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Abstract. One of the main challenges in software verification is efficient and pre-
cise compositional analysis of programs with procedures and loops. Interpolation
methods remains one of the most promising techniques for such verification, and
are closely related to solving Horn clause constraints. We introduce a new no-
tion of interpolation, disjunctive interpolation, which solves a more general class
of problems in one step compared to previous notions of interpolants, such as
tree interpolants or inductive sequences of interpolants. We present algorithms
and complexity for construction of disjunctive interpolants, as well as their use
within an abstraction-refinement loop. We have implemented Horn clause verifi-
cation algorithms that use disjunctive interpolants and evaluate them on bench-
marks expressed as Horn clauses over the theory of integer linear arithmetic.

1 Introduction

Software model checking has greatly benefited from the combination of a number of
seminal ideas: automated abstraction through theorem proving [8], exploration of finite-
state abstractions, and counterexample-driven refinement [3]. Even though these tech-
niques can be viewed independently, the effectiveness of verification has been consis-
tently improving by providing more sophisticated communication between these steps.
Often, carefully chosen search aspects are being pushed into a learning-enabled con-
straint solver, resulting in better overall verification performance. An essential advance
was to use interpolants derived from unsatisfiability proofs to refine the abstraction [13].
In recent years, we have seen significant progress in interpolating methods for dif-
ferent logical constraints [4, 5, 21], and a wealth of more general forms of interpola-
tion [1, 12, 21, 24]. In this paper we identify a new notion, disjunctive interpolants,
which are more general than tree interpolants and inductive sequences of interpolants.
Like tree interpolation [12, 21], a disjunctive interpolation query is a tree-shaped con-
straint specifying the interpolants to be derived; however, in disjunctive interpolation,
branching in the tree can represent both conjunctions and disjunctions. We present an
algorithm for solving the interpolation problem, relating it to a subclass of recursion-
free Horn clauses [10, 22, 23]. We then consider solving general recursion-free Horn
clauses and show that this problem is solvable whenever the logic admits interpola-
tion. We establish tight complexity bounds for solving recursion-free Horn clauses for
propositional logic (PSPACE) and for integer linear arithmetic (co-NEXPTIME). In
contrast, the disjunctive interpolation problem remains in coNP for these logics. We
also show how to use solvers for recursion-free Horn clauses to verify recursive Horn
clauses using counterexample-driven predicate abstraction. We present an algorithm
and experimental results on publicly available benchmarks.
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1.1 Related Work

There is a long line of research on Craig interpolation methods, and generalised forms
of interpolation tailored to verification. For an overview of interpolation in the pres-
ence of theories, we refer the reader to [4, 5]. Binary Craig interpolation for implica-
tions A→ C goes back to [6], was used on conjunctions A ∧ B in [19], and generalised
to inductive sequences of interpolants in [13, 20]. The concept of tree interpolation,
strictly generalising inductive sequences of interpolants, is presented in the documen-
tation of the interpolation engine iZ3 and in [21]; the computation of tree interpolants
by computing a sequence of binary interpolants is also described in [12]. In this pa-
per, we present a new form of interpolation, disjunctive interpolation, which is strictly
more general than sequences of interpolants and tree interpolants. Our implementation
supports Presburger arithmetic, including divisibility constraints [4], which is rarely
supported by existing tools, yet helpful in practice [15].

A further generalisation of inductive sequences of interpolants are restricted DAG
interpolants [1], which also include disjunctiveness in the sense that multiple paths
through a program can be handled simultaneously. Disjunctive interpolants are incom-
parable in power to restricted DAG interpolants, since the former does not handle in-
terpolation problems in the form of DAGs, while the latter does not subsume tree inter-
polation. A combination of the two kinds of interpolants (“disjunctive DAG interpola-
tion”) is strictly more powerful (and harder) than disjunctive interpolation, see Sect. 5.1
for a complexity-theoretic analysis. We discuss techniques and heuristics to practically
handle shared sub-trees in disjunctive interpolation, extending the benefits of DAG in-
terpolation to recursive programs.

Inter-procedural software model checking with interpolants has been an active area
of research. In the context of predicate abstraction, it has been discussed how well-
scoped invariants can be inferred [13] in the presence of function calls. Based on the
concept of Horn clauses, a predicate abstraction-based algorithm for bottom-up con-
struction of function summaries was presented in [9]. Encoding into Horn clauses is also
used in logic programming community [23]. Verification of programs with procedures
is described in [12] (using nested word automata) as well as in [2]. Function summaries
generated using interpolants have also been used in bounded model checking [26]. Re-
searchers also showed how to lift these techniques to higher-order programs [17, 28].

The use of Horn clauses as intermediate representation for verification was pro-
posed in [10], with the verification of concurrent programs as main application. The
underlying procedure for solving sets of recursion-free Horn clauses, over the combined
theory of linear rational arithmetic and uninterpreted functions, was presented in [11].
An algorithm to solve recursion-free systems of Horn constraints by repeated computa-
tion of binary interpolants was given in [27], for the purpose of type inference. A range
of further applications of Horn clauses, including inter-procedural model checking, was
given in [9]. Horn clauses are also used as a format for verification problems supported
by the SMT solver Z3 [14]. Our paper extends this direction by presenting general
results about solvability and computational complexity, independent of any particular
calculus. Our experiments are with linear integer arithmetic, arguably a more faithful
model of discrete computation than rationals [15].
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(1) gcd(M,N,R)← M = N ∧ R = M
(2) gcd(M,N,R)← M > N ∧ M1 = M − N ∧ gcd(M1,N,R)
(3) gcd(M,N,R)← M < N ∧ N1 = N − M ∧ gcd(M,N1,R)
(4) false ← M ≥ 0 ∧ M = N ∧ gcd(M,N,R) ∧ R > M

Fig. 1. Horn clauses computing the greatest common divisor of two numbers and an assertion on
result. Variables are universally quantified in each clause.

(1) gcd(M,N,R)← M = N ∧ R = M
(1’) gcd1(M,N,R)← M = N ∧ R = M
(2’) gcd(M,N,R)← M > N ∧ M1 = M − N ∧ gcd1(M1,N,R)
(3’) gcd(M,N,R)← M < N ∧ N1 = N − M ∧ gcd1(M,N1,R)
(4) false ← M ≥ 0 ∧ M = N ∧ gcd(M,N,R) ∧ R > M

Fig. 2. Extended recursion-free approximation of the Horn clauses in Fig. 1.

2 Example: Verification of Recursive Predicates

We start by showing how our approach can verify programs encoded as Horn clauses,
by means of predicate abstraction and a theorem prover for Presburger arithmetic. Fig. 1
shows an example of a system of Horn clauses that compute the greatest common di-
visor of its first and its second argument in its third argument. After invoking the gcd
operation on the equal positive numbers M and N, we wish to check whether it is pos-
sible for the result R to be more than the M. In general, we encode error conditions
as Horn clauses with false in their head, and refer to such clauses as error clauses, al-
though such clauses do not have a special semantic status in our system. When executed
with these clauses as input, our verification tool automatically identifies that the defi-
nition of gcd(M,N,R) as the predicate (M = N) → (M ≥ R) gives a solution to these
Horn clauses. In terms of safety (partial correctness), this means that the error condition
cannot be reached.

Our approach uses counterexample-driven refinement to perform verification. In
this example, the abstraction of Horn clauses starts with a trivial set of predicates, con-
taining only the predicate false, which is assumed to be a valid approximation until
proven otherwise. Upon examining a clause that has a concrete satisfiable formula on
the right-hand side (e.g. M = N ∧ R = M), we rule out false as the approximation of
gcd. In the absence of other candidate predicates, the approximation of gcd becomes
the conjunction of an empty set of predicates, which is true. Using this approximation
the error clause is no longer satisfied. At this point the algorithm checks whether a true
error is reached by directly chaining the clauses involved in computing the approxi-
mation of predicates. This amounts to checking whether the following recursion-free
subset of clauses has a solution:

(1) gcd(M,N,R)← M = N ∧ R = M
(4) false ← M ≥ 0 ∧ M = N ∧ gcd(M,N,R) ∧ R > M

The solution to above problem is any formula I(M,N,R) such that
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I (M,N,R)← M = N ∧ R = M
false ← M ≥ 0 ∧ M = N ∧ I(M,N,R) ∧ R > M

This is precisely an interpolant of M = N ∧ R = M and M ≥ 0 ∧ M = N ∧ R > M.
A valid interpolant is P1(M,N,R) ≡ M ≥ R. Choosing this interpolant eliminates the
current contradiction for Horn clauses and P1 is added into a list of abstraction predi-
cates for the relation gcd. Because the predicates approximating gcd are now updated,
we consider the abstraction of the system in terms of these predicates.

The predicate P1 is not a conjunct in a valid approximation for gcd in clause (2), so
the following recursion-free unfolding is not solved by the approximation so far:

(1) gcd(M,N,R)← M = N ∧ R = M
(2’) gcd1(M,N,R)← M > N ∧ M1 = M − N ∧ gcd(M1,N,R)
(4’) false ← M ≥ 0 ∧ M = N ∧ gcd1(M,N,R) ∧ R > M

This particular problem could be reduced to solving an interpolation sequence, but
it is more natural to think of it simply as a solution for recursion-free Horn clauses. A
solution is an interpretation of the relations gcd and gcd1 as ternary relations on inte-
gers, such that the clauses are true. Note that this problem could also be viewed as the
computation of tree interpolants, which are also a special case of solving recursion-free
Horn clauses, as are DAG interpolants and a new notion of disjunctive tree interpolants
that we introduce. In line with [9–11] we observe that recursion-free clauses are a per-
fect fit for counterexample-driven verification: they allow us to provide the theorem
proving procedure with much more information that they can use to refine abstractions.
In the limit, the original set of clauses or its recursive unfoldings are its own approxi-
mations, some of them exact, but the advantage of recursion-free Horn clauses is that
their solvability is decidable under very general conditions. This provides us with a
solid theorem proving building block to construct robust and predictable solvers for the
undecidable recursive case. Our paper describes a new such building block: disjunctive
interpolants, which correspond to a subclass of non-recursive Horn clauses.

To illustrate disjunctive interpolants, Fig. 2 provides another recursion-free approx-
imations of the problem. In this approximation we can distinguish 3 different paths
from the error clause (4) through the clauses (1’), (2’) and (3’) to ground formulae.
The traditional refinement approach using e.g. tree interpolation typically removes the
3 instances of the spurious counter-examples using 3 interpolation calls. A novelty of
disjunctive interpolation is removing the different choices of counter-examples alto-
gether using a single call to the interpolating theorem prover. Eliminating more counter-
examples at once can reduce the number of iterations and increase convergence.

3 Formulae and Horn Clauses

Constraint languages. Throughout this paper, we assume that a first-order vocabulary
of interpreted symbols has been fixed, consisting of a set F of fixed-arity function
symbols, and a set P of fixed-arity predicate symbols. Interpretation of F and P is
determined by a class S of structures (U, I) consisting of non-empty universe U, and
a mapping I that assigns to each function in F a set-theoretic function over U, and
to each predicate in P a set-theoretic relation over U. As a convention, we assume
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the presence of an equation symbol “=” in P, with the usual interpretation. Given a
countably infinite set X of variables, a constraint language is a set Constr of first-
order formulae over F ,P,X For example, the language of quantifier-free Presburger
arithmetic has F = {+,−, 0, 1, 2, . . .} and P = {=,≤, |}).

A constraint is called satisfiable if it holds for some structure in S and some as-
signment of the variables X, otherwise unsatisfiable. We say that a set Γ ⊆ Constr of
constraints entails a constraint φ ∈ Constr if every structure and variable assignment
that satisfies all constraints in Γ also satisfies φ; this is denoted by Γ |= φ.

fv(φ) denotes the set of free variables in constraint φ. We write φ[x1, . . . , xn] to state
that a constraint contains (only) the free variables x1, . . . , xn, and φ[t1, . . . , tn] for the
result of substituting the terms t1, . . . , tn for x1, . . . , xn. Given a constraint φ containing
the free variables x1, . . . , xn, we write Cl∀(φ) for the universal closure ∀x1, . . . , xn.φ.

Positions. We denote the set of positions in a constraint φ by positions(φ). For instance,
the constraint a∧¬a has 4 positions, corresponding to the sub-formulae a∧¬a,¬a, and
the two occurrences of a. The sub-formula of a formula φ underneath a position p is
denoted by φ↓ p, and we write φ[p/ψ] for the result of replacing the sub-formula φ↓ p
with ψ. Further, we write p ≤ q if position p is above q (that is, q denotes a position
within the sub-formula φ↓ p), and p < q if p is strictly above q.

Craig interpolation is the main technique used to construct and refine abstractions in
software model checking. A binary interpolation problem is a conjunction A ∧ B of
constraints. A Craig interpolant is a constraint I such that A |= I and B |= ¬I, and
such that fv(I) ⊆ fv(A) ∩ fv(B). The existence of an interpolant implies that A ∧ B is
unsatisfiable. We say that a constraint language has the interpolation property if also
the opposite holds: whenever A ∧ B is unsatisfiable, there is an interpolant I.

3.1 Horn Clauses

To define the concept of Horn clauses, we fix a setR of uninterpreted fixed-arity relation
symbols, disjoint from P and F . A Horn clause is a formula C ∧ B1 ∧ · · · ∧ Bn → H
where

– C is a constraint over F ,P,X;
– each Bi is an application p(t1, . . . , tk) of a relation symbol p ∈ R to first-order terms

over F ,X;
– H is similarly either an application p(t1, . . . , tk) of p ∈ R to first-order terms, or is

the constraint false.

H is called the head of the clause, C∧B1∧· · ·∧Bn the body. In case C = true, we usually
leave out C and just write B1 ∧ · · · ∧ Bn → H. First-order variables (from X) in a clause
are considered implicitly universally quantified; relation symbols represent set-theoretic
relations over the universe U of a structure (U, I) ∈ S. Notions like (un)satisfiability and
entailment generalise straightforwardly to formulae with relation symbols.

A relation symbol assignment is a mapping sol : R → Constr that maps each n-ary
relation symbol p ∈ R to a constraint sol(p) = Cp[x1, . . . , xn] with n free variables. The
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instantiation sol(h) of a Horn clause h is defined by:

sol
(
C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)→ p(t̄)

)
= C ∧ sol(p1)[t̄1] ∧ · · · ∧ sol(pn)[t̄n]→ sol(p)[t̄]

sol
(
C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)→ false

)
= C ∧ sol(p1)[t̄1] ∧ · · · ∧ sol(pn)[t̄n]→ false

Definition 1 (Solvability). LetHC be a set of Horn clauses over relation symbols R.

1. HC is called semantically solvable if for every structure (U, I) ∈ S there is an
interpretation of the relation symbols R as set-theoretic relations over U such that
the universally quantified closure Cl∀(h) of every clause h ∈ HC holds in (U, I).

2. HC is called syntactically solvable if there is a relation symbol assignment sol
such that for every structure (U, I) ∈ S and every clause h ∈ HC it is the case that
Cl∀(sol(h)) is satisfied.

Note that, in the special case when S contains only one structure, S = {(U, I)},
semantic solvability reduces to the existence of relations interpreting R that extend the
structure (U, I) in such a way to make all clauses true. In other words, Horn clauses
are solvable in a structure if and only if the extension of the theory of (U, I) by relation
symbols R in the vocabulary and by given Horn clauses as axioms is consistent.

Clearly, if a set of Horn clauses is syntactically solvable, then it is also semanti-
cally solvable. The converse is not true in general, because the solution need not be
expressible in the constraint language (see Appendix E of [25] for an example).

A set HC of Horn clauses induces a dependence relation →HC on R, defining
p →HC q if there is a Horn clause in HC that contains p in its head, and q in the
body. The set HC is called recursion-free if →HC is acyclic, and recursive otherwise.
In the next sections we study the solvability problem for recursion-free Horn clauses;
in particular, Theorem 2 below characterises the relationship between syntactic and se-
mantic solvability for recursion-free Horn clauses. This case is relevant, since solvers
for recursion-free Horn clauses form a main component of many general Horn-clause-
based verification systems [9, 10].

4 Disjunctive Interpolants and Body-Disjoint Horn Clauses

Having defined the classical notions of interpolation and Horn clauses, we now present
our notion of disjunctive interpolants, and the corresponding class of Horn clauses. Our
inspiration are generalized forms of Craig interpolation, such as inductive sequences of
interpolants [13,20] or tree interpolants [12,21]. We introduce disjunctive interpolation
as a new form of interpolation that is tailored to the refinement of abstractions in Horn
clause verification, strictly generalising both inductive sequences of interpolants and
tree interpolation. Disjunctive interpolation problems can specify both conjunctive and
disjunctive relationships between interpolants, and are thus applicable for simultaneous
analysis of multiple paths in a program, but also tailored to inter-procedural analysis or
verification of concurrent programs [9].

Disjunctive interpolation problems correspond to a specific fragment of recursion-
free Horn clauses, namely recursion-free body-disjoint Horn clauses (see Sect. 4.1). The
definition of disjunctive interpolation is chosen deliberately to be as general as possible,
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while still avoiding the high computational complexity of solving general systems of
recursion-free Horn clauses. Computational complexity is discussed in Sect. 5.1.

We introduce disjunctive interpolants as a form of sub-formula abstraction. For ex-
ample, given an unsatisfiable constraint φ[α] containing α as a sub-formula in a positive
position, the goal is to find an abstraction α′ such that α |= α′ and α[α′] |= false, and
such that α′ only contains variables common to α and φ[true]. Generalizing this to any
number of subformulas, we obtain the following.

Definition 2 (Disjunctive interpolant). Let φ be a constraint, and pos ⊆ positions(φ)
a set of positions in φ that are only underneath the connectives ∧ and ∨. A disjunctive
interpolant is a map I : pos→ Constr from positions to constraints such that:

1. For each position p ∈ pos, with direct children
{q1, . . . , qn} = {q ∈ pos | p < q and ¬∃r ∈ pos. p < r < q} we have(

φ[q1/I(q1), . . . , qn/I(qn)]
)
↓ p |= I(p) ,

2. For the topmost positions {q1, . . . , qn} = {q ∈ pos | ¬∃r ∈ pos. r < q} we have

φ[q1/I(q1), . . . , qn/I(qn)] |= false ,

3. For each position p ∈ pos, we have fv(I(p)) ⊆ fv(φ↓ p) ∩ fv(φ[p/true]).

Example 1. Consider Ap ∧ B, with position p pointing to the sub-formula A, and pos =

{p}. The disjunctive interpolants for A ∧ B and pos coincide with the ordinary binary
interpolants for A ∧ B.

Example 2. Consider the formula φ =
(
· · ·

(((
T1

)
p1
∧ T2

)
p2
∧ T3

)
p3
∧ · · ·

)
pn−1
∧ Tn and

positions pos = {p1, . . . , pn−1}. Disjunctive interpolants for φ and pos correspond to
inductive sequences of interpolants [13, 20]. Note that we have the entailments
T1 |= I(p1), I(p1) ∧ T2 |= I(p2), . . . , I(pn−1) ∧ Tn |= false.

Example 3. Tree interpolation problems correspond to disjunctive interpolation with a
set pos of positions that are only underneath ∧ (and never underneath ∨). We give a
precise definition and results about the existence of tree interpolants in [24].

Example 4. We consider the example given in Fig. 2, Sect. 2. To compute a solution for
the Horn clauses, we first expand the Horn clauses into a constraint, by means of ex-
haustive inlining/resolution (see Sect. 5), obtaining a disjunctive interpolation problem:

false { M ≥ 0 ∧ M = N ∧ gcd(M,N,R) ∧ R > M

{

 M ≥ 0
∧ M = N
∧ R > M

 ∧


M = N ∧ R = M
∨

M > N ∧ M1 = M − N ∧ gcd1(M1,N,R)
∨

M < N ∧ N1 = N − M ∧ gcd1(M,N1,R)



{

 M ≥ 0
∧ M = N
∧ R > M

 ∧


M = N ∧ R = M
∨

M > N ∧ M1 = M − N ∧ (M1 = N ∧ R = M1)q

∨

M < N ∧ N1 = N − M ∧ (M = N1 ∧ R = M)r


p
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In the last formula, the positions p, q, r corresponding to the relation symbol gcd and
the two occurrences of gcd1 are marked. It can be observed that the last formula is
unsatisfiable, and that I = {p 7→ ((M = N) → (M ≥ R)), q 7→ true, r 7→ true}
is a disjunctive interpolant. A solution for the Horn clauses can be derived from the
interpolant by conjoining the constraints derived for the two occurrences of gcd1:

gcd(M,N,R) = ((M = N)→ (M ≥ R)), gcd1(M,N,R) = true

Theorem 1. Suppose φ is a constraint, and suppose pos ⊆ positions(φ) is a set of
positions in φ that are only underneath the connectives∧ and∨. If Constr is a constraint
language that has the interpolation property, then a disjunctive interpolant I exists for
φ and pos if and only if φ is unsatisfiable.

Proof. “⇒” By means of simple induction, we can derive that φ ↓ p |= I(p) holds for
every disjunctive interpolant I for φ and pos, and for every p ∈ pos. From Def. 2, it then
follows that φ is unsatisfiable.

“⇐” Suppose φ is unsatisfiable. We encode the disjunctive interpolation problem
into a (conjunctive) tree interpolation problem (following the terminology in [24]) by
adding auxiliary Boolean variables.3 Wlog, we assume that pos contains the root po-
sition root of φ. The graph of the tree interpolation problem is (pos, E), with the edge
relation E = {(p, q) | p < q and ¬∃r.p < r < q}. For every p ∈ pos, let ap be a fresh
Boolean variable. We label the nodes of the tree using the function φL : pos→ Constr.
For each position p ∈ pos, with direct children {q1, . . . , qn} = {q ∈ pos | E(p, q)} we
define

φL(p) =

φ[q1/aq1 , . . . , qn/aqn ] if p = root
¬ap ∨

(
φ[q1/aq1 , . . . , qn/aqn ]

)
↓ p otherwise

Observe that
∧

p∈pos φL(p) is unsatisfiable. According to [24], a tree interpolant IT exists
for this labelling function. By construction, for non-root positions p ∈ pos \ {root} the
interpolant labelling is equivalent to IT (p) ≡ ¬ap ∨ Ip, where Ip does not contain any
further auxiliary Boolean variables. We can then construct a disjunctive interpolant I
for the original problem as

I(p) =

false if p = root
Ip otherwise

To see that I is a disjunctive interpolant, observe that for each position p ∈ pos with
direct children {q1, . . . , qn} = {q ∈ pos | E(p, q)} the following entailment holds (since
IT is a tree interpolant): φL(p) ∧ (¬aq1 ∨ Iq1 ) ∧ · · · ∧ (¬aqn ∨ Iqn ) |= IT (p)
Via Boolean reasoning this implies:

(
φ[q1/Iq1 , . . . , qn/Iqn ]

)
↓ p |= I(p). ut

The proof provides a constructive method to solve disjunctive interpolation prob-
lems, by means of transformation to a tree interpolation problem. This is also the algo-
rithm that we used in our experiments in Sect. 6.2; practical aspects of this approach
are discussed in the beginning of Sect. 6.

3 The concept of auxiliary Boolean variables to represent interpolation problems has also been
used in [26] and [2], for the purpose of extracting function summaries in model checking.
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4.1 Solvability of Body-Disjoint Horn Clauses

The relationship between Craig interpolation and (syntactic) solutions of Horn clauses
has been observed in [11]. Disjunctive interpolation corresponds to a specific class of
recursion-free Horn clauses, namely Horn clauses that are body disjoint:

Definition 3. A finite, recursion-free setHC of Horn clauses is body disjoint if for each
relation symbol p there is at most one clause containing p in its body, and every clause
contains p at most once.

An example for body-disjoint clauses is the subset {(1), (4)} of clauses in Fig. 1. Syn-
tactic solutions of a setHC of body-disjoint Horn clauses can be computed by solving
a disjunctive interpolation problem; vice versa, every disjunctive interpolation problem
can be translated into an equivalent set of body-disjoint clauses.

In order to extract an interpolation problem fromHC, we first normalise the clauses:
for every relation symbol p ∈ R, we fix a unique vector of variables x̄p, and rewriteHC
such that p only occurs in the form p(x̄p). This is possible due to the fact that HC is
body disjoint. The translation from Horn clauses to a disjunctive interpolation problem
is done recursively, similar in spirit to inlining of function invocations in a program;
thanks to body-disjointness, the encoding is polynomial.

enc
(
HC

)
=

∨
(C∧B1∧···∧Bn→false) ∈HC

C ∧ enc′(B1) ∧ · · · ∧ enc′(Bn)

enc′
(
p(x̄p)

)
=

 ∨
(C∧B1∧···∧Bn→p(x̄p)) ∈HC

C ∧ enc′(B1) ∧ · · · ∧ enc′(Bn)


lp

Note that the resulting formula enc(HC) contains a unique position lp at which the def-
inition of a relation symbol p is inlined; in the second equation, this position is marked
with lp. Any disjunctive interpolant I for this set of positions represents a syntactic
solution ofHC, and vice versa.

5 Solvability of Recursion-free Horn Clauses

The previous section discussed how the class of recursion-free body-disjoint Horn
clauses can be solved by reduction to disjunctive interpolation. We next show that this
construction can be generalised to arbitrary systems of recursion-free Horn clauses. In
absence of the body-disjointness condition, however, the encoding of Horn clauses as
interpolation problems can incur a potentially exponential blowup. We give a complexity-
theoretic argument justifying that this blowup cannot be avoided in general. This puts
disjunctive interpolation (and, equivalently, body-disjoint Horn clauses) at a sweet spot:
preserving the relatively low complexity of ordinary binary Craig interpolation, while
carrying much of the flexibility of the Horn clause framework.

We first introduce the exhaustive expansion exp(HC) of a setHC of Horn clauses,
which generalises the Horn clause encoding from the previous section. We write C′ ∧
B′1 ∧ · · · ∧ B′n → H′ for a fresh variant of a Horn clause C ∧ B1 ∧ · · · ∧ Bn → H,



10 Rümmer, Hojjat, Kuncak

i.e., the clause obtained by replacing all free first-order variables with fresh variables.
Expansion is then defined by the following recursive functions:

exp
(
HC

)
=

∨
(C∧B1∧···∧Bn→false) ∈HC

C′ ∧ exp′(B′1) ∧ · · · ∧ exp′(B′n)

exp′
(
p(t̄)

)
=

∨
(C∧B1∧···∧Bn→p(s̄)) ∈HC

C′ ∧ exp′(B′1) ∧ · · · ∧ exp′(B′n) ∧ t̄ = s̄′

Note that exp is only well-defined for finite and recursion-free sets of Horn clauses,
since the expansion might not terminate otherwise.

Theorem 2 (Solvability of recursion-free Horn clauses). LetHC be a finite, recursion-
free set of Horn clauses. If the underlying constraint language has the interpolation
property, then the following statements are equivalent:

1. HC is semantically solvable;
2. HC is syntactically solvable;
3. exp(HC) is unsatisfiable.

Proof. 2 ⇒ 1 holds because a syntactic solution gives rise to a semantic solution by
interpreting the solution constraints. ¬3 ⇒ ¬1 holds because a model of exp(HC) wit-
nesses domain elements that every semantic solution of HC has to contain, but which
violate at least one clause of the form C ∧ B1 ∧ · · · ∧ Bn → false, implying that no
semantic solution can exist. 3 ⇒ 2 is shown by encoding HC into a disjunctive inter-
polation problem (Sect. 4), which can solved with the help of Theorem 1. To this end,
clauses are first duplicated to obtain a problem that is body disjoint, and subsequently
normalised as described in Sect. 4.1. More details are given in Appendix A of [25]. ut

5.1 The Complexity of Recursion-free Horn Clauses

Theorem 2 gives rise to a general algorithm for (syntactically) solving recursion-free
setsHC of Horn clauses, over constraint languages for which interpolation procedures
are available. The general algorithm requires, however, to generate and solve the ex-
pansion exp(HC) of the Horn clauses, which can be exponentially bigger than HC (in
caseHC is not body disjoint), and might therefore require exponential time. This leads
to the question whether more efficient algorithms are possible for solving Horn clauses.

We give a number of complexity results about (semantic) Horn clause solvability;
proofs of the results are given in the Appendix of [25]. Most importantly, we can ob-
serve that solvability is PSPACE-hard, for every non-trivial constraint language Constr.
The authors of [18] conjecture a similar complexity result for the case of programs with
procedures.

Lemma 1. Suppose a constraint language can distinguish at least two values, i.e., there
are two ground terms t0 and t1 such that t0 , t1 is satisfiable. Then the semantic solv-
ability problem for recursion-free Horn clauses is PSPACE-hard.
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Looking for upper bounds, it is easy to see that solvability of Horn clauses is in
co-NEXPTIME for any constraint language with satisfiability problem in NP (for in-
stance, quantifier-free Presburger arithmetic). This is because the size of the expan-
sion exp(HC) is at most exponential in the size ofHC. Individual constraint languages
admit more efficient solvability checks:

Theorem 3. Semantic solvability of recursion-free Horn clauses over the constraint
language of Booleans is PSPACE-complete.

Constraint languages that are more expressive than the Booleans lead to a significant
increase in the complexity of solving Horn clauses. The lower bound in the following
theorem can be shown by simulating time-bounded non-deterministic Turing machines.

Theorem 4. Semantic solvability of recursion-free Horn clauses over the constraint
language of quantifier-free Presburger arithmetic is co-NEXPTIME-complete.

The lower bounds in Lemma 1 and Theorem 4 hinge on the fact that sets of Horn
clauses can contain shared relation symbols in bodies. Neither result holds if we restrict
attention to body-disjoint Horn clauses, which correspond to disjunctive interpolation
as introduced in Sect. 4. Since the expansion exp(HC) of body-disjoint Horn clauses is
linear in the size of the set of Horn clauses, also solvability can be checked efficiently:

Theorem 5. Semantic solvability of a set of body-disjoint Horn clauses, and equiv-
alently the existence of a solution for a disjunctive interpolation problem, is in co-NP
when working over the constraint languages of Booleans and quantifier-free Presburger
arithmetic.

Body-disjoint Horn clauses are still expressive: they can directly encode acyclic control-
flow graphs, as well as acyclic unfolding of many simple recursion patterns.

For proofs of all results of this section, please consult [25].

6 Model Checking with Recursive Horn Clauses

Whereas recursion-free Horn clauses generalise the concept of Craig interpolation,
solving recursive Horn clauses corresponds to the verification of general programs with
loops, recursion, or concurrency features [9]. Procedures to solve recursion-free Horn
clauses can serve as a building block within model checking algorithms for recursive
Horn clauses [9], and are used to construct or refine abstractions by analysing spuri-
ous counterexamples. In particular, our disjunctive interpolation can be used for this
purpose, and offers a high degree of flexibility due to the possibility to analyse coun-
terexamples combining multiple execution traces. We illustrate the use of disjunctive
interpolation within a predicate abstraction-based algorithm for solving Horn clauses.
Our model checking algorithm is similar in spirit to the procedure in [9], and is ex-
plained in Sect. 6.1.
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And/or trees of clauses. For sake of presentation, in our algorithm we represent coun-
terexamples (i.e., recursion-free sets of Horn clauses) in the form of and/or trees labelled
with clauses. Such trees are defined by the following grammar:

AOTree ::= And(h,AOTree, . . . ,AOTree) | Or(AOTree, . . . ,AOTree)

where h ranges over (possibly recursive) Horn clauses. We only consider well-formed
trees, in which the children of every And-node have head symbols that are consistent
with the body literals of the clause stored in the node, and the sub-trees of an Or-node
all have the same head symbol. And/or trees are turned into body-disjoint recursion-free
sets of clauses by renaming relation symbols appropriately.

Example 5. The clauses in Fig. 2 can be represented by the following and/or tree (re-
ferring to clauses in Fig. 1).

And
(
(4), Or

(
And((1)), And((2), And((1))), And((3), And((1)))

))
Solving and/or dags. Counterexamples extracted from model checking problems often
assume the form of and/or dags, rather than and/or trees. Since and/or-dags correspond
to Horn clauses that are not body-disjoint, the complexity-theoretic results of the last
section imply that it is in general impossible to avoid the expansion of and/or-dags
to and/or-trees; there are, however, various effective techniques to speed-up handling
of and/or-dags (related to the techniques in [18]). We highlight two of the techniques
we use in our interpolation engine Princess [4], which we used in our experimental
evaluation of the next section:

1) counterexample-guided expansion expands and/or-dags lazily, until an unsatisfi-
able fragment of the fully expanded tree has been found; such a fragment is sufficient to
compute a solution. Counterexamples are useful in two ways: they can determine which
or-branch of an and/or-dag is still satisfiable and has to be expanded further, but also
whether it is necessary to create further copies of a shared subtree.

2) and/or dag restructuring factors out common sub-dags underneath an Or-node,
making the and/or-dag more tree-like.

6.1 A Predicate Abstraction-based Model Checking Algorithm

Our model checking algorithm is in Fig. 3, and similar in spirit as the procedure in [9];
it has been implemented in the model checker Eldarica.4 Solutions for Horn clauses are
constructed in disjunctive normal form by building an abstract reachability graph over
a set of given predicates. When a counterexample is detected (a clause with consistent
body literals and head false), a theorem prover is used to verify that the counterexample
is genuine; spurious counterexamples are eliminated by generating additional predicates
by means of disjunctive interpolation.

In Fig. 3,Π : R → Pfin(Constr) denotes a mapping from relation symbols to the cur-
rent (finite) set of predicates used to approximate the relation symbol. Given a (possibly
recursive) set HC of Horn clauses, we define an abstract reachability graph (ARG) as
a hyper-graph (S , E), where

4 http://lara.epfl.ch/w/eldarica
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– S ⊆ {(p,Q) | p ∈ R,Q ⊆ Π(p)} is the set of nodes, each of which is a pair consisting
of a relation symbol and a set of predicates.

– E ⊆ S ∗ × HC × S is the hyper-edge relation, with each edge being labelled with
a clause. An edge E(〈s1, . . . , sn〉, h, s), with h = (C ∧ B1 ∧ · · · ∧ Bn → H) ∈ HC,
implies that
• si = (pi,Qi) and Bi = pi(t̄i) for all i = 1, . . . , n, and
• s = (p,Q), H = p(t̄), and Q = {φ ∈ Π(p) | C ∧ Q1[t̄1] ∧ · · · ∧ Qn[t̄n] |= φ[t̄]},

where we write Qi[t̄i] for the conjunction of the predicates Qi instantiated for
the argument terms ti.

An ARG (S , E) is called closed if the edge relation represents all Horn clauses in
HC. This means, for every clause h = (C ∧ p1(t̄1)∧ · · · ∧ pn(t̄n)→ H) ∈ HC and every
sequence (p1,Q1), . . . , (pn,Qn) ∈ S of nodes one of the following properties holds:

– C ∧ Q1[t̄1] ∧ · · · ∧ Qn[t̄n] |= false, or
– there is an edge E(〈(p1,Q1), . . . , (pn,Qn)〉,C, s) such that s = (p,Q), H = p(t̄), and

Q = {φ ∈ Π(p) | C ∧ Q1[t̄1] ∧ · · · ∧ Qn[t̄n] |= φ[t̄]}.

Lemma 2. A set HC of Horn clauses has a closed ARG (S , E) if and only if HC is
syntactically solvable.

A proof is given in Appendix F of [25]. The function ExtractCEX extracts an
and/or-tree representing a set of counterexamples, which can be turned into a recursion-
free body-disjoint set of Horn clauses, and solved as described in Sect. 4.1. In gen-
eral, the tree contains both conjunctions (from clauses with multiple body literals) and
disjunctions, generated when following multiple hyper-edges (the case |T | > 1). Dis-
junctions make it possible to eliminate multiple counterexamples simultaneously. The
algorithm is parametric in the precise strategy used to compute counterexamples (rep-
resented as non-deterministic choice in the pseudo code). The strategies we evaluated
in the experiments (shown in the next section) are:

TI extraction of a single counterexamples with minimal depth
(which means that disjunctive interpolation reduces to Tree Interpolation), and

DI simultaneous extraction of all counterexamples with minimal depth
(so that genuine Disjunctive Interpolation is used).

Example 6. We consider the Horn clauses given in Fig. 1,
Sect. 2. Starting with an empty predicate map Π , the function
ConstructARG will construct the reachability graph shown
on the right (edges are labelled with the clauses from Fig. 1).
Since false is reachable, function ExtractCEX will be called
to extract a counterexample; possible results of executing Ex-
tractCEX include:

(gcd, ∅)

false

(1)

(4)(2) (3)

tree1 = And
(
(4), And((1))

)
,

tree2 = And
(
(4), Or(And((1)), And((2),And((1))), And((3),And((1))))

)
The counterexample tree2 corresponds to the clauses shown in Fig. 2. Elimination of
this counterexample with the help of disjunctive interpolation yields the predicates dis-
cussed in Example 4, which are sufficient to construct a closed ARG.
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S := ∅, E := ∅, Π := {p 7→ ∅ | p ∈ R} . Empty graph, no predicates
function ConstructARG

while true do
pick clause h = (C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)→ H) ∈ HC

and nodes (p1,Q1), . . . , (pn,Qn) ∈ S
such that ¬∃s. (〈(p1,Q1), . . . , (pn,Qn)〉, h, s) ∈ E
and C ∧ Q1[t̄1] ∧ · · · ∧ Qn[t̄n] 6|= false

if no such clauses and nodes exist then returnHC is solvable

if H = false then . Refinement needed
tree := And(h,ExtractCEX(p1,Q1), . . . ,ExtractCEX(pn,Qn)
if tree is unsatisfiable then

extract disjunctive interpolant from tree, add predicates to Π
delete part of (S , E) used to construct tree

else returnHC is unsolvable, with counterexample trace tree
else . Add edge to ARG

then H = p(t̄)
Q := {φ ∈ Π(p) | {C} ∪ Q1 ∪ . . . ∪ Qn |= φ}

e := (〈(p1,Q1), . . . , (pn,Qn)〉, h, (p,Q))
S := S ∪ {(p,Q)}, E := E ∪ {e}

function ExtractCEX(root : S ) . Extract disjunctive interpolation problem
pick ∅ , T ⊆ E with ∀e ∈ T. e = ( , , root)
return Or

{
And(h,ExtractCEX(s1), . . . ,ExtractCEX(sn)) | (〈s1, . . . , sn〉, h, root) ∈ T

}
Fig. 3. Algorithm for construction of abstract reachability graphs.

We remark that we have also implemented a simpler “global” algorithm that ap-
proximates each relation symbol globally with a single conjunction of inferred predi-
cates instead of disjunction of conjunctions. The two algorithms behave similarly in our
experience, with the global one occasionally slower, but conceptually simpler. What al-
lowed us to use a simpler algorithm is precisely the more general form of the interpola-
tion. This shows another advantage of more expressive interpolation: the simplicity of
verification algorithms we can build on top of it.

6.2 Experimental Evaluation

We have evaluated our algorithm on a set of benchmarks in integer linear arithmetic
from the NTS library [16] translated into Horn clauses 5. These include recursive algo-
rithms, benchmarks extracted from programs with singly-linked lists, VHDL models of
circuits, verification conditions for programs with arrays, benchmarks from the NECLA
static analysis suite, and C programs with asynchronous procedure calls translated using
the approach of [7]. Scatter plots comparing the results for the Tree Interpolation and
Disjunctive Interpolation runs are given in Fig. 4. A table with detailed data is provided
in [25]. The experiments show comparable verification times and performance for tree
interpolation and disjunctive interpolation runs. Studying the results more closely, we

5 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/
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(b) Model checking runtime

Fig. 4. Comparison of the number of required refinement steps, and the runtime (in seconds), for
the case of single counterexamples (TI) and simultaneous extraction of all minimal-depth coun-
terexamples (DI). All experiments were done on an Intel Core i5 2-core machine with 3.2GHz
and 8Gb, with a timeout of 900s.

observed that DI consistently led to a smaller number of abstraction refinement steps
(the scatter plot in Fig. 4); this indicates that DI is indeed able to eliminate multiple
counterexamples simultaneously, and to rapidly generate predicates that are useful for
abstraction. The experiments also showed that there is a trade-off between the time
spent generating predicates, and the quality of the predicates. In TI, on average 31%
of the verification is used for predicate generation (interpolation), while with DI 42%
is used; in some of the benchmarks from [7], this led to the phenomenon that DI was
slower than TI, despite fewer refinement steps. This may change as we make further
improvements to our prototype implementation of disjunctive interpolation. We also
compared our results to the performance of HSF,6 a state-of-the-art verification engine
for Horn clauses. HSF was faster on average, but for harder examples [7] our tool was
comparable (see the technical report for detailed results).

Conclusions

We have introduced disjunctive interpolation as a new form of Craig interpolation tai-
lored to model checkers based on Horn clauses. Disjunctive interpolation can be iden-
tified as solving body-disjoint systems of recursion-free Horn clauses, and subsumes a
number of previous forms of interpolation, including tree interpolation. We believe that
the flexibility of disjunctive interpolation is highly beneficial for building interpolation-
based model checkers. We expect further performance improvements from better im-
plementation of disjunctive interpolation and better techniques to select sets of coun-
terexample paths given to interpolation.

6 http://www7.in.tum.de/tools/hsf/
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24. P. Rümmer, H. Hojjat, and V. Kuncak. Classifying and solving horn clauses for verification.

In VSTTE, 2013.
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