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Abstract. Boolean Algebra with Presburger Arithmetic (BAPA) com-
bines 1) Boolean algebras of sets of uninterpreted elements (BA) and 2)
Presburger arithmetic operations (PA). BAPA can express the relation-
ship between integer variables and cardinalities of unbounded finite sets
and can be used to express verification conditions in verification of data
structure consistency properties.

In this report I consider the Quantifier-Free fragment of Boolean Al-
gebra with Presburger Arithmetic (QFBAPA). Previous algorithms for
QFBAPA had non-deterministic exponential time complexity. In this re-
port I show that QFBAPA is in NP, and is therefore NP-complete. My
result yields an algorithm for checking satisfiability of QFBAPA formu-
las by converting them to polynomially sized formulas of quantifier-free
Presburger arithmetic. I expect this algorithm to substantially extend
the range of QFBAPA problems whose satisfiability can be checked in
practice.

1 Introduction

This paper considers the satisfiability problem for a logic that allows reasoning
about sets and their cardinalities. We call this logic quantifier-free Boolean Al-
gebra with Presburger Arithmetic and denote it QFBAPA. Figure 1 shows the
syntax of QFBAPA. The logic contains 1) arbitrary boolean algebra (BA) ex-
pressions denoting sets, 2) arbitrary quantifier-free Presburger arithmetic (PA,
linear integer arithmetic) expressions, and 3) a cardinality operator for stating
that the size of a set denoted by a set expression is equal to an integer denoted
by a given PA expression. The constant MAXC denotes the size of the universal
set, so |1| = MAXC. The expression K dvdT means that K divides integer T ,
whereas Bc denotes the complement of the set B.

QFBAPA satisfiability is clearly NP-hard, because QFBAPA has propositional
operators on formulas. Moreover, QFBAPA contains Boolean algebra of sets that
has its own propositional structure. The challenge is therefore to prove the mem-
bership in NP. The difficulty is that formulas such as |A \B ∪C| = 10000 force
the sizes of sets to be exponential in the length of the formula, leading to a
doubly exponential number of interpretations of set variables.

Motivation for QFBAPA. Our motivation for QFBAPA is proving the valid-
ity of formulas arising from program verification [16]. The logic QFBAPA is a



quantifier-free fragment of Boolean Algebra with Presburger Arithmetic (BAPA)
which extends QFBAPA with arbitrary set and integer quantifiers. BAPA was
implicitly used in [11, Section 8, Page 90] as an extension of set algebra that
occurs in Feferman-Vaught construction. Subsequently, BAPA was found to be
of interest in program verification [18, 19, 16, 33] and constraint databases [29].
In [18] we have shown that BAPA has the same complexity as PA, namely alter-
nating doubly exponential time with a linear number of alternations, denoted

STA(∗, 22nO(1)

, n) in [4], [15, Lecture 24].
BAPA has quantifier elimination property, which implies that QFBAPA for-

mulas define the same class of relations on sets and integers as BAPA formulas,
so they essentially have the same expressive power. In general, QFBAPA formu-
las may be exponentially larger than the equivalent quantified BAPA formulas
with same free variables. However, it is often the case that the proof obligation
(or other problem of interest) is already expressed in quantifier-free form. It is
therefore interesting to consider the complexity of the satisfiability problem for
QFBAPA.

Quantifier-free PA. Quantifier-free PA is in NP because it has a small model
property implying that satisfiable formulas have solutions whose binary repre-
sentation is polynomial. The small model property for quantifier-free PA follows
from the small model property for conjunctions of atomic formulas, which in turn
follows from bounds on solutions of integer linear programming problems [27]. In
practice, quantifier-free PA formulas can be solved using implementations such
as CVC Lite [3] and UCLID [21].

Previous algorithms for QFBAPA. Existing algorithms for QFBAPA [34, 29,
26] run in non-deterministic exponential time, because they explicitly introduce
a variable for each Venn region. The same exponential explosion occurs in our
previous algorithm α [17, 18,19] that decides the entire BAPA.

The result of this paper. I have previously used a divide-and-conquer al-
gorithm to show that it is not necessary to simultaneously generate all Venn
region variables, proving that QFBAPA is in PSPACE [23, Section 3]. I here give
a stronger result, which shows that QFBAPA is in NP. In the process, I identify
a natural encoding of QFBAPA formulas into polynomially-sized quantifier-free
PA formulas. I use a recent result [10] that if an element is in an integer cone
generated by a set of vectors X, then it is also in an integer cone generated
by a “small” subset of X. This result implies that a system of equations with
bounded coefficients, if satisfiable, has a sparse solution with only polynomi-
ally many non-zero variables, even if the number of variables in the system is
exponential. As a result, instead of using exponentially many Venn region car-
dinality variables to encode relationships between sets, we can use polynomially
many “generic” variables along with polynomially many indices that determine
which region each generic variable represents. In other words, every satisfiable
QFBAPA formula has a witness of polynomial size, which indicates the values
of integer variables in the original QFBAPA formula, lists the Venn regions that
are non-empty, and indicates the cardinalities of these non-empty regions.
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F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | K dvd T

B ::= x | 0 | 1 | B1 ∪B2 | B1 ∩B2 | Bc

T ::= k | K | MAXC | T1 + T2 | K · T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 1. Quantifier-Free Boolean Algebra with Presburger Arithmetic (QFBAPA)

2 Constructing Small Presburger Arithmetic Formulas

Given a QFBAPA formula, this section shows how to construct a polynomially
larger quantifier-free PA formula. Section 3 then proves that this formula is
equisatisfiable with the original one.

Consider an arbitrary QFBAPA formula in the syntax of Figure 1. To analyze
the problem, we first separate PA and BA parts of the formula by replacing
b1 = b2 with b1 ⊆ b2 ∧ b2 ⊆ b1, replacing b1 ⊆ b2 with |b1 ∩ bc

2| = 0, and then
introducing integer variables ki for all cardinality expressions |bi| occurring in the
formula. With a constant increase in size, we obtain an equisatisfiable QFBAPA
formula of the form G ∧ F where G is a quantifier-free PA formula and F is of
the form

p∧
i=0

|bi| = ki (1)

We assume b0 = 1 and k0 = MAXC, i.e., the first constraint is |1| = MAXC.
Let y1, . . . , ye be the set variables in b1, . . . , bp. If we view each Boolean

algebra formula bi as a propositional formula, then for β = (p1, . . . , pe) where
pi ∈ {0, 1} let JbiKβ ∈ {0, 1} denote the truth value of bi under the propositional
valuation assigning the truth value pi to the variable yi. Let further sβ denote
the Venn region associated with β, given by sβ = ∩e

j=1y
pj

j where y0
j = yc

j is
set complement and y1

j = yj . We then have |bi| =
∑

β|=bi
|sβ |. For the sake

of analysis, for each β ∈ {0, 1}e introduce a non-negative integer variable lβ
denoting |sβ |. Then (1) is equisatisfiable with the exponentially larger PA formula

p∧
i=0

∑ {
lβ | β ∈ {0, 1}e ∧ JbiKβ=1

}
= ki (2)

Instead of this exponentially large formula where β ranges over all 2e proposi-
tional assignments, we will check the satisfiability of a smaller formula

G ∧
p∧

i=0

∑ {
lβ | β ∈ {β1, . . . , βN} ∧ JbiKβ=1

}
= ki (3)

where β ranges over a set of N assignments β1, . . . , βN for βi = (pi1, . . . , pie) and
pij are fresh free variables ranging over {0, 1}. Let d = p + 1. We are interested
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in the best upper bound N(d) on the number of non-zero Venn regions over all
possible systems of equations. In the sequel we show that N(d) is polynomial and
therefore polynomial in the size of the original QFBAPA formula. This result will
prove that QFBAPA is in NP and give an effective bound on how to construct
a quantifier-free PA formula for checking the satisfiability of a given QFBAPA
formula.
Some details on PA encoding of QFBAPA. We next provide some details on
the encoding of the formula (3) in quantifier-free PA, to convince the reader that
the resulting formula is indeed polynomially large as long as N is polynomial in
d. Let cij = JbiKβj for 1 ≤ i ≤ p and 1 ≤ j ≤ N . Then we need to express in
quantifier-free PA the sum

∑N
j=1 cij lβj = ki. It suffices to show how to efficiently

express sums with boolean variable (as opposed to constant) coefficients. We
illustrate this encoding for our particular example. Introduce variables sij whose
purpose is to store the value of the partial sum sij =

∑j
k=1 ciklβk

. Introduce
formula si0 = 0 as well as

(p ↔ JdbieKβj
) ∧

(p → sij = si(j−1) + lβj ) ∧
(¬p → sij = si(j−1))

(Dij)

where JdbieKβj
denotes the propositional formula corresponding to bi with propo-

sitional variables of βj substituted for the corresponding sets. We therefore ob-
tain dN polynomially sized expressions (Dij), so if N is polynomial in d, the
entire formula (3) is polynomial.

3 Upper Bound on the Number of Non-Zero Venn
Regions

We next prove that the number of non-zero Venn regions can be assumed to
be polynomial in d. Let Z denote the set of integers and Z≥0 denote the set of
non-negative integers. We write

∑
X for

∑
y∈X

y.

Definition 1. For X ⊆ Zd a set of integer vectors, let

int cone(X) = {λ1x1 + . . . + λtxt | t ≥ 0 ∧ x1, . . . , xt ∈ X ∧ λ1, . . . , λn ∈ Z≥0}

denote the set of all non-negative integer linear combination of vectors from X.

To prove the bound on the number N of non-empty Venn regions from Sec-
tion 2, we use a variation of the following result, established as Theorem 1(ii)
in [10].

Fact 1 (Eisenbrand, Shmonina (2005)) Let X ⊆ Zd be a finite set of in-
teger vectors and M = max{(maxd

i=1 |xi
j |) | (x1

j , . . . , x
d
j ) ∈ X} be the bound on

the coordinates of vectors in X. If b ∈ int cone(X), then there exists a subset
X̃ ⊆ X such that b ∈ int cone(X̃) and |X̃| ≤ 2d log(4dM).
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To apply Fact 1 to formula (2), let X = {xβ | β ∈ {0, 1}e} where xβ ∈ {0, 1}e is
given by

xβ = (Jb0Kβ , Jb1Kβ , . . . , JbeKβ).

Fact 1 implies is that if (k0, k1, . . . , kp) ∈ int cone(X) where ki are as in for-
mula (2), then (k0, k1, . . . , kp) ∈ int cone(X̃) where |X̃| = 2d log(4d) (note that
M = 1 because xβ are {0, 1}-vectors). The subset X̃ corresponds to selecting
a polynomial subset of N Venn region cardinality variables lβ and assuming
that the remaining ones are zero. This implies that formulas (2) and (3) are
equisatisfiable.

A direct application of Fact 1 yields N = 2d log(4d) bound, which is sufficient
to prove that QFBAPA is in NP. However, because this bound is not tight, in the
sequel we prove results that slightly strengthen the bound and provide additional
insight into the problem.

4 Properties of Nonredundant Integer Cone Generators

Definition 2. Let X be a set of integer vectors. We say that X is a nonredun-
dant integer cone generator for b, and write NICG(X, b), if b ∈ int cone(X), and
for every y ∈ X, b /∈ int cone(X \ {y}).

Lemma 1 says that if NICG(X, b) for some b, then the sums of vectors
∑

Y for
Y ⊆ X are uniquely generated elements of int cone(X).

Lemma 1. Suppose NICG(X, b). If λ1, λ2 : X → Z≥0 are non-negative integer
coefficients for vectors in X such that∑

x∈X

λ1(x)x =
∑
x∈X

λ2(x)x (4)

and λ1(x) ∈ {0, 1} for all x ∈ X, then λ2 = λ1.

Proof. Suppose NICG(X, b), λ1, λ2 : X → Z≥0 are such that (4) holds and
λ1(x) ∈ {0, 1} for all x ∈ X, but λ2 6= λ1. If there are vectors x on the left-
hand side of (4) that also appear on the right-hand side, we can cancel them.
We obtain an equality of the form (4) for distinct λ′1, λ

′
2 with the additional

property that λ′1(x) = 1 implies λ′2(x) = 0. Moreover, not all λ′1(x) are equal to
zero. By b ∈ int cone(X), let λ : X → Z≥0 be such that b =

∑
x∈X λ(x)x. Let

x0 be such that λ′1(x0) = min{λ(x) | λ′1(x) = 1}. By construction, λ′1(x0) = 1
and λ′2(x0) = 0. We then have, with x in sums ranging over X:

b =
∑

λ′
1(x)=1

λ(x)x +
∑

λ′
1(x)=0

λ(x)x

=
∑

λ′
1(x)=1

(λ(x)− λ(x0))x + λ(x0)
∑

λ′
1(x)=1

x +
∑

λ′
1(x)=0

λ(x)x

=
∑

λ′
1(x)=1

(λ(x)− λ(x0))x + λ(x0)
∑

λ′2(x)x +
∑

λ′
1(x)=0

λ(x)x

In the last sum, the coefficient next to x0 is zero in all three terms. We conclude
b ∈ int cone(X \ {x0}), contradicting NICG(X, b).
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We write NICG(X) as a shorthand for NICG(X,
∑

X). Theorem 1 gives
several equivalent characterizations of NICG(X).

Theorem 1. Let X ⊆ {0, 1}d. The following statements are equivalent:

1) there exists a vector b ∈ Zd
≥0 such that NICG(X, b);

2) If λ1, λ2 : X → Z≥0 are non-negative integer coefficients for vectors in X
such that ∑

x∈X

λ1(x)x =
∑
x∈X

λ2(x)x

and λ1(x) ∈ {0, 1} for all x ∈ X, then λ2 = λ1.
3) For {x1, . . . , xn} = X (for x1, . . . , xn distinct), the system of d equations

expressed in vector form as

λ(x1)x1 + . . . + λ(xn)xn =
∑

X (5)

has (λ(x1), . . . , λ(xn)) = (1, . . . , 1) as the unique solution in Zn
≥0.

4) NICG(X).

Proof. 1) → 2): This is Lemma 1.
2) → 3): Assume 2) and let λ1(xi) = 1 for 1 ≤ i ≤ n. For any solution λ2

we then have
∑

x∈X λ1(x)x =
∑

x∈X λ2(x)x, so λ2 = λ1. Therefore, λ1 is the
unique solution.

3) → 4): Assume 3). Clearly
∑

X ∈ int cone(X); it remains to prove that
X is minimal. Let y ∈ X. For the sake of contradiction, suppose

∑
X ∈

int cone(X \ {y}). Then there exists a solution λ(x) for (5) with λ(y) = 0 6= 1,
a contradiction with the uniqueness of the solution.

4) → 1): Take b =
∑

X.

Corollary 1 is used in [10] to establish the bound on the size of X with
NICG(X). We obtain it directly from Lemma 1 taking λ2(x) ∈ {0, 1}.

Corollary 1. If NICG(X) then for Y1, Y2 ⊆ X, Y1 6= Y2 we have
∑

Y1 6=
∑

Y2.

The following lemma says that it suffices to establish bounds on the cardi-
nality of X such that NICG(X), because they give bounds on all X.

Lemma 2. If b ∈ int cone(X), then there exists a subset X̃ ⊆ X such that
b ∈ int cone(X̃) and NICG(X̃, b).

Proof. If b ∈ int cone(X) then by definition b ∈ int cone(X0) for a finite X0 ⊆ X.
If not NICG(X0, b), then b ∈ int cone(X1) where X1 is a proper subset of X0.
Continuing in this fashion we obtain a sequence X0 ⊃ X1 ⊃ . . . ⊃ Xk where
k ≤ |X0|. The last element Xk satisfies NICG(Xk, b).

Moreover, the property NICG(X) is hereditary, i.e. it applies to all subsets
of a set that has it.1

1 The reader familiar with matroids [32] might be interested to know that, for d ≥ 4,
the family of sets {X ⊆ {0, 1}d | NICG(X)} is not a matroid, because it contains
multiple subset-maximal elements of different cardinality.
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Lemma 3. If NICG(X) and Y ⊆ X, then NICG(Y ).

Proof. Suppose that NICG(X) and Y ⊆ X but not NICG(Y,
∑

Y ). Because∑
Y ∈ int cone(X), there is z ∈ Y such that

∑
Y ∈ int cone(Y \ {z}). Then

also
∑

Y ∈ int cone(X \ {z}), contradicting Lemma 1.

The following theorem gives our bounds on |X|. As in [10], we only use
Corollary 1 instead of the stronger Lemma 1, suggesting that the bound is not
tight.

Theorem 2. Let X ⊆ {0, 1}d and NICG(X). Then

|X| ≤ (1 + ε(d))(d log d) (6)

where ε(d) ≤ 1 for all d ≥ 1, and lim
d→∞

ε(d) = 0.

Proof. Let X ⊆ {0, 1}d, NICG(X) and N = |X|. We first prove 2N ≤ (N + 1)d.
Suppose that, on the contrary, 2N > (N +1)d. If

∑
Y = (x1, . . . , xd) for Y ⊆ X,

then 0 ≤ xj ≤ N because Y ⊆ {0, 1}d and |Y | ≤ N . Therefore, there are
only (N + 1)d possible sums

∑
Y . Because there are 2N subsets Y ⊆ X, there

exist two distinct subsets U, V ∈ 2X such that
∑

U =
∑

V . This contradicts
Corollary 1. Therefore, 2N ≤ (N + 1)d, so N ≤ d log(N + 1).

We first show that this implies N ≤ 2d log(2d). We show the contrapositive.
Suppose N > 2d log(2d). Then N

2d > log(2d) from which we have:

1 <
2

N
2d

2d
(7)

Moreover, d ≥ 1 so N
2d > log(2d) ≥ log 2 = 1, which implies

log(1 +
N

2d
) ≤ N

2d
(8)

From (7) and (8) we have, similarly to [10],

d log(N + 1) < d log(N 2
N
2d

2d + 1) = d log(2
N
2d ( N

2d + 2−
N
2d )) < d log(2

N
2d ( N

2d + 1))

= d( N
2d + log(1 + N

2d )) < d( N
2d + N

2d ) = N.

By contraposition, from N ≤ d log(N + 1) we conclude N ≤ 2d log(2d). Substi-
tuting this bound on N back into N ≤ d log(N + 1) we obtain

N ≤ d log(N + 1) ≤ d log(2d log(2d) + 1) = d log(2d(log(2d) + 1
2d ))

= d(1 + log d + log(log(2d) + 1
2d )) = d log d(1 + 1+log(log(2d)+ 1

2d )

log d )

so we can let

ε(d) =
1 + log(log d + 1 + 1

2d )
log d

.

It may be of interest for problems arising in practice that, for d ≤ 23170 we have
ε(d) ≤ 5

log d and thus N ≤ d(log d + 5).
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We can now define the function whose bounds we are interested in computing.

Definition 3. N(d) = max{|X| | X ⊆ {0, 1}d,NICG(X)}

Theorem 2 implies N(d) ≤ (1 + ε(d))(d log d).

5 Notes on Lower Bounds and Set Algebra with Real
Measures

While we currently do not have a tight lower bound on N(d), in this section we
show, in sequence, the following:

1. d ≤ N(d) for all d;
2. NR(d) = d if we use real variables instead of integer variables;
3. N(d) = d for d ∈ {1, 2, 3};
4. for d +

⌊
d
4

⌋
≤ N(d) for 4 ≤ d.

We first show d ≤ N(d).

Lemma 4. Let X = {(x1
i , . . . , x

d
i ) | 1 ≤ i ≤ n} and

X+ = {(x1
i , . . . , x

d
i , 0) | 1 ≤ i ≤ n} ∪ {(0, . . . , 0, 1)}

Then NICG(X) if and only if NICG(X+).

Corollary 2. N(d) + 1 ≤ N(d + 1) for all d ≥ 1.

Proof. Let X ⊆ {0, 1}d, NICG(X), and |X| = N(d). Then NICG(X+) by
Lemma 4 and |X+| = N(d) + 1, which implies N(d + 1) ≥ N(d) + 1.

Note that we have N(1) = 1 because there is only one non-zero {0, 1} vector
in one dimension. From Corollary 2 we obtain our lower bound, with standard
basis as NICG.

Lemma 5. d ≤ N(d). Specifically, NICG({e1, . . . , ed}).

Note that for X = {e1, . . . , ed} we have int cone(X) = Zd
≥0, which implies

that X is a maximal NICG, in the sense that no proper superset W ⊃ X for
W ⊆ {0, 1}d has the property NICG(W ).
Real-valued relaxation of QFBAPA. It is interesting to observe that, for a
variation of the QFBAPA problem over real numbers, which we call QFBALA
(Quantifier-Free Boolean Algebra with Linear Arithmetic), we have N ′(d) = d
as a lower and upper bound for every d.

We define QFBALA similarly as QFBAPA, but we use real (or rational) lin-
ear arithmetic instead of integer linear arithmetic and we interpret |A| is some
real-valued measure of the set A. A possible application of QFBALA are gen-
eralizations of probability consistency problems such as [5, Page 385, Example
8.3]. Set algebra operations then correspond to the σ-algebra of events, and the
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measure of the set is the probability of the event. Another model of QFBALA is
to interpret sets as finite disjoint unions of intervals contained in [0, 1], and let
|A| be the sum of the lengths of the disjoint intervals making up A.

The conditions we are using on the models are 1) for two disjoint sets A,B,
we have |A ∪ B| = |A| + |B|, and 2) if |C| = p and 0 ≤ q ≤ p, then there
exists B ⊆ C such that |B| = q. (In addition, if the model allows |A| = 0 for
A 6= ∅, then we introduce an additional propositional variable for each Venn
region variable to track its emptiness.)

We can reduce the satisfiability of QFBALA to the satisfiability of a quantifier-
free linear arithmetic formula over reals and a formula of the form (2) but with
lβ non-negative real values instead of integer values. We then reduce formula (2)
to a formula of the form (2). The question is then, what can we use as the bound
N ′(d) for QFBALA problems? This question reduces to following. Define convex
cone generated by a set of vectors by

cone(X) = {λ1x1 + . . . + λtxt | t ≥ 0 ∧ x1, . . . , xt ∈ X ∧ λ1, . . . , λn ≥ 0}

where λ1, . . . , λn ∈ R are non-negative real coefficients. If b ∈ cone(X), what
bound can we put on the cardinality of a subset X̃ ⊆ X such that X ∈ cone(X̃)?
Note that d is a lower bound, using the same example of unit vectors as X. In
the case of real numbers, Carathéodory’s theorem [8] states that d is an upper
bound as well: b ∈ cone(X̃) for some X̃ of cardinality at most d. We can also
explain that N ′(d) = d using the terminology of linear programming [30]. The
equations (2) along with lβ ≥ 0 for β ∈ {0, 1}e determine a polytope in R2e

, so
if they have a solution, they have a solution that is a vertex of the polytope.
The vertex in R2e

is the intersection of 2e hyperplanes, of which at most d are
given by (2), so the remaining ones must be hyperplanes of the form lβ = 0.
This implies that at least 2e − d coordinates of the vertex are zero and at most
d of them can be non-zero.

Note that QFBALA is a relaxation of QFBAPA, and can be used as a sound
(but incomplete) method for proving the absence of solutions of a QFBAPA
formula.
N(d) = d for d ∈ {1, 2, 3}. We next show that for d ∈ {1, 2, 3} not only
d ≤ N(d) but also N(d) ≤ d.

Lemma 6. N(d) = d for d ∈ {1, 2, 3}.

Proof. By Corollary 2, if N(d + 1) = d + 1, then N(d) + 1 ≤ d + 1 so N(d) ≤ n.
Therefore, N(d) = 3 implies N(2) = 2 as well, so we can take d = 3.

If N(d) > d, then there exists a set X with NICG(X) and |X| > d. From
Lemma 3, a subset X0 ⊆ X with |X| = d+1 also satisfies NICG(X0). Therefore,
N(3) = 3 is equivalent to showing that there is no set X ⊆ {0, 1}3 with NICG(X)
and |X| = 4.

Consider a possible counterexample X = {x1, x2, x3, x4} ⊆ {0, 1}3 with b ∈
X. By previous argument on real-value relaxation, N ′(3) = 3, so b is in convex
cone of some three vectors from X, say b ∈ cone({x1, x3, x3}). On the other hand,
b /∈ int cone({x1, x3, x3}). If we consider a system λ1x1 + λ2x2 + λ3x3 = b this
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implies that such system has solution over non-negative reals, but not over non-
negative integers. This can only happen if in the process of Gaussian elimination
we obtain coefficients whose absolute value is more than 1. The only set of three
vectors for which this can occur is X1 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} We then
consider all possibilities for the fourth vector in X, which, modulo symmetry of
coordinates are (0, 0, 0), (1, 1, 1), (1, 1, 0), and (1, 0, 0). However, adding any of
these vectors violates the uniqueness of the solution to λ1x1 + λ2x2 + λ3x3 +
λ4x4 =

∑
X, so NICG(X) does not hold by Theorem 1, condition 3).

N = 5
4
d − 3

4
lower bound. I next show that there exists an example X5 ⊆

{0, 1}4 with NICG(X5) and |X5| = 5. From this it follows that N(d) > d for all
d ≥ 4.

Consider the following system of 4 equations with 5 variables, where all vari-
able coefficients are in {0, 1}. (I found this example by narrowing down the search
using the observations on minimal counterexamples in the proof of Lemma 6.)

λ1 + λ2 + λ3 = 3

λ2 + λ3 + λ4 = 3

λ1 + λ3 + λ4 + λ5 = 4

λ1 + λ2 + λ4 + λ5 = 4

(9)

Performing Gaussian elimination yields an equivalent upper-triangular system

λ1 + λ2 + λ3 = 3

λ2 + λ3 + λ4 = 3

λ3 + 2λ4 + λ5 = 4

3λ4 + 2λ5 = 5

From this form it easy to see that the system has (λ1, λ2, λ3, λ4, λ5) = (1, 1, 1, 1, 1)
as the only solution in the space of non-negative integers. Note that all variables
are non-zero in this solution. (In contrast, as discussed above, because the sys-
tem is satisfiable, it must have a solution in non-negative reals where at most
4 coordinates are non-zero; an example of such solution is (λ1, λ2, λ3, λ4, λ5) =
(0, 1.5, 1.5, 0, 2.5).) The five columns of the system (9) correspond to the set
of vectors X5 = {(1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), (0, 1, 1, 1), (0, 0, 1, 1)} such that
NICG(X5). The set X5 is also a maximal NICG, because adding any of the
remaining 9 non-zero vectors in {0, 1}4 \X5 results in a set that is not NICG.

Using k identical copies of X5 (with 4 equations in a group mentioning a
disjoint set of 5 variables) we obtain systems of 4k equations with 5k variables
such that the only solution is a vector (1, . . . , 1) of all ones. By adding p unit
vector columns for 1 ≤ p ≤ 3, we also obtain systems of 4k + p equations with
5k + p variables, with

N =
5
4
d− p

4
= d +

⌊
d

4

⌋
≥ 5

4
d− 3

4
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which, in particular, shows that N = d upper bound is invalid for all d ≥ 4.
This argument shows that there exist maximal NICG of size larger than d

for d ≥ 4. As we have remarked before, the set of d unit vectors is a maximal
NICG for every d, which means that, unlike linearly independent sets of vectors
over a field or other independent sets in a matroid [32], there are maximal NICG
sets of different cardinality.

Note also that X5 is not a Hilbert basis [31]. Namely, we have that (1, 1, 1, 1) ∈
cone(X5) \ int cone(X5) because

(1, 1, 1, 1) = 1/3((1, 0, 1, 1) + (1, 1, 0, 1) + (1, 1, 1, 0) + (0, 1, 1, 1)).

This illustrates why previous results on Hilbert bases do not directly apply to
the notion of NICG.

6 A decision procedure for QFBAPA

Using Theorem 2 we obtain a non-deterministic polynomial-time algorithm for
checking QFBAPA satisfiability. For formulas generated from verification, it is
likely that a QFBAPA decision procedure implementation can effectively use
bounds smaller than (1+ ε(d))d log d to find counterexamples and to prove their
absence, as follows.

1. Attempt to find counterexamples for small N . If a counterexample for any
N is found, it is a valid counterexample. One could expect that such coun-
terexamples would often be found by “small scope hypothesis” [13] for typical
formulas arising in software verification.

2. If no counterexample is found for small N , then the decision procedure can
use the bound N = d with real linear arithmetic and try to prove the absence
of solutions. No solutions found means that the original QFBAPA problem
has no solutions either. The examples from [18] and the experience from [9,
Section 8] suggest that this approach would often succeed in proving the
absence of solutions for unsatisfiable QFBAPA formulas.

3. Finally, if a solution is found in real numbers but not for small N in integers,
then the system can use the bound N = (1 + ε(d))d log d, which gives a
definite answer thanks to Theorem 2.

The first two steps can be viewed as heuristics for finding the answer faster in
common cases; their usefulness remains to be experimentally evaluated.

7 Related Work

To our knowledge, our result is the only decision procedure for a logic with
sets and cardinality constraints that does not explicitly construct all set parti-
tions. Using a new form of small model property, the “small number of non-zero
variables property”, we obtained a non-deterministic polynomial-time algorithm
that can be solved by producing polynomially large quantifier-free Presburger

11



arithmetic formulas. A polynomial bound sufficient for our result can be de-
rived from [10]. In addition to slight improvements in the bounds, we introduced
the notion of nonredundant integer cone generators and proved additional re-
sults that may help us understand their properties and eventually establish tight
bounds on their size. We note that previous results such as [31] consider ma-
troids and Hilbert bases. In contrast, nonredundant integer cone generators are
the natural notion for our problem. As we remark in Section 5, the sets of vectors
X with NICG(X) do not form a matroid, and maximal NICG(X) need not be
a Hilbert basis. Note also that the equations generated from QFBAPA problems
are more difficult than set packing and set partitioning problems [2] because
integer variables are not restricted to be {0, 1}.
Presburger arithmetic. The original result on decidability of PA is [28]. The
space bound for PA was shown in [12]. The matching lower and upper bounds
for PA were shown in [4], see also [14, Lecture 24].
Reasoning about Sets. The first results on decidability of BA of sets are
from [22], [1, Chapter 4] and use quantifier elimination, from which one can derive
small model property. [14] gives the complexity of the satisfiability problem
for arbitrary BA. [25] study unification in Boolean rings. The quantifier-free
fragment of BA is shown NP-complete in [24]; see [20] for a generalization of this
result using the parameterized complexity of the Bernays-Schönfinkel-Ramsey
class of first-order logic [6, Page 258]. [7] gives an overview of several fragments
of set theory including theories with quantifiers but no cardinality constraints
and theories with cardinality constraints but no quantification over sets. The
decision procedure for quantifier-free fragment with cardinalities in [7, Chapter
11] introduces exponentially many integer variables to reduce the problem to
PA.
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