vr)k>5)

e remaining valuedy;; are computed as follows: for each index
j, 1 < j <n -1, consider the equation

ik + Y yiuig =0
i=j+1
and find any solution. Let;; be a value of a variable;; in the
found solution. For all the remainingy;; for this fixedy, output
Kij = kij. In Section 6.1.3 we describe how to find a solution
using only the Euclidean algorithm.

If one considers a matrix formed with coefficieris;, it is a
lower triangular matrix. The reason for this is because orsd;
are forming a basis for the sétand we compute them in a way
that guarantees their mutual independence.

We next show the correctness of the construction by showing
that S = Sr. First we show that each vectay belongs toS:
§j €8 & NiL1vil; =0 & K + 300 K =0
which trivially holds by construction. Set is a homogeneous set
and therefore any linear combination of its elements isragai
element inS.

To prove that the converse also holds, we show that a v&otor
S can be written as a linear combination »fvectors. LetG; =
ng((’Yk)kzl): reS & E?:I’)/Z{Ei =0& Gl(ZZ;lﬂz:m) =0,
where 8; = ~;/G1. This implies thatfiz:1 + X7 y8;z; = 0
and all 3; values are coprime, iged((Bk)r>1) = 1. Let G2
ged((Br)k>2). We can then further rewrite the fagte S as:& €

S & bz + GQ(ZZL:Qﬁ;xi) =0& 2 = —G2(E?:2ﬁ;90i)/51-
SinceS, and G, are coprime, it means thak |27, 5;x; andz,

can be written as; = a1 G, for the integern; = 72?:25;:&/51.
Applying the definitions of72, 3; andG1 results inz1 = a1 Ki1.

Page7

Consider now a new vectaf = ¥ — «15:. Sincex and s; are
elements ofS, vectory is also an element of. However, vector

¥ has a special structure: its first component is 0. We repeat th
described procedure ghands,. This way we derive the value for
an integer and a new vectof who has the first two components
0.

We continue with the described procedure until we obtainca ve
tor that has all components 0 except for the last two components.
Since it is also an element &f, it holdsyn—1un—1 + Ynun = 0.
Using this, we conclude that,—: - gcd(yn—1,vn)/¥n IS @n in-
teger. Our goal is to show that = «,—15,-1, for some inte-
ger valuea,,—1. Next we observe that vectat,—; has a form
(0,...,0,7n/ ged(Yn—1,Yn); =¥n—1/ ged(Yn-1,7x)). By defin-
ing an—1 tobean—1 = un—1-ged(yn—-1,vn)/7n, it can easily be
verified thatd = ap,—15,-1.

The entire procedure shows that every elemenSaofan be
represented as a linear combination of t#evectors and this
finishes the proof of the correctness of the linear set cocitstn.

6.1.3 Finding a Solution of an Equation

Finally, we describe a fast way of finding a solution for anattn

K + X7_,viu; = 0. This equation has an integer solution only

if ged((vx)k>1)|K. For a purpose of constructing a linear set,
this requirement holds in every equation for which we aimnad fi

a solution. Therefore we are not addressing the case when the
equation does not have a solution. The basis for the computat

is again Bézout's identity: given integesis and a2 with greatest
common divisow there exist integera; andw- such thatz; wq +

aswz = d. The final solution of the equation will be constructed
by using induction.

We start with a base case when there are only two variables:
K + viu1 4+ v2uz = 0. BecauseK/ ged(v1,72) is an integer,
we introduce an integet = K/ ged(~1,y2). Following Bézout's
identity there exist integers; andwvs such thatyivi + Y202 =
ged(y1,72). We defineu; = v; - (—a) and verify that such
computedu; andus are correct solutions of the equation.

If there are more than two variables, we observe Eiat,v;u;
will be a multiple ofged((yx)x>2). We introduce the new variable
uy and find a solution of the equatidki + y1u1 + ged ((yx)k>2) -
uny = 0 as described above. This way we obtain values:of
and uy. To derive values ofug, ..., u, we solve the equation
Yiovius = ged((yk)r>2) - un. It satisfies the requirements to
have a solution, has one variable less than the originalteuand
thus we can apply induction.

Another algorithm for finding a solution of an equatidn +
Yi_1viu; = 0 is presented in [Banerjee 1988]. It also runs in
polynomial time and allows bounded inequality constraastsvell.
However, we chose the algorithm presented here becausetst of
simplicity. It can be easily implemented. Moreover, we antyo
interested in finding one solution of an equation. We have no
additional constraints nor we are interested in a charaetén
of all solutions.

Here we did not describe an algorithm how to find integers
andws such thatu1 w1 + asw2 = ged(ai, az), for given integers
a1 andas. It is a well-know standard algorithm, present in most
of the textbooks on algorithms under the name Extended @rani
algorithm, for example [Cormen et al. 2001][Figure 31.1].

6.1.4 Example

We demonstrate the process of eliminating equations on am-ex
ple. Consider the translation

[(z,y,2),2a — b+ 3z +4y +82 = 0A 5z + 42 < y — b]

To eliminate an equation from the formula and to reduce a mumb
of output variables, first we invok&ySyn(2a — b+ 3z +4y+8z =

2010/1/25

0). It works in two phases. In the first phase, it computes the
linear set describing a set of solutions of homogeneousliggua
3z + 4y + 8z = 0. Using the algorithm described in Section 6.1.2,
it returns:

St

=4 a1 al, a2 €72

The second phase computes a withess vettand a precondition
formula. Applying the procedure described in Section 6ré&sllts
in vectord = (2a —b, b—2a, 0) and formulal|2a — b. Finally, we
compute the output afqSyn applied orea—b+3x+4y+8z = 0:
it is a triple consisting of

1. a precondition|2a — b
2. alist of terms denoting witnesses far, y, 2):

U, =2a—b+4a;
Uy =b—2a — 3a1 + 202
U3 = —ap

3. alist of fresh variableéa:, a2).

Next we replace each occurrencerof; andz by the corresponding
terms in the rest of the formula. This results in a new formula
Ta — 3b + 13a1 < 4aw. It has the same input variables, but the
output variables are now; anda.. To find a solution for the initial
problem, we let

(prex, (U1, Ws) = [(a1, a2), 7Ta — 3b + 13a1 < das]

Sincel|2a — b is a valid formula, we do not add it to the final
precondition. Therefore, the final result is of the form

(preX, (2(1 —b + 4\1’171) — 2a — 3\111 + 2\112, —\1’2))

6.2 Processing Inequality Constraints

From now on, we assume that all equalities are already psedes
and that a formula is a conjunction of inequalities. Dealivith
inequalities in the integer case is somehow similar to theeca
of rational arithmetic: we process variables one by one &ed t
proceed further with the resulting formula.

Let z be an output variable which we are processing. Every
conjunct can be rewritten in one of the two following forms:

[Lower Bound] A; < oz
[Upper Bound] Bjz < B,

As before,x should be a value which is greater than all lower
bounds and smaller than all upper bounds. However, this wme
also need to take into an account thdtas to be an integer. For this
reason we define = max; [A;/«;] andb = min; |B;/3;]. If b
is defined, we define = b, otherwise we set = a.

The corresponding formula using which we proceed further is
a conjunction stating that each lower bound is smaller thamye
upper bound:

J\[Ai/ai] < | B;/B;]
3y
TermsA; and B; may contain input and output variables and thus
the obtained formula is not a linear arithmetic formula. tdey to
invoke our synthesizer on that formula, we have to converttit
an equivalent linear arithmetic formula. For this purposeneed
to eliminate fractionals and floor and ceiling functions.
With Icm we denote the least common multiple. LBt
lcm; ; (i, 3;). We introduce new termgl; = QLAZ and B

%Bj. Those terms are linear integer arithmetic terms and using
J

them, we derive a new formula which is almost an integer linea
arithmetic formula:

)

Page8

[Ai/ai] < |B;j/B;) & [Ai/L] < |Bj/L| &
’ B. — B’ d L
%,—J 122 & B mod L < B) — A

& Bi=L-1;+kj \Nkj < B — Aj

The obtained formula is an integer linear arithmetic forarahd
formula (2) is equivalent to

/\(B =Ll +k /\/\k < B} — AY))

Still we cannot simply apply the synthesizer on that formula
Let{1,...,J} be arange of indices. The newly derived formula
containsJ equations an® - J new variables. The process of
eliminating equalities as described in Section 6.1 willls &nd
result in a new formula which containg new output variables
and this way we cannot assure termination. Therefore, shimf
a suitable approach.

However, we notice that the value &f is always bounded:
k; € {0,...,L — 1}. Thus, if the value of; would be known,
we would have a formula with only new variables and’ addi-
tional equations. The equations elimination describedreefould
then result with a formula that has one variable less thamtige
inal starting formula and that would guarantee terminatibthe
approach.

Since the value of eadty variable is always bounded, there are
finitely many ¢/ - L) possible instantiations @f; variables. There-
fore, we need to check for each instantiation of /gllvariables
whether it leads to solution. As soon as a solution is fourelstep
and proceed with the obtained values of output variableso Ko-
lution is found, we raise an exception, because the origomedula
has no integer solution.

We finish the description of the synthesizer with an example
which illustrated the above algorithm.

Example Consider aformul@y —b < 3z +aA2x—a < 4y+b
wherez andy are output variables and and b are input vari-
ables. If the resulting formulf2y — b — a/3] < |4y + a + b/2]
has a solution, then the synthesizer emits the value of x to be
|4y + a + b/2]. This newly derived formula has only one out-
put variabley, but it is not an integer linear arithmetic formula.
It is converted to an equivalent integer linear arithmetimfula
(dy+a+0b)-3 =6l4+kANEk < 8y+ 5a+ 5b, which has
three output variablesy, k& and [. The value ofk is bounded:
0 < k < 5. We start withk 0: this leads to a formula
dy+a+b=20N0 < 8y + ba + 5b, with a andb as input
variables and andy as output variables. Invoking the synthesizer
on this code results in the precondition form@ja + b and the
code:

val alpha = ((—5 * a — 5 * b)/8).ceiling

val | = (a + b)/2 + 2 x alpha

val y = alpha

Because: andb are input variables, the validity of the precondition
formula can be checked. If it is valid, we stop further exams of
the algorithm and output the above code followed by the code c
puting the value ofc. If the precondition formula is not valid, we
repeat the procedure for the remaining valueg:of = 1,...,5.

If none of those values returns the satisfying solution, ivew an
exception.

6.3 Disjunctions in Presburger Arithmetic

We can again lift synthesis for conjunctions to synthesis fo
arbitrary propositional combinations is to apply the mettaf

2010/1/25

Section 4.4. We also obtain complexity that is one expoaénti
higher than the complexity of synthesis from previous sectAp-
proaches that avoid disjunctive normal form can be usedsrctise
as well [Ferrante and Rackoff 1979; Nipkow 2008; Weispfagni

1997], and we expect the lower and upper bounds on quantifier

elimination [Weispfenning 1997] to apply to the size of thathe-
sized code.

6.4 Optimizations used in the Implementation

In this section we describe some optimizations and hecsistiat
we utilize in implementation. Using some of them we obtaiaed
speedup by several orders of magnitude.

Merging inequalities. Whenever two inequalities; < ¢, and

to < t1 appear in a conjunction, we substitute them with equality
t1 = t2. This makes the process of variable elimination more
efficient.

Heuristic for choosing the right equality for elimination. When
there are several equalities in a formula, we chose to editaian
equality for which the least common multiple of all the caaéfnts
is the smallest. We observed that this reduces the numbetesf i
gers to iterate over.

Some optimizations on modulo operationsin processing in-
equalities, as described in Section 6.2, as soon as we itedtie
mod operator, we are immediately aware of potential longer pro-
cessing time. It is because finding the suitable value ofeh@nder
in equationB;mod L < B} — A}, requires invoking a loop. While
searching for a witness, we might need to check for all ptsdib
values. Therefore, we try not to introduce thenod operator in
the first place. This is possible in few cases. One of them srnwh
eithera; = 1 orb; = 1. In that case, if for example; = 1, an
equivalent integer arithmetic formula is easily derived:

[Ai/ai] < |B;/B;] & Ai < |B;/B;] < B;Ai < By

Another example for when we do not introduce thenod
operator is the case whet] — B’ evaluates to a numbé¥, such
thatN > L. In that case, itis clear th@;mod L < B; — Ajisa
valid formula and thus the returned formulalis

Finally, we describe an optimization that leads to reduang
number of a loop executions. This optimization is possiblemw
there exists an intege¥ such thatB; = N - T; andL = N - L.
(UnlessL = j;, this is almost always the case). In the case Mat
exists, therk; also has to be a multiple a¥. Putting together all
that, an equivalent formula dB;mod L < Bj — Aj is formula
Tymod Ly = kj AN - ki, < Bj — Aj. This reduces the number
of loop iterations for at least a factov.

6.5 Complexity

We next describe the complexity of our algorithms, for bdih t
synthesis process itself and the synthesized programs.

A conversion of the formula to Disjunctive Normal Form might
increase by an exponential factor both the running time &ed t
space of our synthesizer and also the size of the generaigoapn
(see 6.5). The execution time would also be multiplied by>qroe
nential factor as we are checking the conditions in sequence

In the sequel we analyze a conjunction of atomic equations.

Synthesizer Time Complexity The number of time§(E, N, V)
given the number of equalities, inequalitiesN and output vari-
ablesV/, is bounded from above by:

\4

2V+1_1

2
Q(E,N,V) =0 <2 +3 N i, E))

This result is proved in appendix A.2.

Page9

A|FANF | FyV Fy | -F

Bi=By | BiC B |Th=Ts | Th <T: | (K|T)
z|0|U|B1UBx | BiN B2 | B®
k|K|Tv+T>|K-T| |BI
.o=2]=1]0]1]2...

NN W o

Figure 1. A Logic of Sets and Size Constraints

Note that, the algorithm has again good efficiency in the ab-
sence of inequalities. In any case, it is also polynomialm#ies
constant.

Generated Programs SizeEach recursive call to remove an
equality also means at least an assignment, so there candasat
doubly exponential assignments.

Generated programs Time ComplexityWithout inequalities, the
complexity is linear in the number of equations. Else, it also be
doubly exponential.

6.6 Generalization to Parametrized Presburger Arithmetic

It is possible generalize our synthesizer in the case whedkf-
ficients of the output variables are not only integers angnbut
they can be any arithmetic expression over the input vagaflhis
extension allows us to write implicit programs like this one

val (x, y) = choose((x: Int, y: Int) =
x % (k34+1) +y * (2k2—k) == k"4 &&
x * k > 3 % k45

)

In that case, all the choices made during synthesis depgndithe
sign of the coefficients have to be done at run-time. Eachcehoi
on the sign generates two or more different solutions, sallppc
multiplies by two or three the execution time and the sizehef t
generated program.

The coefficients of the Bezout function in this case become
known at run-time only, so we have to integrate the Bezouttfan
into the code as a library function. The situation is the séonéhe
ged function.

Furthermore, the running time of the programs is not constan
anymore, it depends on the value of the inputs. For examipe, t
upper bounds of the generated for loops in Section 6.2 miglt n
be arithmetic expressions.

7. Synthesis for Sets with Size Constraints

In this section we define a logic of sets with cardinality doaists
and describe a synthesis procedure for it. Our logic suppbe
standard set operators union, intersection and complemedithe
subset and equality relations. In addition, it supportsthe opera-
tor on sets, as well as integer linear arithmetic consisamer these
sizes. Its syntax is given in Figure 1. This logic was consden a
number of applications [Feferman and Vaught 1959; Kuncak.et
2006; Zarba 2004, 2005].
As in the previous sections, we consider the problem (1)

7 = choose(Z = F(Z, a@))

where the components of vectais®, 7 are either set or integer
variables.

Figure 2 describes a synthesis procedure that returns artiec
tion predicatepre(d) and a solved forn¥’. The procedure is based
on the quantifier elimination algorithm presented in [Kuneaal.
2006] which reduces a formula in our logic to an equisatifiab
Presburger arithmetic formula. The algorithm eliminates\sri-
ables in two phases. In the first phase all set expressions\arit-

2010/1/25

ten as disjunctive unions of corresponding Venn regiong. §dt-
ond phase introduces for the cardinality of each Venn regifvash
integer variable, and thus reduces the whole formula to a-Pre
burger arithmetic formula. The input variables in this Preger
arithmetic formula are the integer input variables fromahiginal
formula and fresh integer variables denoting cardinalitéVenn
regions of the input set variables. Note that all valuesldahake in-
put variables is known from the program. The output varislale
the original integer output variables and freshly intreetbinteger
variables denoting cardinalities of Venn regions that argained
in the output set variables. We adapt this algorithm andaionj
it with the synthesizer for Presburger arithmetic desdtilmeSec-
tion 6. The synthesizer outputs the precondition predipedeand
emits the code for computing values of the new output vagmbl
Based on those returned integer values we reconstruct al fieode
the original formula and finally we emit the code that compute
values of the original output set variables. Notice thatteeondi-
tion predicatepre will be a Presburger arithmetic formula with the
terms built using the original integer input variables anel ¢ardi-
nalities of Venn regions of the original input set variablAs an
example, ifi is an integer input variable andandb are set input
variables then the precondition predicate might be theotg
formulapre(i, a,b) = |[aNb| < i Ala| < |b].

In the last step of the algorithm, while outputting code, we
use the commandgresh andtake. The commandake takes as
arguments an integérand a sef5, and returns a subset §fof the
sizek. The commandresh(k) is invoked wherk fresh elements
need to be generated. Those commands are used only in the code
that will compute output values of set variables, becaueditiear
integer arithmetic synthesizer produces code for comiaumaif
integer output variables. The set output variables are atadpone
by one. Given an output set variabig, the code that effectively
computes the value of; is emitted in several steps. With;
we denote a set containing set variables occurring in thginadi
formula whose values are already known. Initigdlycontains only
the input set variables. Our goal is to describe the contspruof
Y; in terms of sets that are already §;. We start by computing
the Venn regions foly; and all the sets irf; in order to define
Y; as a union of those Venn regions. Therefore we are interested
only in those Venn regions that are subsetYpf Let T; be one
such a Venn region. It can be represented’as= Y; N U; where
U, has a formU; = Nses, S and S denotes eithes or S°.

On the other handl’; can also be represented as a disjoint union
of the original R,, Venn regions. Thos&, are Venn regions that
were constructed in the beginning of the algorithm for afiun
and output set variables. As the linear integer arithmetithesizer
outputs the code that computes valies whereh, = |R.|, we
can effectively compute the size of ed€h If T} = Ry, U ... U
R, then the size ofj is |T}| = d; = 3.}, ha,. Note thatd; is
easily computed from the linear integer arithmetic syrittezsand
based on the value df we define asek; asK; = take(d;, Uj).
Finally, we emit the code that defin&$ as a finite union of<;’s:
Y; = Uj Kj.

Based of the values af;, we can introduce further simplifica-
tions. Ifd; = 0, none of elements d/; contributes td; and thus
K; = 0. On the other hand, if; = |U;|, applying a simple rule
S = take(|S|, S) results inK; = Uj. A special case is when
U; = Nses; S If in this case also holds thal; > 0, we need

3.

aformulaF (X, Yk, 1) in the logic defined in Figu-
re 1, input variables(y, ..., X, k1,. .., km

and output variable¥s, ..., Ys, l1,. .., I+, where

X; andY; are set variableg;; andl; are integer
variables

code that computes values for the output variables
from the input variables

INPUT:

OUTPUT:

1. Apply the first steps towards a Presburger arithmetic fibam

(a) Replace each atofy = S> with S1 C S2 A Sz C 5
(b) Replace each atosy, C S, with |S1 N S5| =0

2. Introduce the Venn regions of set§’s and Y;'s: let u be a

binary word of the length+m. The set variablé?,, represents

a Venn region where each '1’ stands for a set and '0’ stands for
a complement. To illustrate, it = 2, m = 1 andu = 001,
then Roo1 = X1 N X3 N Y:. Rewrite each set expression as a
disjoint union of corresponding Venn regions.

Create a Presburger arithmetic formula: an integer biria,
denotes the cardinality of a Venn regid,. Use the fact that
[S1 U Sa| = |S1] + |S2| iff S1 and S are disjoint to rewrite
the whole formula as the Presburger arithmetic formula. The
resulting formula we denote with; (hz, k, f)

4. Create a Presburger arithmetic formula which correspaad

quantifier elimination: let» be a binary word of lengt. A
set variableP, denotes a Venn region of input set variables,
which means thaltP, | is a known value. Create a formula that
expresses eadt?, | as a sum of correspondirtg,’s. Define the

formula Fy (h,, |15v|) as the conjunction of all those formulas.

5. Create code that computes values of output vectors. iRirst

voke the linear arithmetic synthesizer described in Sedito
generate the code corresponding to:

val (hun, In) = choose((hy, 1) = Fi(hu, k, 1) AFa(hu, |Py]))

Invoking the synthesizer returns code that computes expres
sions for the integer output variablés and for the variables
h.. For each set output variablg, do the following: letS; be

a set containing already known or defined set variablegjlet
be a Venn region of; U Y; that is contained ifY;. Now, for
eachT; do: take allR,, that belong tdl’; and letd; be a sum of

all corresponding..,,. LetU; = T;\Y;. Based on the value of

d; output the following code:
o if U; = Nses,; S andd; > 0, output the assignmerdt’; =

fresh(d;)

if d; = 0, output the assignmedt; = ()

e if d; = |Uj|, output the assignmett; = U;
e otherwise output the assignmeiit, = take(d;, U;)

Finally, constructy; as a union of alK; sets:Y; = U; K

to taked; elements that are not contained in any of already known Figyre 2. Algorithm for synthesizing a function? such that

sets, i.e. we need to generate freshelements. For this purpose
we invoke the commantiresh.

Example run of the algorithm Consider the choose statement

val s1 = choose((s: Set) = a subsetOf s && s.size < b.size)

Page:10

F[Z := ¥(a)] holds, whereF" has the syntax of Figure 1

2010/1/25

We apply the algorithm from Figure 2. After completing thedh
step, we obtain the formula

—

Fi(hy) = hioo = 0 A hi1o = 0 A hior < hot1 + hoto

We simplify the formula obtained in the fourth step using the
constraints from the third step and obtain the formula

FQ(}_iu) = hi11 = |aﬂb|/\h101 = |aﬂbc|/\h011+h010 = |acﬂb|
We call the linear arithmetic synthesizer and the followiadues
for h,, variables

hioo = 0%, h11o = 0%, h111 = |a N b|*, h1o1 = |a N b°|*,
hoio = |a N b, ho11 = |a® Nb| — |a N b°|, hoor = 0,
hooo = |acﬂbcl*

where* denotes the deterministic values of variables. The linear
arithmetic synthesizer also outputs the precondition ipegepre:
pre(a,b) = |a®Nb| > |anbd®|. Finally, we emit the following code,
written in the Scala-like syntax:

valkl=a ——b
val k2 = a *xx b

val k3 = take((b —— a).size — (a —— b).size, b —— a)
val S = k1 ++ k2 +4 k3

Herex ++ y,x ** yandx -- ydenotexr Uy, z Ny andz Ny
respectively, and . size the cardinality ofc.

Partitioning a set Consider the following invocation of the
choose function that generalizes the example in Section 2.

val (setA, setB) = choose((a: Set[String], b: Set[String]) =
(—maxDiff < a.size — b.size && a.size — b.size < maxDiff
&& a ++ b == bigSet && a *x b == Set.empty
)

scalac w/ plugin w/ checks

SecondsToTime 3.05 3.2 3.25
FastExponentiatior] 3.1 3.15 3.25
ScaleWeights 3.1 34 3.5
PrimeHeuristic 3.1 3.1 3.1
SetConstraints 3.1 3.5 -

SplitBalanced 3.2 5.3 -

All 5.25 6.35 6.5

Figure 3. Measurement of compile times: without applying syn-

thesis §calac), with synthesis but with no call to Z3:m/ plu-

gin) and with both synthesis and compile-time checks activated
(w/ checks). All times are in seconds. There are no compile-time
checks for the synthesis of set values.

ScaleWeightsomputes solutions to a puzzRtimeHeuristiccon-
tains a long pattern-matching expression where every rpatte
checked for reachability, anSetConstraintss a variant ofSplit-
Balanced We also measured the times with all benchmarks placed
in a single file, as an attempt to balance out the time takeimnéy t
Scala compiler to start up. Our numbers show that the additio
time required for the code synthesis is minimal. One sholdd a
note that the code we tested contained almost exclusivdly tca
the synthesizer, which is clearly not representative oftwaex-
pect will be the common practice of using a selective numifer o
invocations.

9. Related Work

Our work differs from the past ones in 1) using decision pdoces
to guarantee the computation of synthesized functions exera

This example combines integer and set variables. Given a setsynthesized function exists, 2) bounds on the running tiofiese

bigSet, the goal is to divide it into two partition. The previously
defined integer variablgaxDiff specifies the maximum amount
by which the sizes of the two partitions may differ. Our syadizer
successfully generates the code for this example which oteap
acceptable sizes for the Venn regions using the appropritger
arithmetic expressions, selects elements into these \egions,
and computes the setsandb by taking the union of non-empty
Venn regions in which these sets participate.

8. Implementation

We have implemented our synthesis procedures as a Scaldeomp
extension (please consult the non-anonymous appendikéant-
plementation URL). We chose Scala because it supports highe
order functions that make the concept of a choose functiom-na
ral, and extensible pattern matching in the form of extrecfamir
etal. 2007]. Besides, the compiler supports plugins thaseave as
additional phases in the compilation procés¥e used an off-the-
shelf decision procedure [de Moura and Bjgrner 2008] to leand
the compile-time checks.

Our plugin supports the synthesis of integer values thrdbgh
choose function constrained by linear arithmetic predicates, as
well as the synthesis of set values constrained by prediaaite
the logic described in Section 7. Additionally, it can syadlze
code for pattern-matching expressions on integers sudieasies
presented in Section 2.

Figure 3 shows the compile times for a set of benchmarks, with
and without our plugin (in the latter case, the generate@ ¢adf
course of no use). The examplBscondsToTimé&astExponentia-
tion were presented in Section 2 aSglitBalancedin Section 7.

2http://www.scala-lang.org/node/140

Pagei1l

synthesis algorithm and the synthesis code size and rurimeg
and 3) deployment of synthesis in well-delimited piecesanfecof
a general-purpose programming language.

Early work on synthesis [Manna and Waldinger 1980, 1971] fo-
cused on synthesis using expressive and undecidable |lsgidsas
first-order logic and logic containing the induction priplei. Con-
sequently, while it can synthesize interesting progranmaining
recursion, it cannot provide completeness and terminafi@man-
tees as synthesis based on decision procedures.

Recent work on synthesis [Srivastava et al. 2010] resolvees
of these difficulties by decoupling the problem of inferrprogram
control structure and the problem of synthesizing the cdatfopn
along the control edges. Furthermore, the work leverageoee
tion techniques that use both approximation and latticertte
search along with decision procedures. This work is morei-amb
tious and aims to synthesize entire algorithms. By natticarinot
be both terminating and complete over the space of all progra
that satisfy an input/output specification (thus the apgnad spec-
ifying program resource bounds). In contrast, we providemgete-
ness guarantees for a given specification, but focus on esistbf
program fragments with very specific control structureatiet by
the nature of the decidable logical fragment.

Program sketching has demonstrated the practicality gfraro
synthesis by focusing its use on particular domains [Sloterama
et al. 2006, 2007, 2008]. The algorithms employed in skatghre
typically focused on appropriately guided search over theax
tree of the synthesized program. In contrast, our synthesés
the mathematical structure of a decidable theory to exmpexe
of all functions that satisfy the specification. This enabbaur
approaches to achieve completeness without putting anyos pr
bound on the syntax tree size. Indeed, some of the algoritiens
describe can generate fairly large and efficient prograneseXgect

2010/1/25

that our techniques could be fruitfully integrated into tsking
frameworks.

Synthesis of reactive systems generates programs thabrun f
ever and interact with the environment. However, known detep
algorithms for reactive synthesis work with finite-statesteyns
[Pnueli and Rosner 1989] or timed systems [Asarin et al. 1995
Such techniques have applications to control the behavVibai-
ware and embedded systems or concurrent programs [Vechév et
2009]. These techniques usually take specifications irpgrfeat of
temporal logic [Piterman et al. 2006] and have resultedalstthat
can synthesize useful hardware components [JobstmannlaachB
2006; Jobstmann et al. 2007]. Our work examines non-reaptiv-
grams, but supports infinite data without any approximateom
incorporates the algorithms into a compiler for a genetappse
programming language.

Automata-based decision procedures, such as those imple-

mented in the MONA tool [Klarlund and Mgller 2001] could
be used to synthesize efficient (even if large) code from ex-
pressive specifications. The work on graph types [Klarlund a
Schwartzbach 1993] proposes to synthesize fields given firyi-de
tions in monadic second-order logic. The subsequent wok|gv
and Schwartzbach 2001] has focused on verification as ogpose
synthesis.

Our approach can be viewed as sharing some of the goals of
partial evaluation [Jones et al. 1993]. However, we do netrte
employ general-purpose partial evaluation techniquesciwtyp-
ically provide linear speedup), because we have the knaeled
a particular decision procedure. We use this knowledgetzda
synthesis algorithm that, given formulg, generates the code cor-
responding to the invocation of this particular decisioogadure.
This synthesis process checks the uniqueness and theneesie
the solutions, emitting appropriate warnings. Moreovee $yn-
thesized code can have reduced complexity compared toiimyok
the decision procedure at run time, especially when the eurob
variables to synthesize is bounded.

A. Derivation of Complexities

This part contains proof complements about the complexiti@ur
synthesis algorithms.

A.1 Linear Rational complexity

We assumed input variables (containing the constant coefficient),
V output variablesE equalities £ < V), andN inequalities.

We want the number of arithmetic operations during synthesi
which we writeQ (A, V, E, N).

We will prove that:

Q(A,V,E,N) <U(A,V,E,N)
where
v ok—1
Z 22k—1 +

k=2

U(A,V,E,N) —K5-<2V(A+V) f(A,V,E,N))

where
After bounding from above the sum, we get the expected result

W(A+V) N2

Q(AquvN):O< 92V —1

FV(A+V)(E+ N))

A.1.1 Removing 1 equality

We take a variabley, , and we solve one of its equations = ¢ .
This takesO(A + V — 1) operations.

Page12

Then, for each othefE — 1 + N) equations, we replacey
by its expression, this take3(A + V' — 1) per equation, so total
replacement takeQ((E — 1+ N) - (A + V')) operations.

Therefore, we have the following relation:

Q(A,V,E,N) = Q(A,V—1,E—1, N)+O((E—14+N)(A+V—1))

A.1.2 RemovingE equalities

By summing up the terms while decreasing the number of dgsalt
and variables, we obtain:

Q(A7 V7 E7 N)

QA,V — E,0,N)
+ O(SE(E-i+N)(A+V —i)
Let us simplify the inner term:
SE(E—i+N)(A+V —9)
(E4+N)Y(A+V)YSE 1 — (A+VHE+N)YE i
+,

— (A+V +E+ N)ZELD
E(E+1)(2E+1)

(E+ N)(A+V)E

+ 6

< E@BE+N)(A+V) ~3(A+V +E+N)(E+1))
H(E+1)(2B+1))

< E((A+V)B3E+6I) - 3IE — E* — 31E + 1)

< E{arv)6E+en)

< E-(A+V)(E+N)

Therefore, we have the following relation:
Q(A,V,E,N) Q(A,V — E,0,N)
+ O(E-(A+V)(E+N))
A.1.3 Removing V variable whenE = 0, N =0

Without equations nor inequations, we assign 0 to all remgin
variables.

Q(A,V,0,0) =0(V)

A.1.4 Removing 1 variable whenE =0, N =1

With only one inequation, we treat it as an equaiity, solve it and
then assign 0 to all remaining variables.
Complexity :

Q(A,V,0,1) = O(A) + O(V)

A.1.5 Removing 1 variable whenE =0, N > 2

Once all equalities are removel (= 0), what is the complexity of
removing one variable if there are at least two inequalities

First, we take a variable, split the inequations betwéeim-
equations on the lefi on the right, and/ nothing. Assuming the
worst-case complexity/ = 0,andL + R = N

The split operation is done i@ ((A + V')(L + R)) operations,
s0O((A + V) - N) operations.

The expressionmax(...) + min(...))/2 of section 5.1 is
constructed, not computed, so this count®gs).

After the split, we relaunch the same process With- L — R+

L - R inequalities, which is less thaﬁi.
Each merge take9(A+V") operations, so there af# NTZ (A+

V")) operations, which is greater than the previalsV - (A+V)).
Therefore, we have the following relation:

) vl

N2

4

N2

Q(A,V,(),N):Q(A,VA,O, 0

-(A+V))

2010/1/25

A.1.6 Merging and upper bound

So we have the following results, and we will now prove that th

upper bound$#’ on 2 holds by induction.

1) QA V000 < K-V

2) QA V,01) < Ky A+Ks-V

(8) QUAVON) < Ki- (8- (4+V))
+Q(A V—Lo,NTZ)

4) QA V,E,N) < (E-(A+V)(E+ N))

+
+Q(A7V — E,0,N)
A.1.7 Proof by induction

Let us examine the base cases (1) and (2). They are all satisfie

we chooseKs > max(K1, K2, K3) in the provided formula of
section A.1.

Now let us examine the cases (3) and (4) by induction to prove

that the given upper bound expressidrolds.

(4) The complete induction hypothesis let us assume that
Vo< V. QAv,E,N)<U(Av,E N)

Therefore, fon =V — E:

k—1

QA,v,0,N) < Ks-(2u(A+v)Y,_, Z;k 1
+f(A,v,0,N))

— k—l
<K <2VA+V Z T AV-E,o,N))
Using this result in (4), we obtain:

QA V,E,N) < Ko-(E-(A+V)(E+N))
k—1
+Ks-(2V(A+ V) E) D N

+f(A7V7E7O7N))

This is trivial for E = 0, so let us assumg& > 0. We regroup
terms to formUU, and then examine the remaining terms.

QA,V,E,N)
< U(AV,E,N)
+Ko-(E-(A+V)(E+N))
+K5 - (—QV(A+V)Zk V—E+1 52k 1
+f(A,V —E,0,N) — f(A,V,E,N))

Furthermore, if we assumiEs > K :

2Rl

Ko-(E-(A+V)(E+N) + Ks(f(A,V—E,0,N)
< K- (BE-(A+V)E+N) + (V—E) (A+V-E)
V- (A+V)(N+E))
< K- (E-(A+V)(E+N) + (V-E)-(A+V)(N+E)
-V -(A+V)(N+E))
< 0

So by simplification, we obtain:
QA V,E,N) <U(A,V,E,N)

(3) The complete induction hypothesis let us assume that
Vo< V. QAv,E,N)<U(Av,E N)

Page13

Using this result in (3) foo = V' — 1, we obtain:
QA,V,0,N)
2 2
Ko (5 (A+ V) + U4V =1,0,57)
N
Ky (8- (A+V)+ o
Ks-(2(V-1)(A+V -1 T —y
f(A7V_1707N2/4))
Koo (37 (A+V)+
V1 N2 k+1—1
Ks-(2V(A+ V)3 ot
f(A,V —1,0,N?/4))
2
Ka- (57 - (A+V)+
S
Ks-(2VA+V) TV, Yt
FlAV — 1,0,N2/4))
U(A,V,0,N)+
2
Ka- (57 - (A+V)+
Ks-(—2V(A+ V)& 4
f(A,V —1,0, N2/4) f(A,V,0,N))
Assuming thats > Ky :

INIA

IN |

IN

Q(A,V,0,N)
< U(AV,0, N)+
Ks - ((A+)2
oy (A+V) i+
f(A7V 17 7N/4)7f(A7‘/707N))
< U(A,V,0,N)+
Ks-(2. (4+V)
f(A,V —1,0,N?/4) — f(A,V,0,N))

By bounding from above :

Q(A,V,0,N)
< U(A,V,0,N)+
Ks-(-V(A+ V)
+(V -)(A+Vf 1) - V(A+V)N)
U(AV.0.N)+

Ks-(—V(A+V)E-
2

+V(A+ V)= — V(A4 V)N)
U(A,V,0,N)+ K5 - (-V(A+ V)N)
U(A,V,0,N)

QED.

A.1.8 Size and execution time

N

INIA

For each variable solved from an equality, the size of itigassl
expression will be bounded from above By- (A+V —1); where

V is the number of variables at this point afigla certain constant.
For each variable solved from an inequality, the size ofstsgned
expression (the mean of the min of lower bounds and max ofruppe
bounds) will be inP; ((A+V — 1) - N), whereN is the number

(IV) of inequaltiies at this point, knowing that the next timesréamight

be up toN?/2 new inequalities.
Therefore, withE' equalities, the size of the program is bounded
from above by:
Po-(A+V -1+ ... +P0 (A+V — E)+
P -(A+V —-1)N+ ... L (A+V - V)XY

This can be bounded from above by

N2V+1—1

—1

22V 2

2010/1/25

WherePQ = HlaX(F)o7 Pl)

As we do not have any loops in the linear case, the execution

time is roughly linear to the size of the program, so it hasstae
complexity.
A.2 Linear Integer complexity

Let us examine the number of tim&§ £, N, V') given the number
of equalitiesE, inequalitiesN and output variable¥'.
By induction on the number of output variablEswe show that
Q(E,N,V) <U(E,N,V)

where
\% ok—1
UE,N,V)=2+2) i +min(V,E)
k=1

By arithmetic properties, it implies the following expedtee-
sult
2V
oV +1_

QE,N,V) <24 - 4 min(V, E)
2 1

The base case {3(E, N, 0) = 1, so this holds. Indeed, without
output variables, all equations go directly to the prectiodi We
suppose now that” > 1.

1. The first remark is that if there are equalities remainibg>
1), we can remove one variable in one step.

QE,N,V)<QE-1,N,V-1)+1
By induction hypothesis, we obtain:

V-1 ,ok—1
QE,N,V)<14+2+2) o tmin(V - 1LE-1)
k=1
2V71
QE,N,V) SU(E,N,V) = 27— < U(E,N,V)

Now, equations are removed.
2. If a variable is bounded on one side only k¥ inequalities:

QO,N,V) < QO,N-L,V—1)
< UON-L,V-1)
< U(O,N,V)

3. Partial modulo ending does not make the behavior of sgighe

or synthesized program worse, only better, so we can igtore i

for the purpose of complexity upper bound.

4. After handling equalities and inequalities of step 6, vem c
assume thalv > 2. If L is the number of lower bounds artl
the number of upper bounds, it generatesk new inequalities
and R equalities, wherd < L < N-1, 1< R< N -1
and of coursd. + R < N. If L < R, we would split on the.
equations, so by taking we can assume th#& < N/2.

Q(0,N,V) < maxy g Q(R,N—L—R+L-R,V—14+R)+1

As the next steps will be consecrated to removingRhequal-
ities, we obtain that:

Q0,N,V) <maxp,rQ0,N—L—R+L-R,V-1)+1+R
Among the choices of,, the highest complexity is given for
L=N-R.

Q0,N,V) <maxrQ20,(N—R)-R,V-1)4+1+R

As R < N/2, we can maximize it withv/2

Q(0,N,V) < Q(0, N?/4,V — 1) + 1+ N/2

So by induction :

Page:l14

k—1
QO,N,V)<2+2 VP OCMT Ly N2

k=1 92k —1

.
Q0,N,V) S 2+2 X0 i + 1+ N/2

1
QO,N,V)<2+23) X — 414+ N/2

"1 N/2 - 2(N)2)

92k —1

QO,N,V) <2423,
Q(0,N,V) <U(0, N, V)
QED.

Acknowledgments

We thank Barbara Jobstmann and Martin Odersky for useful dis
cussions and suggestions.

References

E.

u.

M.

E

T.

S.

C.

S.

Asarin, O. Maler, and A. Pnueli. Symbolic controller dyesis for
discrete and timed systems. Hybrid Systems]lpages 1-20, 1995.
K. Banerjee. Dependence Analysis for Supercomputinduwer Aca-
demic Publishers, Norwell, MA, USA, 1988. ISBN 0898382890.
Barnett, K. R. M. Leino, and W. Schulte. The Spec# prograngm

system: An overview. ITCASSIS: Int. Workshop on Construction and
Analysis of Safe, Secure and Interoperable Smart devagst.

. Barrett, I. Shikanian, and C. Tinelli. An abstract demisprocedure for

satisfiability in the theory of recursive data typeSlectronic Notes in
Theoretical Computer Sciencg&74(8):23-37, 2007.

R. Bradley and Z. Mannal he Calculus of Computatiospringer, 2007.

. E. Bryant. Graph-based algorithms for boolean functi@mipulation.

IEEE Transactions on Computer§-35(8):677—-691, August 1986.

. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. MakKT. San-

ten, W. Schulte, and S. Tobies. VCC: A practical system faifye
ing concurrent c. IrnConf. Theorem Proving in Higher Order Logics
(TPHOLSs) volume 5674 of.NCS 2009.

. C. Cooper. Theorem proving in arithmetic without muitigtion. In

B. Meltzer and D. Michie, editorsMachine Intelligence volume 7,
pages 91-100. Edinburgh University Press, 1972.

H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Sténtroduction to
Algorithms (Second EditionMIT Press and McGraw-Hill, 2001.

. W. Dijkstra. A Discipline of ProgrammingPrentice-Hall, Inc., 1976.

Emir, M. Odersky, and J. Williams. Matching objects witatierns. In
ECOOR 2007.

Feferman and R. L. Vaught. The first order properties oflycts of
algebraic systemdzundamenta Mathematicad7:57-103, 1959.

. Ferrante and C. W. Rackofffhe Computational Complexity of Logical

Theoriesvolume 718 ot_ecture Notes in MathematicSpringer-Verlag,
1979.

Flanagan, K. R. M. Leino, M. Lilibridge, G. Nelson, J. B.x8aand
R. Stata. Extended Static Checking for Java.A®M Conf. Program-
ming Language Design and Implementation (PL20)02.

Ginsburg and E. Spanier. Bounded algol-like langua@emsactions of
the American Mathematical Society13(2):333—-368, 1964.

Ginsburg and E. Spanier. Semigroups, Presburger fosnaud lan-
guages Pacific Journal of Mathematic4.6(2):285-296, 1966.

J. Jaffar and M. J. Maher. Constraint logic programming: A/ew J. Log.

B.

B.

Program, 19/20:503-581, 1994.

Jobstmann and R. Bloem. Optimizations for LTL synthelsis=MCAD,
2006.

Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzun8l for
property synthesis. I€AV, 2007.

. D. Jones, C. K. Gomard, and P. SestoRartial Evaluation and Au-

tomatic Program Generation (freely available), 1993. URILhttp:
//www.dina.kvl.dk/~sestoft/pebook/pebook.html.

2010/1/25

N. Klarlund and A. MgllerMONA Version 1.4 User ManuaBRICS Notes
Series NS-01-1, Department of Computer Science, Uniyeo§iharhus,
January 2001.

N. Klarlund and M. |. Schwartzbach. Graph types.A®PL, Charleston,
SC, 1993.

J. H. Kukula and T. R. Shiple. Building circuits from relat@ InCAYV,
2000.

V. Kuncak, H. H. Nguyen, and M. Rinard. Deciding Boolean Alge
with Presburger Arithmetic.J. of Automated Reasoning006. URL
http://dx.doi.org/10.1007/s10817-006-9042-1.

Z. Manna and R. Waldinger. A deductive approach to progranthegis.

ACM Trans. Program. Lang. Sys2(1):90-121, 1980. ISSN 0164-0925.

doi: http://doi.acm.org/10.1145/357084.357090.

Z. Manna and R. J. Waldinger. Toward automatic program ®wgish
Commun. ACM14(3):151-165, 1971.

A. Mgller and M. I. Schwartzbach. The Pointer Assertion lodgngine. In
Programming Language Design and Implementat@2001.

L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. TACAS 2008.
T. Nipkow. Linear quantifier elimination. INCAR 2008.

M. Odersky, L. Spoon, and B. VenneBrogramming in Scala: a compre-

hensive step-by-step guidértima Press, 2008.

D. C. Oppen. Reasoning about recursively defined data stesctinPOPL,
pages 151-157, 1978.

N. Piterman, A. Pnueli, and Y. Sa’'ar. Synthesis of reactiyelesigns. In
VMCAI, 2006.

A. Pnueli and R. Rosner. On the synthesis of a reactive modiuleOPL,
1989.

W. Pugh. A practical algorithm for exact array dependencealyars.

Commun. ACM35(8):102-114, 1992. ISSN 0001-0782. doi: http:

/ldoi.acm.org/10.1145/135226.135233.

A. Schrijver. Theory of Linear and Integer Programmingohn Wiley &
Sons, 1998.

A. Solar-Lezama, L. Tancau, R. Bodik, S. A. Seshia, and \S&raswat.
Combinatorial sketching for finite programs. ASPLOS2006.

A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik, V. A. Savag and S. A.
Seshia. Sketching stencils. RLDI, 2007.

A. Solar-Lezama, C. G. Jones, and R. Bodik. Sketching coectudata
structures. IrfPLDI, 2008.

S. Srivastava, S. Gulwani, and J. S. Foster. From prograificaion to
program synthesis. IROPL, 2010.

P. Suter, M. Dotta, and V. Kuncak. Decision procedures fgelalaic data
types with abstractions. IROPL, 2010.

D. Syme, A. Granicz, and A. Cisternin&xpert F#. Apress, 2007.

M. T. Vechev, E. Yahav, and G. Yorsh. Inferring synchronaatunder
limited observability. INTACAS 2009.

V. Weispfenning. Complexity and uniformity of elimination presburger

arithmetic. InProc. International Symposium on Symbolic and Alge-

braic Computationpages 48-53, 1997.
C. G. Zarba. A quantifier elimination algorithm for a fragrhehset theory

involving the cardinality operator. 168th International Workshop on

Unification, 2004.

C. G. Zarba. Combining sets with cardinals of Automated Reasoning4
(1), 2005.

K. Zee, V. Kuncak, and M. Rinard. Full functional verificati@f linked
data structures. IRLDI, 2008.

K. Zee, V. Kuncak, and M. Rinard. An integrated proof langridgr
imperative programs. IRLDI, 2009.

Page15

2010/1/25

