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Abstract. We study the problem of synthesizing string to string trans-
formations from a set of input/output examples. The transformations we
consider are expressed using a particular class of transducers: functional
non-deterministic Mealy machines (f-NDMM). These are machines that
read input letters one at a time, and output one letter at each step. The
functionality constraint ensures that, even though the machine is locally
non-deterministic, each input string is mapped to exactly one output
string by the transducer.
We suggest that, given a set of input/output examples, the smallest
f-NDMM consistent with the examples is a good candidate for the trans-
formation the user was expecting. We therefore study the problem of,
given a set of examples, finding a minimal f-NDMM consistent with the
examples and satisfying the functionality and totality constraints men-
tioned above.
We prove that, in general, the decision problem corresponding to that
question is NP-complete, and we provide several NP-hardness proofs that
show the hardness of multiple variants of the problem.
Finally, we propose an algorithm for finding the minimal f-NDMM consis-
tent with input/output examples, that uses a reduction to SMT solvers.
We implemented the algorithm, and used it to evaluate the likelihood
that the minimal f-NDMM indeed corresponds to the transformation
expected by the user.

1 Introduction

Programming by examples is a form of program synthesis that enables users to
create programs by presenting input/output examples. In this paper, we analyze
the problem of synthesizing string-to-string transformations from examples.

We consider string transformations that can be represented by finite-state
automata, called functional non-deterministic Mealy machines (f-NDMM) [17].
f-NDMMs output one letter for each input letter which is read. Non-determinism
refers to the fact that f-NDMMs are allowed to have two outgoing transitions
from the same state labeled by the same input, while functionality ensures that
overall, one input string is mapped to at most one output string. Moreover, if
every input string has a corresponding output string, the automaton is called
total.

Synthesizing an arbitrary total f-NDMM consistent with input/output exam-
ples can be solved in polynomial time, by having the f-NDMM return a default
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string for the inputs which are not specified in the example. The issue with this
basic approach is that the generated automaton might not be what the user had
in mind when giving the input/output examples. In other words, input/output
examples are not a complete specification, and are ambiguous.

As one of the simplest and robust criteria to rank possible solutions, we
propose to synthesize a minimal automaton consistent with given input/output
examples. For sufficiently long input/output descriptions, the requirement of
minimality then forces the automaton to generalize from input/output examples.
This rationale is analogous to motivation for Syntax-Guided Synthesis [2]. In our
case we use automata minimality as a somewhat application-agnostic criterion.
Furthermore, we can in principle leverage the insights from automata theory
to improve the synthesis algorithm. Therefore, it is interesting to understand
the precise computational complexity of such synthesis problems and to identify
directions for promising synthesis approaches. This is the objective of our paper.

Complexity. We prove that the synthesis of minimal automata is in NP, by
showing that for a given set of input-output examples E there always exist an
f-NDMM consistent with E whose number of states is linear with respect to the
size of E. Furthermore, we show how to check in deterministic polynomial time
whether a given DFA is a total f-NDMM consitent with E. An NP procedure
can iterate for i from 1 to the aforementioned bound, guess a DFA of size i, and
check that it is a total f-NDMM consistent with the input/output examples.

We also consider the associated decision problem, which asks, given a set of
input/output examples, and a target number of states k, whether there exists
a total f-NDMM consistent with the examples and which has at most k states.
We prove that this problem is NP-hard.

We give three distinct reductions, that apply for different variants of the
problem. First, we show that the problem is NP-hard when the target number of
states is fixed to 3 (but the input alphabet is part of the problem description).
Second, we show that the decision problem is NP-hard when the input and
output alphabets are fixed (but the target number of states is part of the problem
description).

Third, we study a variant of the problem for layered automata for bitvectors,
that recognize only words of some fixed length. The name layered comes from
the fact that their states can be organized into layers that recognize only words
of a certain length. We prove that the problem is still NP-hard in that setting,
despite the fact that these automata have no cycles.

Algorithm. We provide a reduction to the satisfiability of a logical formula. We
implement our reduction, and link it to the Z3 SMT solver. We evaluate our tool
and show it can successfully recover simple relations on strings from not too many
examples (but scales to many examples as well). We also evaluate the ability of
our algorithm to recover a random automaton from a sample set of input-output
examples. Our experiments suggest that it is better to give a large number
of small examples, rather than a small number of large examples. Moreover,
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to improve the chance that our algorithm finds a particular automaton, the
examples given should generally be at least as long as the number of states.

Contributions of this paper are the following:

– NP-hardness proofs for the decision problem (Sections 5 and 6),

– Proof that the minimization problem can be solved in NP (Section 7),

– A reduction from the minimization problem to a logical formula that can be
handled by SMT solvers (Section 8),

– An implementation of this reduction and experiments that evaluate the like-
lihood that minimization finds the automaton the user has in mind (Sec-
tion 9).

Some proofs are deferred to the long version [14].

Note. A preliminary version of this paper, using a different encoding into SMT
constraints for the synthesis algorithm, was presented at the SYNT 2018 work-
shop, without a proceedings entry. SYNT explicitly permits subsequent publica-
tion of such papers. Moreover, the present encoding into SMT constraints uses
only quantifier-free linear integer arithmetic and is new to this submission.

2 Notation

An alphabet Σ is a non-empty finite set of symbols. Given a natural number
n ∈ N, we denote by Σn the set of sequences (or words) of n symbols of Σ. We
denote by Σ∗ the set of finite sequences

⋃
n≥0Σ

n. For u ∈ Σ∗, |u| denotes the
length of the sequence u. A set of words is called a language.

A non-deterministic finite automaton (NFA) A is a tuple (Σ,Q, qinit, δ, F )
where Σ is an alphabet, Q is the finite set of states, qinit ∈ Q is the initial state,
δ ⊆ Q × Σ × Q is the transition function, and F ⊆ Q is the set of accepting
states. We denote by L(A) the language accepted by A, i.e. the set of words for
which there exists an accepting run in A. By an abuse of notation, the set L(A)
is sometimes denoted by A.

An NFA A is unambiguous (denoted UFA) if every word in Σ∗ has at most
one accepting run in A. An NFA is deterministic (denoted DFA) if for every
q1 ∈ Q, a ∈ Σ, there exists a unique q2 ∈ Q such that (q1, a, q2) ∈ δ. The size of
an NFA A is its number of states, and is denoted |A|.

Let Σ and Γ be two alphabets. For u ∈ Σn and v ∈ Γn where u = u1 . . . un,
v = v1 . . . vn, we denote by u ∗ v the sequence in (Σ × Γ )n where u ∗ v =
(u1, v1) . . . (un, vn). Note that the operator ∗ is well defined only when |u| = |v|.

Given two words u, v ∈ Σ∗, we denote by u �p v the fact that u is a prefix
of v. Moreover, Prefixes(v) denotes the set of prefixes of v, that is Prefixes(v) =
{u | u �p v}.
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3 Functional Non-Deterministic Mealy Machines

We consider two alphabets, an input alphabet Σ and an output alphabet Γ . A
functional non-deterministic Mealy machine (f-NDMM) is a DFA A over Σ×Γ
satisfying: for all u ∈ Σ∗, v1, v2 ∈ Γ ∗ where |u| = |v1| = |v2|, if u ∗ v1 ∈ L(A)
and u ∗ v2 ∈ L(A), then v1 = v2.

Fig. 1. An automaton that overwrites an input string with 0’s or 1’s depending on
whether the last letter of the input is a 0 or 1.

Remark 1. Note here that we model f-NDMMs with deterministic finite au-
tomata. The determinism refers to the fact given a state, an input letter and an
output letter, there is at most one outgoing transition labeled by those letters.
On the other hand, the non-determinism in the f-NDMM refers to the fact that
given one state and one input letter, there might be multiple outgoing transi-
tions, each one labeled with a distinct output letter.

Example 1. Figure 1 shows a f-NDMM that outputs a sequence of 0’s or a se-
quence of 1, depending on whether the last letter of the input is a 0 or a 1. Input
letters are written on the left-hand-side of the pair, while output letters are on
the right-hand-side.

Non-determinism is used in the initial state 4, to guess whether the last letter
of the input is a 0 or a 1. In the states 0 and 2, the automaton expects the last
letter to be a 1, while in the states 1 and 3, it expects the last letter to be a 0.
The sink state is omitted for readability (e.g. reading a 1 and outputting a 1 in
state 3 is not allowed).

Remark 2. This example illustrates the higher expressive power of f-NDMMs
compared to deterministic Mealy machines, which cannot express this transfor-
mation. On the other hand, this transformation can be expressed using more
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expressive deterministic transducers, such as transducers with look-ahead (that
are able to take decisions based by seeking ahead in the input word) or two-way
transducers (which are allowed to read the input word multiple times, back and
forth).

Due to the functionality restriction described above, an f-NDMM A defines
a partial function Ā ⊆ Σ∗ × Γ ∗, which is defined for u ∈ Σ∗ only when there
exists v ∈ Γ ∗ such that u∗v ∈ L(A). This unique word v is denoted by A(u). An
f-NDMM A is called total if the partial function Ā is total. For a set E ⊆ Σ∗×Γ ∗
we say that an f-NDMM A is consistent with E if E ⊆ Ā.

Problem 1. Let E ⊆ (Σ × Γ )∗ be finite a set of input/output examples.
Find a total f-NDMM, consistent with E (if it exists), whose size is minimal

(among all total f-NDMMs consistent with E).

We also investigate the following corresponding decision problem.

Problem 2. Let E ⊆ (Σ×Γ )∗ be a set of input/output examples, and let n ∈ N.
Does there exist a total f-NDMM, consistent with E, with size at most n?

When stating complexity results, we consider that the size of the problem is
the sum of the sizes of each word in E, plus the size of n. Our hardness result
hold even when n is represented in unary, while our proofs that Problems 1 and
2 belong to NP hold even when n is represented in binary.

3.1 Summary of the Complexity Results

Table 1 summarizes the complexity results proved in this paper. As far as we
know, the problem is open when the input alphabet has size one, i.e. |Σ| = 1.
On the other hand, when |Γ | = 1, the problem becomes trivial as the minimal
total f-NDMM consistent with given input/output examples always has a single
state with a self-loop.

Layered f-NDMMs are defined in Section 6.2, and are f-NDMMs that only
recognize words of some particular length. Even in that setting, the problem is
NP-complete.

Problem Layered f-NDMMs f-NDMMs

Problem 2 NP-complete NP-complete
With |Γ | = 2, n = 3, |E| = 1 O(1) (Remark 4) NP-complete (Sect. 5)
With |Σ| = 3, |Γ | = 2 NP-complete (Sect. 6.2) NP-complete (Sect. 6.1)
With |Σ| = 3, |Γ | = 2, |E| = 1 O(1) (Remark 4) NP-complete (Sect. 6.1)
When Σ, Γ and n are fixed in P (Remark 3) in P (Remark 3)

Table 1. Summary of the complexity results
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4 Preliminaries for the NP-hardness proofs

In Sections 5, 6.1, and 6.2, we prove NP hardness results for Problem 2 and
variants. These hardness results carry directly over to Problem 1. Indeed, any
algorithm for solving Problem 1 can be adapted to solve Problem 2.

Our proofs rely on reductions from a variant of the boolean satisfiability
problem (SAT), called One-In-Three Positive SAT.

Problem 3 (One-In-Three Positive SAT). Given a set of variables V and a set
of clauses C ⊆ V 3, does there exist an assignment f : V → {⊥,>} such that for
each (x, y, z) ∈ C, exactly one variable out of x, y, z, evaluates to > through f .

In all reductions, our goal is to build from an instance ϕ of One-In-Three
Positive SAT a set of input/output examples such that ϕ is satisfiable if and only
if there exists a total f-NDMM consistent with the examples (and satisfying the
constraints of the minimization problem at hand).

q0 q1 qn−1

(a,0) (a,0) (a,0)

(a,1)

Fig. 2. The form of automata that have an (a, 0, 1)-loop.

Our strategy for these reductions is to give input/output examples that con-
strain the shape of any total f-NDMM consistent with these examples. We give
input/output examples that ensure that any total f-NDMM consistent with the
examples must have certain transitions, and cannot have certain other transi-
tions.

For example, in Sections 5 and 6.1, we provide input/output examples that
restrict the shape of any solution to be of the form given in Figure 2. Then,
knowing that any solution must have this shape, we give additional examples
that correspond to our encoding of ϕ.

We first give a formal definition for automata that are of the shape of the
automaton given in Figure 2.

Definition 1. Let A = (Σ × Γ,Q, qinit, δ, F ) be an f-NDMM with n ∈ N states,
n ≥ 1. We say that A has an (a, 0, 1)-loop if a ∈ Σ, and 0, 1 ∈ Γ , 0 6= 1, and
the states Q of A can be ordered in a sequence q0, . . . , qn−1 such that:

– qinit = q0,
– for every 0 ≤ i < n− 1, (qi, (a, 0), qi+1) ∈ δ,
– (qn−1, (a, 1), q0) ∈ δ,
– F = Q,
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– there are no transitions in δ labeled with letter a other than the ones men-
tioned above.

The following lemma, used in Theorems 1 and 2, shows that we can give an
input/output example that forces automata to have an (a, 0, 1)-loop. The idea
is to give a long example that can only be recognized if the total f-NDMM has
an (a, 0, 1)-loop.

Lemma 1. Let A = (Σ × Γ,Q, qinit, δ, F ) be a total f-NDMM with n states,
n ≥ 1. Let u and v be two words such that:

A(a2n · u) = 0n−110n−11 · v.

Then A has an (a, 0, 1)-loop.

Proof. Consider the run of a2n ∗ 0n−110n−11 in A, of the form:

qinit = q0
(a,0)−−−→ q1

(a,0)−−−→ . . .
(a,0)−−−→ qn−1

(a,1)−−−→ qn
(a,0)−−−→ qn+1 . . .

(a,0)−−−→ q2n−1
(a,1)−−−→ q2n

where for all 0 ≤ i ≤ 2n, qi ∈ Q. By assumption, we know that from state q2n,
A accepts u ∗ v.

We want to prove that:

1. the states q0 to qn−1 are all distinct, and

2. qn = q0, and

3. there are no transitions labeled by a except the ones from the run above,
and

4. F = Q.

Note that this entails that qi = qn+i for all 0 ≤ i ≤ n.

(1) Assume by contradiction that there exist 0 ≤ i < j ≤ n − 1 such that
qi = qj . Since A only has n states, we know that there exist n ≤ k < l ≤ 2n
such that qk = ql. We consider two cases, either l < 2n, or l = 2n. If l < 2n,
then the following words are accepted by A, leading to a contradiction to the
output-uniqueness property of f-NDMMs.

– a2n−j+i−l+k+(j−i)(l−k)·u∗0n−1−j+i10n−1−l+k+(j−i)(l−k)1·v, by going through
q0 . . . qiqj+1 . . . qk−1(qk . . . ql−1)j−iql . . . q2n . . . ,

– a2n−j+i−l+k+(j−i)(l−k)·u∗0n−1−j+i+(j−i)(l−k)10n−1−l+k1·v, by going through
q0 . . . qi−1(qi . . . qj−1)l−kqj . . . qkql+1 . . . q2n . . . .

Similarly, if l = 2n, the following words are accepted by A, again leading to
a contradiction.

– a2n−j+i−l+k+(j−i)(l−k) · u ∗ 0n−1−j+i10n−l+k(0l−k−11)(j−i) · v,

– a2n−j+i−l+k+(j−i)(l−k) · u ∗ 0n−1−j+i+(j−i)(l−k)10n−l+k · v.
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We conclude that the states q0 to qn−1 are all distinct.
(2) Since the states q0 to qn−1 are all distinct, we know that qn = qi for some

0 ≤ i ≤ n − 1. Assume by contradiction that 0 < i. By doing the same case
analysis as above (either l < 2n, or l = 2n), we again find contradictions to the
output-uniqueness property of A.

(3) Assume by contradiction that there exist i 6= j with 0 ≤ i, j ≤ n − 1
and b ∈ Γ such that δ(qi, (a, b)) = qj and this transition is different than the
transitions from the run above.

If i < j, then there is an alternative loop qi, qj , qj+1, . . . , qn−1, q0, q1, . . . , qi
containing n− j + i+ 1 transitions labeled by a. In particular, this means that
the word an+n(n−j+i+1) has two different outputs in A. The first one is obtained
by going from q0 to qi, taking the alternative loop n times, and then going from
qi to q0 using the (a, 0, 1)-loop. The second is obtained by going from q0 to qi,
taking the (a, 0, 1)-loop (n− j + i+ 1) times, and then going from qi to q0 using
the (a, 0, 1)-loop. This contradicts the output-uniqueness property of A.

A similar reasoning applies when j < i, by using qi, qj , qj+1, . . . , qi as the
alternative loop.

(4) Due to the previous property, the only run labeled whose input is ai for
0 ≤ i ≤ n − 1 is the one going through q0, q1, . . . , qi in the (a, 0, 1)-loop. This
entails that for 0 ≤ i ≤ n− 1, qi is final and F = Q.

The following lemma states that multiple input/output examples may be
encoded into just one example for f-NDMMs that have an (a, 0, 1)-loop.

Lemma 2. Let A = (Σ × Γ,Q, qinit, δ, F ) be an f-NDMM with an (a, 0, 1)-loop.
Let u, v ∈ Σ∗ and u′, v′ ∈ Γ ∗ such that:

A(u · a · v) = u′ · 1 · v′.

Then A(u · a) = u′ · 1 and A(v) = v′.

Proof. Using Lemma 1, we know that A has an (a, 0, 1)-loop. Therefore, the
only transition labeled by (a, 1) is the one leading to the initial state. Therefore,
after reading (u · a) ∗ (u′ · 1), A must be in the initial state. This entails that
A(u · a) = u′ · 1 and A(v) = v′.

5 NP-Hardness of the Minimization Problem with one
Input/Output Example and Fixed Number of States

We prove the NP-hardness of Problem 2 by reducing the One-In-Three Positive
SAT problem to it. This NP-hardness proof holds even when the target number
of states for minimization is fixed to 3, the size of the output alphabet is fixed
to 2, and there is single input/output example.

Theorem 1. Problem 2 is NP-hard when the number of states is fixed, the out-
put alphabet is fixed, and there is a single input/output example.
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q0 q1 q2

(a,0)

(b,0)

(a,0)

(b,1)

(b,0) (a,1)

Fig. 3. f-NDMM used in the proof of Theorem 1.

Proof. Consider an instance ϕ of One-In-Three Positive SAT, with a set of vari-
ables V , and a set of clauses C ⊆ V 3. We reduce One-In-Three Positive SAT to
Problem 2 as follows. We define Σ = V ∪{a, b}, where a and b are fresh symbols
and Γ = {0, 1}. Moreover, we define n = 3 (fixed number of states).

Then, we define E = {w} where w is one input/output example made of the
concatenation of all the following words (the word aaaaaa∗001001 must go first
in the concatenation, but the other words can be concatenated in any order):

– aaaaaa ∗ 001001,
– baaa ∗ 0001,
– abaaa ∗ 00001,
– aabaaa ∗ 001001,
– xbaaa ∗ 00001 for all x ∈ V ,
– xxxaaa ∗ 000001 for all x ∈ V ,
– axxxaa ∗ 000001 for all x ∈ V ,
– aaxxxa ∗ 000001 for all x ∈ V ,
– xyzaa ∗ 00001 for all (x, y, z) ∈ C.

We prove that ϕ has a satisfying assignment if and only if there exists a total
f-NDMM A, consistent with E, and with (at most) 3 states.

(⇒) Let f : V → {⊥,>} be a satisfying assignment for ϕ. We define A =
(Σ×Γ,Q, qinit, δ, F ) following Figure 3 with Q = F = {q0, q1, q2} and qinit = q0.
The transitions involving a ∈ Σ in A are: (q0, (a, 0), q1), (q1, (a, 0), q2) ∈ δ, and
(q2, (a, 1), q0) ∈ δ.

Then, for each x ∈ V , if f(x) = >, we add three transitions in δ, called
forward transitions: (q0, (x, 0), q1), (q1, (x, 0), q2), and (q2, (x, 0), q0). If f(x) =
⊥, we add three transitions as well, called looping transitions: (q0, (x, 0), q0),
(q1, (x, 0), q1), and (q2, (x, 0), q2).

A is a total f-NDMM, since all states are final, and for every state and every
input in Σ, there is a unique outgoing transition labeled by this input (and some
output in Γ ). Moreover, we can verify that A is consistent with the input/output
example w.

(⇐) Let A = (Σ×Γ,Q, qinit, δ, F ) be a total f-NDMM with 3 states, and con-
sistent with E. Our proofs goes as follows. First, using Lemma 1 and Lemma 2,
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we deduce that A must have an (a, 0, 1)-loop, and must accept all the indi-
vidual words that constitute the concatenation w. Then, using the facts that
A(baaa) = 0001, A(abaaa) = 00001, A(aabaaa) = 001001, we deduce that A
must contain the transitions present in Figure 3, and no other transitions la-
beled by b.

Then, for each variable x ∈ V , using the facts that A(xbaaa) = 00001 and
A(xxxaaa) = A(axxxaa) = A(aaxxxa) = 000001, we show that x must either
have looping transitions, or forward transitions, as described in the first part of
the proof. We then use this fact to define f that assigns > to variables that have
forward transitions, and ⊥ to variables that have looping transitions.

Finally, for each clause (x, y, z) ∈ C, and using A(xyzaa) = 00001, we deduce
that exactly one variable out of x, y and z must have forward transitions, and
conclude that f is a satisfying assignment for ϕ.

We now give more details for each step of the proof. Our first goal is to prove
that A must contain the transitions given in Figure 3. Since A(baaa) = 0001, we
know that after reading (b, 0), A must be in state q0, and therefore there exists
a transition (q, 0, (b, 0), q0) ∈ δ. Using A(abaaa) = 00001 and A(aabaaa) =
001001 respectively, we deduce that there exist transitions (q, 1, (b, 0), q0) and
(q, 2, (b, 1), q0) in δ. Using the output-uniqueness property of A, we can verify
that there can be no other transitions labeled by b in A.

Our next goal is to prove that for each variable x ∈ V , x must either have
looping transitions or forward transitions.

Since xbaaa ∗ 00001 ∈ A and the only transitions labeled by (b, 0) are the
ones from states q0 and q1, we deduce that from the initial state, reading (x, 0)
must lead either to q0 or q1, and therefore there should either exist a transition
(q0, (x, 0), q1) ∈ δ or a transition (q0, (x, 0), q0) ∈ δ.

Assume (q0, (x, 0), q1) ∈ δ. In that case, we prove that x has forward tran-
sitions, in the sense that there are transitions (q1, (x, 0), q2) and (q2, (x, 0), q0)
in δ. We know xxxaaa ∗ 0000001 ∈ A. Since the only state from which the
word aaa ∗ 001 is accepted is q0, the automaton A must end in q0 after reading
xxx ∗ 000. Moreover, since (q0, (x, 0), q1) ∈ δ, we know A ends in state q1 after
reading (x, 0) in the initial state. Therefore, when reading xx ∗ 00 from state q1,
A must end in state q0. The only way this is possible is by having transitions
(q1, (x, 0), q2) and (q2, (x, 0), q0) in δ.

The other case we consider is when (q0, (x, 0), q0) ∈ δ. Here, we want to
prove that x has looping transitions, with (q1, (x, 0), q1) and (q2, (x, 0), q2) in δ.
We know axxxaa∗000001 ∈ A. The only state from which aa∗01 can be accepted
is q1. Moreover, A ends in state q1 after reading (a, 0). Therefore, A must go
from state q1 to q1 by reading xxx ∗ 000. Due to the self-loop (q0, (x, 0), q0) ∈ δ,
the only possibility for this is to have a loop (q1, (x, 0), q1) ∈ δ. Similarly, using
aaxxxa ∗ 000001 ∈ A, we deduce there is a loop (q1, (x, 0), q1) ∈ δ.

Overall, we have shown that each variable x ∈ V either has forward tran-
sitions, or looping transitions. We now define the assignment f that assigns >
to variables that have forward transitions, and ⊥ to variables that have looping
transitions. Let (x, y, z) ∈ C. We know xyzaa ∗ 00001 ∈ A. The only state from
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which aa ∗ 01 can be accepted is q1. Therefore, A must end in state q1 after
reading xyz ∗ 000. The only way for this to be the case is that exactly one of x,
y, z has forward transitions, while the two others have looping transitions.

6 NP-Hardness Proofs for Other Variants

In this section, we give two other NP-hardness proofs, that cover instances of
the problem which are not comparable to the ones treated in Section 5.

These proofs also follow the idea of reducing from the One-In-Three Positive
SAT problem, but require new encodings. The proofs are deferred to the long
version [14].

6.1 NP-Hardness of the Minimization Problem with One
Input/Output Example and Fixed Alphabets

Our second NP-hardness proof holds for the case where the sizes of both input
and output alphabets are fixed, and there is a single input/output example.
When the input and output alphabets are fixed, we can no longer use the encod-
ing given in the previous section, where we could associate to each variable of
the SAT formula a letter in our alphabet. Instead, we here rely on the fact that
the target number of states is not fixed. As such, this theorem is complementary
to Theorem 1.

Theorem 2. Problem 2 is NP-hard when the alphabets Σ and Γ are fixed, and
there is a single input/output example.

Remark 3. Note that if the input and output alphabets as well as the target
number of states are fixed, then Problem 2 can be solved in polynomial time.
The reason is that when all these parameters are constants, then there is only a
constant number of f-NDMMs to explore.

6.2 NP-Hardness of the Minimization Problem for Layered
Automata

In this section, we cover automata that only recognize words of the same length.
An NFA A = (Σ,Q, qinit, δ, F ) is said to be l-layered for l ∈ N if A only accepts
words of length l, i.e. L(A) ⊆ Σl. An l-layered f-NDMM A = (Σ×Γ,Q, qinit, δ, F )
is called l-total if the domain of the function associated with A is Σl.

We then adapt Problem 2 for this setting.

Problem 4. Let Σ be an input alphabet, Γ an output alphabet, and l ∈ N. Let
u1 ∗ v1, ..., uk ∗ vk be a set of input/output examples, with ui ∈ Σl and vi ∈ Γ l
for all 1 ≤ i ≤ k. Let n ∈ N.

Does there exist an l-layered and l-total f-NDMMs that accepts ui ∗ vi for all
1 ≤ i ≤ k, and that has at most n states.
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The following theorem proves that Problem 4 is NP-hard, even when the
alphabets are fixed. In this theorem, we can no longer rely on Lemmas 1 and 2,
since layered automata cannot contain cycles. Instead, we have to use multiple
input/output examples in our encoding.

Theorem 3. Problem 4 is NP-hard when the alphabets Σ and Γ are fixed.

Remark 4. When there is a single input/output example, Problem 4 can be
solved in polynomial time. The reason is that, in a layered f-NDMM, we need
at least as many states as the size of the example (plus one) to recognize it.
Therefore, the minimal layered f-NDMM that recognizes one given input/output
example is easy to construct, by using that many states.

7 Solving the Minimization Problem in NP

We now focus on finding an algorithm for solving the minimization problems 1
and 2. In this section, we propose an approach which solves the problem in
non-deterministic polynomial-time. Combined with the proofs in the previous
sections, we can deduce that Problem 2 is NP-complete.

The key is to prove (see Lemma 3) that for any valid set of input/output
examples, there exists a total f-NDMM, consistent with E, and whose size is at
most 2 +

∑
w∈E |w|. Then, a naive minimization approach can iterate through

all integers i between 1 and this bound, guess non-deterministically a DFA A
of size i, and check whether A is a total f-NDMM consistent with E. We prove
that this final check can be done in polynomial time (see Lemma 4), meaning
that the whole procedure has non-deterministic polynomial time.

Lemma 3. Let E ⊆ (Σ × Γ )∗ be a valid set of input/output examples. There
exists a total f-NDMM, consistent with E, with at most 2 +

∑
w∈E |w| states.

Proof. We define T = (Σ × Γ,QT , qTinit, δ
T , FT ) to be a tree-shaped (partial)

f-NDMM consistent with E, as follows:

– QT is the set of all prefixes of E,
– qTinit = ε,
– δT = {(q1, (a, b), q2) | q1, q2 ∈ E ∧ q2 = q1 · (a, b)},
– FT = E.

By construction, T has at most 1 +
∑
w∈E |w| states.

Let P = Prefixes(dom(E)) ⊆ Σ∗ be the set of all prefixes of dom(E). For
each u ∈ P , we choose v ∈ Γ ∗ as follows:

– if u ∈ dom(E), choose v as the unique word such that u ∗ v ∈ E,
– otherwise, choose any v such that u ∗ v ∈ Prefixes(E).

We denote by P ′ ⊆ Prefixes(E) the set of pairs (u, v) where u ∈ P and v is the
corresponding word, chosen in the previous step. Let b0 ∈ Γ be a letter of the
output alphabet. We define the automaton A = (Σ × Γ,Q, qinit, δ, F ), which is
a total f-NDMM consistent with E, as follows:
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– Q = QT ∪ {qf} where qf is a new state,

– qinit = qTinit,

– δ = δT ∪
{(qf , (a, b0), qf ) | a ∈ Σ} ∪
{(q, (a, b0), qf ) | q ∈ P ′ ∧ a ∈ Σ ∧ input(q) · a /∈ P}

– F = P ′ ∪ {qf}.

It remains to prove three things: (1) A is an f-NDMM, (2) A is total, and (3)
E ⊆ L(A).

1. By construction, A is a DFA. Let u ∗ v1 ∈ A, and u ∗ v2 ∈ A, with u ∈ Σ∗
and v1, v2 ∈ Γ ∗. Our goal is to prove that v1 = v2. We consider several cases:

(a) u∗v1 and u∗v2 are both accepted in qf : By construction of A, qf is a state
from which a run can never get out (a sink state). Consider the accepting
run of u ∗ v1 in A and let q1 ∈ QT be the last state of QT before reaching
qf . There is a prefix u1 ∗ v′1 of u ∗ v1 that corresponds to q1. Similarly, let
q2 ∈ QT be the last state of QT in the run of u ∗ v2 in A, and let u2 ∗ v′2 be
the prefix of u ∗ v2 that corresponds to state q2. Without loss of generality,
we can assume that u1 is a prefix of u2.

Moreover, we prove that u1 is in fact equal to u2. Assume by contradiction
that u1 is a strict prefix of u2, and let u2 = u1 · a · u′1. Therefore, there is a
transition from q1 to qf whose input letter is a, which is not possible since
u1 · a ∈ P . Therefore, u1 = u2.

So far, we know u1 ∗ v′1 goes to state q1, and u1 ∗ v′2 goes to state q2. By
construction, the only transitions leading to qf are from states of P ′. So we
have q1, q2 ∈ P ′. We know P ′ is a function relation, and only associates to
each word in Σ∗ at most one word in Γ ∗. We deduce that v′1 = v′2, and that
q1 = q2.

Since the runs then join qf , where the only possible output letter is b0, we
deduce that v1 = v2.

(b) u ∗ v1 is accepted in qf , while u ∗ v2 is accepted in P ′ (the case where
v1 and v2 are interchanged is symmetrical): Consider the accepting run of
u ∗ v1 in A and let q1 ∈ QT be the last state of QT before reaching qf . Let
u1 ∗ v′1 be the prefix of u ∗ v1 that corresponds to q1. Let u = u1 · a · u′1 with
a ∈ Σ and u′1 ∈ Σ∗. By construction of q1, there is a transition from q1 to
qf whose input letter is a. However, this is a contradiction, as u1 · a ∈ P .

(c) u∗v1 and u∗v2 are both accepted in P ′. P ′ has been built as a functional
relation, therefore we must have v1 = v2.

2. Let u ∈ Σ∗. We want to prove that there exists v ∈ Γ ∗ such that u ∗ v ∈ A.
Let u = u′ · u′′ where u′ is the longest prefix of u that belongs to P . Let
v′ ∈ Γ ∗ be the unique word such that u′∗v′ ∈ P ′. By defining v = v′ ·(b0)|u

′′|,
and by construction of A, we have u ∗ v ∈ A.

3. Since A is obtained from T by adding one state, some transitions, and by
making some states accepting, we have L(T ) ⊆ L(A). Moreover, by con-
struction of T , we have E = L(T ), so we have E ⊆ L(A).
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Checking whether a DFA A is a total f-NDMM can be done in polynomial
time, as shown in Lemma 4. In addition, checking whether an f-NDMM A is
consistent with E, can be done by doing membership checks w ∈ A for each
w ∈ E.

Lemma 4. Let A be a DFA over the alphabet Σ×Γ . We can check in polynomial
time whether A is a total f-NDMM.

Proof. Let A′ be the projection of A over the input part of the alphabet Σ. The
output-uniqueness property of A is equivalent to the fact that A′ is unambiguous.
Checking whether an NFA is unambiguous can be done in polynomial time [23].

For the output existence property, we check whether Σ∗ = A′, which can be
done in polynomial time [25] since A′ has been verified to be unambiguous.

Using these lemmas, we conclude with the main result of this section.

Theorem 4. The minimization problems (1, 2, and 4) can be solved in NP.

8 Algorithm for Solving the Minimization Problem

8.1 Description of the Algorithm

The algorithm given in the previous section is not applicable in practice, as it
requires guessing a total f-NDMM that satisfies the constraints. On a computer,
this would require enumerating all automata of a certain size until we find one
that satisfies the constraints.

In this section, we instead propose to encode the constraints in a logical
formula, and let an SMT solver check satisfiability of the formula. More precisely,
given a set of input/output examples E ⊆ (Σ × Γ )∗, and k ≥ 1, we define a
formula ϕE,k which is satisfiable if and only if there exists a total f-NDMM with
k states and that is consistent with E.

Then, in order to find the minimal total f-NDMM with a given set of examples
E, our algorithm checks satisfiability of ϕE,1, then ϕE,2, and so on, until one of
the formula is satisfiable and the automaton is found.

Encoding all the constraints of the problem in a logical formula is challenging.
The main reason is that SMT solver are best suited for dealing with logical
formula written in purely existential form, while the constraints that we want to
express (totality and output-uniqueness for f-NDMMs) are naturally expressed
using alternations between for all and exists quantifiers. Still, we were able
to find a purely existential encoding of the problem, in (quantifier-free) linear
arithmetic, which we describe below.

8.2 Encoding

The free variables of ϕE,k are (bounded) integers and booleans. They are setup so
that a valuation of the free variables represent an f-NDMM (Σ×Γ,Q, qinit, δ, F )
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with k states (Q = {q0, . . . , qk−1}). More precisely, ϕE,k contains for every q ∈ Q
and σ ∈ Σ, γ ∈ Γ , a integer variable

0 ≤ δ(q,σ,γ) < k

to represent the value δ(q, (σ, γ)).
For each state q ∈ Q, ϕE,k also contains a boolean variable isFinalq which

is true when state q ∈ F . By convention, q0 is the initial state, and qk−1 is the
(non-accepting) sink state.

For states p, q ∈ Q and input letter σ ∈ Σ, we also add boolean variables
δp,σ,qin describing the transition relation of the projection A′ of A over the input
alphabet Σ. The variable δin is expressed as a relation rather than as a function,
since in general, A′ can be non-deterministic.

The formula ϕE,k is then composed of multiple components:

AcceptExamples ∧ Projection ∧ Unambiguous ∧ Total.

The formula AcceptExamples constrains the variables δ(q,σ,γ) and isFinalq (q ∈
Q, σ ∈ Σ, γ ∈ Γ ) to make sure that every input/output example in E is accepted
by A.

The formula Projection ensures that the variable δp,σ,qin indeed represents the
projection of δ on the input alphabet Σ.

The formulas Unambiguous and Total correspond to the approach described
in Lemma 4. The formula Unambiguous is a constraint over the variables δp,σ,qin

and isFinalq. It states that A′ is a UFA, which ensures that A accepts every input
word at most once. Being unambiguous is naturally stated using quantifiers: for
every word w, if w is accepted by two runs r1 and r2 in A′, then r1 and r2
must be identical runs (i.e. going through identical states). However, writing
this condition as is would make it hard for the SMT solver to check satisfiability
of the formula, due to the universal quantification.

Instead, our formula Unambiguous is inspired from the algorithm that checks
whether a given NFA is unambiguous [23]. This algorithm constructs inductively
the pairs of states (qi, qj) that are reachable by the same word, but with distinct
runs. Then, the NFA is unambiguous if and only if there are no pairs (q, q′) in
that inductive construction where q and q′ are both final states.

The construction starts with the empty set, and adds, for each state q which
is reachable, and for every letter a ∈ Σ, the pairs (q1, q2), with q1 6= q2 such that
δin(q, a, q1) and δin(q, a, q2) hold. Then, for every (qi, qj) and every a ∈ Σ, we
add the pairs (q′i, q

′
j) such that δin(qi, a, q

′
i) and δin(qj , a, q

′
j) hold.

Therefore, to ensure the unambiguity A′, the formula Unambiguous states
that there exists a fixed point (a set of pairs of states represented by boolean
variables rq,q′ for q, q′ ∈ Q) to that construction, i.e. a set which is closed under
adding new pairs according to the rules above. Finally, for every q, q′ ∈ Q, we
add a clause stating that two final states should not belong to the fixed point:

isFinalq ∧ isFinalq′ =⇒ ¬rq,q′ .
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The formula Total is also a constraint over the variables δp,σ,qin and isFinalq.,
and states that A′ recognizes every string in Σ∗. This ensures that the f-NDMM
A accepts every input string at least once. Again, this constraint is naturally
expressed using quantifiers: for every word w, there exists a run for w in A′.
Such formulas are challenging for SMT solvers. Instead, our formula relies on
the fact that A′ is ensured to be unambiguous by the formula Unambiguous.
More precisely, to check that A′ accepts every string of Σ∗, it suffices to check
that A′ has |Σ|l accepting runs, for every l ≥ 0. Moreover, it was shown that it
is enough to do this check for l ≤ |Q| (see [25]).

Our formula Total introduces free variables cl,q, for each 0 ≤ l ≤ |Q|, and
q ∈ Q, and constrains them so that they count how many runs of length l end
in state q. By definition, the variable c0,q0 equals 1 (only one word of length 0 is
accepted in the initial state), and every other c0,qi (i > 0) equals 0 (the empty
word is not accepted in non-initial states).

Then, using a linear arithmetic formula, we express every cl,q (with l > 0) in
terms of the variables cl−1,p for p ∈ Q:

cl,q =
∑

σ∈Σ,p∈Q
if δp,σ,qin then cl−1,p else 0.

Total then states, again using linear constraints, that for every 0 ≤ l ≤ |Q|,
the number of accepting runs of length l equals |Σ|l, i.e.∑

q∈Q
if isFinalq then cl,q else 0 = |Σ|l.

9 Experimental Evaluation

We implemented our algorithm in Scala, using Z3 [19] as our backend.

9.1 Discovering Small Automata for Common Functions

We give in this section a few examples that we ran using our algorithm. We
focus on examples that have small automata, whether or not the input examples
are small. Indeed, the combinatorial explosion makes it hard for the SMT solver
to find solutions for automata that have more than ~10 states. The results are
shown in Figure 4. The arithmetic examples operate on binary representations
of numbers, truncating the output to the length of inputs where needed. We note
that simple relations such as addition are recovered from examples without the
need to specify any expression grammars as in Syntax-Guided Synthesis [2], be-
cause automaton minimality provides the needed bias towards simple solutions.
Adding more examples than needed (e.g. 22 examples of length 22) keeps the
synthesis time manageable, which is useful for cases of automatically generated
examples.

We give in the last column (Time2) of the table the times for an enumeration
algorithm which does not use SMT solvers. Our algorithm enumerates all trans-
ducers by order of the number of states, and prune the search when it encounters
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transducers that are not compatible with the input/output examples. When we
find a transducer that accepts all input/output examples, we use a completion
procedure to attempt to make the transducer total by adding transitions. Our
implementation should not be considered heavily optimized; we believe that
there is space for improvement both in terms of internal data structures and
heuristics.

9.2 Evaluating Usefulness of Minimality on Random Automata

The next set of experiments evaluate the likelihood that our algorithm finds
the automaton that the user has is mind, depending on the number and size of
the input/output examples provided. We generated 100 random minimal total f-
NDMMs with 5 states, where the input and output alphabet were both of size 2.
For each f-NDMM A, and for every 1 ≤ i, j ≤ 15, we generated i random words
in Σ∗, of length j. For each such word, we looked up the corresponding output
in A, thereby constructing a set of input/output examples E for A. Then, we
used our algorithm on E to see whether the obtained automaton would be A. In
Table 2, we summarized, for every i and j, out of the 100 automata, how many
we were able to reobtain using that method. Overall, the experiments ran for
about 3 hours, for 15∗15∗100 = 22500 queries. The 3 hours also include the time
taken to generate the random automata. To generate a random minimal total f-
NDMM, we generated a random sample, and applied our algorithm. Then, if the
obtained automaton had 5 states, we kept it for our experiment. Our selection
for the choice of the random automata is therefore biased, as the automata are
found by our tool in the first place.

Discussion. Generally, the results show that the greater the number of examples
given, and the longer they are, the more likely we are to find the automaton

Problem #Ex. Ex.Len. States Alphabet Time (s) Time2 (s)

x, y 7→ x+y 1 17 3 8 0.23 1.090
x, y 7→ x+y 5 4 3 8 0.20 0.090
x, y 7→ x+y 22 22 3 8 0.19 17.610

xor 1 4 2 8 0.07 0.002
and 1 4 2 8 0.08 0.004

or 1 4 2 8 0.05 0.002
not 1 4 2 4 0.06 0.002

x 7→ 2x+ 1 1 5 3 4 0.41 0.160
(p ∨ q) ∧ (r ∨ s) ∧ ¬t 1 32 2 64 0.14 3.960
(p ∨ q) ∧ (r ∨ s) ∧ ¬t 32 1 2 64 0.14 0.240

overwrite 10 2 6 4 0.42 0.150
overwrite (3) 39 3 8 9 4.41 4.310

Fig. 4. Synthesis of some common functions from examples, showing successful discov-
ery of minimal automata and tolerance to many long examples and larger alphabets.
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i
j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

2 0 0 0 0 0 0 5 3 8 16 21 16 15 18 22

3 0 0 0 3 1 10 16 32 24 36 35 33 44 44 41

4 0 0 4 7 20 25 37 45 51 53 52 52 51 56 65

5 0 0 6 20 35 46 57 63 59 64 67 62 60 60 64

6 0 0 8 34 43 59 58 67 60 73 75 68 67 66 69

7 0 0 17 37 61 65 70 70 81 76 78 72 75 73 75

8 0 0 22 46 74 79 73 77 78 79 74 77 75 76 78

9 0 0 22 63 67 76 86 80 78 79 82 83 84 82 80

10 0 0 34 59 72 82 86 81 85 80 79 83 84 84 84

11 0 0 36 73 82 86 83 85 85 89 88 86 91 82 83

12 0 0 32 66 86 83 83 86 88 85 86 87 89 88 88

13 0 0 41 83 85 85 89 87 89 85 93 89 88 89 89

14 0 0 41 78 83 88 93 93 92 88 88 87 88 88 91

15 0 0 51 83 87 87 88 84 91 87 91 91 90 87 88

Table 2. In a given cell, the number represents, out of 100 random automata, how
many we were able to reobtain using our algorithm, with a random sample with i
input/output examples of length j.

that we want. More interestingly, we note that we are more likely to find the
automaton we want with a large number of small examples (e.g. i = 15, j = 5)
than with a small number of large examples (e.g. i = 5, j = 15).

Another interesting observation is that the likelihood of finding the automa-
ton increases sharply when using examples of size j = 4 rather than j = 3.
Without counting the sink state, the automata we considered have 4 states.
This suggests that in general, a good strategy is to give multiple examples which
are at most as long as the number of states (though the user giving the examples
may not know how many states are required for the minimal automaton).

10 Related Work

In [16], we studied the problem of synthesizing tree-to-string transducers from
examples. Here, instead of having the user provide input/output examples, we
proposed an algorithm that generates particular inputs, and asks the user what
are the corresponding outputs. We show that, when the algorithm is allowed
to analyze previous answers in order to generate the next question, then the
number of questions required to determine the transducer that the user has in
mind is greatly reduced (compared to an approach without interaction, where
the algorithm would ask for all outputs at once).

The results obtained in [16] do not directly apply here, as they were for
single-state transducers. However, some of the techniques are fundamental and
could be reused here. In that respect, we could generate questions for the users,



Minimal Synthesis of String To String Functions From Examples 19

and guarantee that the generated f-NDMM is indeed the one that the user had
in mind (given some bound on the number of states).

Our paper is similar in spirit to [10], where the author proves that Problem 2
is NP-complete for deterministic Mealy machines. Their NP-hardness holds even
when the alphabets’ sizes are fixed to 2, but the case where the number of states
is fixed is not treated. Moroever, even though f-NDMMs are a more general
model than deterministic Mealy machines, the NP-hardness of [10] cannot be
directly applied to f-NDMMs.

There is a long line of work devoted to learning deterministic finite state
transducers (see e.g. [6, 20, 1, 18]). Algorithms for learning deterministic finite
automata (e.g. [4]) or finite transducers do not directly translate to our setting,
since we need to consider functionality and totality constraints, as shown in
Section 8.2. Methods for learning non-deterministic automata (e.g. [7]) do not
directly apply to our setting either, for the same reasons.

A particular case of learning transducers is an interpolation problem, that
consists in learning a finite automaton that accepts some given inputs (i.e. out-
puts 1) and rejects some other inputs (i.e. outputs 0) (see e.g. [21, 8, 11]).

In [15], the authors present an algorithm for learning non-deterministic Mealy
machines. They are interested in non-determinism to represent unknown compo-
nents of reactive systems, and as such do not focus on functional non-deterministic
Mealy machines. Moreover, their focus is rather on the algorithmic aspect of the
problem rather than on complexity classes.

In [12], the author proposes an efficient synthesis procedure from examples
for a language that does string transformations, but does not deal with the issue
of synthesizing finite-state transducers.

Our algorithm in Section 8 is inspired from the bounded synthesis approach
of [9]. There, the authors suggest that bounding the number of states is a good
strategy to synthesize reactive systems. They also propose a reduction from the
bounded synthesis problem for reactive systems to SMT solvers.

In [13], we presented a way to synthesize string-to-string functions given any
specification written in weak monadic second-order logic. Using these techniques,
it would be possible to synthesize an f-NDMM consistent with input/output ex-
amples, by writing the input/output examples as a logical formula. However,
this approach would not yield the minimal f-NDMM consistent with the exam-
ples. For example, regardless of how many input/output examples we give for
the function ({0, 1}×{0, 1})∗ → {0, 1}∗ which xor’s two streams of bits, this ap-
proach would not yield the 1-state automaton that we are expecting. Instead, the
method will generate large automata that are consistent with the given exam-
ples, but do not recognize the xor operation for other input strings. On the other
hand, our approach can find this automaton with only a few small examples.

The automata we consider in this paper are closely related to the notion of
thin language (see e.g. [22]). A language L is called thin if for every n ∈ N, it
contains at most one word of length n. Moreover, L is called length-complete if for
every n ∈ N, L contains at least one word of length n. When |Σ| = 1, i.e. when
only the length of the input matters, our minimization problem corresponds
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exactly to finding a minimal DFA that contains a given set of examples, which
is both thin and length-complete. We left this question open in Section 3.1, and
leave it for future work. This analogy with thin languages breaks when using a
non-unary input alphabet.

In [24], the authors encode the problem of learning DFAs in an SMT solver.
As is the case with our algorithm, such encodings only perform well for finding
automata with a small number of states (up to 10 or 15).

11 Conclusions

f-NDMMs are a form of functional non-deterministic one-way finite-state trans-
ducers (see e.g. [23, 5]) where each transition is forced to produce exactly one let-
ter (instead of 0 or more in the general case). The term functional corresponds to
the output uniqueness property of f-NDMMs, and ensures that despite the non-
determinism, at most one output string is produced for each input string. The
non-determinism here refers to the input part of the alphabet, and f-NDMMs,
even though they are deterministic on Σ × Γ , can indeed be non-deterministic
in the input alphabet Σ. In that sense, f-NDMMs can define transformations
that are not captured by deterministic one-way transducers, such as the func-
tion that maps a word w to l|w| where l is the last letter of w. On the other hand,
deterministic one-way transducers can recognize transformations not recognized
by f-NDMMs, since they do not require the output to have the same length as
the input. This can be circumvented by padding the input and output strings
using a dummy letter. Existing synthesis algorithms generally target classes of
deterministic transducers, such as subsequential transducers (see e.g. [26]). Our
results about f-NDMMs are a first step towards synthesis algorithm for larger
classes of deterministic or functional non-deterministic transducers, such as two-
way finite-state transducers, or streaming string transducers [3]. We have shown
that most variants of synthesis for f-NDMMs are NP-complete, and presented a
promising approach using an encoding into SMT formulas.
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