
Automatic Synthesis of Out-of-Core Algorithms

Yannis Klonatos Andres Nötzli Andrej Spielmann Christoph Koch Viktor Kuncak
School of Computer and Communications Sciences, EPFL

{yannis.klonatos, andres.notzli, andrej.spielmann, christoph.koch, viktor.kuncak}@epfl.ch

ABSTRACT
We present a system for the automatic synthesis of efficient
algorithms specialized for a particular memory hierarchy
and a set of storage devices. The developer provides two
independent inputs: 1) an algorithm that ignores memory
hierarchy and external storage aspects; and 2) a descrip-
tion of the target memory hierarchy, including its topol-
ogy and parameters. Our system is able to automatically
synthesize memory-hierarchy and storage-device-aware al-
gorithms out of those specifications, for tasks such as joins
and sorting. The framework is extensible and allows devel-
opers to quickly synthesize custom out-of-core algorithms as
new storage technologies become available.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis; D.4.2 [Operating Systems]: Storage
Management—Storage hierarchies; H.2.4 [Database Man-
agement]: Systems—Query processing

Keywords
Out-of-core algorithms, synthesis, memory hierarchies

1. INTRODUCTION
The design of performance-critical software systems must

depend on the hardware on which these systems run. This
is particularly true for data-intensive computations. The re-
search literature describes numerous out-of-core algorithms
designed and optimized for a variety of hardware and storage
device configurations [23, 13, 9, 25, 5, 21, 27, 16, 18]. These
are case studies of how understanding memory hierarchies
and data locality can drive algorithm design.

To this day, no methodology exists for creating such algo-
rithms. We must rely on significant creative talent to serve
our need for such algorithms, which remain publishable as
original research contributions.

The introduction of a new storage or memory technology
requires the development of new versions of most out-of-core

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

algorithms. This leads to an arms race between the devel-
opers of hardware on one hand and of software systems and
out-of-core algorithms on the other. Each new development
in hardware calls for numerous research contributions on the
software side, to update a multitude of algorithms and sys-
tems. Given the rapid rate of hardware innovation and the
increasing popularity of hardware specialization, the ulti-
mate consequence is a modest software crisis.

To address this challenge, we propose the use of software
synthesis to automatically generate specialized out-of-core
algorithms. The input is a naive memory hierarchy oblivi-
ous algorithm and a description of the target hardware setup
and memory hierarchy. We encode fundamental principles
of out-of-core algorithm design, many of which aim at the
maximization of data locality, as transformation rules. The
application of such a rule to the algorithm results in an
equivalent algorithm which may have better performance
on real hardware. By applying transformation rules, we cre-
ate a navigable search space of equivalent algorithms. To be
able to choose an optimal algorithm, we develop a cost esti-
mation procedure based on the given hardware description.

The next example illustrates our approach:

Example 1. The simplest way to implement a join algo-
rithm on relations R and S is with two nested for-loops:

for (x ← R) for (y ← S) if joinCond(x,y) then [〈x,y〉] else []

This program is an intuitive description of the programmer’s
intention. Let us assume a scenario where the input is stored
on a hard disk and the output is not written anywhere (e.g.,
it is consumed by the CPU). Then, ignoring any buffering of
the hard disk and the operating system, this program trans-
fers every tuple of R and S from the hard disk separately.
The efficiency of the algorithm can be improved significantly
if we reduce the number of disk seeks by accessing the rela-
tions in larger contiguous blocks. Also, the semantics of the
program does not change if the loops are reordered so that
the outer relation is the smaller, but this further reduces the
amount of seeking. By expressing such knowledge as trans-
formation rules, we can automatically transform the above
program into one that implements these two optimizations:

(λ〈R, S〉.for (xBlock [k1] ← R)
for (yBlock [k2] ← S) for (x ← xBlock)
for (y ← yBlock) if joinCond(x,y) then [〈x,y〉] else [])

(if length(R) ≤ length(S) then 〈R, S〉 else 〈S, R〉)

When the block-size k1 of xBlock is maximized, this is the
canonical Block Nested Loops Join. 2

In the above example, we used the following transforma-

tion rule that turns a loop into a buffered scan with block-
based transfers of block size k:

for (x ← S) e ⇒
for (xBlock [k] ← S) for (x ← xBlock) e

This rule says that the left-hand side program is equiva-
lent to the right-hand side and suggests that, subject to the
targeted memory hierarchy, the latter is likely to be more ef-
ficient than the former. Indeed, the latter program requires
less seeking on the hard disk.

To realize our vision of out-of-core algorithm synthesis, we
have addressed the following challenges:

Design of a new language. We have designed a domain-
specific language (DSL) called OCAL (Out-of-Core Algorithm
Language), described in Section 3. The primary design goals
of OCAL are (i) to be expressive enough for a variety of
out-of-core algorithms, (ii) to be succinct enough to keep
typical algorithms short and the search space for program
synthesis manageable, and (iii) to keep syntax and seman-
tics of the language simple to facilitate analysis and program
transformation. In order to make it reasonably easy to cost
programs and apply transformations, we should avoid con-
structs such as unrestricted recursion, mutable values, and
side effects. As a consequence, we avoid imperative and low-
level languages such as C for program representation during
synthesis.

OCAL is defined as Monad Calculus on lists [8, 26] with a
fold expression. It satisfies the above three design desider-
ata. (i) It is expressive, extending the power of nested re-
lational algebra by the ability to process collections sequen-
tially and exploiting order, which is central to capturing the
essence of most out-of-core algorithms. (ii) Named OCAL
function definitions can be used to keep OCAL programs
short; these definitions are treated like language extensions
in our synthesis system. (iii) OCAL is a simple purely func-
tional language without side-effects in which recursion is
confined to fold (and flatMap). Transformations in OCAL
can be applied locally due to its functional and algebraic
qualities. Finally, since full recursion is excluded and for-
comprehensions (functional for-loops as in, say, XQuery and
Scala) are straightforward to define in OCAL, even users only
familiar with imperative languages can read most OCAL pro-
grams without great difficulty. It is relatively easy to map
OCAL programs to imperative (C) code.

Cost Estimation and Cost Minimization. We need a
systematic cost estimation framework to reason about the
efficiency of OCAL programs. This requires an easily com-
putable cost measure for evaluating the performance of each
program that we explore. This measure, presented in Sec-
tion 5, is a function of the algorithm, the memory hierarchy
and statistics about the input. One contribution of this
paper is the demonstration that in this domain it is possi-
ble to efficiently and automatically perform such estimation,
and that the estimates are predictive enough to differenti-
ate more efficient from less efficient algorithms on a given
memory hierarchy.

There are two orthogonal aspects of cost estimation: struc-
tural program transformations and parameter selection. For
the former, we use a breadth-first search strategy to explore
the space of structurally different programs, and we use con-
stants derived from the given memory hierarchy to build a
cost function. To perform the latter, each program is also
parameterized with values such as sizes of blocks and buffers.

In Example 1, k is one such parameter. We use our cost es-
timation rules to characterize the running time estimate as
a (possibly non-linear) function of those parameters. We
have also implemented the non-linear optimization solver
described in [19] to tune the values of parameters so as to
minimize the cost estimate. We have found this strategy to
be computationally feasible and to yield efficient programs
for various memory hierarchies.

Development of a program synthesizer. Based on the
language, rewrite rules, and costing framework, we have im-
plemented OCAS, the Out-of-Core Algorithm Synthesizer.
The input to OCAS consists of two orthogonal items: (1)
a naive memory-oblivious algorithm given in OCAL; and
(2) the structure and parameters of a memory hierarchy
and storage devices. From this input, OCAS automatically
derives efficient algorithms that have the same functional
behavior as the initial specification algorithm, but whose
performance is tuned to the given memory hierarchy. To
do so, it uses a library of transformation rules, which we
discuss in Section 6. OCAS then generates C code out of
the optimized algorithm, using an OCAL-to-C code genera-
tor. Our approach also necessitates a technique, presented
in Section 4, for describing memory hierarchies, such that
device properties can be expressed sufficiently abstractly.

Because OCAS operates automatically, it is possible to
deploy it even in environments where the system configu-
ration changes dynamically, such as cloud infrastructures.
OCAS can be used at installation time to adapt a piece of
data management software to a computer, or at deployment
time via just-in-time-compilation to make best use of fresh
information on the availability of system resources.

Most importantly, the design of OCAS provides the so
far missing methodology for designing efficient out-of-core
algorithms, and even automatizes algorithm creation. De-
velopers may need to make use of the extensibility of OCAS
to adapt to unforeseen developments, but there is no need
to “reinvent the wheel”; The basic machinery of OCAS will
remain unchanged.

Providing an extensible architecture. Extensibility is
an important property of the design of OCAS. Developers
should be able to easily adapt OCAS as new hardware plat-
forms become available and new algorithms are proposed.
The library of program transformation rules of OCAS can
be extended to implement new ways of using data locality
considerations to create better algorithms. Furthermore, we
can create named definitions in OCAL that can subsequently
be used like new language operations. For each such defini-
tion, we can extend OCAS by matching code generator and
cost function plugins to allow the synthesizer to make use
of a particularly efficient implementation of that new lan-
guage feature. Thus, definitions (in conjunction with code
generator and cost function extensions) do not increase the
expressiveness of the language but the efficiency of the algo-
rithms created.

We conclude with an experimental evaluation of our sys-
tem. We use OCAS to derive C code for algorithms such as
Block Nested Loops Join, GRACE Hash Join and the Ex-
ternal Merge-Sort in their canonical textbook forms start-
ing from a naive specifications of joins and sorting. We also
present examples of algorithms specialized for memory hier-
archies that are not yet found in textbooks, such as a join

x : Type(x) c : Type(c) p : IType(p)→ OType(p)(
e : τ

λx.e : Type(x)→ τ

e1 : τ2 → τ1 e2 : τ2
e1e2 : τ1(

e1 : τ1 . . . en : τn
〈e1, . . . , en〉 : 〈τ1, . . . , τn〉

e : 〈τ1, . . . , τn〉 i : Int

(e.i : τi

e : τ
[e] : [τ]

e : τ1 → [τ2]

flatMap(e) : [τ1]→ [τ2]

c : Bool, e1 : τ, e2 : τ

(if c then e1 else e2 : τ

c : τ2, f : 〈τ2, τ1〉 → τ2

foldL(c, f) : [τ1]→ τ2

Figure 1: The type system of OCAL.

algorithm for flash drives. We present these case studies and
their evaluation in Section 7.

2. RELATED WORK
There is very little work on automating out-of-core al-

gorithm design. In contrast, a great amount of work has
been done on manually developing specialized out-of-core
algorithms for various tasks and memory hierarchies. In
our work, we often refer to canonical algorithms for cer-
tain database management tasks. Their descriptions can
be found in the standard text books like [23]. More re-
cently, effort has been expended on designing algorithms for
flash memory [21, 18, 5], the intricate memory hierarchies
of graphics cards [9, 13, 25, 27], and multi-level memory hi-
erarchies [16]. These papers demonstrate that the state of
the art in developing out-of-core algorithms is to manually
carry out ad-hoc effort; one cannot yet rely on automation
or a clear design methodology.

The idea of automatic program transformation is present
in [17]. However, this work does not take into account the
characteristics of the architecture as OCAS does. This makes
the approach limited as new architectures become avail-
able. Furthermore, the authors focus only on for-loops while
OCAS proposes the use of a new language that (i) supports
a wider set of constructs and (ii) is extensible to allow for
easy addition of new definitions. Synthesis appears in do-
mains other than data management as well. For instance,
hardware-specific synthesis of linear transforms and other
mathematical functions is the aim of SPIRAL [22].

In the Sequoia project [24], a general-purpose C-like lan-
guage is presented that has explicit knowledge of the topol-
ogy of the machine, and allows writing programs that ef-
ficiently utilize the hierarchy and the available parallelism.
The Sequoia system does not perform software synthesis,
so the programmers must specify the out-of-core algorithms
themselves. However, it still handles other aspects of out-
of-core algorithms like our tool, such as parameter selection.

OCAS performs algebraic manipulations to obtain more
efficient equivalent programs; this idea can also be found in
work on functional programming [20, 7]. Recursion schemas
like folding [12] also play an important role in our work,
especially for our sorting algorithms.

For static analysis of the running costs of functional pro-
grams, we draw inspiration from [15, 14, 10, 11]. COSTA [4]
is a general-purpose cost estimation system for Java byte-
code. This makes it applicable to languages more power-
ful than the one described in this paper. However, for the
same reason, COSTA often fails to deduce bounds as tight as
those of our system when working with a restricted custom-
designed language. In particular, for the Merge-Sort algo-
rithm that we use in one of our examples, we could not bring
COSTA to estimate the asymptotically correct cost bound
of O(n logn).

3. THE OUT-OF-CORE DSL
In this section we present OCAL (Out-of-Core Algorithm

Language) which OCAS uses to represent data processing
algorithms. The design of OCAL provides enough expressive
power to describe commonly used algorithms ranging from
traditional relational algebra operators, such as selection,
projection and joins, to additional aspects of data processing
such as sorting. At the same time, OCAL also allows easy
application of transformation rules and costing as it will be
discussed in more detail in Section 5 and Section 6.

The base language. OCAL extends Monad Calculus
on lists [8, 26] with a fold expression. Consequently, the
proposed language is more expressive than nested relational
calculus. Starting from a totally ordered set D of atomic
values that includes integers, booleans and strings, values
are built inductively from D using list and tuple construction
as formalized by the following grammar:

τ ::= D | 〈τ, . . . , τ〉 | [τ]

The typing rules of the language are presented in Figure 1
where e, e1, . . . , en range over expressions, x over variables,
c over primitive constants and τ, τ1, . . . , τn over types. Each
value x is assigned a Type(x) and, similarly, constants c have
a type Type(c). Functions in OCAL are of type τ1 → τ2 where
τ1 and τ2 are value types. As an example, the type of a join
operator for two binary relations on D is:

〈[〈D,D〉], [〈D,D〉]〉 → [〈D,D,D,D〉]

In the same figure, p ranges over primitive functions in-
cluding boolean connectives (∧, ∨, ¬); equality of values of
various types and comparison of basic data types D (==, ≤,
≥); a list union operator t, and further functions on tuples
of values of D that only require a constant amount of mem-
ory (e.g., arithmetic operations). IType and OType are the
input and output types of p, respectively.

The addition of a fold expression to Monad Calculus adds
the ability to express sequential computation, which is essen-
tial for data processing algorithms including sorting. Fold-
ing from the left – foldL(c,f) – encodes a restrictive recursion
pattern, an iterative application of the binary function f to
elements of an input list. When using an infix operator ⊕,
foldL is defined as follows:

foldL(c,⊕)([v1,v2,...,vn]) = (· · ·((c ⊕ v1) ⊕ v2) ⊕ · · · ⊕ vn)

Extensibility. Developers also have the ability to provide
additional definitions, expressed in terms of the base lan-
guage. Figure 2 presents schemes of definitions, where we
use symbol as a placeholder for an unused function argu-
ment. We make the following observations regarding these
definitions.

The head and tail constructs are used to extract elements
from a list. They are undefined when the list is empty.

The functional for loop returns a value of a list type, which
is the concatenation of list-typed values computed by its

body at each iteration. This is similar to the for loop in
XQuery and to flatMap/ext in other languages [3, 8]. The
parameter k concerns blocking and is explained in detail in
Section 6. Whenever omitted, its value is assumed to be 1.

The treeFold construct generates a tree-shaped bracketing
for the applications of a function f which takes k arguments.
For example, for a ternary f we have:

treeFold[3](c,f)([v1,v2,. . .,v6]) = f(f(v1,v2,v3),f(v4,v5,v6),c)

This construct is used to represent divide and conquer strate-
gies, as found in e.g. Merge-Sort. It uses a queue to store
the initial elements and the intermediate results.

The unfoldR function iterates over a tuple of n lists simul-
taneously. In every iteration the n-ary function f is applied,
which computes part of the output and removes at most one
element from the beginning of each list. The computation
terminates when all lists are empty. The result of each itera-
tion is appended to the intermediate result from the previous
iteration starting with an empty list. We can use unfoldR to
express the merging of two sorted lists as unfoldR(mrg) and
the zipping of n lists as unfoldR(z).

The partition function groups a set of tuples by their first
elements.

For a given fixed k, the funcPow[k](f) definition scheme
yields a nonrecursive definition to obtain a 2k-ary function
using multiple applications of a binary function f .

Generating C code from OCAL. As we mentioned
earlier, OCAS generates C code out of programs written in
OCAL by translating each expression to an appropriate se-
quence of C statements. C is the target language since it is
widely used in database systems development. By default,
OCAS expands definitions and generates code for each indi-
vidual expression of the base language. In order to increase
efficiency, developers can overwrite the default code genera-
tors for expressions and definitions using generator plugins.
OCAS contains efficient generator plugins for all definitions
in Figure 2. For instance, our partition definition as shown
in Figure 2 has O(n2) complexity, even though there exists
a linear implementation with the same semantics. By pro-
viding a code generator plugin for this construct, the linear
implementation can be used. Similarly, the definitions of
the head and length functions have linear time complexity,
even though there exist suitable implementations for con-
stant time execution. Finally, because the inner function of
unfoldR can only access the head of the lists and the output
is produced sequentially, we can transfer blocks of elements
at once, as we present in Section 6.

4. MEMORY AND STORAGE MODEL
Automated transformations in OCAS are driven by a mo-

del of the memory hierarchy. For this purpose, the developer
must specify a tree-shaped hierarchy where every node rep-
resents a hardware component able to store data and an edge
represents the ability to transfer data between two nodes. In
Example 1, the hierarchy consists of a main memory node
at the root with a single child node representing a hard disk.

Every node is attributed a set of properties that provide
information about its characteristics. This is merely an ab-
stract description of each node’s characteristics, since pre-
cise modeling of the architectural and physical attributes of
nodes is beyond the scope of this work. Examples of such
properties are presented in Figure 3.

head : [τ]→ τ
:= λl.foldL(〈true, 0〉, λ〈a, x〉.if a.1 then 〈false, x〉 else a)(l).2

tail : [τ]→ τ
:= λl.foldL(〈true, []〉, λ〈a, x〉.

if a.1 then 〈false, []〉 else 〈false, a.2 t [x]〉)(l).2

length : [τ]→ Int
:= foldL(0, λ〈sum, 〉.sum+ 1)

avg : [D]→ D
:= (λx.(x.1/x.2))(foldL(〈0, 0〉, λ〈a, x〉.〈a.1 + x, a.2 + 1〉)

for (x [k]← R) e : [τ1]→ [τ2]
:= foldL(〈[], []〉, λ〈a, x〉.if length(a.1)− 1 == k then

〈[], a.2 t f(a.1 t x)〉 else 〈a.1 t x, a.2〉)

treeFold[k](c, f) : [τ1]→ [τ2]
:= λseed.foldL(〈[], seed〉, λ〈a, 〉.
if length(a.2) == 1 ∧ a.1 == [] then a
else if length(a.1) == k then 〈[], a.2 t f(a.1)〉
else if tail(a.2) != [] then 〈a.1 t head(a.2), tail(a.2)〉
else 〈a.1 t head(a.2), [c]〉)(seed t seed)

unfoldR(f) : 〈[τ1], . . . , [τn]〉 → [τr]
:= λseed.(foldL(〈[], seed〉, λ〈a, 〉.
if a.2 == 〈[], . . . , []〉 then 〈a.1, 〈[], . . . , []〉〉
else 〈a.1 t f(a.2).1, f(a.2).2〉))(seed.1 t . . . t seed.n)

mrg : 〈[τ], [τ]〉 → 〈[τ], 〈[τ], [τ]〉〉
:= λ〈l1, l2〉.
if length(l1) == 0 ∧ length(l2) == 0 then 〈[], 〈[], []〉〉
else if length(l1) == 0 then 〈[head(l2)], 〈[], tail(l2)〉〉
else if length(l2) == 0 then 〈[head(l1)], 〈tail(l1), []〉〉
else if head(l1) < head(l2) then 〈[head(l1)], 〈tail(l1), l2〉〉
else 〈[head(l2)], 〈l1, tail(l2)〉〉

z : 〈[τ1], . . . , [τn]〉 → 〈[〈τ1, . . . , τn〉], 〈[τ1], . . . , [τn]〉〉
:= λ〈l1, . . . , ln〉.
〈[〈head(l1), . . . , head(ln)〉], 〈tail(l1), . . . , tail(ln)〉〉

partition : [〈τ1, . . . , τn〉]→ [τ1, [〈τ2, . . . , τn〉]]
:= foldL([], λ〈ps, x〉.
(λnps.if nps.1 then nps else ps t 〈x.1, [x.2]〉)(

foldL(〈false, []〉, λ〈nps, xs〉.if xs.1 == x.1
then 〈true, nps t [xs t [x.2]]〉 else 〈false, nps t [xs]〉)(ps)))

funcPow[1](f) : 〈τ1, τ2〉 → τ3
:= f

funcPow[k + 1](f) : 〈τ1, . . . , τ2k 〉 → τr
:= λ〈a.1, . . . , a.2k+1〉.
f(funcPow[k](f)(a.1, . . . , a.(2k)),

funcPow[k](f)(a.(2k + 1), . . . , a.2k+1))

Figure 2: Examples of definitions

Our model makes three assumptions. First, events be-
tween distinct hierarchy levels do not interfere with each
other (we assume DMA transfers). Second, there exists a
single processing unit which executes all computation and
can only access data that is stored at the root node of the
tree. Third, we assume synchronous I/O and that the hard-
ware properties, such as the throughput and seek time of
hard disks, remain constant.

For a program, the location of the input data, as well as
the output node, must both be specified. If the output node
is not set, we assume that the output is consumed by the
CPU. Each data value resides in a node. In order to per-
form computation on those values, they must be transferred
to the root node. Thus, for a given program, OCAS has to

Size. The size of the device. This property must be set for all nodes.

Pagesize. The data at this node must be accessed by pages of this size.
If it is possible to address every byte individually then pagesize = 1.

Maximum length of a write sequence (maxSeqW). The maximum
amount of data that it is possible to write in a sequence, using a single
I/O request. For flash drives this is equal to the erase block size.

Maximum length of a read sequence (maxSeqR). The maximum
amount of data that it is possible to read in a sequence, using a single
I/O request.

Edge properties: Weights of InitCom[m1→ m2] and UnitTr[m1→ m2]
cost events.

Figure 3: Examples of properties of the hierarchy

infer transfers for the set of values that have to be accessible
by the processing unit throughout the execution of the pro-
gram. In Example 1, values x and y have to be transferred
to RAM before performing the join.

Moving a data value v from one hierarchy level to another
induces costs. We leave the specifics of cost computation of
OCAL expressions for Section 5, but we note here that the
final cost depends on the paths used for data transfers. The
act of transferring data concerns not only the input and the
output but intermediate results as well.

In order to model the cost of moving data along an edge
in the memory hierarchy, each edge has two cost metrics
associated with it. Using different costs for different edges
enables more accurate cost estimation. First, we consider
the cost of initiating a transfer between the two hierarchy
nodes (InitCom event). If either of the nodes is a hard disk,
this corresponds to a seek in our model. Similarly, in order
to transfer data to a flash drive, a block has to be erased
before data can be written. The second metric is the cost of
transferring a unit of data between the two hierarchy levels
(UnitTr event). If the developer chooses to ignore certain
cost events, he can set their value to zero. This allows our
system to, for example, ignore the cost of InitCom for RAM
when considering I/O intensive workloads. Both costs can
be collected either from the device specifications or using
standard tools like e.g. Seeker [2] for hard disk seeks. We
follow this approach in our evaluation.

Because we model memory hierarchies as trees whose lea-
ves are storage devices and whose root is the fastest level of
the hierarchy, we cannot model, say, general parallel com-
putation. We are currently working on a way of modeling
hardware deeply with the goal of ultimately being able to
automatically infer program transformation rules and cost
functions from the hardware description.

5. AUTOMATED COST ESTIMATION
Sufficiently accurate cost estimation of programs is essen-

tial because it is used by OCAS to compare programs in
terms of efficiency. In the domain of out-of-core algorithms
we are mainly interested in costs introduced by moving data
around in the memory hierarchy. Thus, we currently ne-
glect the actual computation cost of a program in our sys-
tem. Instead, we opt for modeling only the two aspects of
data transfers that we introduced in Section 4: initiating the
transfer and actually transferring the requested data.

This section provides a stepwise description of the com-
munication cost computation. First, we describe how to
compute the result size of each OCAL expression. This is
needed since the input typically represents structured data,

and thus we need to estimate not only the total size, but also
the sizes of nested components that may be separately used
in subcomputations. Then, we describe when data transfers
are introduced in our cost model. Finally, we analyze how
the cost estimator separately computes two aspects of data
transfers in order to provide the final cost formula and we
discuss the extensibility of the costing.

Note that the costing of a program in OCAS does not re-
quire to actually run the program. This is important, since
actual execution may be very costly. This aspect enables
our methodology to be used to compare a large number of
programs efficiently, which is essential when exploring varia-
tions of a program by applying transformations. We discuss
transformation rules in greater detail in Section 6 and in this
section we focus on how to cost one single program.

Figure 4 provides a guiding example for this section. It
shows the different steps carried out by the cost estimation
engine for every expression of a block nested loop join that
reads two relations R and S from HDD into RAM, joins them
there and finally writes the result back to HDD.

5.1 Estimating the result size of expressions
Given that OCAL programs are compositions of expres-

sions, and that each expression may increase the amount of
output, we must estimate the result size of every expression
in OCAL. To do that, we introduce the notion of annotated
types, which annotate lists types with cardinalities. The cor-
responding grammar is:

α ::= [α]x | 〈α1, . . . , αn〉 | c

An annotated type α is either a list of form [α]x where
x is the cardinality, a tuple of annotated types or a con-
stant size c. This notation allows us to represent the size
of values while retaining their structure. It is worth men-
tioning that the length of a list is not restricted to integer
constants but can be described by an arithmetic expression
containing variables. As an example of an annotated type,
〈[[1]y]x, [〈1, 1〉]z〉 represents a tuple composed of a list of lists
and a list of tuples. By using variables we can express the
result size as a function of the input sizes and other param-
eters without having to recompute the cost of a program
every time the size of its inputs or other parameters change.

By using annotated types, the result size of expressions
can be then estimated as shown in Figure 5. In what fol-
lows, we sometimes write x · [b]y to denote [b]x·y. The re-
cursive function R defines the result size as an annotated
type for an expression in a context Γ, which is a set that
maps symbols to annotated types. This context is extended
every time new symbols are referenced. In order to turn
the estimate of a result size into a single arithmetic expres-
sion, we define the function size which turns an annotated
type to an integer-valued arithmetic expression representing
the size of the annotated type in bytes. In addition, we de-
fine card and elem to extract information about lists. Since
function definitions do not produce any results until they
are applied to a value, in our costing we assume that all of
them are matched with corresponding function applications.
The cost of the flatMap construct is the same as that of for
with k set to 1.

Observe that we perform worst-case analysis of the result
size of each expression. For instance, for nested lists, we take
the maximum of the lengths of the inner lists. This design
choice may lead to overestimation of result sizes, e.g. in the

Expression Context Result size UnitTr
mHDD → mRAM

UnitTr
mRAM → mHDD

InitCom
mHDD → mRAM

InitCom
mRAM → mHDD

for (xB [k1] ← R) Γ1 = R 7→ [1]x, S 7→ [1]y [〈1, 1〉]x·y x+ x
k1
y 2xy x/k1 + xy

k1k2
2xy/ko

for (yB [k2] ← S) Γ2 = Γ1 ∪ xB 7→ [1]k1 [〈1, 1〉]k1·y y 2k1y y/k2 2k1y/ko

for (x ← xB) Γ3 = Γ2 ∪ yB 7→ [1]k2 [〈1, 1〉]k1·k2 0 2k1k2 0 2k1k2/ko

for (y ← yB) Γ4 = Γ3 ∪ x 7→ 1 [〈1, 1〉]k2 0 2k2 0 2k2/ko

if joinCond(x,y) Γ5 = Γ4 ∪ y 7→ 1 [〈1, 1〉]1 0 0 0 0

then [〈x, y〉] Γ5 [〈1, 1〉]1 0 0 0 0

else [] Γ5 0 0 0 0 0

Figure 4: Costing of an example of two unary relations R and S of type [Int]. The hierarchy has two nodes,
an HDD and a RAM (root node), and we assume that the size of Int is 1.

card([α]x) := x elem([α]x) := α size([α]x) := x · size(α) size(〈α1, . . . , αn〉) := size(α1) + . . .+ size(αn)

size(c) := c R(Γ, x) := Γ(x) R(Γ, [e]) := [R(Γ, e)]1 R(Γ, if c then e1 else e2) := max(R(Γ, e1),R(Γ, e2))

R(Γ, c) := sizeof(c) R(Γ, e.i) := R(Γ, e).i R(Γ, e1 t e2) := R(Γ, e1) + R(Γ, e2) R(Γ, 〈e1, . . . , en〉) := 〈R(Γ, e1), . . . ,R(Γ, en)〉
R(Γ, for(x [k]← e1) e2) :=

card(R(Γ,e1))
k

· R(Γ ∪ {x 7→ [R(Γ, elem(e1))]k}, e2)) R(Γ, (λx.e1)(e2)) := R(Γ ∪ {x 7→ R(Γ, e2)}, e1)

R(Γ, foldL(c, λ〈a, x〉.e1)(e2)) := R(Γ, c) + card(R(Γ, e2))
(
R(Γ ∪ {a 7→ R(Γ, c), x 7→ R(Γ, elem(e2))}, e1)− R(Γ, c)

)
Figure 5: Data size estimation rules for every expression of OCAL.

case of if-then-else, the branch that gives the largest result
may not be the one that will actually be taken during execu-
tion. However, as we show in our evaluation, even with this
overestimation, OCAS can still differentiate more efficient
programs from less efficient ones, with respect to the given
memory hierarchy. Finally, we also allow the programmer
to annotate any expression with a custom result size esti-
mate. This may be needed since the static rules that OCAS
uses for data size estimation may not capture specific algo-
rithm semantics. A fold which produces a very small output
in its last iteration, but very large outputs in all others is
one example where these annotations allow programmers to
explicitly express the intention of their algorithm.

5.2 Determining data transfer occurrences
OCAS models data transfers implicitly: whenever the ex-

ecution context is extended with a new value, we account
for an appropriate amount of transfers for this value. After
modeling the transfer, this value is then considered to be
in its new location. Furthermore, as soon as a value is not
in the context anymore, it does not consume space for the
hierarchy level it belonged to. By implicitly modeling data
transfers, we enable separation between a program and its
execution environment (memory hierarchy). This alleviates
the need for programmers to annotate where intermediate
values are stored throughout the execution of a program.

We use the following notation and semantics for data
transfers. First, values are transferred from a hierarchy node
ms, where they originally reside, to a memory node md. In
order to simplify costing of a program, we assume that data
transfers happen only between adjacent memory nodes (ms

is directly connected to md in the tree). Furthermore, if md

is the root node, then an expression will be executed to pro-
cess the fetched data, thus producing an output written at
a node mo, which has to be a child of md, possibly different
from ms (because otherwise no transfers are needed).

Finally, data transfers between adjacent hierarchy lev-
els are constrained by the physical size of the participating
nodes. Given that modeling replacement algorithms at each

level of the memory hierarchy is a very complicated task, we
choose a simpler solution. We use dedicated space for input
(bin) and output (bout) buffers at each level, per value, so
that their combined size does not exceed the size of the spe-
cific level. These buffers determine the amount of transfers
necessary to process each value and will be utilized by the
transformation rules presented in Section 6. Furthermore,
when the output buffer is filled, it is completely evicted to
the output memory level. Choosing good values for input
and output buffer sizes is a critical aspect of designing high
performance out-of-core algorithms. It is also a non-trivial
task for developers, since choosing locally optimal solutions
at each node may not give a globally optimal solution for
the whole hierarchy. Thus, the automation that our system
provides in that respect is very helpful to developers.

5.3 Estimating cost events
The core of cost computation concerns estimating the cost

of InitCom and UnitTr transfer events occurring between ad-
jacent nodes. OCAS estimates these events independently.
Figure 6 shows how our system counts the amount of data
transferred for various kinds of functions. For function defi-
nitions (along with their applications), the size of the argu-
ment determines how many bytes are transferred from ms

to md. The size of the result tells how many bytes are writ-
ten out. In addition, as flatMap executes its inner function
for every element, we have to multiply the number of the
elements caused by this function by the length of the list.
For foldL the situation is very similar but we also have to
take into account that c has to be transferred to md as well.1

Every expression other than function application basically
just aggregates the number of events of its subexpressions.
Calculating the amount of InitCom events is similar to com-
puting the amount of data transferred. The total cost is then
found if we add up the two separate costs, which gives a sin-

1The presented cost function is simplified and adapted to our
examples. The general cost function is more complicated
because OCAL is able to express algorithms with super-
exponential running time.

Expression e Cost of InitCom events C(Γ, e) Cost of UnitTr events T(Γ, e)

(λx.e1)(e2)

C(Γ ∪ {x 7→ R(Γ, elem(e2))}, e1) + C(Γ, e2)

+size(R(Γ, e2)) InitCom[ms → md]

+size(R(Γ, e)) InitCom[md → mo]

T(Γ ∪ {x 7→ R(Γ, elem(e2))}, e1) + T(Γ, e2)

+size(R(Γ, e2)) UnitTr[ms → md]

+size(R(Γ, e)) UnitTr[md → mo]

(for(x [k]← e2) e1)

card(R(Γ,e2))
k

C(Γ ∪ {x 7→ [R(Γ, elem(e2))]k}, e1)

+C(Γ, e2) +
size(R(Γ,e2))

k
InitCom[ms → md]

+
size(R(Γ,e))

bout
InitCom[md → mo]

card(R(Γ,e2))
k

T(Γ ∪ {x 7→ [R(Γ, elem(e2))]k}, e1)

+T(Γ, e2) + size(R(Γ, e2)) UnitTr[ms → md]

+size(R(Γ, e)) UnitTr[md → mo]

(foldL(c, λ〈a, x〉.e1))(e2)

card(R(Γ,e2))−1∑
i=0

C
(

Γ ∪ {a 7→ i · (R(Γ∪

{a 7→ R(Γ, c), x 7→ R(Γ, elem(e2))}, e1)− R(Γ, c)),

x 7→ R(Γ, elem(e2))}, e1
)

+ C(Γ, e2)

+(size(R(Γ, c)) + size(R(Γ, e2))) InitCom[ms → md]

+size(R(Γ, e)) InitCom[md → mo]

card(R(Γ,e2))−1∑
i=0

T
(

Γ ∪ {a 7→ i · (R(Γ∪

{a 7→ R(Γ, c), x 7→ R(Γ, elem(e2))}, e1)− R(Γ, c)),

x 7→ R(Γ, elem(e2))}, e1
)

+T(Γ, e2) + (size(R(Γ, c))

+size(R(Γ, e2))) UnitTr[ms → md]

+size(R(Γ, e)) UnitTr[md → mo]

Figure 6: Rules for computing the cost of InitCom and UnitTr events.

gle expression depicting the cost of a program as a function
of various parameters like block and input sizes.

We end this section with two remarks. First, our system
also allows the developer to define custom costs for defini-
tions by extending the mechanisms for counting events and
estimating result sizes with special cases. This feature al-
lows to specify tighter bounds for special cases using the
developer’s expertise. If the developer does not specify a
cost formula for his definitions, OCAS extends each defini-
tion and costs its inner expressions in order to get a cost
estimation metric. Second, observe that when the target
memory hierarchy changes, the costing formulas are changed
accordingly, based on the above analysis. This may make a
different set of transformation rules applicable and may, as
a result, generate a different program as output. In the next
section, we discuss the transformation rules in more detail,
and show how they can generate a better program based on
the cost formulas we presented here.

6. TRANSFORMATION RULES
In the previous section we discussed how to estimate the

cost of a program based on the amount of data transfers it
performs. In this section, we discuss the set of rules that
transform a given program to another one with equivalent
functionality that may have better performance with respect
to a given memory hierarchy. Since it is rarely possible to
determine analytically whether the application of a rule re-
sults in a performance improvement, we opt for cost-based
optimization rather than using a deterministic recipe for ob-
taining efficient programs. OCAS exhaustively searches the
space of equivalent programs, estimates the cost of each and
then selects one with the best performance. For example,
consider the following sequence of equivalent join algorithms
between relations R and S of type list of tuples:

for (x ← R) for (y ← S) if joinCond(x,y) then [〈x,y〉] else []
⇓ [rule apply−block applied twice, for R and S respectively]
for (xBlock [k1] ← R) for (x ← xBlock) for (yBlock [k2] ← S)
for (y ← yBlock) if joinCond(x,y) then [〈x,y〉] else []
⇓[rules swap−iter and seq−ac]
for (xBlock [k1] ← R) for[HDD RAM] (yBlock [k2]← S)
for (x ← xBlock) for (y ← yBlock)

if joinCond(x,y) then [〈x,y〉] else []
⇓[rule order−inputs]
(λ〈R, S〉.for (xBlock [k1] ← R) for[HDD RAM] (yBlock [k2]←S)
for (x ← xBlock) for (y ← yBlock)
if joinCond(x,y) then [〈x,y〉] else [])

(if length(R) ≤ length(S) then 〈R, S〉 else 〈S, R〉)

The first program is a naive implementation of a Nested
Loops Join algorithm that issues a disk read every time it
accesses a tuple from either of the two relations. The fi-
nal program is a Block Nested Loops Join that uses the
smaller relation in the outer loop. Both programs discard
the output. Every step in the derivation is annotated with
a transformation rule presented in Subsection 6.2.

6.1 From Principles to Transformation Rules
We have identified three main principles that drive the

transformations performed by our system:

Data locality and block-based transfers. One heuris-
tic that OCAS uses is to fetch the largest possible block
of data to the processing unit at once. The justification is
that, unless the input contains data that is never looked at
by the algorithm, every data element has to be eventually
fetched. Thus, if fetching is performed in larger chunks, then
the number of InitCom events, which represent disk seek-
ing and the costly erasure on flash drives, decreases. The
transformation rule that applies this optimization is called
apply−block.

The order in which individual data elements are accessed
can also be changed by rules swap−iter and order−inputs.
This is a class of optimizations whose effectiveness depends
on the interaction of several levels of the memory hierarchy,
rather than the properties of each individual level. There-
fore, there does not exist a generally valid characterization
of the cases when these optimizations are effective, other
than suggesting that the performance after the application
of the rule should improve.

Sequential versus random access. Some devices per-
form significantly better if data on them is accessed sequen-
tially rather than in random order. A notable example are
hard disks, but also writing sequentially to flash drives is
more efficient because an erased block can be filled before

another one has to be erased somewhere else. Pre-fetching
data by blocks into a level that does not have a performance
penalty for random access can improve performance in pro-
grams where random access is confined to happen within
blocks. Blocking is introduced through the apply−block rule.

Minimizing the number of passes through the in-
put. Some programs require accessing every element of
the input several times to compute the result. There are
abundant examples of this behavior in data management
systems: join algorithms may have to consider all pairs of
members from two relations, comparison-based sorting algo-
rithms have a theoretical bound of at least logn accesses to
each input element, etc. OCAS uses two techniques based
on this principle: Partitioning data by hash, represented by
the rule hash−part; and Divide-And-Conquer, represented
by the rule inc−branching. Both rules have the effect that the
individual input elements need to be accessed fewer times, in
fact only two times in the case of hash−part, but in a more
random order. Therefore there is a trade off between the
total amount of data transferred and the amount of seeking
that this rule introduces.

In addition to the previous ideas, another class of opti-
mization rules target improving the asymptotic computa-
tional complexity of the algorithm, such as the fldL−to−trfld
rule. However, we do not make this kind of rules a priority
of this paper, because they are rather independent of the us-
age of the memory hierarchy and they form a broad enough
research topic on their own. Application of functional-style
transformations to improve the asymptotic complexity of
programs has been studied in e.g. [7] and [6], although not
in the context of automatic synthesis of programs.

6.2 List of Transformation Rules
We write our rules as e1⇒e2 where e1 and e2 are OCAL

expressions. This means that whenever a part of a pro-
gram matches e1 then this part is equivalent to and can
be replaced by e2, leading to a new program. Most rules
come with additional conditions on e1 that determine when
the rule can be applied. These conditions pose a challenge:
some are undecidable in the general case or deciding them
is too computation-intensive. In such cases, we implement a
conservative estimation procedure that returns no false pos-
itives by deciding a stronger but simpler condition. This
approach may lead our tool to fail to notice opportunities
when a rule could be correctly applied but it never allows it
to apply a rule in a non-valid context. We now describe the
motivation of each rule, the conditions under which it can
be applied and some examples of usage.

We show in the experimental section that this set of rules
already covers a rich collection of programs. There are other
principles that OCAS does not yet deal with. However, our
tool can be easily extended by such principles in the form
of new transformation rules that follow the same pattern as
the ones presented in this section.

Increasing the Block Size (apply−block). The fold and
flatMap constructs, as specified in Section 3, iterate over the
elements of a list one by one, as they appear, in a sequential
fashion. However, OCAS provides the for construct which
allows iterating over blocks of elements, instead of one by
one. Using the blocked for in place of the more granular
counterpart is the aim of the following transformation rule:

for (x [1] ← R) [1] e ⇒
for (xBlock [k1] ← R) for (x ← xBlock) [k2] e

This rule can be applied both when fetching data towards
the processing unit as well as to the data that is written as
a result of evaluating expression e. To use it, we introduce
the new annotation [k2] (in the place shown) for buffering
the output. In general, apply−block increases the amount of
data read or written in a single I/O request, from the de-
fault single element to blocks of size k1 and k2, respectively.
The value of k2 is limited by the space and the maxSeqW
property of the node where the elements are being written
to, and k1 by the maxSeqR property of the source node.
The actual values of k1 and k2 are determined by the non-
linear optimizer that we have implemented based on [19]. In
short, for a single loop, a good heuristic is that both k1 and
k2 should be as big as possible, subject to the aforemen-
tioned restrictions. However, if several nested loops over
different ranges compete for space at the same node, this
trivial heuristic does not work and we use the optimization
solver to determine the block sizes.

If R is originally stored at node m0, is fetched at m1 and
the output is written to node m2, this rule reduces the num-
ber of InitCom[m0 → m1] cost events k1-fold, and the num-
ber of InitCom[m1 → m2] events k2-fold, as long asm0 6= m2.
If some of these nodes are hard disks, this rule decreases the
number of disk seeks. In general, our system aims to replace
every list-iterative construct with block size 1 with as many
levels of nested equivalent constructs with larger block size
as there are levels in the memory hierarchy. We note that
we also use an analogous rule to introduce bigger blocks to
our implementation of unfoldR.

Swapping The Order Of Iterative Constructs (swap−
iter). Given two for or two flatMap constructs that iterate
over two different lists, we can then change the order in
which these two constructs are applied, as follows:

for (x1 [k11] ← range1) [k12] for (x2 [k21] ← range2) [k22] e ⇒
for (x2 [k21]← range2) [k22] for (x1 [k11]← range1) [k12] e

This rule can be applied provided that the value of range2

does not depend on x1. We also have an analogous rule for
loops with a condition:

for (x1 [k11] ← range1) [k12]
if c then for (x2 [k21] ← range2) [k22] e1 else e2
⇓
for (x2 [k21] ← range2) [k22]
for (x1 [k11] ← range1) [k12] if c then e1 else e2

Ordering Input Lists by Length (order−inputs)

f ⇒ λ〈x1, x2〉.
f(if length(x1) ≤ length(x2) then 〈x1, x2〉 else 〈x2, x1〉)

f ⇒ λ〈x1, x2〉.
f(if length(x1) ≤ length(x2) then 〈x2, x1〉 else 〈x1, x2〉)

The target of this rule are applications where the input is
a tuple of lists whose order does not matter for the calcu-
lated result but may matter for efficiency. For instance, a
Block Nested Loops join is more efficient if the outer rela-
tion is the smaller. These two rules can be applied if f is
of type 〈[τ1], [τ1]〉 → τ2. It is easy to generalize this rule for
functions whose input is a tuple of type 〈[τ1], . . . , [τ1]〉 → τ2.

Hash Partitioning of Input (hash−part). The following
procedure can sometimes improve the performance of an al-
gorithm. Given a tuple of lists, we distribute the elements

of each of the lists into subsets, each containing elements
that hash into a particular range. We thus obtain a tuple
of lists of lists, where each list of lists represents the set of
hash partitions of one of the original lists. These are then
zipped together to form a value L of type list of tuples of
lists, that has length s and contains all the tuples of corre-
sponding partitions. The original algorithm is then mapped
over the tuples. OCAS provides an efficient implementation
of the partition definition, which is executed in linear time.
The following transformation rule captures this idea:

f ⇒ λ〈x1, . . . , xk〉.(flatMap(f)
(zip(〈partition(x1), . . . , partition(xk)〉)))

This rule works for any s when f is a function that iterates
over a tuple of lists, for example a join. Most importantly,
f must be such that when one takes the union of results of
f applied to the s partitions, one gets the same result as
applying f to the original input lists. This means that we
do not care about the order in which the function processes
the input elements.

If f is a program that accesses every element of its input
more than once, applying this rule has the effect that all
of the data is read only twice: once during the partitioning
phase and once when applying f to the partitions, provided
they are small enough to fit in the node into which f reads
the data to from their original location. This is ensured
by choosing s to be large enough. This rules is needed for
synthesizing hash joins.

Increasing the Branching of treeFold (inc−branching).

treeFold[2k](c, funcPow[k](f)) ⇒
treeFold[2k+1](c, funcPow[k + 1](f))

The condition for this rule to work is that f has to be as-
sociative. When this rule is applied, the number of appli-
cations of the function inside the treeFold decreases but the
function becomes more complicated as it accepts more ar-
guments. More precisely, we get approximately n

2k−1
appli-

cations of funcPow[k](f) instead of approximately n appli-
cations of f, where n is the length of the input list. Also,
when initially converting treeFold[2] into treeFold[4], the use
of this rule is usually preceded by a use of an auxiliary rule
f⇒funcPow[1](f) which applies to any f.

In Section 7, we provide the example of deriving 2k-way
External Merge-Sort. There, the sorting algorithm operates
on a list of lists, which necessitates the usage of the unfold
definition. In this particular case, it is more efficient to
actually execute the above transformation rule as follows:

treeFold[2k](c, unfoldR(funcPow[k](f))) ⇒
treeFold[2k+1](c, unfoldR(funcPow[k + 1](f)))

A detailed explanation is omitted due to space constraints.

Change of Folding Pattern (fldL−to−trfld).

foldL(c,f) ⇒ treeFold[2](c,f)

This rule works whenever f is associative and c is an identity
element for f. The treeFold[2] pattern applies f the same
number of times as foldL. However, if the size of the result
of f and its computational complexity grow at least linearly
with the size of its input, then treeFold[2] achieves better
performance by balancing f ’s input sizes more equally.

Adding a Sequentiality Annotation (seq−ac). To
enhance the precision of the cost estimation, we allow an
expression to be annotated with a token [m1 m2]. This

Hard disk: size = 1T pagesize = 4K
Flash drive: size = 512G maxSeqW = 256K
Cache: size = 3M pagesize = 512B

InitCom[HDD 7→ RAM] = 15ms InitCom[RAM 7→ HDD] = 15ms
InitCom[RAM 7→ SSD] = 1.7ms InitCom[RAM 7→ Cache] = 0.1ms
UnitTr[HDD 7→ RAM] = 1s/30M UnitTr[RAM 7→ HDD] = 1s/30M
UnitTr[SSD 7→ RAM] = 1s/120M UnitTr[RAM 7→ SSD] = 1s/120M

Figure 7: Node properties and associated cost units

notifies the costing engine that for this expression, all data
transfers from m1 to m2 happen sequentially. This annota-
tion serves only as an indicator for the costing engine and
it does not change the semantics and implementation of the
program. It can be applied when no other part of the pro-
gram causes any communication to m2. A syntactic check
provides a sufficient condition.

For example, a for-loop that reads a page of the hard disk
to the main memory in every iteration and does not other-
wise touch the hard disk is allowed to have this annotation.
In this case, instead of counting one such event for every iter-
ation (which is the result of ordinary cost inference), the new

InitCom cost is given by: max
(

1, totaltransfers
min(m1.maxSeqR,m2.maxSeqW)

)
.

Another natural interpretation of this cost function opti-
mization is writing multiple blocks of data to a flash drive
after a block, usually much larger, has been erased.

7. EXPERIMENTAL EVALUATION
In this section we present our experimental platform and

evaluate our approach with respect to the following points:

1. The quality of synthesized algorithms. We evaluate
this aspect in two ways. First, we manually inspect the
generated C code obtained from OCAS and check whether
the code matches our expectations. Particularly for disk-
based joins and sorting, we check whether we obtain exactly
the standard textbook algorithms. Then, we evaluate the
performance of the synthesized algorithms by running the
generated C code on actual data on a hardware configuration
that matches our memory hierarchy description.

2. The accuracy of the predictions compared to the actual
execution times of the algorithms. We examine two aspects
of this issue, the imprecision of the estimations caused by
the fact that the cost formulas do not currently consider
CPU costs, and the degree of overestimation caused by the
fact that OCAS performs worst-case analysis.

3. The execution time of the synthesizer, given that the
search space grows as longer chains of transformation rules
are evaluated on larger programs.

7.1 Experimental Platform
Our platform2 is a Mac OS X machine with an i7-2620M

processor, standard 1TB Western Digital hard disk drives
and one 500GB Apple SSD TS512C. Input and RAM buffer
sizes are reported in bytes, and are specifically chosen for
each experiment. The properties of our devices and the cost
of unit events are listed in Figure 7. Costs not included are
assumed to be zero. OCAS is implemented in Scala, so we
use a Java Virtual Machine with 256MB of heap space. The
C programs generated by OCAS are compiled using GCC

2This is for all experiments other than measuring cache
misses.

Program Spec. [s] Opt. [s] Act. [s]
Relation size Total buffer Search

Steps
OCAS

R S size space Runtime [s]

BNL - No writeout 4× 109 411 545 1G 32M 8M 9287 6 17
BNL with cache - No writeout 4× 109 445 533 1G 32M 8M 54202 7 370
(GRACE) hash join - No writeout 4× 109 356 491 1G 32M 8M 28471 7 78.5
BNL writing to HDD 1016144 5058 4704 32K 256M 20K 2566 6 8.2
BNL wr. to other HDD 1016144 1689 2176 32K 256M 20K 7443 6 14.4
BNL writing to flash 561179 307 455 32K 256M 20K 7443 6 12.7
External sorting 1× 109 157 272 1G - 260K 130 10 2.9

Set Union 251931 396 499 2G 2G 48K 21 3 0.07
Multiset Union (sorted list) 251931 396 479 2G 2G 48K 21 3 0.06
Multiset Union (value-multiplicity) 251931 396 487 2G 2G 48K 21 3 0.07
Multiset Diff. (sorted list) 126033 266 137 2G 2G 48K 21 3 0.07
Multiset Diff. (value-multiplicity) 126033 266 153 2G 2G 48K 21 3 0.07

Column Store Read 5 cols. 125965 197 196 4G - 5M 7 3 0.01
Column Store Read 10 cols. 251931 395 382 8G - 10M 7 3 0.01
Duplicate Removal from a Sorted List 503862 546 882 16G - 16K 7 3 0.16
Aggregation 125965 136 168 4G - 32K 7 3 0.25

Table 1: Cost estimates for the naive specification algorithm (Spec) and the synthesized algorithm (Opt),
actual running times of the generated C programs for the synthesized algorithms (Act), data sizes, and
statistics on synthesis (search space size and depth, and synthesizer running time).

4.2. In what follows, the running time refers to the actual
execution time of the generated programs.

7.2 Inspection and Performance Evaluation
The aim of this work is to automatically generate algo-

rithms tuned for a particular memory hierarchy. To that
end, we do not claim the optimality of the generated algo-
rithms. We have instead manually verified that the gen-
erated algorithms are the same as those in textbooks [23].
Table 1 presents results for all of our experiments and it also
contains the cost of the naive algorithm the user provides,
which assumes one I/O (and one seek) per tuple processed.

Next, we analyze variations of the running BNL Join ex-
ample and we explain in detail how OCAS automatically
derives an External Merge-Sort of n · logn complexity from
a naive specification of an insertion sort of n2 complexity.
The purpose of these examples is to show that OCAS gener-
ates optimized algorithms and adapts its cost formulas and
generated algorithms when the memory hierarchy changes.

Block Nested Loops (BNL) and Hash Join. All join
examples start with the same naive join algorithm of Exam-
ple 1. We create different algorithms from different memory
hierarchy descriptions and parameterizations. Results for
the BNL Join with no write-out are shown in the first line
of Table 1. This corresponds to the example used so far in
the paper.

When a memory hierarchy that consists of a hard disk and
the main memory is extended with one level of CPU cache,
OCAS generates a version of Block Nested Loops join with
additional for loops that make use of the available cache.

The reader can verify that by applying this transforma-
tion, which corresponds to loop tiling, the program becomes
more cache-friendly. As a result, there is a small perfor-
mance improvement, as shown in Table 1. We make two
observations. First, the underestimation of OCAS is smaller
in this experiment, because a previously ignored part of the
memory hierarchy is modeled in the cost formulas. Second,
using the tool perf [1] we measured the number of data
cache misses. This number is reduced by 98.2%, compared
to the previous example (the non-cache conscious BNL join).
However, the execution time does not reflect this significant
improvement, since this experiment is I/O bound.3

3We have acquired the cache miss ratio of this experiment

Furthermore, by applying the partitioning rule from Sec-
tion 6, OCAS is capable of transforming the Block Nested
Loops Join into a variant of the GRACE hash join. Our
experiments show that, as expected, the hash join performs
better than the BNL join.

Next, we turn our attention to three examples where the
output of the join is written to a device and not discarded.

When the output is written back to the same hard disk
that stores the input, sequential reading from the hard disk
is no longer possible, because the write operations interfere
with the reads. Table 1 shows that the cost formula success-
fully depicts the considerably increased running time, even
though the size of the input relations is significantly smaller
compared to the original BNL join with no write-out.

If the memory hierarchy changes so that another hard disk
HDD2 stores the output, reading and writing do not inter-
fere with each other, so both can be executed sequentially.
By doing so, even though the amount of data transfers re-
mains the same, hard disk seeking is significantly reduced,
as indicated by our cost formulas. As a result, Table 1 shows
that both the estimated and the actual execution times are
reduced by more than 50%. Note that we use the join condi-
tion “true” (thus we compute a relational product between
the two relations) in the BNL join examples which write
their output to a drive. Thus, write cost dominates read
cost, which explains why the BNL join writing to a different
disk is much slower than the BNL join discarding its output.

Finally, we consider an example with the same memory
hierarchy as above, but a flash drive used in place of the
second hard disk. In this case, OCAS generates the same
program as before. However, both the estimated and the
actual execution times are reduced due to the significantly
better sequential write speed of SSDs. This is true, even
though the factor of the InitCom events changes to depict
their different meaning on flash. They do not correspond
to seeks, but rather to an erasure occurring before each se-
quence of write operations, the length of which is given by
the maxSeqW property of the flash drive. OCAS estimates
better execution time for the example with flash and, thus,
it accurately captures this trade-off between sequential writ-

on a Linux server with an Intel Xeon E5-2620 CPU. The
relative speedup between the Block Nested Loops join and
the cache example remains the same.

ing and erase operations. The actual execution time of this
experiment presents a similar behavior.

External Merge Sort. This example uses the fact that
folding merge over a list of singleton lists of integers yields
a sorting algorithm, and, thus, demonstrates how our rules
for changing the folding patterns can bring us from Insertion
Sort to a version of the External Merge-Sort. As a starting
point, Insertion Sort can be represented as:

foldL([], unfoldR(mrg))(R)

where mrg is the supporting function presented in Section 3
and the input is a list R of length x of singleton lists of
integers. In this naive version, the elements are transferred
one by one from HDD to RAM and back. The cost is:

x−1∑
j=0

(InitCom[HDD 7→ RAM] + (j + 1)(UnitTr[HDD 7→ RAM]

+ UnitTr[RAM 7→ HDD] + InitCom[RAM 7→ HDD]))

Our system includes a basic engine for simplifying arithmetic
expressions, capable of finding closed forms of some sums,
which automatically simplifies the above formula to:

x InitCom[HDD 7→ RAM] +
x(x+ 1)

2
(UnitTr[HDD 7→ RAM]

+ UnitTr[RAM 7→ HDD] + InitCom[RAM 7→ HDD])

By applying rule fldL−to−trfld, rule inc−branching and fi-
nally rule apply−block, we obtain 4-way External Merge-
Sort. If we then apply rule inc−branching k− 1 more times,
we get to 2k-way External Merge-Sort, whose code is:

treeFold[2k]([], unfoldR(funcPow[k](mrg)))

The cost of running this program is, after simplification:⌈
dlog xex

k

⌉(
UnitTr[RAM 7→ HDD] + UnitTr[HDD 7→ RAM]

+
1

bin
InitCom[HDD 7→ RAM] +

1

bout
InitCom[RAM 7→ HDD]

)
Our non-linear optimization solver determines that this cost
is minimal when the all the input blocks and the output
block are as large as possible, which means bout = bin =
ms.size
2k+1

, and hence the number of units transferred decreases

with k and is proportional to 1/k, while the amount of seek-
ing increases with k and is proportional to 2k/k. Choos-
ing the right k is again accomplished using the optimization
solver and depends on the ratio between the seek-time and
reading speed of the hard disk.

To sum up, the output algorithm of OCAS is always better
than the specification algorithm provided by the user, and
is adapted to the given memory hierarchy.

Manual inspection of the generated C programs shows
that OCAS produces exactly the standard textbook (disk-
based) BNL and hash join and external sorting algorithms.

7.3 Accuracy of Cost Formulas
General Overview In Table 1, we present the actual
execution times of the generated C code for the optimized
algorithms. As we can see, the estimates of OCAS are in
general not far from the actual execution time, and in some
cases our tool underestimates. This is because, as we explain
below, the cost formulas are very simple and they do not

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1G
32M
8M

2G
32M
8M

4G
64M
16M

BNL - write-out Merge-sortAggregation

Estimated time Measured time

 0

 5000

 10000

 15000

 20000

 25000

128M

32K

1G

32K

8G

64K

100

150

200

250

300

350

400

450

500

550

4G

32K

8G

64K

16G

128K

Ti
m

e
 (

s)

Figure 8: Estimated and actual running times for
varying input and buffer sizes. The x-axis label
shows the size of the first input relation, the sec-
ond input relation (if applicable) and buffer size.

completely represent the actual execution properties, espe-
cially for CPU dominated workloads. The important point
to notice is that, when comparing equivalent algorithms like
we did above in the case of BNL join with writing to dif-
ferent devices, the predictions follow the same trend as the
actual execution times. Next, we examine two different as-
pects of accuracy in more detail: the effects of not modeling
computation cost and of performing worst-case analysis.

Impact of Computation Costs. OCAS does not cur-
rently model computation costs. This can cause our system
to underestimate, as shown in Table 1. Moreover, underes-
timation should grow the more CPU intensive a task is. To
examine this hypothesis, we run a set of experiments with a
variety of different algorithms, input and buffer sizes. The
results for these experiments, presented in Figure 8, confirm
the initial assumption: For tasks that are not CPU-intensive,
such as aggregation, the estimations are very accurate. How-
ever, for tasks like joins or sorting, which consume a signifi-
cant amount of CPU cycles, underestimation grows with the
input size. This raises the need of a more precise modeling
of the CPU. However, we leave this for future work.

Impact of Worst-Case Analysis. The worst case anal-
ysis that OCAS performs can lead to significant overesti-
mation of the output size, resulting in overestimation of
the number of write operations. This is important, since
this amount proportionally affects the reported estimations.
To better understand this behavior, we present three ex-
amples in Table 1: one that calculates the union of sets
represented as a sorted list of unique values, another that
returns the union of multisets represented as a list of value-
multiplicity pairs, and finally one that calculates their differ-
ence. For the union examples, the estimated output is equal
to length(L1)+length(L2) and for difference it is length(L1).
The latter follows because in the worst case there is no ele-
ment that is the same amongst the two relations. The results
of Table 1 show that there is overestimation due to predict-
ing more write operations than those actually happening for
the difference example. The union algorithm, however, is
estimated correctly in both examples.

The join operator has a similar behavior due to selectiv-
ity: the higher the selectivity, the closer the estimation is to
the actual running time. As Table 1 shows, with the selec-
tivity of 100%, which corresponds to a relational product,
the predictions become very accurate.

7.4 Running Time of OCAS
Table 1 presents the time required for OCAS to gener-

ate the optimized algorithms. As we can see, our tool is
practical, since its execution time is small for all examples.
We observe that the size of the search space depends on
the number of steps needed for the derivation, the complex-
ity of the input program, and the memory model used in
the experiment. As expected, the search space is growing
roughly exponentially with the number of transformation
steps and the execution time is linked to the size of the
search space. However, it is not dependent on the input size
because OCAS uses cost-based optimization, which does not
need to execute the programs in order to estimate their cost.

8. CONCLUSIONS
In this paper we describe OCAS, a code synthesizer that,

given a memory hierarchy oblivious algorithm, automati-
cally generates an efficient out-of-core version by exploiting
characteristics of the provided memory hierarchy. OCAS
applies transformation rules to a program, and exhaustively
searches the space of generated equivalent programs to lo-
cate the one with the best performance metric. This metric
is an estimation of the data transfers occurring at execu-
tion time. Our preliminary results show that OCAS adapts
the generated algorithms to changes in the memory hierar-
chy and that it produces optimized versions of algorithms
quickly. Its estimations are accurate when I/O cost domi-
nates CPU cost. Otherwise, the underestimation increases
proportionally with the CPU costs. This does not affect the
correctness of the approach, as OCAS is able to always differ-
entiate between more efficient and less efficient algorithms.
Finally, OCAS efficiently performs estimation of parameters
like buffer sizes, a task which is non-trivial for developers.

Acknowledgments
This work was supported by ERC grants 279804 and 306484.

9. REFERENCES
[1] perf: Linux profiling with performance counters.

https://perf.wiki.kernel.org/index.php/Main Page.

[2] Seeker: a utility to measure disk performance. http:
//www.linuxinsight.com/how fast is your disk.html.

[3] Xquery 1.0: An xml query language.
http://www.w3.org/TR/xquery/.

[4] E. Albert, P. Arenas, S. Genaim, and G. Puebla.
Closed-form upper bounds in static cost analysis. J.
Automated Reasoning, 46(2):161–203, 2011.

[5] P. Andreou, O. Spanos, D. Zeinalipour-Yazti,
G. Samaras, and P. K. Chrysanthis. FSort: External
sorting on flash-based sensor devices. In Data
Management for Sensor Networks, 2009.

[6] L. Augusteijn. Sorting morphisms. In 3rd Int’l
Summer School on Advanced Functional Programming,
volume 1608 of LNCS, 1998.

[7] R. S. Bird. Algebraic identities for program
calculation. The Computer Journal, 32(2):122–126,
April 1989.

[8] V. Breazu-Tannen, P. Buneman, and L. Wong.
Naturally embedded query languages. In Proceedings
of 4th International Conference on Database Theory
(ICDT), pages 140–154. Springer-Verlag, 1992.

[9] D. Cederman and P. Tsigas. A practical quicksort
algorithm for graphics processors. In Proc. 16th
European Symp. Algorithms, 2008.

[10] W. Chin and S. Khoo. Calculating sized types.
Journal of Higher-Order and Symbolic Computation,
14(2-3), September 2001.

[11] N. A. Danielsson. Lightweight semiformal time
complexity analysis for purely functional data
structures. In Proc. POPL, January 2008.

[12] J. Gibbons. Origami programming. In J. Gibbons and
O. de Moor, editors, The Fun of Programming, page
chapter 3. Palgrave, 2003.

[13] N. K. Govindaraju, R. Kumar, and D. Manochas.
GPUTeraSort: High performance graphics coprocessor
sorting for large database management. In Proc.
SIGMOD, 2006.

[14] M. Hoffmann and S. Jost. Static prediction of heap
space usage for first-order functional programs. In
Proc. POPL, 2003.

[15] S. Jost, K. Hammond, H. Loidl, and M. Hoffmann.
Static determination of quantitative resource usage for
higher-order programs. In Proc. POPL, 2010.

[16] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt, and
P. Dubey. Fast: fast architecture sensitive tree search
on modern CPUs and GPUs. In Proc. SIGMOD, 2010.

[17] S. Krishnan, S. Krishnamoorthy, G. Baumgartner,
C.-C. Lam, and J. Ramanujam. Efficient synthesis of
out-of-core algorithms using a nonlinear optimization
solver. In IPDPS, page 34, 2004.

[18] Y. Liu, Z. He, Y. P. Chen, and T. Nguyen. External
sorting on flash memory via natural page run
generation. The Computer Journal, 2011.

[19] G. Liuzzi, S. Lucidi, and M. Sciandrone. Sequential
penalty derivative-free methods for nonlinear
constrained optimization. SIAM Journal on
Optimization, 20(5):2614–2635, 2010.

[20] E. Meijer, M. Fokkinga, and R. Patterson.
Programming with bananas, lenses, envelopes and
barbed wire. In FPCA, 1991.

[21] H. Park and K. Shim. Fast: Flash-aware external
sorting for mobile database systems. J. Systems and
Software, 82(8):1298–1312, 2009.

[22] M. Püschel, F. Franchetti, and Y. Voronenko.
Encyclopedia of Parallel Computing, chapter Spiral.
Springer, 2011.

[23] R. Ramakrishnan and J. Gehrke. Database
Management Systems, 3rd ed. McGraw-Hill, 2002.

[24] M. Ren, M. Houston, J.-Y. Park, W. Dally, and
A. Aiken. A tuning framework for software-managed
memory hierarchies. In Proc. PACT, October 2008.

[25] E. Sintorn and U. Assarsson. Fast parallel gpu-sorting
using a hybrid algorithm. J. Parallel and Distributed
Computing, 68(10):1381–1388, October 2008.

[26] V. Tannen and R. Subrahmanyam. Logical and
computational aspects of programming with
sets/bags/lists. In Proc. ICALP, pages 60–75, 1991.

[27] X. Ye, D. Fan, W. Lin, N. Yuan, and P. Ienne. High
performance comparison-based sorting algorithm on
many-core GPUs. In Proc. IPDPS, 2010.

