
Synthesis for Unbounded Bit-vector Arithmetic

Andrej Spielmann and Viktor Kuncak

School of Computer and Communication Sciences (I&C)
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract. We propose to describe computations using QFPAbit, a language of
quantifier-free linear arithmetic on unbounded integers with bitvector operations.
We describe an algorithm that, given a QFPAbit formula with input and output
variables denoting integers, generates an efficient function from a sequence of
inputs to a sequence of outputs, whenever such function on integers exists. The
starting point for our method is a polynomial-time translation mapping a QF-
PAbit formula into the sequential circuit that checks the correctness of the in-
put/output relation. From such a circuit, our synthesis algorithm produces solved
circuits from inputs to outputs that are no more than singly exponential in size of
the original formula. In addition to the general synthesis algorithm, we present
techniques that ensure that, for example, multiplication and division with large
constants do not lead to an exponential blowup, addressing a practical problem
with a previous approach that used the MONA tool to generate the specification
automata.

1 Introduction

Over the past decades, a number of decision procedures has been developed and in-
tegrated into satisfiability modulo theory (SMT) solvers. Among the primary uses of
this technology so far has been verification and error finding. Recently, researchers
started using this technology for software synthesis [11]. In the line of work on com-
plete functional synthesis, researchers proposed to generalize decision procedures for
infinite domains to synthesis procedures [7].

The basic idea is to describe fragments of code using formulas in a decidable logic.
Such a formula specifies a relation between inputs and outputs. A synthesis procedure
then compiles this formula into a program that maps inputs into outputs, and whose
behavior corresponds to invoking a decision procedure on that particular constraint. The
resulting program is guaranteed to satisfy the specification. Synthesis procedures have
been described for, e.g., parameterized Presburger arithmetic [7], using a constructive
version of quantifier elimination.

For domains such as integer arithmetic, automata-based methods can have a number
of advantages compared to quantifier elimination, including the ability to support op-
erations on unbounded bitvectors. Motivated by these observations, in related previous
work [4] researchers considered synthesis of specifications expressed in weak monadic
second-order logic of one successor (WS1S), which is equivalent to Presburger arith-
metic with bitwise logical operators. In contrast to automata-based approaches to reac-
tive synthesis [1, 2, 5, 8], this approach uses automata to encode relations on integers,

1

which means that the causality restriction of Church’s synthesis problem does not ap-
ply. The synthesized function for this problem cannot always be given as a one-pass
finite-state transducer. The approach [4] synthesizes a two pass transducer, where the
first pass generates a sequence that abstracts the tree of possible executions, whereas
the second pass processes this sequence backwards to choose an acceptable sequence
of outputs. The previous implementation of this approach used the MONA tool [6] to
transform the given specification formula into an automaton accepting a sequence of
bits of combined input/output vectors. This implementation therefore suffered from the
explicit-state representation used by MONA. The most striking problem is multiplica-
tion by constants, where a subformula x = c ∗ y leads to circuits of size proportional to
c and thus exponential in the binary representation of c.

To overcome the difficulties with explicit-state representation used in the imple-
mentation of [4], in this paper we investigate an approach that directly uses circuit rep-
resentations for both specifications and implementations. To avoid the non-elementary
worst-case complexity [12] of transforming WS1S formulas to automata, we use as
our specification language quantifier-free Presburger arithmetic with bitvector opera-
tions [9], denoted QFPAbit. We describe a polynomial-time transformation between
sequential circuits and QFPAbit. We then present an algorithm for transforming sequen-
tial circuit representations of input/output relations into systems of sequential circuits
that map inputs into outputs. The worst-case complexity of our translation is bounded by
a singly exponential function of the specification circuit size. Building on this general
result, we identify optimizations that exploit the structure of specifications to reduce
the potential for exponential explosion. Our prototype implementation confirms the
improved asymptotic behavior of this synthesis approach, and is available for down-
load from http://lara.epfl.ch/w/cisy. Additional details of our construc-
tions are available in the technical report [10].

2 Preliminaries

2.1 Quantifier-Free Presburger Arithmetic with Bit-vector Logical Operators

Presburger Arithmetic with Bit-vector Logical Operators is the structure of integers
with addition and bit-vector logical operations acting on the binary two’s complement
representation of the integers. Let V be a finite set of variables. Let c ∈ Z, x ∈ V , and
% ranges over =, 6=, <,≤, >,≥. The following is the grammar of QFPAbitterms and
formulas.

T := c | x | T + T | cT | ¬̄T | T ∧̄T | T ∨̄T
F := T % T | ¬F | F ∧ F | F ∨ F | F → F | F ↔ F

Variables range over the set of integers Z. The bitvector logical operators act on the
two’s complement encoding of numbers [9]:

〈xk, ...x0〉Z = −2kxk +Σk−1
i=0 2ixi.

A property of this encoding is that replicating the most significant bit does not change
the value. This justifies our definition of the bit-vector operators because for any two

2

http://lara.epfl.ch/w/cisy

numbers we can always find encodings that have the same length. By the two’s com-
plement encoding of a number, we mean its shortest possible encoding. Given a QF-
PAbit formula F over the set of variables V = {x1, ...xn}, we say that a valuation
val : V → Z satisfies F if F is true when each occurrence of a variable xi evaluates
to val(xi). We say that F is satisfiable if there exists a valuation that satisfies F . Note
that the identity −x = ¬̄ x+ 1 holds for all x.

We can use QFPAbit formulae to define languages over Σ = {0, 1}n. Let F be
a QFPAbit formula over the variables V = {x1, ...xn}. Let w ∈ Σ+ be a word of
length m. By w(j) denote the j-th letter of w, indexing from 0, so that the initial letter
is denoted w(0). Each w(j) is a vector of dimension n, let wi(j) denote the the i-
th coordinate of w(j). Define a valuation valw : V → Z by valw(xi) = 〈wi(m −
1), ...wi(0)〉Z. Thus, in the matrix whose columns are the letters of w, the i-th row
represents the encoding of valw(xi) with the most significant bit coming first. The
language defined by the formula is L(F) = {w ∈ Σ+|valw satisfies F}.

2.2 Sequential Circuits

A combinational boolean circuit K is a pair (G, σ) where G is a finite directed acyclic
graph and σ : U → {AND,OR,NOT} is a labeling function such that U is the
set of vertices of G whose in-degree is greater than zero. We require that whenever
σ(x) = NOT then x has in-degree of one.

We call the vertices in U the gates. We denote the vertices of in-degree zero I and
call them inputs; we denote the vertices of out-degree zero O, and call them outputs.

Given a boolean valuation i : I → {true, false}, we define a valuation v on all
vertices of G as follows:

v(x) =


i(x), if x ∈ I
¬v(γ(x)), if x ∈ U ∧ σ(x) = NOT∧
y∈Γ (x) v(y), if x ∈ U ∧ σ(x) = AND∨
y∈Γ (x) v(y), if x ∈ U ∧ σ(x) = OR

where γ(x) denotes the single neighbor of x connected to it by an edge directed towards
x and Γ (x) denotes the set of all neighbors of x connected to it by edges directed
towards x. We call the values of v on O the output values of K for input i.

The values of the outputs of a combinational boolean circuit, defined above, depend
only on a single set of inputs and can be represented in a truth table. We next review
(clocked) sequential circuits, which are equivalent to deterministic finite automata but
compactly represent the set of states and the transition function.

A clocked sequential circuit (or SC, for short) is a tuple (K,M, store, load, init)
where

– K is a combinational boolean circuit with inputs and outputs I and O;
– M is a set of D-type flip-flops;
– store : M → O;
– load : M → I;
– init : M → {true, false}.

3

The load and store functions describe how the data input of each flip-flop is connected
to a unique output of K and how the Q-output of each flip-flop is connected to a unique
input of K. Such a backward-connected output-input pair will be denoted as a state
variable. We call the inputs of K that are not in the image of load the input variables
and call the outputs of K that are not in the image of store the output variables.

The SC works in clock pulses. It takes as input a stream that for every clock pulse
contains values for all input variables, and produces as output a stream that for every
clock pulse contains values of all the output variables, computed by K. In every clock
pulse, K is provided with input values and it computes output values. The values for
K’s inputs corresponding to state variables are loaded from the flip-flops and the values
for its inputs corresponding to input variables are provided by the input stream. Some
of the values of K’s outputs are stored in the flip-flops for the use in the next clock
cycle, as determined by store.

The values stored in the flip-flops at the beginning of the first clock cycle are called
initial values of the state variables and they are given by init.

Notice that a circuit with n input variables and m output variables can be viewed as
a machine that, given a word from ({0, 1}n)+, produces a word of the same length in
({0, 1}m)+.

We can also use a SC to recognize a language.

Definition 1. Let C be a SC with one output variable o and n input variables. We say
that C accepts the word w ∈ {0, 1}n if the value of o in the last cycle is 1 when the
circuit is given w as input, one letter at each clock cycle.

The language of C is L(C) = {w ∈ {0, 1}n|C accepts w}.
Some of the standard finite state machine operations can be efficiently performed

on the sequential circuit representations. Given a SC C with input variables v1, ...vn,
state variables q1, ...qn and output o, and a SC C ′ that uses the same input variables
v1, ...vn and has state variables q′1, ...q

′
n and output o′, we can construct a circuit ¬C by

simply appending a NOT gate at o and making the output of the NOT gate the output of
¬C. Similarly, we can construct circuits C ∧ C ′ and C ∨ C ′ by connecting the outputs
of C and C ′ to an appropriate logical gate, whose output will become the output of
the composite circuit. It can easily be seen that 1) L(¬C) = ({0, 1}n)+\L(C); 2)
L(C ∧ C ′) = L(C) ∩ L(C ′); 3) L(C ∨ C ′) = L(C) ∪ L(C ′).

3 Translations Between QFPAbit and Sequential Circuits

This section establishes correspondence between QFPAbit and sequential circuits by
providing translations in both directions that maintain a close correspondence between
the accepted languages.

3.1 Reduction from QFPAbit to Sequential Circuits

Since we have already shown how to construct boolean combinations of sequential
acceptor circuits, it is enough to find a set of basic QFPAbit formulae out of which
all QFPAbit formulae can be built using logical connectives, and then show how these
basic formulae can be translated to SCs.

4

Definition 2. Let w ∈ Σ+ with Σ = {0, 1}n as usually. Suppose

w =

w1(0)
...

wn(0)


w1(1)

...
wn(1)

 · · ·
w1(m)

...
wn(m)


Let S ⊆ {1, ...n} be non-empty. We define the projection of w onto the coordinates S to
be the string wS = wS(0)...wS(m), where wS(i) is the column vector (wj(i))j∈S ∈
{0, 1}|S|. For a language L ⊂ Σ+, we define the projection of L onto the coordinates
S to be the language LS = {wS |w ∈ L}. Note that LS is a language over the alphabet
{0, 1}|S|.

Every QFPAbit formula is a boolean combination of atomic formulae of the form
T1%T2 where T1 and T2 are terms and % ∈ {=, 6=, <,≤, >,≥}. We will now show
how to transform any formula F into a new one where the atoms will be of a more
restricted form. The new formula will have more variables than F , but when projected
onto the variables occurring in F their languages will be the same. We apply the fol-
lowing sequence of transformations:

1. Replace all atomic relations by equalities and strict “less-than” inequalities using
the fact that T1 < T2 if and only if T1 + (−1)T2 < 0.

2. Remove all instances of multiplication by constants other than −1 and powers of
two by exploiting the fact that any term of the form cT is equal to a sum of terms
of the form 2kT corresponding to c’s two’s complement encoding.

3. Remove all instances of multiplication by −1 by replacing every sub-term of the
form (−1)T by ¬̄T + 1. This equivalence follows easily from the definition of the
two’s complement encoding.

4. Move all additions to separate conjuncts on the highest level of the formula by
replacing every occurence of T1 + T2 by a fresh variable s and adding conjuncts
s = x + y, x = T1 and y = T2 to the formula, where x and y are also fresh
variables.

5. Move all multiplications by a constant 2k, which are the only multiplications now
left in the formula, to conjuncts on the highest level of the formula by replacing
every occurence of 2kT by a fresh variable x and adding x = 2ky and y = T as
conjuncts to the formula, where y is another fresh variable.

6. Replace every additive occurrence of an integer constant c inside a larger term by a
fresh variable yc and add a conjunct yc = c to the formula.

Let us call the formula that we obtain G. It has size that is polynomial in the size of
F and and it consists only of atoms of the following five forms: (i) T < 0; (ii) T1 = T2;
(iii) y = c; (iv) x = 2kt; (v) s = x+ y, where x, y, s and t are variables, c is an integer
constant and T, T1, T2 are terms that contain exclusively variables and bit-vector logical
operators.

It is easy to construct SCs for atoms of each of these four forms. For details of these
constructions along with circuit diagrams, see our technical report [10]. The general
flavor of these circuits is that they compare streams of binary digits. The most com-
plicated case is (iv), where the circuit compares a binary stream to a version of itself

5

shifted by a constant number of bits. Each of the sub-circuits for cases (i),(ii) and (v)
has only a constant number of state variables. In case (iii), the number of state variables
is proportional to the logarithm of the constant c and in case (iv) it is proportional to k.

Finally, we compose the partial specification circuits by boolean operations to find
a SC for G. The correctness of this synthesis procedure is expressed in the following
theorem.

Theorem 1. LetCF be the circuit obtained from a QFPAbit formula F using the above
synthesis procedure. Let V be the set of variables occuring in F . Then

L(CF)V = L(F).

Moreover, both the the number of gates of CF and the running time of the synthesis
procedure are polynomial in the number of symbols of F . The number of input variables
of C is the same as that of F and the number of C’s state variables is proportional to
the number of symbols of F .

3.2 Reduction from Sequential Circuits to QFPAbit

Let C be a sequential circuit with an underlying combinational circuit K = (G, σ), n
input variables {v1, ...vn},m state variables {q1, ...qm} and output variables {o1, ...ol}.
Let I : {q1, ...qm} → {0, 1} be the initial assignment of values to the state variables.
Let U be the set of all gates of K other than those corresponding to the output vari-
ables and state variables of C. We will pretend that the elements of U can be used
as identifiers for QFPAbit variables and construct a QFPAbit formula with variables
{v1, ...vn, q1, ...qm, o1, ...ol} ∪ U , such that for every satisfying assignment, the two’s
complement encodings of the values of the variables describes the evolution of the val-
ues of the corresponding variables and gates in a run of C. Although the QFPAbit
variables have the same names as the variables and gates of the circuit, it should be
clear from the context which ones do we mean.

We will refer to the values of the gates and inputs of the automaton in the k-th clock
cycle by q1(k), ...qm(k),v1(k), ...vn(k), o1(k)...ol(k) and x(k) for all x ∈ U . In the
cycle when the inputs are q1(i), ...qm(i), v1(i), ...vn(i), the values of all the gates in U
will be x(k), the output variables will be o1(i), ...ol(i) and the outputs corresponding
to state variables at that cycle will be denoted q1(i+1), ...qm(i+1), because they serve
as inputs for the next cycle. We start the numbering of clock cycles from 0.

We will be abusing notation slightly by writing σ(v)(x1, ..., xk) for some gate v and
boolean values x1, ..., xk to mean the application of the boolean function represented
by σ(v) to x1, ..., xk. Then for all j ∈ {1, ...,m}, k ∈ {1, ..., l}, x ∈ U and all i ∈
{0, ..., N − 1} where N is the length of the input word, the run of C on that input word
is characterized by the following four equations:

qj(0) = I(qj) (1)
x(i) = σ(x)(Γ (x)(i)) (2)

ok(i) = σ(ok)(Γ (ok)(i)) (3)
qj(i+ 1) = σ(qj)(Γ (qj)(i)) (4)

6

where, just like in our definition of a combinational circuit, Γ (v) denotes the part of the
neighborhood of a gate v connected to it with incoming edges, and Γ (v)(i) denotes a
vector of values of these nodes in clock cycle i.

We next build a QFPAbit formula for which every satisfying evaluation is such that
the reverse of the bit-sequences of the values it assigns to the variables conform to the
above conditions. Since C treats all numbers as starting with the most significant bit, in
our QFPAbit representation this will be reversed and hence x(0), qj(0) and ok(0) will
refer to the least significant bits of the encoding of the values of the variables.

For any gate v of K, let σ̄v be the formula obtained by applying the bit-vector
logical operator corresponding to σ(v) to the variables in Γ (v). Then the following
formula can be used to describe the evolution of the digits of qj :

qj = 2σqj∨̄I(qj)

The justification is as follows. Taking the bitwise disjunction of a number with 1 or 0
preserves all the digits except the least significant one, which is set to 1 or 0 respectively.
Multiplication by 2 induces a shift to the left of the two’s complement encoding of a
number. Hence the above formula establishes that every bit of qj is equal to the next bit
of σqj except for the first (least significant) one, which is equal to I(qj). This ensures
that equations (1) and (4) are satisfied.

Similarly, the formulas oj = σ̄oj and x = σ̄x assert that the reverse binary encod-
ings of oj and x, for some x ∈ U , correspond to their values in the run of C on the
given input as described by equations (3) and (2).

Since the most significant digit in a two’s complement encoding can be replicated
without changing the value of the represented number, QFPAbit formulas have the
property that the last letter of a word in a formula’s language can be repeated arbi-
trarily many times to obtain another word inside the language. In the underlying circuit,
this would translate to a “blindness” towards the repetition of the initial input letter,
which is a property that not all circuits have. In general we cannot find a formula whose
language contains exactly those words whose reverse encodes a run of the circuit.

The way to treat this problem is to construct a formula that contains a clause saying
“the variables are only simulating the circuit for a finite number of steps and then are
allowed to deviate”. That way we obtain a formula for which to every possible satisfying
evaluation corresponds a word describing the run of the circuit. However, each such
valuation will also represent an infinite number of longer incorrect descriptions of a run
of the circuit.

For succintness, let ∆qj ≡ 2σ̄qj∨̄I(qj). Let y be a fresh variable and consider the
formula

FC ≡ 1 + ((y − 1)∨̄y) = 2y ∧ y > 1 ∧
[∧m

j=1(qj∧̄(y − 1)) = (∆qj∧̄(y − 1))
]

∧
[∧l

j=1(oj∧̄(y − 1)) = (σ̄oj∧̄(y − 1))
]
∧
[∧

x∈U (x∧̄(y − 1)) = (σ̄x∧̄(y − 1))
]
.

The subformula 1 + ((y− 1)∨̄y) = 2y ∧ y > 1 asserts that y is a power of two, say
y = 2k, and that k is at least 1. Therefore the two’s complement encoding of (y − 1) is
〈0, ..., 0, 1, ..., 1〉Z with an arbitrary number of zeros and exactly k ones. So the clauses

7

of the form (T1∧̄(y− 1)) = (T2∧̄(y− 1)) assert that the k least significant digits of T1

and T2 are the same. The rest of the digits can be arbitrary.

Theorem 2. For any given satisfying valuation of FC , y = 2k for some k. The first k
bits, presented in the reverse order, of the bit-sequences corresponding to two’s com-
plement encodings of q1, ...qm and o1...ol describe the evolution of the values of those
variables throughout the first k clock cycles of the run of C on the input word given
by the reverse two’s complement encodings of v1, ...vn, as specified by the equations
(1)-(4).

Now we show how this translates to acceptor circuits defining a language:

Theorem 3. Suppose C is a SC with one output o and let F ′C ≡ FC ∧ o < 0. Then
L(F ′C) 6= ∅ if and only if L(C) 6= ∅
Proof. The clause o < 0 is true if and only if the first digit of o is one. It follows
from the above discussion of FC that for every word w of length k providing encoding
of values for v1, ..., vn, there exist infinitely many satisfying evaluations for FC under
which y = 2k and the reverse encoding of the values of the variables describes the run
of C on the reverse of w. Now suppose that C accepts w. This happens if and only if in
the last, k-th, clock cycle the value of the output bit is one. But this is if and only if the
first digit of the value of o in F ′C is one. Therefore the described evaluations satisfy F ′C
if and only if C accepts w. This means that the language of C is non-empty if and only
if F ′C is satisfiable.

To summarize, we have described polynomial-size translations between QFPAbit
and sequential circuits going both ways. For every QFPAbit formula we can construct
a sequential circuit recognizing the same language. For every sequential circuit we can
construct a QFPAbit formula that contains variables representing inputs, outputs and
state variables of the circuit, and it is satisfied only by valuations that assign these
variables values whose binary encoding in reverse describes an initial portion of the
evolution of the circuit’s variables during a run. If the circuit has only one output then
it is an acceptor circuit and in this case we can construct a QFPAbit formula which is
satisfiable if and only if the language of the SC is non-empty. Moreover, the formula
will accept a language such that for every word w in this language, an initial part of w
projected onto the input variables and reversed is a word in the language of the SC.

4 From Specification Circuits to Transducer Circuits

Given a specification written as a QFPAbit formula, we have shown how to build a
specification circuit of a size linear in the size of the formula. Provided that the variables
of the formula, and thus the inputs of the automaton are partitioned into two groups, ī
and ō, interpreted as the inputs and the outputs of the synthesized function, we will
now show how to construct a set of circuits that will work as a transducer, i.e. given
a word from the “̄i-projection” of the language, produce an output word from the “ō-
projection” of the language such that together they satisfy the specification, if such an
output word exists. The structure of our algorithm is similar to the one presented in [4].
Our use of the word “transducer” does not refer to the traditional notion of Finite State

8

Transducers, but to a more complicated machine with the following main features. Our
transducer reads the whole input twice. The first time from the beginning to the end to
generate the exhaustive run of the projection of the specification circuit onto the input
variables, and the second time backwards, determining concrete states and output letters
within the exhaustive run. In the meantime it uses an amount of memory proportional to
the length of the input. This allows us to express functions for which it is not possible to
determine the output before reading the entire input, which is needed to obtain complete
synthesis for QFPAbit.

In contrast to [4], we will be using sequential circuits instead of automata. This more
concrete implementation allows us to perform an optimization that will ensure that the
presence of large integer constants in the formula does not necessarily cause a blow-up
in the size of the transducer proportional to the value of that constant, as was the case
with the previous approach. Moreover, even if a state-space expansion does occur, the
size of our circuits is guaranteed to be singly-exponential in the size of the specification
formula. No such bound on the size of the automata was provided in [4].

In Section 4.2 we study two more optimization techniques - how to exploit the
circumstance when the specification formula is either a conjunction or a disjunction of
sub-formulas to build the transducer as a composition of smaller transducers.

Definition 3. Given a (non-)deterministic automaton A = (ΣV , Q, init, F, T) over
variables V and a set I ⊂ V , the projection of A to I , denoted by AI , is the non-
deterministic automaton (ΣI , Q, init, F, TI) with TI = {(q, σI , q′) ∈ Q × ΣI ×
Q|∃σ ∈ ΣV .(q, σ, q′) ∈ T ∧ σI = σI}.

Since it is natural to view a sequential circuit as a DFA, we also allow ourselves to talk
about projections of sequential circuits.

Definition 4. The exhaustive run ρ of an automaton A = (Σ,Q, init, F, T) on a word
w ∈ Σ∗ is a sequence of sets of states S1, ...S|w|+1 such that (i) S1 = init and (ii) for
all 1 ≤ |w|, Si+1 = {q′ ∈ Q|∃q ∈ Si.(q, wi, q′) ∈ T}.

Suppose the specification circuit is a sequential circuit C with input variables ī∪ ō,
state variables q̄ and one output variable determining the acceptance. Here by each of
ī, ō and q̄ we actually mean vectors of variables wide n, l and m bits respectively. We
will also be using ī, ō and q̄ to denote the sets of individual variables comprising each
of the vectors.

We now partition the state variables as follows. We let s̄ be the largest set of state
variables such that the value of each of them in the (N +1)-st clock cycle depends only
on the values of ī and the state variables inside s̄ in the N -th clock cycle. In particular,
they do not depend on the values of ō. We denote all the other state variables as r̄ and
we will assume that r̄ is a vector of width m1 and s̄ is of width m2.

The set s̄ can be determined by exploring the graph of dependencies amongst the
variables of q̄ and ō. We can determine whether a formula ϕ(x), for example one defin-
ing the value of a qj in the next clock cycle, depends on a variable x, which it contains,
by using a SAT-solver to check whether the formula ϕ(true)↔ ϕ(false) is valid.

We will now describe the operation of our transducer, which consists of three cir-
cuits that we call C ′, φ and τ . Circuit φ is a combinational circuit and the other two

9

are sequential. Their roles are analogous to those of the deterministic automaton A′ and
functions φ and τ in [4]. Our specification circuit C fulfills the responsibility of the
specification automaton A used in [4].

C ′ performs two tasks. First, it runs the part of C that computes the sequence of
values of s̄ as C consumes ī. In parallel with this, C ′ also simulates the exhaustive run
of the projection of C onto the input variables ī. So running C ′ with the sequence of
values for ī as input will generate a sequence of values for s̄ together with a sequence
of sets of possible values for the rest of the state variables, which are r̄. We will store
this trace in a memory from which it can later be read in the reversed order.

This separation of sets s̄ and r̄ is one of the main improvements in our approach
over previous work. It takes advantage of the simple idea that when projecting a deter-
ministic automaton onto a subset of its input variables, it is possible that the transitions
within a subset of the states of the automaton remain deterministic even with the re-
stricted alphabet, and hence that part of the automaton does not need to go through an
exponential expansion due to the projection. This optimization applies in particular in
the case when the specification formula contains division of a term that is completely
determined by ī-variables by a power of 2. An intuitive explanation is the following.
The specification circuit for the formula x = 2kt verifies whether the encoding of x
is a copy of the encoding of t shifted to the left by k bits. Therefore it needs k state
variables to remember the past k bits of x. The values of these k state variables are
independent of t and hence if x is an ī-variable, which means that we are performing
division, then these k state variables will belong to s̄ and they will not participate in the
state-space explosion of C ′. On the other hand, this optimization does not apply if x is
an ō-variable, i.e. when we are performing multiplication.

The purpose of φ is to find inside the last stored set of possible states for r̄ one
which is, combined with the last stored value of s̄, an accepting state of C.

Eventually, we run τ , which reconstructs a whole accepting run of C by tracing
backwards through the stored exhaustive run of its projection onto the input variable set
ī, using the accepting state determined by φ as a starting point. During this backward
run it constructs a sequence of ō letters that is the final output of the transducer.

4.1 Implementation of C′, φ and τ as Circuits

For C ′, consider the circuit in the figure in Appendix A, which has state variables
R1, ...R2m1 and s̄, and no outputs.

Let C1 and C2 denote the sub-circuits of C for computing r̄ and s̄ respectively. In
the figure, we denote the corresponding combinational circuits behind these SCs by K1

and K2. We let Cī be the projection automaton obtained from C1 by projecting it onto
the ī-variables. The intended meaning of the state variables R1, ...R2m1 of C ′ is that
Rk is set to true if and only if at that point the non-deterministic automaton Cī could be
in the state number k. Since there are exactly 2m1 possible states of Cī, we can make
some arbitrary assignment of the possible states of Cī to the Rk’s. Initially, A′ is in a
state where all variables Rk are 0 except for one, corresponding to the initial state of
Cī. The initial value of s̄ is also determined by the given initial state of C.

The r̄i and ōj denoted in italics represent constant bit-vectors given as input to each
of the 2ml copies of C1. The indexes are assigned so that r̄j is the assignment of state

10

variables of Cī corresponding to the state which is represented by Rj . Hence each of
the C2-subcircuits produces an outcome r̄-state for a given combination of a previous
state and values for the ō-variables.

Each of the AND-like-gates with an Rk inscription is understood to have negations
at an appropriate combination of its inputs, so that it returns true if and only if its input
r̄ represents the r̄-state corresponding toRk and also the incoming signal from the state
variable Rj is true. This last condition has the effect of considering the output only of
those sub-circuits for which the input state r̄j is actually one of the possible states in
the exhausting run of Cī at the moment.

The last layer of ordinary OR-gates just has the effect that if any of the possible
combinations of an active previous state and an ō-letter produces the state corresponding
to Rk then Rk is set to one in the next cycle. The main idea of this circuit is that for
every state of C that is possible at the present clock cycle, it tries every possible ō-letter
to produce the set of all possible states in the next clock cycle.

Now assume that the sequence of states this circuit goes through while reading
an input word is saved in a memory from where it can readily be read in the reverse
order. Recall that φ is supposed to find an accepting state of C amongst the possible
states encoded in the last state of C ′ - that is, in the combination of the “exhaustive
state” of Cī encoded by R1, ...R2m1 and the deterministic part of the state, s̄. A slight
divergence between deterministic automata used in [4] and our variant of sequential
circuits is that whether the circuit accepts depends not only on the current value of its
state variables but also on the value of all its inputs - the circuit accepts simply when it
outputs a 1. To account for this, our φ circuit has to choose both a state from amongst
the states possible in the penultimate clock cycle of the run of C ′, and a suitable ō-
letter, such that the resulting state is accepting. If such state and ō-letter do not exist, the
user is notified that for the given sequence of values for the ī-variables there exists no
satisfying sequence of values for the ō-variables. The implementation of φ is a circuit
very similar to that for C ′, also containing 2m1+l copies of K1. However, since it only
needs to be run for one clock cycle, it is a combinational circuit rather than a sequential
one.

Finally, we use a very similar circuit for the function τ . In each clock cycle, it
takes as input a transition 〈S′, ī, S〉 of C ′ and a state q̄ ∈ S and generates a state
q̄′ ∈ S′ and an output symbol ō such that there is a valid transition in C from q̄ to
q̄′ while reading the letter obtained by combining ī with ō. This is again implemented
by guessing combinations of an appropriate ō-letter and r̄-state, so τ consists of 2m1+l

copies of K1 and some servicing circuitry. The output of τ and also the final output
of the transducer is the sequence of ō letters. Notice that it comes in the reverse order,
respective to ī.

4.2 Constructing Transducer as a Composition of Transducers for Sub-formulas

Suppose that the specification formula F on its highest level is a disjunction of sub-
formulas ϕ1, ...ϕk. Then we can build a transducer for each of them separately and run
them in parallel. If for a given input any of the transducers finds an output satisfying
the sub-formula corresponding to that transducer, say ϕi, then this output can be taken

11

to be the global output. If ϕi mentions only a subset of the output variables then values
for the remaining ones can be picked arbitrarily.

If the specification formula, on the other hand, is a conjunction of sub-formulas,
then we also have to mind dependencies between the variables.
Definition 5. We say that a QFPAbit formula ψ over variables V uniquely determines
a set of variables x̄ as a function of a set of variables ȳ, if for any partial valuation
valȳ : ȳ → Z that only assigns values to the variables of ȳ, the set of satisfying
valuations of ψ that extend val is non-empty and all of them give all the variables in ō
the same values.

If the specification formula F is a conjunction of sub-formulas ϕ1, ...ϕk, we can
apply the following reasoning. Suppose that there exists ō′ ⊆ ō such that some ϕj
uniquely determines the values of ō′ as a function of ī. Now suppose that val : ī∪ō→ Z
is a satisfying valuation for F . Then, in particular, it is a satisfiing valuation for ϕj and
it assigns ō′ the same values as any satisfying valuation of ϕj that gives the ī’s the same
values as val.

This means that we can build an independent transducer for ϕj and use its output
to fix the values of ō′ in F , allowing us to build a smaller transducer for the rest of the
variables. Notice that the values that the transducer for ϕj computes for those variables
that have not been proven to be uniquely determined by īmust be ignored, because their
values need not be a part of a satisfying valuation for the rest of F .

In practice, we can use this fact to construct a sequence of transducers with increas-
ing number of ī variables and decreasing number of ō variables. We scan through the
list of conjuncts of F and whenever we find one, say ϕj , in which some subset of ō
variables is uniquely determined by the ī variables, we build a transducer for it, re-
classify the uniquely determined ō-variables to ī-variables in F and repeat the process,
wiring the appropriate outputs of the transducer for ϕj to become the inputs of the next
transducer. If it turns out that in a particular conjunct, all the occurring ō-variables are
uniquely determined, this whole conjunct can be removed from F .

Notice that for regularly occuring conjuncts of a standard form, like for example
equality assertions involving standard arithmetical operations, we will not have to in-
voke the general transducer-synthesis method described at the beginning of this section.
Instead, we can use potentially more efficient pre-computed circuits loaded from a li-
brary. This can, for example, be applied in the case when the conjunct asserts that an
ō-variable is a constant multiple of a term that is uniquely determined by the ī variables.

The length of the resulting sequence of transducers is at most quadratic in the num-
ber of ō variables, which can be seen by inspecting the running time of the trivial algo-
rithm that loops through the cojuncts in an arbitrary fixed order and halts when during
an iteration examining all the conjuncts it can not reclassify any new ō-variables to
ī-variables.

Obviously, this optimization is useful only if the specification formula F is in fact
a conjunction containing conjuncts that do have the property of uniquely determining
some of the ō-variables as a function of the ī variables. As discussed in Section 3.1,
before building the specification circuit we first pre-process the input formula, so that
the formula that is eventually used for building the circuit is

G ≡ F ′ ∧ ϕ1 ∧ ... ∧ ϕn

12

where each of the ϕi has one of the following forms: (i) x = 2kt; (ii) x = c; (iii)
s = x + y; (iv) T1 = T2, where x, y, t, s are variables, c is an integer constant and
T1, T2 are terms built out of variables and bit-vector logical operations. F ′ is a boolean
combination of atoms of similar forms, but at the present time we do not have methods
for investigating variable dependencies in non-atomic formulas.

On the other hand, for each of the ϕj’s we can exactly determine which ō-variables
are uniquely determined by the ī-variables. In case (i), if at least one of the variables
present is an ī-variable then the other is determied. In case (i), variable x is determined,
and in case (iii), if at least two of the variables are ī-variables then the last one is de-
termined. In case (iv), since T1 and T2 contain only variables and bit-vector logical
operations, the equality holds exactly if the propositional formulas corresponding to T1

and T2 evaluate to the same boolean value in every clock cycle. Therefore it is enough
to investigate which ō variables are uniquely determined by the ī variables in the propo-
sitional formula T̂1 ↔ T̂2, where T̂1 and T̂2 are propositional formulas obtained from
T1 and T2 by replacing the bit-vector logical operators by standard boolean operators
and treating the QFPAbit variables as propositional variables.

Example. We demonstrate the usefulness of this optimization technique on an example.
Let us forget for a moment that our language contains an out-of-the-box plus operator
and suppose we would like to synthesize a function for performing addition and out-
putting the sequence of carry bits at the same time. It can be specified in QFPAbit as
follows.

(s = x⊕̄y⊕̄c) ∧ (c = 2((x∧̄y)∨̄(x∧̄c)∨̄(y∧̄c)))
where x and y are designated as inputs and s and c are outputs representing the sum
and the sequence of carry bits respectively. Clearly, the right-hand conjunct determines
c uniquely, given values for x and y. Our prototype implementation is able to detect
this and builds a transducer which is a composition of two parts - one for the right-
hand conjunct, which computes the value of c given values for x and y, and one for the
left-hand conjunct that computes the value of s given values for x, y and c. Due to this
factorisation, the total number of gates in all the circuits involved is 7.2× smaller than
when we enforce the building of a single monolithic transducer for the whole formula.

To conclude the discussion of this optimization technique, let us look closer at how it
applies to those ϕj’s that are of form x = 2kt. Because of the way how these conjuncts
originate during the pre-processing of the specification formula, often both x and t are
output variables. If after inspecting some other conjuncts we manage to specify one of
them as an input variable, the other is immediately determined by it and we will be able
to remove this conjunct from the formula and construct an efficient transducer for it.
We can summarize this in the following lemma.

Lemma 1. Suppose that the original formula, before pre-processing, contains multi-
plication by a constant c in a context of the form T1[cT] = T2 such that either all the
ō-variables occuring in T are uniquely determined by the ī-variables, or the ō-variables
of T occur nowhere else in T1 and T2 and the value of a fresh variable x is uniquely
determined in the formula T1[x] = T2. Then the total size of all the circuits of the trans-
ducer obtained by the procedure described in this section will be proportional to the
logarithm of c.

13

5 Conclusion

We have presented a synthesis procedure that starts from QFPAbit description of an
input/output relation, generates a sequential circuit of a polynomial size, and then trans-
forms this circuit into a synthesized system of sequential circuits that maps a sequence
of inputs into a sequence of outputs.

The described synthesis procedure improves the previous work by two independent
optimizations. We have built a prototype implementation that allowed us to show on
examples that these techniques work and are important.

Acknowledgements The idea of replacing synthesis from WS1S with synthesis from
QFPAbit as well as a polynomial translation from QFPAbit into circuits originated in
a discussion between Barbara Jobstmann and Viktor Kuncak in October 2010. Barbara
Jobstmann was also suggesting decomposing specifications and performing synthesis
modularly. We thank Aarti Gupta for pointing to the related work in her PhD thesis [3]
as well as Sharad Malik and Paolo Ienne for useful discussions.

References

1. R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1)
designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.

2. J. Buchi and L. Landweber. Solving sequential conditions by finite-state strategies.
Transactions of the American Mathematical Society, 138(295-311):5, 1969.

3. A. Gupta. Inductive Boolean Function Manipulation: A Hardware Verification
Methodology for Automatic Induction. PhD thesis, CMU, 1994.

4. J. Hamza, B. Jobstmann, and V. Kuncak. Synthesis for regular specifications over
unbounded domains. In Formal Methods in Computer-Aided Design (FMCAD), 2010,
pages 101–109. IEEE, 2010.

5. B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In FMCAD, 2006.
6. N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implementation secrets. In Proc.

5th Int. Conf. Implementation and Application of Automata. LNCS, 2000.
7. V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional synthesis. In ACM

SIGPLAN Conf. Programming Language Design and Implementation (PLDI), 2010.
8. M. Rabin. Automata on infinite objects and Church’s problem. Number 13 in Regional

Conference Series in Mathematics. American Mathematical Society, 1972.
9. T. Schuele and K. Schneider. Verification of data paths using unbounded integers: Automata

strike back. Hardware and Software, Verification and Testing, pages 65–80, 2007.
10. A. Spielmann and V. Kuncak. On synthesis for unbounded bit-vector arithmetic. Technical

Report EPFL-REPORT-174801, EPFL, 2012.
11. S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program synthesis.

In POPL, 2010.
12. L. Stockmeyer and A. R. Meyer. Cosmological lower bound on the circuit complexity of a

small problem in logic. J. ACM, 49(6):753–784, 2002.

14

A Schema of Circuit C′

K
1

r 1
o
1

r

R
1

R
2

R
2
m

..
.

r 2
o
1

r

R
1

R
2

R
2
m

..
.

r 2
m

1
o
1

r

R
1

R
2

R
2
m

..
.

..
.

r 1
o
2

r

R
1

R
2

R
2
m

..
.

r 2
o
2

r

R
1

R
2

R
2
m

..
.

r 2
m

1
o
2

r

R
1

R
2

R
2
m

..
.

..
.

r 1
o
2
l

r

R
1

R
2

R
2
m

..
.

r 2
o
2
l

r

R
1

R
2

R
2
m

..
.

r 2
m

1
o
2
l

r

R
1

R
2

R
2
m

..
.

..
.

..
.

..
.

R
1

R
2

R
2
m

1
..
.

i

K
1

K
1

K
1

K
1

K
1

K
1

K
1

K
1

K
2

s

DQ

DQ

DQ

DQ

15

	Synthesis for Unbounded Bit-vector Arithmetic
	Introduction
	Preliminaries
	Quantifier-Free Presburger Arithmetic with Bit-vector Logical Operators
	Sequential Circuits

	Translations Between QFPAbit and Sequential Circuits
	Reduction from QFPAbit to Sequential Circuits
	Reduction from Sequential Circuits to QFPAbit

	From Specification Circuits to Transducer Circuits
	Implementation of C', and as Circuits
	Constructing Transducer as a Composition of Transducers for Sub-formulas

	Conclusion
	Schema of Circuit C'

