Interpolation for Synthesis on Unbounded Domains

Viktor Kuncak and Régis Blanc
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
firstname.lastname @epfl.ch

Abstract—Synthesis procedures compile relational specifica-
tions into functions. In addition to bounded domains, synthesis
procedures are applicable to domains such as mathematical
integers, where the domain and range of relations and synthesized
code is unbounded. Previous work presented synthesis procedures
that generate self-contained code and do not require components
as inputs. The advantage of this approach is that it requires
only specifications as user input. On the other hand, in some
cases it can be desirable to require that the synthesized system
reuses existing components. This paper describes a technique
to automatically synthesize systems from components. It is also
applicable to repair scenarios where the desired sub-component
of the system should be replaced to satisfy the overall specifica-
tion. The technique is sound, and it is complete for constraints
for which an interpolation procedure exists, which includes e.g.
propositional logic, bitvectors, linear integer arithmetic, recursive
structures, finite sets, and extensions of the theory of arrays.

I. INTRODUCTION

Software synthesis is an active area of research [5], [13],
[14] and has a long tradition [1], [10], [12]. We here pursue
synthesis of functions from inputs to outputs that are guar-
anteed to satisfy a given input/output relation expressed in
a decidable logic. Such approach have been referred to as
complete functional synthesis [7], [8]. The appeal of this di-
rection is that it synthesizes functions over unbounded domains
whenever they exist, and that the produced code is guaranteed
to satisfy the specification for the entire unbounded range
of inputs. Synthesis procedures for propositional logic, linear
rational arithmetic, and Boolean Algebra with Presburger
Arithmetic and parametrized coefficients are presented in [6]-
[8]. Synthesis procedures for algebraic data types and arrays
are presented in [2].

The previous work demonstrated synthesis procedures that
generate self-contained code and do not require components as
inputs. This approach requires only the input/output specifica-
tion as the user input. This is in contrast to some of the existing
approaches that require components as inputs and enumerate
different combinations of the components, checking which
ones satisfy a specification. In general, however, synthesis
from components is not only a way to simplify the synthesis
task, but also a way to control the outcome of synthesis,
making the process more predictable. It can be desirable to
require synthesis procedures to reuse existing functionality,
even if there exists a method to synthesize the system from
scratch. For example, using existing components may have
expected cost metrics in terms of computational complexity,
or market availability. This paper presents techniques that
can be used to ensure that a synthesis procedure reuses a
given set of components in the synthesized code. The work in

reactive LTL synthesis from components [9] deals with stateful
reactive components but is limited to finite-state systems and
encounters a 2EXPTIME lower bound, whereas we work in
the stateless scenario but for infinite domains where we can
leverage modern SMT solvers.

Our inspiration comes from generalizing methods such
as resynthesis, which have proved useful for generation of
combinational circuits [4], [15]. These techniques perform
case analysis on boolean variables in the output, which makes
them specific to finite domains. We show, however, that such
complete technique can be devised for every decidable domain
for which interpolation and synthesis procedures exists. This
includes bitvector domains, potentially allowing synthesis of
circuits at a higher level, as well as the domain of structures
used in software, such as recursive algebraic data types, sets,
linear integer arithmetic, and arrays. For the approach to work
in practice, what is needed are well-behaved interpolation
procedures that prefer simpler and computationally shorter
interpolants, a requirement that is in any case desirable for
interpolation in predicate abstraction refinement [3].

II. BACKGROUND: SYNTHESIS AS RELATION
TRANSFORMATION

The starting point for our work is the framework for
functional synthesis, as presented most recently in [2], whose
notation we follow. For a high-level overview, please consult
[7]. A synthesis problem is a triple [a (¢) Z], where a is a
set of input variables, ¥ is a set of output variables and ¢ is a
formula whose free variables are a subset of aUZ. A synthesis
problem denotes a binary relation {(a,Z) | ¢} between
inputs and outputs. The goal of synthesis is to transform such
relations until they become executable programs. Programs
correspond to formulas of the form P A (z = T) where
vars(P) U vars(T) C @ We denote programs by (P | T).
We call the formula P a precondition and call the term T'
a program term. We use - to denote the transformation on
synthesis problems, so

la (¢) 2]+ [a (¢') 2] (D

means that the problem [a (¢) Z] can be transformed into
the problem [a (¢') Z]. The variables on the right-hand side
are always the same as on the left-hand side. Our goal is
to compute, given a, one value of z that satisfies ¢. We
therefore define the soundness of (1) as a process that refines
the binary relation given by ¢ into a smaller relation given
by ¢’, without reducing its domain. Expressed in terms of

formulas, the conditions become the following:
¢ E 9
z.¢ E 3zT.¢
In other words, - denotes domain-preserving refinements of
relations. Note that the dual entailment 3zZ.¢' = 3Z.¢ also
holds, but it follows from refinement. Note as well that
is transitive. In most cases we will consider transformations
whose result is a program: [a (¢) Z] + (P | T). The
correctness of such transformations reduces to
P E ¢z T
¢ E P
A synthesis procedure for a theory 7T is given by a set of

inference rules and a strategy for applying them such that
every formula in the theory is transformed into a program.

refinement
domain preservation

refinement
domain preservation

III. INTERPOLATION FOR SYNTHESIS FROM COMPONENTS

We next show how synthesis procedure, even for unbounded
domains, can leverage interpolation techniques to synthesize
a function as a combination of other functions. This enables
the user to control the synthesis process by requiring that the
desired function is realized as a combination of results of given
functions. The technique presented here is inspired by asking
whether the finite-state resynthesis techniques from [4], which
was experimentally shown to be useful in practice, could be
lifted from propositional to the level of first-order theories. The
key difficulty is that case analysis on the output, performed in
[4], is not possible for infinite-domain theories. We present
instead a more general formulation, which works in two
stages: 1) construct a quantifier-free input/output constraint
describing the implementation of the desired functionality
from components, using interpolation for the theory of interest;
and 2) synthesize the implementation from the input/output
constraint, using the appropriate synthesis procedure.

A. Synthesis from Components as a Two-Step Process

Figure 1 summarizes the rules for synthesis from compo-
nents. The general setup is given by the rule ’COMP’ in
Figure 1, which is a simple fact of first-order logic with
equality. Given a function f : A — C, we encode the available
components as another function g : A — B. Note that B can
be a cross-product of any number of simpler domains, so g can
encode any finite number of component functions. The goal
is to express f in terms of the result of g. In other words,
we seek a function h such that f(x) = h(g(z)). "COMP’ rule
gives one way to find such function h:

1) construct a relational description I of the desired h; we

say I is a relational connector for obtaining f from g.

2) find h as a refinement of the relational connector I.

B. Correctness of Synthesis from a Relational Connector

To see why "COMP’ is correct, let the two assumptions in
the rule hold, let x be arbitrary, define z by z = f(z) and
b by b = g(x). Then I(g(x),z) by the first assumption, so
I(g(x),h(g(z))) by the second assumption. Using the first
assumption once again (with h(g(z)) as an instance of the

fiA=C
g:A— B h:B—C ICBxC
Vo, z. I(g(x),z) < z = f(x)
Vb. (32.1(b, z)) — I(b, h(b))

Ve f(2) = h(g(x)) comP

flx) =21 ANg(x1) =y1 Ay1 = y2 = 1(y2, 21)
I(y2,21) F (9(x2) = y2 A f(22) = 22 = 21 = 20)

r=-
<C
&
R
~
—
=
S
:_/
&
N
I
~
—
2

W,z b= g(2)] 2= fl@): [b () 2]+ (P| H)
[z (z=f(x)) 2] = (T | H[b:= g(x)])
Fig. 1. Synthesis from Components
universally quantified z), we conclude h(g(z)) = f(x), as

desired.

C. Finding Relational Connector Using Interpolation

We next turn to the problem of finding the relational
connector I. The key insight is that a single call to a theorem
prover that can compute interpolants [11] is sufficient to find
I with the desired property, Vx,z. I(g(x),z) <> z = f(z).
This is captured by the "INT-UNIQ’ rule, which stands for
“interpolating uniqueness”.

To understand the rule, observe that it contains two en-
tailments (universally quantified implications), which, chained
together, can be represented as the following property of f
and g:

fl@)=z1Ag(@1) =y Ayy =12
g(x2) = ya A f(x2) = 20 = 21 = 29

By rearranging the order of assumptions, we can equivalently
write this condition as:

g(x1) =0 g(x2) = y2 Y1 = Y2
f(x1) == f(x2) = 22
Z1 = 22 (2)

This condition states that if g computes the same result on two
arguments 1, T2, then so does f. Such condition is necessary
for the existence of a function A that would enable us to
compute f(z) as h(g(x)). Indeed, if g(x1) = g(z2) then

INT-UNIQ

COMP-S

h(g(x1)) = h(g(z2)), so we need to have also f(z1) = f(x2).
Therefore, whenever we can hope to find a function h, we
know that the above implication holds. Moreover, if the logic
in which f,g are described has the interpolation property,
we know that an interpolant I exists. For a decidable logic
with interpolation property, rule ’INT-UNIQ’ gives an effective
algorithm for computing I from f and g.

D. Why Interpolants Precisely Characterize Relational Con-
nectors

We have seen that an [can be found such that the as-
sumptions of the ’INT-UNIQ’ rule hold. This ensures that the
assumptions of "INT-UNIQ’ rule can be satisfied in practice.
We next show the correctness of 'INT-UNIQ’: any I that is
found in such interpolation process satisfies the conclusion of
the "INT-UNIQ’ rule, so it can be used in the ’"COMP’ rule.
Consider the first assumption of "INT-UNIQ’:

flz1) =z Ag(x1) =11 Ayn = y2 = L(y2,21)

Using one-point rule we eliminate y; and ys, replacing them
with g(x1). The result is

f(x1) =21 E I(g(z1),21) 3)

Consider the second rule:

I(y2,21) = (g(z2) = y2 A f(x2) = 22 = 21 = 22)

Using one-point rule we replace y, with g(x5) and replace zo
with f(x2), obtaining

I(g(w2),21) F 21 = f(x2) “4)

By renaming the variables and conjoining (3) and (4), we
obtain the desired equivalence:

Va,y. I(g(x),2) & = = f(2)
E. Informal Summary of the Idea

In summary, to express f(z) as h(g(z)), we state a nec-
essary condition (2) for f to depend only on the result of
g, writing it in a flat form. We then split conjuncts in such
a way to separate two uses if f, g between the two sides of
the interpolant. Such split leads to interpolants that precisely
specify the relationship between the variables y and z, which
is the relationship I that we wish to synthesize.

FE. From Relation to Function Using Synthesis Procedures

The relational connector [is a relation, so we wish to find
a function that refines it. This is where the idea of synthesis
using interpolation connects to the framework of synthesis
procedures [2], [6]-[8]. The result is a syntactic variant of
the rule "COMP’, which we denote ’COMP-S’ in Figure 1.
The relational connector I is now represented as a formula
I with free variables: b (ranging over the set B, the results
of g) and z (the desired result of the computation of f and
h). Application that was expressed in "COMP’ as I(g(x), z)
therefore becomes the substitution I[b := g(x)]. Similarly, the
desired function h is expressed as a syntactic term H with the

free variable b. The condition f(x) = h(g(z)) then becomes a
synthesis step that transforms f(z) into the term H[b := g(z)]
that has = as the free variable.

The key step is [b (I) z] + (P | H), which takes the
relational connector and transforms it into a function given by
H. In the process, it generates the most general precondition,
P. In terms of the rule ’"COMP’, the condition P corresponds
to the condition 32.1(b, z), because of the domain-preservation
requirement of the “” operator.

Intuitively, because I is only applied to values g(z), the
precondition P contains the range of g, so it becomes trivially
satisfied in the overall function h(g(z)). This allows us to
synthesize a program H[b := g¢g(x)] with a trivial, true,
precondition T in the conclusion of the rule.

IV. FURTHER GENERALIZATIONS

Note that our results apply to any theory for which we have
synthesis procedures. The discovery of a relational connector
does not even require a synthesis procedure, only interpolation.
In practice, we have demonstrated synthesis for many theories
and they typically have interpolation [2], [7], [8].

A. Tuples and Passing Inputs

Recall that in the original problem we synthesize i(y) such
that f(z) is h(g(z)). Note that adding the notion of n-tuples
does not change decidability in most cases, because tuple
variables can be replaced by individual variables. Thus, we
may assume, when convenient, that = is a vector and that g
returns a vector.

It can be useful to make some of the coordinates of x di-
rectly available to h. To describe this case, we let x = (xg,x1)
and let g(zg,z1) = (20, 91(x1)). Applying the existing rules
in Figure 1 to such g we obtain f(xg,x1) = h(zg, g1(x1)), as
desired.

B. Fartial Specifications

It may appear at first that the techniques presented here
only work when we are given a complete specification of a
problem as a function from inputs to outputs. We next show
that the framework also supports enforcing arbitrary partial
specifications (properties). Indeed, suppose we have a desired
specification relation » C A x B. We view it as a function
f'+ Al — C' where A’ is A x B and C' is {0,1}. We then
define g to make appropriate transformations on the elements
of A, and, for example, pass the elements of B unchanged.
Then synthesis of h finds the combination of the outputs of g
that enforces the desired properties f/, which is again special
case of synthesis in our framework.

C. Output Components and Synthesis in Arbitrary Context

So far we considered a problem where given components
(g) pre-process the input, which then feeds into the function i
that we need to synthesize. It is natural to consider a dual
question (see Figure 2): we are given components k that
will post-process the result, and we need to synthesize inputs
for such components. This problem turns out to be directly

f:A=>C h:A— B k:B—C
Ve, y. I(z,y) < k(y) = f(z)
Va. (3y.I(a,y)) = I(a,h(a))

V. f(z) = k(h(z))
vars(F) C {2} vars(K) C {y}
[+ (K=F) gyl (P|H)

[z (z=F) 2] - (P | K[y:= H])

O0-COMP-S

Fig. 2. When components apply before output, we need no interpolation

expressible using synthesis procedures framework, without
a quantified synthesis condition. Figure 2 summarizes this
case using the semantic rule and the corresponding syntactic
synthesis procedure counterpart. In general, the components
directly feed into the synthesis procedure invocation. Having
pre- and post- processing components simultaneously is there-
fore solved using the same technique as in the case of pre-
processing components alone.

D. Synthesis in Arbitrary Context and Repair

We have concluded that we can do synthesis of missing
components that are fed arbitrary inputs, and whose outputs
are processed in an arbitrary way. We can therefore solve for
h constraints of the form Va.k(h(g(z))) = f(x), where f can
either check the property or compute value of any other desired
type. Such generality enables us to use our framework to repair
a given function in two steps: identify the error component,
replace it with the unknown component h, then solve for h
to enforce the desired constraints. This formulation may help
generalize techniques used to solve the engineering change
order (ECO) problem [15] to unbounded domains.

E. Synthesizing Multiple Components

Both the argument and the result of & can be a tuple.
Therefore, we are able to solve synthesis problems of the form

Vo k(hi(91(2), -, 90(2), s hn (91 (2), -, g (2))) = f (=)

This means that we can solve for any number of unknown
components. However, note that the results of all components
of g are fed into each unknown component. It may be desirable
to restrict the inputs of h; to only a subset of the variables z,

J
Lo L [g0 |
O A Ay
e e
[| [
| k |

Fig. 3. Our method also handles the more general case

solving instead the problem of the form, (for some different
component functions g;):

Va.k(h1(91(2)), o, hn(gm(2))) = f(z)

To solve such problem we interpolate the following entailment,
which, as before, expresses that the result of f only depends
on the intermediate results returned by all of g;:

fl) =z ANZ gi() =yl A Nitiyl = ¥

fxa) = 22 A NJLy gj(2) = ¥y = 2=z

The resulting interpolant is of the form I(y3,...,y%", z1); we
can easily show that it satisfies, for all x and z,

I(gl(x)’ "'79771(37)’2) < z= f(.’II)

using an entirely analogous proof as in Section III. From such
component described using a relation / we can, as before,
obtain a function using a synthesis procedure. We thus obtain
soundness and completeness for such synthesis of multiple
components that are fed distinct parts of the input (Figure 3).
In addition to the previous advantages, this generalization
enables the user to encode the intuition about independence
between variables into the synthesis problem.

Acknowledgements.

We thank Alan Mishchenko for pointing us to existing
related work, as well as for his encouraging discussions. We
also thank Philippe Suter, Barbara Jobstmann, Paolo Ienne,
and Anna Petkovska for useful discussions.

REFERENCES

[1] Flener, P.: Logic Program Synthesis from Incomplete Information.
Kluwer Academic Publishers (1995)

[2] Jacobs, S., Kuncak, V., Suter, P.: Reductions for synthesis procedures.
In: VMCALI (2013)

[3] Jhala, R., McMillan, K.L.: A practical and complete approach to
predicate refinement. In: TACAS. pp. 459-473 (2006)

[4] Jiang, J.H.R., Lee, C.C., Mishchenko, A., Huang, C.Y.R.: To SAT
or not to SAT: Scalable exploration of functional dependency. IEEE
Transactions on Computers 59, 457-467 (2010)

[5] Jobstmann, B., Bloem, R.: Optimizations for 1t synthesis. In: FMCAD.
pp- 117-124 (2006)

[6] Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Functional synthesis for
linear arithmetic and sets. Software Tools for Technology Transfer
(STTT) (2012)

[7]1 Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Software synthesis proce-
dures. CACM 55(2), 103-111 (2012)

[8] Kuncak, V., Mayer, M., Piskac, R., Suter, P.. Complete functional
synthesis. In: PLDI. pp. 316-329 (2010)

[9] Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. In: FOS-

SACS. pp. 395-409 (2009)

Manna, Z., Waldinger, R.J.: Toward automatic program synthesis.

CACM 14(3), 151-165 (1971)

McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci.

345(1), 101-121 (2005)

Smith, D.R.: KIDS: A semiautomatic program development system. TSE

16(9), 1024-1043 (1990)

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S.A., Saraswat, V.A.:

Combinatorial sketching for finite programs. In: ASPLOS (2006)

Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to

program synthesis. In: POPL. pp. 313-326 (2010)

Wu, B.H,, Yang, C.J., Huang, C.Y., Jiang, J.JH.R.: A robust functional

ECO engine by SAT proof minimization and interpolation techniques.

In: ICCAD. pp. 729-734 (2010)

[10]
(11]
[12]
[13]
[14]

[15]

