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Abstract. In this paper we study constraints for specifying properties
of data structures consisting of linked objects allocated in the heap. Mo-
tivated by heap summary graphs in role analysis and shape analysis we
introduce the notion of regular graph constraints. A regular graph con-
straint is a graph representing the heap summary; a heap satisfies a
constraint if and only if the heap can be homomorphically mapped to
the summary. Regular graph constraints form a very simple and natural
fragment of the existential monadic second-order logic over graphs.

One of the key problems in a compositional static analysis is proving that
procedure preconditions are satisfied at every call site. For role analysis,
precondition checking requires determining the validity of implication,
i.e., entailment of regular graph constraints.

The central result of this paper is the undecidability of regular graph
constraint entailment. The undecidability of the entailment problem is
surprising because of the simplicity of regular graph constraints: in par-
ticular, the satisfiability of regular graph constraints is decidable.

Our undecidability result implies that there is no complete algorithm
for statically checking procedure preconditions or postconditions, sim-
plifying static analysis results, or checking that given analysis results are
correct. While incomplete conservative algorithms for regular graph con-
straint entailment checking are possible, we argue that heap specification
languages should avoid second-order existential quantification in favor of
explicitly specifying a criterion for summarizing objects.
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1 Introduction

Typestate systems. Types capture important properties of objects in the
program, reflecting not only the format of stored information but also the set of
applicable operations and the intended use of the objects in the program. Types
therefore help avoid programming errors and increase the maintainability of the
program. In an imperative language, the properties of objects change over time.
However, in traditional type systems, the type of the object does not change over
the object’s lifetime. This property of traditional types therefore limits the set of
properties that they can express. It is therefore desirable to develop abstractions
that change as the properties of objects change. A typestate is a system where
types of objects change over time. A simple typestate system was introduced
in [34]; more recent examples include [8–11,14,21,33,36]. Similarly to [13], these
typestate systems are a step towards the highly automated static checking of
complex properties of objects.

One of the difficulties in specifying properties of objects in the presence of
linked data structures is that a property of an object x may depend on properties
of objects y that are linked to x in the heap. Some systems allow programmers
to identify properties of an object x in terms of the properties of the objects
y such that x references y. The idea that important properties of an object x
depend on the the number and properties of objects z such that z references x
was introduced in the role system [21].
Existential Semantics of Roles. To allow definitions of cyclic structures,
in [21, Section 3.3] we have adopted the following semantics: a heap satisfies
a set of properties if there exists some assignment of predicate names to heap
objects such that the given local referencing constraints are satisfied. We call con-
straints defined in this way role constraints. The existential quantification over
predicate names can be expressed in existential monadic second-order logic [12].
Role constraints explicitly specify constraints on incoming and outgoing fields of
objects as well as inverse reference and acyclicity constraints. Role constraints
encode may-reachability properties implicitly, through the reachability between
summary nodes.
The Entailment Problem. One of the key problems for a compositional static
analysis is checking that the precondition of a procedure is satisfied at every call
site. In general, checking a precondition corresponds to verifying the validity of
implication (entailment) of heap properties. In [21, Section 6.3.1] we present a
conservative algorithm for checking the entailment of role constraints. In this
paper we study the possibility of the existence of a complete sound algorithm
for role constraint entailment. We argue that no such algorithm exists: the en-
tailment problem is undecidable.
Regular Graph Constraints. What is interesting about our undecidability
result is that the source of undecidability is a particularly weak fragment of role
constraints. We call this fragment regular graph constraints. Regular graph con-
straints capture the problem of mutually recursive properties over potentially
cyclic graphs, while abstracting from the details of the particular specification
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language. The only local properties expressible in regular graph constraints are
points-to referencing relationships; unlike role constraints, regular graph con-
straints cannot express sharing, inverse reference or acyclicity properties. De-
spite this simplicity, the entailment of regular graph constraints turns out to be
undecidable. The entailment of role constraints is therefore undecidable as well,
and so is the entailment for any other constraints that can encode regular graph
constraints. We thus hope that our study of regular graph constraints provides a
useful guidance for researchers in choosing an appropriate abstraction for linked
data structures.

A regular graph constraint is given by a graph G. A heap H satisfies the
constraint iff there exists a graph homomorphism from H to G. The existential
quantification over properties of objects is modeled in regular graph constraints
as the existence of a homomorphism from H to G. Regular graph constraints
allow specifying properties of graphs in some given class of graphs C. If C is the
set of trees, regular graph constraints reduce to tree automata [6,35]; if C is the
set of grids, the constraints reduce to domino systems [17]. We therefore view
regular graph constraints as a natural generalization of constraints on trees and
grids, a generalization that is much weaker than the monadic second-order logic
(for which undecidability over non-tree-like domains is well known [7]).

In this paper we consider as the class C the set of heaps. Our notion of
heap (Definition 2) is motivated by the garbage collected heap in programming
languages such as Java or ML. Heaps contain a “root” node (which models the
roots of the heap such as global and local variables), and a “null” node (the
contents of null-valued fields). All nodes in the heap are reachable from the root
(because unreachable nodes in a garbage collected heap may be ignored), and all
edges are total functions from nodes to nodes (the functions are total because
we consider null to be a graph node as well). We present our results for the case
when the heap contains two kinds of fields, labeled “1” and “2”. A model with
two fields captures the essence of the heap entailment problem, while simplifying
our presentation. Note that the entailment problem becomes easily decidable if
each object has only one field, because all heaps become lists. On the other hand,
if the objects are allowed to have more than two fields, our undecidability result
directly applies by picking some two-element subset of the fields in the program.

Undecidability of Entailment. In Section 2.4 we show that there exists
a simple and efficient algorithm that decides if a regular graph constraint is
satisfiable. In contrast, the entailment problem for regular graph constraints
is undecidable. We sketch this undecidability result in Section 3 as the main
technical contribution of the paper (additional proof details are in [22]).

A common way of showing the undecidability of problems over graphs is to
encode Turing machine computation histories [32] as a special form of graphs
called grids. The difficulty with showing the undecidability of entailment of regu-
lar graph constraints is that regular graph constraints cannot define the subclass
of grids among the class of heaps (otherwise the satisfiability of regular graph
constraints over heaps would be undecidable, which is not the case). To show the
undecidability of the entailment of regular graph constraints, we use constraints
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on both sides of the implication to restrict the set of possible counterexam-
ple models for the implication. For this purpose we introduce a new class of
graphs called corresponder graphs (Section 3.2). Satisfiability of regular graph
constraints over corresponder graphs can encode the existence of a solution of
a Post correspondence problem instance, and is therefore undecidable. We give
a method for constructing an implication such that all counterexamples for the
validity of implication are corresponder graphs which satisfy a given regular
graph constraint. This construction shows that the validity of the implication is
undecidable. The main difficulty in the proof is a characterization of correspon-
der graphs using a finite set of allowed and disallowed homomorphic summaries
(Section 3.4), a construction vaguely resembling the characterization of planar
graphs in terms of forbidden minors [29].

Some Consequences. Regular graph constraints are closed under conjunction
and, in certain cases, closed under disjunction (Section 2.3). Due to closure under
conjunction, implication P ⇒ Q is reducible to the equivalence P ∧ Q ⇔ P of
regular graph constraints. As a result, the equivalence of two regular graph
constraints is also undecidable.

These results place limitations on the completeness of systems such as role
analysis [21]. The implication problem for graphs naturally arises in composi-
tional checking of programs whenever procedure preconditions or postconditions
are given as regular graph constraints. The complete checking of procedure pre-
conditions at call sites and procedure postconditions is therefore undecidable.
Furthermore, it is impossible to build a complete checker for role analysis results
if the only inputs to the checker are regular graph constraints expressing the set
of heaps at every program point. Similarly, there is no complete procedure for
semantically checking equivalence or subsumption of dataflow facts expressed as
regular graph constraints; every conservative fixpoint algorithm must perform
some unnecessary iterations in some cases.

Related Work. [27] shows the undecidability of alias analysis for programs
with general control-flow, strengthening the consequence of Rice’s theorem [28]
to the case where all program statements are reachable. In contrast, our result
shows that local analysis of a single statement is undecidable.

Most shape analysis algorithms are non-compositional [5, 16, 23, 30, 31] and
many of them were originally used for program optimization. In such an analysis,
the imprecision in heap property entailment can cause the analysis to perform
some extra fixpoint iterations but may lead to a result that is sufficiently pre-
cise for program optimization. We choose a compositional approach to program
analysis in [21] because it ensures the conformance of the program with respect
to the design, increases the scalability of the analysis, and allows the analysis of
incomplete programs. Our primary goal is program reliability, and the precision
requirements needed to avoid spurious warnings about procedure precondition
and postcondition violations seem more demanding than the requirements of
analyses intended for program optimization. It is these precision requirements of
the compositional analysis that motivate the study of the completeness of heap
property entailment algorithms.

4



Several recent systems support the analysis of tree-like data structures [3, 9,
15,24,33,36]. The restriction to tree-like data structures is in contrast to our no-
tion of a heap, which allows nodes with in-degree greater than one. The presence
of non-tree data structures is one of the key factors that make the implication
of regular graph constraints undecidable. [1] suggests an alternative way to gain
decidability. The logic Lr in [1] allows specifying reachability properties between
local variables. What Lr does not allow is defining a set of nodes A using some
reachability property and then stating further properties of objects in the set A.

Our experience with regular graph constraints indicates that unrestricted
existential quantification over sets of objects quickly leads to heap abstractions
whose comparison is undecidable. It is interesting to note that the existential
quantification over disjoint sets of objects also occurs in [31], whenever an instru-
mentation predicate has the “unknown” truth value 1/2. An advantage of the
approach in [31] is the existence of abstraction predicates that induce a canoni-
cal homomorphism for any given concrete heap. Case analysis and appropriate
compatibility constraints [31, Page 265] can be used to sharpen the heap prop-
erties and eliminate 1/2 values; the implication of heap properties can then be
approximated by combining sharpening with simple structural comparison of
three-valued structures.

Elements of the first-order logic with transitive closure [20, 31] or first-order
logic with inductive definitions [25], [19, Page 57] seem to be necessary for natu-
rally expressing reachability properties. Reachability properties are in turn useful
as a criterion for summarizing sets of objects, leading to potentially more intu-
itive semantics and the possibility of verifying stronger properties. We are there-
fore considering extending role definitions with regular expressions and exploring
the possibility of translating role constraints into three-valued structures [31].

2 Regular Graph Constraints

In this section we define the class of graphs considered in this paper as well as the
subclass of heaps as deterministic graphs with reachable nodes. We define the
notion of regular graph constraints and show that satisfiability of the constraints
over heaps is efficiently decidable. We also state some closure properties of regular
graph constraints.

Preliminaries If r ⊆ A×B and S ⊆ A, the relational image of set S under r is
the set r[S] = {y | ∃x ∈ S. 〈x, y〉 ∈ r}. A word is a finite sequence of symbols; if
w = a1 . . . an is a word then |w| denotes the length n of w.

2.1 Graphs

We consider only directed graphs in this paper. Our graphs contain two kinds
of edges, represented by relations s1 and s2. These relations represent fields of
objects in an object-oriented program. The constant root represents the root of
the graph. We use edges terminated at null to represent partial functions (and
abstract representations of graphs containing partial functions).

5



Definition 1. A graph is a relational structure

G = 〈V, s1, s2, null, root〉

where

– V is a finite set of nodes;
– root, null ∈ V are distinct constants, root 6= null;
– s1, s2 ⊆ V × V are two kinds of graph edges, such that for all nodes x

〈null, x〉 ∈ si iff x = null

for i ∈ 1, 2.

Let G denote the class of all graphs.

An s1-successor of a node x is any element of the set s1[{x}], similarly an s2-
successor of x is any element of s2[{x}]. Note that there are exactly two edges
originating from null. When drawing graphs we never show these two edges.

Definition 2. A heap is a graph G = 〈V, s1, s2, null, root〉 where relations s1

and s2 are total functions and where for all x 6= null, node x is reachable from
root. Let H denote the class of all heaps.

Example 3. We can define a heap representing list of length two by
V = {root, x, null}; s1 = {〈root, x〉, 〈x, null〉, 〈null, null〉};
s2 = {〈root, null〉, 〈x, null〉, 〈null, null〉}.

2.2 Graphs as Constraints

A regular constraint on a graph G is a constraint stating that G can be homo-
morphically mapped to another graph G′. The constraint satisfaction relation
→ corresponds to abstraction relation in program analyses, [26].

Definition 4. We say that a graph G satisfies the constraints given by a graph
G′, and write G → G′, iff there exists a homomorphism from G to G′.

Homomorphism between directed graphs is a special case of homomorphism of
structures [18, Page 5].

Definition 5. A function h : V → V ′ is a homomorphism between graphs

G = 〈V, s1, s2, null, root〉

and
G′ = 〈V ′, s′1, s

′
2, null′, root′〉

iff all of the following conditions hold:

1. 〈x, y〉 ∈ si implies 〈h(x), h(y)〉 ∈ s′i, for all i ∈ {1, 2}
2. h(x) = root′ iff x = root
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3. h(x) = null′ iff x = null

If there exists a homomorphism from G to G′, we call G a model for G′.

In shape analysis, a homomorphism corresponds to the abstraction function
mapping heap objects to the summary nodes in a shape graph. We do not require
homomorphism to be onto or to be injective.

We can think of a homomorphism h : V → V ′ as a coloring of the graph G
by nodes of the graph G′. The color h(x) of a node x restricts the colors of the
s1-successors of x to the colors in s1[{h(x)}] and the colors of the s2-successors to
the colors in s2[{h(x)}]. For example, a graph G can be colored with k colors so
that the adjacent nodes have different colors iff G is homomorphic to a complete
graph without self-loops.

The identity function is a homomorphism from any graph to itself. Therefore,
G → G for every graph G. A composition of homomorphisms is a homomor-
phism, so → is transitive.

There is an isomorphism ι between the set of regular graphs constraints and
certain subset S of the set of closed formulas in second-order monadic logic.
All formulas in S have the form ∃X1 . . . ∃Xk∀x∀y.ψ where X1, . . . , Xk denote
sets of nodes, x, y denote individual nodes and ψ is quantifier-free [22, Page 4].
The isomorphism ι has the following property: H → G iff H |= ι(G) where |=
is the standard Tarskian semantics of monadic second-order logic formulas [7]
expressing that the closed formula ι(G) is true in the model H. With the isomor-
phism ι in mind, we introduce constraints that are propositional combinations of
regular graph constraints and correspond to propositional combinations of the
corresponding formulas: H → G1 ∧G2 iff H → G1 and H → G2; H → G1 ∨G2

iff H → G1 or H → G2; H → ¬G1 iff not H → G1. Similarly, if C is a class
of graphs, we define the satisfiability over C corresponding to satisfiability of
formula over a class of models C, and the validity of implication over C corre-
sponding to the validity of implication of formulas over a class of models C.

Definition 6 (Satisfiability). A graph G is satisfiable over the class of graphs
C iff there exists a graph H ∈ C such that H → G. The satisfiability problem
over the class of graphs C is: given a graph G, determine if G is satisfiable.

Definition 7 (Implication). We say that G1 implies G2 over the class of
graphs C, and write G1 ;C G2, iff (H → G1) implies (H → G2) for all graphs
H ∈ C. The implication problem (or entailment problem) for C is: given graphs
G1 and G2, determine if G1 ;C G2.

We say that a regular graph constraint G1 is equivalent over C to a regular graph
constraint G2 (and write G1 ≈C G2) iff for every H ∈ C, H → G1 iff H → G2.
Note that G1 ∼C G2 iff C |= ι(G1) ⇔ ι(G2).

In this paper we consider C = H as the set of models of regular graph
constraints; see Table 1 and [22] for the summary of satisfiability and entailment
over different classes of graphs.
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2.3 Closure Properties

In this section we give a construction for computing the conjunction of two
graphs and a construction for computing the disjunction of two graphs. We use
these constructions in Section 3.

Conjunction We show how to use a Cartesian product construction to obtain
a conjunction of two graphs G1 and G2.

Definition 8 (Cartesian Product). Let G1 = 〈V 1, s1
1, s

1
2, null1, root1〉 and

G2 = 〈V 2, s2
1, s

2
2, null2, root2〉 be graphs. Then G0 = G1 × G2 is the graph G0 =

〈V 0, s0
1, s

0
2, null0, root0〉 such that null0 = 〈null1, null2〉, root0 = 〈root1, root2〉,

V 0 = {null0, root0} ∪ (V 1 \ {null1, root1})× (V 2 \ {null2, root2})
and

s0
i = {〈〈x1, x2〉, 〈y1, y2〉〉 | 〈x1, y1〉 ∈ s1

i ; 〈x2, y2〉 ∈ s2
i }

for i ∈ {1, 2}.
The proof of the following Proposition 9 is straightforward, see [22].

Proposition 9 (Conjunction via Product). For every graph G,
G → G1 ×G2 iff (G → G1 and G → G2).

Disjunction Given our definition of graphs, there is no construction that yields
disjunction of arbitrary graphs over the class of heaps [22, Example 26]. To
ensure that we can find union graphs over the set of heaps, we simply require
s2[{root}] = {null}.
Definition 10 (Orable Graphs). A graph G = 〈V, s1, s2, null, root〉 is orable
iff for all x ∈ V , 〈root, x〉 ∈ s2 iff x = null.

root

null

+ =

root

null null

root

1 1 1 1 1

2 2
2

1
1

1
1 1

G1 G2 G0

Fig. 1. Graph Sum

Definition 11 (Graph Sum). Let G1 = 〈V 1, s1
1, s

1
2, null, root〉 and

G2 = 〈V 2, s2
1, s

2
2, null, root〉 be orable graphs such that V 1 ∩ V 2 = {null, root}.

Then G0 = G1+G2 is the graph G0 = 〈V 0, s0
1, s

0
2, null, root〉 where V 0 = V 1∪V 2,

s0
1 = s1

1 ∪ s2
2, and s0

2 = s1
2 ∪ s2

2 (see Figure 1).
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The previous definition is justified by the following Proposition 12. The proof
of Proposition 12 uses the fact that every non-null node in a heap is reachable
from root, and the assumption s2[{root}] = {null} for orable graphs, see [22].

Proposition 12 (Disjunction via Sum). Let G be a heap and G1 and G2

be orable graphs. Then G → G1 + G2 iff (G → G1 or G → G2).

If G1 and G2 are orable graphs, then G1 ×G2 and G1 + G2 are also orable. In
the sequel we deal only with orable graphs.

GraphCleanup:
Repeat the following two operations until the graph stabilizes:

remove an unreachable node v 6= null as well as edges incident with v
remove a node x such that s1[{x}] = ∅ or s2[{x}] = ∅

Mark(x):

if marked[x] then return, otherwise:
marked[x] := true;
pick a s1-successor y of x; marked[〈x, y〉] := true; mark(y)
pick a s2-successor z of x; marked[〈x, z〉] := true; mark(z)

SatisfiabilityCheck:

perform GraphCleanup;
if the resulting graph G′ does not contain root, then G is unsatisfiable;
otherwise a heap satisfying G can be obtained as follows:

let all graph nodes and edges be unmarked;
Mark(root);
return subgraph containing marked nodes and edges

Fig. 2. Satisfiability check for Heaps

2.4 Satisfiability over Heaps

We next consider the satisfiability problem for a regular graph constraint G over
the class H of all heaps. In the context of program checking, graph G denotes a
property of the heap. The satisfiability problem is interesting in program check-
ing for several reasons. If graph G is not satisfiable, it represents a contradictory
specification. If G was supplied by the developer, it is likely that the specifi-
cation contains an error. If G was derived by a program analysis considering
several cases, then the case corresponding to G can be omitted from considera-
tion because it represents no concrete heaps. Finally, satisfiability is easier than
entailment, so it is natural to explore the satisfiability first.

Satisfiability of graphs over the class H of heaps is efficiently decidable by
the algorithm in Figure 2. The goal of the algorithm is to find, given a graph G,
whether there exists a heap H such that H → G. Recall the property of a heap
that every node has exactly one s1 outgoing edge and exactly one s2 outgoing
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edge. This property need not hold for G, so we cannot take H = G to be the heap
proving satisfiability of G. However, if G is satisfiable then G has a subgraph
which is a heap. The algorithm in Figure 2 updates the current graph until it
becomes a heap or GraphCleanup removes the root node. The correctness of the
algorithm follows from the fact that GraphCleanup removes only nodes which
are never in the range of any homomorphism (see [22] for a correctness proof).

3 Undecidability of Implication over Heaps

This section presents the central result of this paper: The implication of graphs
over the class of heaps (;H) is undecidable. To understand the implication
problem, observe first that the following Proposition 13 holds.

Proposition 13. Let C be any class of graphs. Let G → G′. Then G ;C G′.

Proposition 13 provides a sufficient condition for the graph implication to hold
and is a direct consequence of the transitivity of relation →. The implication
problem is difficult because the converse of Proposition 13 for C = H does not
hold. For example, if G is a graph that contains some nodes that can never be an
image of a homomorphism and G′ is the result of eliminating these nodes, then
it is not the case that G → G′, although G ≈ G′ and thus G ; G′. Moreover,
the undecidability of implication ; means that the incompleteness of → as an
implication test is a fundamental one: → is a computable relation whereas ;

is not computable. Preceding a → check with some computable graph-cleanup
operation such as one in Figure 2 cannot yield a complete implication test.

3.1 The Idea of the Undecidability Proof

As we have seen in Section 2.4, the satisfiability problem of regular graph con-
straints over heaps H is decidable. On the other hand, there are subclasses of H
that have an undecidable satisfiability problem. One such subclass is the class of
grids. For grids, regular graph constraints correspond to tiling problems [2, 17],
which are undecidable because they can represent Turing machine computation
histories [32]. A smaller class can have a more difficult regular graph constraint
satisfiability problem if it is not definable within the larger class using regular
graph constraints. To show the undecidability of the implication problem, we
therefore use constraints on both sides of the implication to describe a subclass
CG of graphs over which the satisfiability problem is undecidable. We construct
the class CG in such a way that we can represent the solutions of the Post Corre-
spondence Problem instances as colorings of graphs in CG. (See [32, Page 183] for
Post Correspondence Problem, PCP for short.) We call the elements of CG “cor-
responder graphs”. We choose CG over the class of grids because it seems easier
to use the presence and the absence of homomorphisms to characterize CG than
to characterize the class of grids. The definition of Corresponder Graphs (Defi-
nition 15 and Figure 3) captures the essence of our construction: corresponder
graphs need to be sufficiently rich to make Proposition 16 true, and sufficiently
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simple to make Proposition 17 true. Once we have proven Proposition 16 and
Proposition 17, the following Theorem 14 yields the undecidability result which
is the central contribution of this paper.

Theorem 14. The implication of graphs is undecidable over the class of heaps.

Proof. We reduce satisfiability of graphs over the class of corresponder graphs
to the problem of finding a counterexample to an implication of graphs over the
class of heaps. Given the reduction in Proposition 16, this establishes that the
implication of graphs is undecidable.

Let G be a graph. Consider the implication

(G× P ) ;H Q (1)

We claim that a heap H is a counterexample for this implication iff H is a
corresponder graph such that H → G.

Assume that H is a corresponder graph and H → G. By Proposition 17, we
have H → P and ¬(H → Q). We then have H → (G×P ). Since ¬(H → Q), we
conclude that H is a counterexample for (1).

Assume now that H is a counterexample for (1). Then H → G × P and
¬(H → Q). Since H → P and ¬(H → Q), by Proposition 17 we conclude that
H is a corresponder graph. Furthermore, H → G.

3.2 Corresponder Graphs

Corresponder graphs are a subclass of the class of heaps. Figure 3 shows an ex-
ample corresponder graph. To encode the matching of words in a PCP instance,
a corresponder graph has an upper list of U -nodes and a lower list of L-nodes.
These lists are formed using s1 edges (drawn horizontally in Figure 3). The U -list
nodes and L-list nodes are connected using s2 edges (drawn vertically). These
s2 edges allow a coloring of a corresponder graph to express the matching of
letters in words. A solution to a PCP instance is a list of indices of word pairs;
our construction encodes this list by the colors of C-nodes of the corresponder
graph. s2 edges from C-nodes partition U -list nodes and L-list nodes into disjoint
consecutive list segments. The coloring constraints along these s2 edges ensure
that a coloring of a sequence of U -nodes and a coloring of a sequence of L-nodes
encode words from the same pair of the PCP instance. There are twice as many
C-nodes as there are word pairs in a PCP instance, to allow an edge to both
a U -node and an L-node. The lists of U -nodes and L-nodes in a corresponder
graph both have the length 2n where the n is the length of the concatenated
words in the solution of a PCP instance.

Definition 15 (Corresponder Graphs). Let k ≥ 2, n ≥ 2, 0 = u0 < u1 <
. . . < uk−1 < n, and 0 = l0 < l1 < . . . < lk−1 < n. A corresponder graph

CG(n, k, u1, . . . , uk−1, l1, . . . , lk−1)
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is a graph isomorphic to G = 〈V, s1, s2, null, root〉 where

V = {null, root} ∪ {C0, C1, . . . , C2k−1}
∪ {U0, U1, . . . , U2n−1} ∪ {L0, L1, . . . , L2n−1}

s1 = {〈root, C0〉}
∪ {〈Ci, Ci+1〉 | 0 ≤ i < 2k − 1} ∪ {〈C2k−1, null〉}
∪ {〈Ui, Ui+1〉 | 0 ≤ i < 2n− 1} ∪ {〈U2n−1, null〉}
∪ {〈Li, Li+1〉 | 0 ≤ i < 2n− 1} ∪ {〈L2n−1, null〉}

s2 = {〈root, null〉}
∪ {〈C2i, U2ui

〉 | 0 ≤ i < k}
∪ {〈C2i+1, L2li+1〉 | 0 ≤ i < k}
∪ {〈U2i, L2i〉 | 0 ≤ i < n}
∪ {〈L2i+1, U2i+1〉 | 0 ≤ i < n}
∪ {〈U2i+1, null〉 | i ∈ {0, . . . , n− 1} \ {l0, . . . , lk−1}

}

∪ {〈U2i+1, root〉 | i ∈ {l0, . . . , lk−1}
}

∪ {〈L2i, null〉 | i ∈ {0, . . . , n− 1} \ {u0, . . . , uk−1}
}

∪ {〈L2i, root〉 | i ∈ {u0, . . . , uk−1}
}

We denote the set of all corresponder graphs CG(n, k, u1, . . . , uk−1, l1, . . . , lk−1)
by CG.

3.3 Satisfiability over Corresponder Graphs is Undecidable

Proposition 16. Satisfiability of regular graph constraints over the class of cor-
responder graphs is undecidable.

Proof. We give a reduction from PCP. Let m ≥ 2 and let

〈v0, w0〉, 〈v1, w1〉, . . . , 〈vm−1, wm−1〉

be an instance of PCP where vi, wi are nonempty words

vi = v0
i v1

i . . . vpi−1
i 0 ≤ i ≤ m− 1

wi = w0
i w1

i . . . wqi−1
i 0 ≤ i ≤ m− 1

where pi = |vi| and qi = |wi|. We construct a graph G such that there exists a
corresponder graph G0 with the property G0 → G iff the PCP instance has a
solution.

Consider a PCP instance 〈c, bc〉, 〈ab, a〉. Figure 3 illustrates how a correspon-
der graph G0 with a homomorphism from G0 to G encodes a solution of this PCP
instance. Graph G constructed for this PCP instance is presented in Figure 4
using the monadic second-order logic formula ι(G).
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null

null

2

r

null
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2
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2 2

C1C0 C2 C3

U0 U1 U2 U3 U4 U5

L0 L1 L2 L3 L4 L5

2

2
2

2

null

2
c2 c3 c0

a10,0 a11,1 a12,0 a00,0

b1
0,1 b0

0,0 b0
1,0 b0

2,1

ab c

a bc

a13,1 a01,0

b0
3,0b1

1,0

c1

1 0

Fig. 3. An example corresponder graph with a homomorphism (coloring) that encodes
the solution 1,0 of the PCP instance 〈v0, w0〉, 〈v1, w1〉 where v0 = c, v1 = ab, w0 =
bc, w1 = a. The solution is the sequence of indices 1, 0 which is encoded by the fact
that the C-nodes have colors c2·1, c2·1+1 followed by colors c2·0, c2·0+1. The four U -node
colors a0,0

1 , a1,1
1 , a2,0

1 , a3,1
1 encode the two positions in the word v1. The two U -node

colors a0,0
0 , a1,0

0 encode the only position of the word v0. Analogously, the two L-node
colors b0,1

1 , b1,0
1 encode the only position of the word w1, whereas b0,0

0 , b1,0
0 , b2,1

0 , b3,0
0

encode the two positions of the word w0.

ι(G) ≡ ∃ c0, c1, c2, c3, a
0,0
0 , a1,0

0 , a1,1
0 , a0,0

1 , a1,0
1 , a1,1

1 , a2,0
1 , a3,0

1 , a3,1
1 ,

b0,0
0 , b0,1

0 , b1,0
0 , b2,0

0 , b2,1
0 , b3,0

0 , b0,0
1 , b0,1

1 , b1,0
1 , null, root.

∀x, y. disjoint ∧ nulldef ∧ rootdef ∧
(s1(x, y) ⇒ C ∧ Lv0 ∧ Lv1 ∧ Lv0,v1 ∧ Lw0 ∧ Lw1 ∧ Lw0,w1) ∧
(s2(x, y) ⇒ I ∧Ma ∧Mb ∧Mc ∧ T )

C ≡ (c0(x) ⇒ c1(y)) ∧ (c2(x) ⇒ c3(y)) ∧
(root(x) ∨ c1(x) ∨ c3(x) ⇒ c0(y) ∨ c2(y) ∨ null(y))

Lv0 ≡ a0,0
0 (x) ⇒ a1,0

0 (y) ∨ a1,1
0 (y)

Lv1 ≡ (a0,0
1 (x) ⇒ a1,0

1 (y) ∨ a1,1
1 (y)) ∧ (a1,0

1 (x) ∨ a1,1
1 (x) ⇒ a2,0

1 (y)) ∧
(a2,0

1 (x) ⇒ a3,0
1 (y) ∨ a3,1

1 (y))

Lv0,v1 ≡ a1,0
0 (x) ∨ a1,1

0 (x) ∨ a3,0
1 (x) ∨ a3,1

1 (x) ⇒ a0,0
0 (y) ∨ a0,0

1 (y) ∨ null(y)

Lw0 , Lw1 , Lw0,w1 analogous to Lv0 , Lv1 , Lv0,v1 with bi,j
k instead of ap,q

r

I ≡ (c0(x) ⇒ a0,0
0 (y)) ∧ (c1(x) ⇒ b1,0

0 (y)) ∧ (c2(x) ⇒ a0,0
1 (y)) ∧ (c3(x) ⇒ b1,0

1 (y))

Ma ≡ (a0,0
1 (x) ⇒ b1,0

1 (y)) ∧ (b1,0
1 (x) ⇒ a1,1

1 (y))
Mb, Mc analogous to Ma with positions for letter ’b’ and ’c’ instead of ’a’

T ≡ (root(x) ∨ a1,0
0 (x) ∨ a1,0

1 (x) ∨ a3,0
1 (x) ∨ b0,0

0 (x) ∨ b2,0
0 (x) ∨ b0,0

1 (x) ⇒ null(y))

∧ (a1,1
0 (x) ∨ a1,1

1 (x) ∨ a3,1
1 (x) ∨ b0,1

0 (x) ∨ b2,1
0 (x) ∨ b0,1

1 (x) ⇒ root(y))

Fig. 4. Formula ι(G) for the graph G constructed for the PCP instance from Figure 3.
disjoint denotes that all existentially quantified sets are disjoint. nulldef and rootdef

define singleton sets contain null and root node, respectively. Lv0 connects colors that
encode positions in word v0, similarly for Lv1 , Lw0 , Lw1 . Lv0,v1 allows any sequence
(v0|v1)∗ of words as U -node colors, analogously for Lw0,w1 . Formula I connects each
node representing the choice of word pair k to the first position of the word vk and wk.
Ma connects word positions containing the letter a, similarly for Mb, Mc.
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In general, define the components of G = 〈V, s1, s2, null, root〉 as follows. For
every pair of words 〈vi, wi〉 in PCP instance introduce two nodes c2i, c2i+1 ∈ V .
These nodes summarize C-nodes of a corresponder graph. For every position
vj

i of the word vi introduce nodes a2j,0
i and a2j+1,0

i and for every position wj
i

introduce nodes b2j,0
i and b2j+1,0

i . The a-nodes summarize U -nodes and the b-
nodes summarize the L-nodes of the corresponder graph. Introduce further the
nodes b2j,1

i to encode the property of a U -node that the matching L-node is
colored by some a0,0

j denoting the first position of a word. For analogous reasons
introduce a2j+1,1

i nodes. Let

V = {null, root} ∪ {c0, c1, . . . , c2m−1}
∪ {aj,0

i | 0 ≤ i < m; 0 ≤ j < 2pi} ∪ {bj,0
i | 0 ≤ i < m; 0 ≤ j < 2qi}

∪ {a2j+1,1
i | 0 ≤ i < m; 0 ≤ j < pi} ∪ {b2j,1

i | 0 ≤ i < m; 0 ≤ j < qi}

Define s1 graph edges as follows.
The ci nodes are connected into a list that begins with root; every c2i is

followed by c2i+1. The pairs c2i, c2i+1 for different i can repeat in the list any
number of times and in arbitrary order. This list encodes colorings that represent
PCP instance solutions.

The nodes representing word positions are linked in the order in which they
appear in the word. The last position in a word can be followed by the first
position of any other word, or by null. The nodes for the vi words and the nodes
for the wi words form disjoint lists along the s1 edges.

s1 = {〈root, c2i〉 | 0 ≤ i < m} ∪ {〈c2i, c2i+1〉 | 0 ≤ i < m}
∪ {〈c2i+1, c2j〉 | 0 ≤ i, j < m} ∪ {〈c2i+1, null〉 | 0 ≤ i < m}
∪ {〈a2j,0

i , a2j+1,α
i 〉 | 0 ≤ i < m; 0 ≤ j < pi; α ∈ {0, 1}}

∪ {〈a2j+1,α
i , a2j+2,0

i 〉 | 0 ≤ i < m; 0 ≤ j < pi − 1;

α ∈ {0, 1}}
∪ {〈a2pi−1,α

i , a0,0
j 〉 | 0 ≤ i, j < m;α ∈ {0, 1}}

∪ {〈a2pi−1,α
i , null〉 | 0 ≤ i < m; α ∈ {0, 1}}

∪ {〈b2j,α
i , b2j+1,0

i 〉 | 0 ≤ i < m; 0 ≤ j < qi; α ∈ {0, 1}}
∪ {〈b2j+1,0

i , b2j+2,α
i 〉 | 0 ≤ i < m; 0 ≤ j < qi − 1;

α ∈ {0, 1}}
∪ {〈b2qi−1,0

i , b0,α
j 〉 | 0 ≤ i, j < m; α ∈ {0, 1}}

∪ {〈b2qi−1,0
i , null〉 | 0 ≤ i < m}

Define s2 graph edges as follows.
Every cj edge points to the position at the beginning of the word. Even

numbered nodes point to the a0-positions; odd numbered nodes point to b1-
positions.
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The ai and bj word positions are connected so that an a-node points to a
b-node for even indices, whereas a b-node points to an a-node for odd indices.
The s2-edges from a-nodes to b-nodes propagate the information that the a-node
denotes the first position of some word through the value 1 of index α of the color
b2l,α. The b2l,1

k nodes have an s2-edge to root whereas b2l,0
k nodes have an s2-edge

to null. This distinction ensures that every a0,0
i -colored node has an incoming

edge from a C-node; which implies that every word occurring in the sequence of
words that color U -nodes of a corresponder graph is selected by some C-node.

s2 = {〈root, null〉}
∪ {〈c2i, a

0,0
i 〉 | 0 ≤ i < m} ∪ {〈c2i+1, b

1,0
i 〉 | 0 ≤ i < m}

∪ {〈a0,0
i , b2l,1

k 〉 | 0 ≤ i, k < m; 0 ≤ l < qk; v0
i = wl

k}
∪ {〈a2j,0

i , b2l,0
k 〉 | 0 ≤ i, k < m; 0 < j < pi; 0 ≤ l < qk;

vj
i = wl

k}
∪ {〈b2l,0

k , null〉 | 0 ≤ k < m; 0 ≤ l < qk}
∪ {〈b2l,1

k , root〉 | 0 ≤ k < m; 0 ≤ l < qk}
∪ {〈b1,0

k , a2j+1,1
i 〉 | 0 ≤ i, k < m; 0 ≤ j < pi; v

j
i = wl

k}
∪ {〈b2l+1,0

k , a2j+1,0
i 〉 | 0 ≤ i, k < m; 0 ≤ j < pi;

0 < l < qk; vj
i = wl

k}
∪ {〈a2j+1,0

i , null〉 | 0 ≤ i < m; 0 ≤ j < pi}
∪ {〈a2j+1,1

i , root〉 | 0 ≤ i < m; 0 ≤ j < pi}
Claim. The PCP instance has a solution iff there exists a corresponder graph
G0 such that G0 → G.

This proof of this Claim is not very surprising because we have defined the notion
of corresponder graphs to make it true. See [22] for details.

3.4 Using Homomorphisms to Characterize Corresponder Graphs

In Section 3.2 we have defined corresponder graphs as a parameterized family
CG(n, k, u1, . . . , uk−1, l1, . . . , lk−1). In this section we give an alternative charac-
terization of corresponder graphs, as a subclass of heaps that satisfies certain
set of graph invariants. We have chosen these invariants so that each invariant is
expressible as a homomorphism to some graph or as an absence of a homomor-
phism to some graph. These graphs show that the class of corresponder graphs
is definable as the set of heaps that are counterexamples for the implication of
two specific regular graph constraints.

Proposition 17. There exist graphs P and Q such that for every heap H,
H → (P ∧ ¬Q) iff H is a corresponder graph.

Proof Sketch. We take P to be the graph in Figure 5 and let Q = Q0+· · ·+Q16.
See Appendix for the figures of graphs P , Q0, . . . , Q16 and [22] for more proof
details.
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(⇐=) : If G0 is a corresponder graph we show that G0 → P and for all
0 ≤ i ≤ 16 it is not the case that G0 → Qi. To show G0 → P we find a
homomorphism mapping C-nodes to c-nodes, U -nodes to a-nodes and L-nodes
to b-nodes. Showing ¬(G0 → Qi) is not difficult either (e.g. for Q0 consider a
homomorphic image of the s1-path from root to null).

(=⇒) : (This is the more difficult direction.) Assume G0 → P and for all 0 ≤
i ≤ 16 it is not the case that G0 → Qi. We show that G0 is a corresponder graph.
While P ensures that G0 has roughly the desired shape, the graphs Qi ensure
the remaining invariants that characterize corresponder graphs. The graphs Q0

(Figure 6) Q1 (Figure 7), Q2 (Figure 8), and Q3 (Figure 9) eliminate models
of P that contain cycles of certain from. For example, if following s1-edges in
G0 starting from root leads to a cycle, then G0 must be homomorphic to Q0

in Figure 9. In this way Q0 ensures the property of corresponder graphs that
following s1-edges from root eventually leads to null.

The graphs Q4 (Figure 10), Q5 (Figure 11), Q6 (Figure 12), and Q9 (Fig-
ure 15) ensure that certain distinct paths in the graph G0 commute (i.e. lead
to the same node). The graphs Q7 (Figure 13) and Q8 (Figure 14) ensure that
there is the same number of U and L-nodes in a model of P . The graphs Q10

(Figure 16) and Q11 (Figure 17) ensure that U or L nodes have an s2 edge to
root iff the U or L node in the same column has an s2-edge from a C-node. The
graph Q12 (Figure 18) ensures that if a node C2i has an s2-edge to a node Uj1 ,
and the node C2i+2 has an s2-edge to Uj2 , then Uj1 occurs before Uj2 in the list
of U -nodes. Similarly, Q13 (Figure 19) ensures that s2-edges from C2i+1-nodes
to L-nodes are in the proper order.

Finally, graphs Q14 (Figure 20), Q15 (Figure 21) and Q16 (Figure 22) ensure
that C-nodes have s2 edges only to U and L-nodes, and that an L or U node
can only have an edge to root, null, a U -node, or an L-node.

Having shown Proposition 17 and Proposition 16, Theorem 14 follows.

4 Conclusion

We have proposed regular graph constraints as an abstraction of mutually recur-
sive properties of objects in potentially cyclic graphs. Regular graph constraints
are a natural generalization of tree automata and domino systems. We have
shown that satisfiability of regular graph constraints is decidable over the do-
main of heaps. As a main result, we have shown that the implication of regular
graph constraints is undecidable. The consequence of this result is that verify-
ing that procedure preconditions are satisfied is undecidable for any system of
constraints that subsumes regular graph constraints.

The fact that decidability of problems with regular constraints is sensitive
to the choice of the class of graphs is summarized in Table 1. The table in-
dicates that techniques for reasoning about different classes of graphs may be
substantially different. We therefore expect that a good support for mechanized
reasoning about data structures will likely contain a set of specialized techniques
for different classes of graphs corresponding to commonly used data structures.
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class satisfiability decidable source entailment decidable source

graphs yes trivial yes easy
trees yes [35] yes [35]
grids no [17] no [17]
heaps yes present paper no present paper

Table 1. Decidability of Regular Graph Constraints
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Appendix: Regular
Constraints that

Characterize Corresponder
Graphs

In this appendix we present the graphs
P, Q0, . . . , Q16 that characterize the class
of corresponder graphs CG.

When presenting the graphs we use

the following conventions. We use the la-

bel r to denote the root of the graph. We

label the edges of the relation s1 relation

by 1 and the edges of s2 by 2. Note that

if a node has no outgoing edges, it would

be useless in the graph in terms of specify-

ing a set of models G0. Every graph node

in our graphs thus has least one outgo-

ing edge for every label. However, to make

the graph presentation clearer, if a node x

has an outgoing edge with label a to every

node in the graph, we simply omit all a

edges of node x from the sketch. In partic-

ular, if a node has no outgoing edges in the

graph sketch, it means that its outgoing

edges are unconstrained. A double-headed

arrow from node x to node y with label a

denotes two single arrows, one from x to y

and one from y to x, both labeled with a.

We do not show the edge 〈root, null〉 ∈ s2

that is always present in an orable graph.

We similarly do not show the edges orig-

inating from null. We sometimes display

null several times in the same picture; all

these occurrences denote the unique null

node in the graph.
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Fig. 7. Graph Q1
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Fig. 8. Graph Q2
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Fig. 17. Graph Q11
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Fig. 20. Graph Q14
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Fig. 21. Graph Q15
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Fig. 22. Graph Q16
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