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Abstract
We present an overview of the Jahob system for modular
analysis of data structure properties. Jahob uses a subset of
Java as the implementation language and annotations with
formulas in a subset of Isabelle as the specification lan-
guage. It uses monadic second-order logic over trees to rea-
son about reachability in linked data structures, the Isabelle
theorem prover and Nelson-Oppen style theorem provers to
reason about high-level properties and arrays, and a new
technique to combine reasoning about constraints on unin-
terpreted function symbols with other decision procedures.
It also incorporates new decision procedures for reasoning
about sets with cardinality constraints. The system can infer
loop invariants using new symbolic shape analysis. Initial
results in the use of our system are promising; we are con-
tinuing to develop and evaluate it.

1. Introduction
Complex software systems currently play a crucial role in
the management and operation of our society. Moreover, this
role will only increase in importance as software becomes
even more pervasively deployed across the activities, infras-
tructure, and devices of our society. Given this central role,
software reliability is a critical and increasingly important
issue.

The goal of the Jahob project is to increase software relia-
bility by statically verifying that certain classes of errors can
never occur. The Jahob system analyzes annotated programs
written in a subset of Java. A basic idea behind Jahob is to
model the state that the program manipulates (its data struc-
tures) as abstract sets of objects and relations between these
objects. The program uses these sets and relations to state
key data structure consistency constraints that must hold be-
tween the data structures. Each method also uses these sets
and relations to state its specification, which consists of a
precondition and a postcondition. Given the invariants and
specifications, the Jahob verifier statically analyzes the pro-
gram to ensure that 1) it preserves important data structure
consistency properties, and 2) each method conforms to its
specification. Method specifications connect the actions of

the program to the data structures that it manipulates, en-
abling the verification of properties that relate actions and
state.

There are several challenges associated with this effort.
First, there must be a verified connection between the con-
crete data structures that the program manipulates and the
sets and relations that the Jahob analyzer operates with. To
establish this connection, Jahob program encapsulate their
data structures in modules, with each module containing
an abstraction function that maps the encapsulated concrete
data structure to the corresponding sets and relations.

A second challenge is that the Jahob analyzer is designed
to verify extremely precise, detailed properties that are sig-
nificantly beyond the reach of traditional analyses. More-
over, the range of potential properties to verify is extremely
large, making it implausible that any single analysis will be
able to verify all properties of interest. The Jahob system is
therefore structured to incorporate multiple specializedanal-
yses, each of which is tailored to analyze a targeted class
of properties. Together, these analyses are capable of veri-
fying important properties of unprecedented sophistication
and importance.

2. Example
In this section we use a simple list example to demon-
strate how the Jahob system can verify data structure con-
sistency properties. Figure 1 presents the specification for a
standardList class. The running program uses a standard
linked list data structure to implement instances of this class
(we present and discuss the implementation below). Clients,
however, should not be concerned with the details of any par-
ticular implementation. The specification of theList class
therefore serves as an interface that abstracts away the par-
ticular implementation details of the class, leaving behind
only those aspects of the class upon which clients rely.

In this case, theList specification uses the abstract spec-
ification variablecontent to hold the set of objects present
in the list. This set does not exist when the program runs —
it is simply an abstraction that the Jahob program uses to ex-
press the specification and that the Jahob verifier uses as it
verifies the program.



class List

{

/*: public static specvar content :: objset; */

public List() /*:

modifies content

ensures "content = {}"

*/

public void add(Object o) /*:

requires "o ~: content & o ~= null"

modifies content

ensures "content = old content Un {o}"

*/

public boolean empty() /*:

ensures "result = (content = {})"

*/

public Object getOne() /*:

requires "content ~= {}"

ensures "result : content"

*/

public void remove (Object o) /*:

requires "o : content"

modifies content

ensures "content = old content - {o}"

*/

}

Figure 1. List Specification

As Figure 1 shows, Jahob is structured as an annotation
language for Java. Jahob annotations appear as comments
to the standard Java compiler. It is possible to distinguish
Jahob annotations from standard comments by the fact that
Jahob annotations all start with either//: or /*: — in
other words, they have a ”:” after the initial comment token.
For example, the first comment in Figure 1 declares the
specification variablecontent (which, as mentioned above,
abstracts the contents of the list).

2.1 Method Interfaces

After the declaration of thespecvar specification variable,
theList specification contains a sequence of method inter-
face declarations. Each declaration may contain arequires

clause, which states the precondition of the method; a
modifies clause, which states the sets and relations that the
method may modify; and anensures clause, which states
the properties that the method guarantees will hold when it
returns, assuming that the precondition held when it was in-
voked. TheList constructorList(), for example, modi-
fies thecontent specification variable — specifically, it en-
sures that thecontent specification variable is empty when
it constructs theList.

Note that the program may invoke theList constructor
multiple times to construct many different lists. According to
the semantics of Jahob, each instantiation has its own spec-
ification variablecontent. It is therefore possible to write
specifications that relate different instances of thespecvar

class Client {

List a, b;

/*:

public ghost specvar init :: bool;

invariant

"init -->

a ~= null & b ~= null &

a..List.content Int b..List.content = {}";

*/

public Client() /*:

modifies "List.content"

ensures "init"

*/

{

a = new List();

b = new List();

Object x = new Object(); a.add(x);

Object y = new Object(); a.add(y);

//: init := "True";

}

public static void move() /*:

requires "init"

modifies "List.content"

ensures "a..List.content = {}"

*/

{

while (!a.empty()) {

Object o = a.getOne();

a.remove(o);

b.add(o);

}

}

}

Figure 2. List Client

variable that come from different instantiations of theList

module. One could, for example, state that one instantiation
contains a set of objects that is a subset of another, or that
two lists contain disjoint objects.

We next consider the interface for theadd(o) method,
which adds the objecto to the list. Here therequires clause
states thato must not already be in the list (o ~: content)
and thato must not benull (o~=null). As this exam-
ple illustrates, developers can use boolean combinations of
clauses in therequires andensures clauses.

The ensures clause of theadd method uses theUn
(union) operator to state that the effect of theadd method
is to add the objecto to the set of objectscontent already
in the list. The remaining methods (empty, getOne, and
remove) similarly userequires, modifies, andensures
clauses to specify their interfaces.

2.2 List Client

We next show how a client can instantiate theList class
to obtain multipleList instances, specify invariants involv-



ing these instances, manipulate the lists, and use the Jahob
system to verify that the program correctly respects the in-
variants. TheClient class in Figure 2 creates two lists (a

andb), adds some objects to these lists, then moves all of
the elements froma into b.

The key invariant in this example is that the sets of
elements in the two lists are disjoint and remain disjoint
throughout all of the manipulations of the client. There is,
however, a technical detail that somewhat complicates the
expression of this invariant. Specifically, before the client is
instantiated, the lists do not exist. It therefore does not make
sense to express the invariant directly as holding whenever
the program executes. Instead, theClient uses the boolean
init specification variable to state that the invariant holds
whenever theClient exists. The invariant in Figure 2 also
states that, once theClient has been initialized, thata and
b are not null.

2.3 List Implementation

We next discuss the implementation of theList class. There
are two key considerations: 1) implementing theList meth-
ods in Java, and 2) establishing the connection between
the List’s Java data structures and the abstract specifica-
tion variables used to specify theList interface. Figure 3
presents the state of theList.

The implementation uses the variablefirst to refer to
the firstNode in the list. EachNode object has a fieldnext
that contains a reference to the next object in the list and
a field data that contains a reference to the object in the
list. The private specification variablenodes is the set of
all Nodes that is reachable by followingnext references
starting from thefirst variable.

The Jahob specification uses an abstraction function to
define the contents of thenodes set. This abstraction func-
tion consists of a set comprehension that states thatnodes is
the set of all objectsn in the reflexive, transitive closure of
thenext relation onNode objects starting withfirst. The
specification can then use thenode set to define thecontent
set as the set of all objects which objects in thenode set ref-
erence. This definition uses the existential quantifierEX in its
set comprehension.

Note that these abstraction functions directly reference
implementation entities (first, next) to define the sets
nodes andcontents in terms of the state that the imple-
mentation uses to represent the list. The abstraction func-
tions therefore establish a formal connection between the
concrete implementation state and the abstract specification
state. This connection allows the the Jahob verifier to start
with facts that have been established by reasoning about the
abstract state and conclude facts that are valid about the con-
crete state of the program as it is running.

In our example, the Jahob verification of the disjointness
of the twoList contents sets in the client in Figure 2, in
combination with the abstraction function, enables the Jahob
verifier to conclude that the concrete lists are disjoint as well.

public List() { }

public void add(Object o) {

Node n = new Node();

n.data = o;

n.next = first;

first = n;

}

public boolean empty() {

return (first==null);

}

public Object getOne() {

return first.data;

}

public void remove (Object o) {

if (first!=null) {

if (first.data==o) {

first = first.next;

} else {

Node prev = first;

Node current = first.next;

boolean go = true;

while (go && (current!=null)) {

if (current.data==o) {

prev.next = current.next;

go = false;

}

current = current.next;

}

}

}

}

Figure 4. List Implementation Methods

Of course, this verification also depends on the verification
that the list methods correctly implement their interfaces.
For this verification to succeed, the concrete data structures
must satisfy several additional invariants. Figure 3 presents
these properties — specifically, the list must be acyclic with
no sharing of sublists, no node in the list refers to thefirst

node, and the data references are not shared.
Figure 4 presents the implementation of theList meth-

ods. These methods provide a standard list implementation.
They manipulate only the concrete data structures that make
up the list. The Jahob verifier must check that, given the defi-
nition of the abstractcontent set in Figure 3 and the method
interfaces in Figure 1 (which provide the interfaces in terms
of the abstractcontent set), that the method implementa-
tions in Figure 4 correctly implement the abstract method
interfaces in Figure 1.



class List

{

private Node first;

/*:

// representation nodes:

specvar nodes :: objset;

private vardefs "nodes == { n. n ~= null & rtrancl_pt (% x y. x..Node.next = y) first n}";

// list content:

public specvar content :: objset;

private vardefs "content == {x. EX n. x = n..Node.data & n : nodes}";

// next is acyclic and unshared:

invariant "tree [List.first, Node.next]";

// ’first’ is the beginning of the list:

invariant "first = null |

(first : Object.alloc &

(ALL n. n..Node.next ~= first &

(n ~= this --> n..List.first ~= first)))";

// no sharing of data:

invariant "ALL n1 n2. n1 : nodes & n2 : nodes & n1..Node.data = n2..Node.data --> n1=n2";

*/

}

class Node {

public /*: claimedby List */ Object data;

public /*: claimedby List */ Node next;

}

Figure 3. List Implementation State and Invariants

2.4 Verification

A key verification challenge is that there are an enormous
number of possible data structures, many of which may re-
quire specialized verification strategies. It is thereforediffi-
cult to imagine that any single verification algorithm could
successfully verify all data structure implementations. In our
example, the verification of theList implementation in-
volves detailed reasoning about the references in the imple-
mentation. Other programs may use array-based data struc-
tures such as hash tables that produce very different verifi-
cation conditions. The Jahob framework is therefore set up
as a verification condition generator that can invoke any one
of a number of decision procedures to discharge the proof
obligations provided by the verification condition generator.
By populating Jahob with a variety of decision procedures,
each of which may be specialized to the verification condi-
tions that arise in the analysis of different data structures or
clients, Jahob can effectively deploy very specialized, even
unscalable, techniques to verify the full range of data struc-
ture implementations and clients.

One issue that arises in the generation of the verification
conditions is loop invariants. The current verification condi-
tion generator is able to exploit the availability of explicitly-
provided loop invariants for complex code. It is also able

to leverage loop invariant inference engines, including spec-
ulative engines that may generate incorrect loop invariants.
Any incorrect loop invariants would be detected and rejected
during the verification condition analysis.

In our example, the verification condition generator an-
alyzes each method in turn. It appropriately augments the
requires andensures clauses with the specified invari-
ants to ensure that the methods preserve them. The verifica-
tion conditions for the data structure implementation could
be verified, for example, by a combination of field constraint
analysis [80] and the MONA decision procedure [40]. Loop
invariants could be provided explicitly or inferred by sym-
bolic shape analysis [80, 65, 79].

The verification conditions for the client could be dis-
charged by a decision procedure specialized for reasoning
about membership changes in abstract sets of objects. It is
also possible in many cases to use off-the-shelf automated
theorem provers [78] to discharge these kinds of verification
conditions.

3. Status
We have implemented the Jahob framework, populated
it with interfaces to the Isabelle interactive theorem
prover [63], the SMT-LIB interface [67] to Nelson-Oppen



style [62] theorem provers, the MONA decision proce-
dure [40], and a decision procedure for Boolean Algebra
with Presburger Arithmetic [43] based on reduction to the
Omega decision procedure [66] for Presburger arithmetic.
We are using a simple goal decomposition technique to
prove different conjuncts in the goal using different decision
procedures. In addition, we are using field constraint analy-
sis [80] to combine reasoning about uninterpreted function
symbols with reasoning using other decision procedures.

We have verified implementations and uses of global data
structures. By providing intermediate assertions we have
verified implementations of operations on association lists.
We have also annotated and partially verified high-level
properties in an implementation of a turn-based strategy
game. We have also implemented a mechanisms for reason-
ing about data structure representation in the presence of dy-
namic data structure instantiation, combining the ideas from
the Hob project [47] with approaches from systems such as
Spec# [6]. We are currently evaluating the practicality of our
approach.

4. Related Work
Key features of Jahob system are modular reasoning with
expressive procedure contracts and support for data abstrac-
tion, and automated support for reasoning about linked data
structure implementation and usage. Jahob therefore builds
on program verification research to provide a framework
for modular analysis, and builds on new analyses for data
structure implementation and data structure use to provide
a higher degree of automation than verification frameworks
based on general-purpose reasoning.

Verification systems with modular reasoning. Sys-
tems based on verification-condition generation and theo-
rem proving include the program verifier [39], the interactive
program verifier [17], the Stanford Pascal Verifier [74, 60],
the Gypsy environment [28], Larch [30], ESC/Modula-3
[16], ESC/Java [22], ESC/Java2 [12], Boogie [6], Krakatoa
[55], KeY [3], as well as more general frameworks such as
ACL2 [38, 59], and STeP [8], and PVS [64]. Traditionally,
these systems are based on verification condition genera-
tion combined with theorem provers. They typically require
loop invariants, and additionally either require either inter-
action with the theorem prover or lemmas specific for the
program being verified. Specification frameworks include Z
[81], VDM [36], B [2], RAISE [13]. Many of these frame-
works recognize the importance of data abstraction [36],
which is an important component of Jahob. Some of these
frameworks provide no automation for performing formal
proofs, and some provide support in terms of verification
condition generators and interactive theorem provers [1].Ja-
hob, on the other hand, aims at providing automated proofs
that data structures conform to their abstraction; previous
approaches have been less ambitious either in terms of au-

tomation [36] or in terms of using lighter-weight substitute
of specification variables [51].

Recently, verification systems have incorporated tech-
niques for inferring loop invariants [23, 21, 11, 50]. Like
more specialized analyses [75, 82, 19, 70, 24], such tech-
niques for loop invariant inference are effective for analyzing
simple array data structures and basic memory safety prop-
erties, but have so far been limited in the range of proper-
ties that they can prove about linked data structures. These
systems are compatible with our methodology of combining
specialized analyses based on abstract interpretation to in-
crease the automation in the context of a verification frame-
work; one of the properties that makes Jahob different is the
ability to utilize recently developed precise data structure
analyses such as shape analysis.

Shape analysis. Shape analyses are precise analyses for
linked data structures. They were originally used for com-
piler optimizations [37, 27, 26], but subsequently evolved
into more precise analyses that have been successfully used
to analyze invariants of data structures that are of interest
for verification [42, 25, 41, 49, 58, 71]. Most shape analy-
ses that synthesize loop invariants are based on precomputed
transfer functions and a fixed set of properties to be tracked;
recent approaches enable automation of such computation
using decision procedures [86, 84, 85, 65, 80] or finite dif-
ferencing [69].

Recently there has been a resurgence of decision proce-
dures and analyses for linked list data structures [4, 18, 54,
7, 68], where the emphasis is on predictability (decision pro-
cedures for well-defined classes of properties of linked lists),
efficiency (membership in NP), the ability to interoperate
with other reasoning procedures, and modularity.

Shape analyses are among the most sophisticated analy-
ses for structural properties of programs; they have also been
applied to verify properties such as sorting, by abstracting
the ordering relation [53, 58]. Analyses and decision pro-
cedures have also been constructed that combine reasoning
about reachability and reasoning about quantitative proper-
ties such as length of lists and height and balancing of trees
[32, 31, 45, 57, 9]. Size constraints can be imposed on set
abstractions of data structures, yielding logics that can rea-
son about numbers of data structure elements and support
quantifiers [43].

New logics were recently proposed for reasoning about
reachability, such as the logic of reachable shapes [83]. Ex-
isting logics, such as guarded fixpoint logic [29] and de-
scription logics with reachability [10] are attractive because
of their expressive power, but so far no decision procedures
for these logics have been implemented. Automated theorem
provers such as Vampire [78] can be used to reason about
properties of linked data structures, but axiomatizing reach-
ability in first-order logic is non-trivial in practice [61,52]
and not possible in general.



Software Model Checking. Recent trends indicate
the convergence of shape analysis with predicate abstrac-
tion [5, 33], with a spectrum of increasingly complex do-
mains ranging from propositional combinations of pred-
icates [5], through quantified propositional combinations
[23], indexed predicates [44], to symbolic shape analy-
sis [80, 65, 79]. The field remains an active area of re-
search, with different approaches demonstrating different
precision/efficiency/automation tradeoffs.

Typestate systems. Because many precise analysis ap-
proaches are difficult to scale, it is important to be able to
combine them with more scalable analyses. Jahob uses ex-
pressive procedure interfaces to achieve such a combina-
tion, which means that scalable analyses must be able to
communicate using procedure interfaces. Typestate analyses
have emerged as data-flow analyses that take into account
user-supplied interfaces [73, 14, 15]. In the Hob project
[48, 87, 46] we have demonstrated that a combination of
typestate analysis with shape analysis is feasible when in-
terfaces use abstract sets to abstract global data structures.
One of the goals of Jahob is to demonstrate that such an
approach is feasible for a more general class of procedure
interfaces that involve not only sets, but also relations.

Bug finding tools for complex properties.Given that many
verification attempts demonstrate bugs in specifications or
code, it is useful to supplement verification tools with bug
fining tools. Finite model checkers such as the Alloy Ana-
lyzer [34] can be used to find bugs in code that manipulates
linked data structures [35, 76]. Explicit state model checking
and testing approaches can also be effective for this purpose
[20, 56, 72, 77]. Although somewhat orthogonal to verifica-
tion, bug finding can be combined with verification in pro-
ductive ways, and we may consider such combinations in the
future.

5. Conclusion
Software reliability is an increasingly important concernfor
our society. The automatic verification of program proper-
ties promises to address this concern by eliminating poten-
tial sources of software errors. The Jahob project focuses
on data structure consistency properties and connections be-
tween the actions of the program and the effect that these
actions have on the state. The combination of a general veri-
fication condition generator and an architecture that supports
the integration of multiple specialized analyses is designed
to enable the verification of properties of unprecedented pre-
cision.
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