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ABSTRACT
We present an approach for describing tests using non-
deterministic test generation programs. To write test gen-
eration programs, we introduce UDITA, a Java-based lan-
guage with non-deterministic choice operators and an inter-
face for generating linked structures. We also describe new
algorithms that generate concrete tests by efficiently explor-
ing the space of all executions of non-deterministic UDITA
programs.

We implemented our approach and incorporated it into
the official, publicly available repository of Java PathFinder
(JPF), a popular tool for verifying Java programs. We eval-
uate our technique by generating tests for data structures,
refactoring engines, and JPF itself. Our experiments show
that test generation using UDITA is faster and leads to
test descriptions that are easier to write than in previous
frameworks. Moreover, the novel execution mechanism of
UDITA is essential for making test generation feasible. Us-
ing UDITA, we have discovered a number of previously un-
known bugs in Eclipse, NetBeans, Sun javac, and JPF.

1. INTRODUCTION
Testing is the most widely used method for detecting soft-
ware errors in industry, and the importance of testing is
growing as the consequences of software errors become more
severe. Testing tools such as JUnit are popular as they au-
tomate text execution. However, widely adopted tools offer
little support for test generation. The developers and testers
often have good intuition [18, 33] to determine what tests
should be generated but must manually translate this in-
tuition into actual tests. Such manual test generation is
time-consuming and results in test suites that have poor
quality and are difficult to reuse. This is especially the case
for code that requires structurally complex test inputs, for
example code that operates on programs (e.g., compilers,
interpreters, model checkers, or refactoring engines) or on
complex data structures (e.g., container libraries).

Consider, for example, testing a feature in a Java com-
piler. In this case, test inputs are representations of pro-
grams. Our intuition could be that we can expose bugs in
the feature under test using as inputs, say, Java programs
with complex inheritance graphs (consisting of classes and
interfaces). The expected properties of the Java inheritance
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graphs are: there are no directed cycles, all parents of inter-
faces are interfaces, and each class has at most one parent
class. It is tedious and error-prone to manually generate
tests that cover many “corner cases” for inheritance graphs:
a test with only one class, with a subclass and a super-
class, with two classes not related by inheritance, with an
interface, with multiple inheritance through interfaces, with
multiple paths to a common ancestor, with abstract classes,
and so on.

Recent automated techniques aim to handle such corner
cases using systematic test generation based on specifica-
tions [7, 36], or on symbolic execution [13, 38] and its hy-
brids with concrete executions [11, 17, 21, 31, 37, 47, 49, 52].
Modern (hybrid) symbolic execution techniques can handle
advanced constructs of object-oriented programs. However,
feasible application of these techniques is largely limited to
testing units of code much smaller than hundred thousand
lines, or generating inputs values much simpler than repre-
sentations of Java programs. The inherent requirement for
not only building path conditions, albeit with partial con-
straints, but also determining their feasibility poses a key
challenge for scaling to structurally complex inputs and en-
tire systems. Handling programs of the complexity of a com-

piler remains challenging for current systematic approaches.
Our insight is that systematic approaches can be made to
scale by providing a framework that allows testers to utilize
their domain knowledge.

We propose a new approach to generate a large number
of complex test inputs by allowing the tester to write a test

generation program in UDITA, a Java-based language with
non-deterministic choices, including choices used to generate
linked data structures. Each execution of a test generation
program generates one test input. Our execution engine
systematically explores all executions to generate inputs for
bounded-exhaustive testing [42, 50] that validates the code
under test for all test inputs within a given bound (e.g., all
inheritance graphs with up to N nodes). UDITA thus en-
ables testers to avoid manual test generation. However, our
approach does not attempt to fully automatically identify
tests [11, 31], because such approaches do not provide much
control to the tester to encode their intuition. Instead, we
provide testers with an expressive language in which they
have sufficient control to define the space of desired tests.

This paper makes the following contributions:

1) New language for describing tests: We present
UDITA, a language that enhances Java with two impor-
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tant extensions. The first extension are non-deterministic

choice commands, and the assume command that (partially)
restricts these choices. These constructs are familiar to
users of model checkers such as Java PathFinder (JPF) [54].
Thanks to the built-in non-determinism, writing a test gen-
eration program (from which many test inputs can be gener-
ated) is often as simple as writing Java code that generates
one particular test input. The second extension is the ob-

ject pool abstraction that allows the tester to control gener-
ation of linked structures with any desired sharing patterns,
including trees but also DAGs, cyclic graphs, and domain-
specific data structures. Due to its expressive power, UDITA
enables testers to write test generation programs using any
desirable mixture of declarative [7, 22, 29, 36, 41, 42] and
imperative [19, 35] styles, whereas previous systems required
the use of only one style.

2) New test generation algorithms: We present ef-
ficient techniques for test generation by systematic execu-
tion of non-deterministic programs. Our techniques build
on systematic exploration performed by explicit-state model
checkers to obtain the effect of bounded-exhaustive test-
ing [42, 50].

The efficiency of our techniques is based on a general prin-
ciple of delayed choice [44], i.e., lazy non-deterministic evalu-
ation [23]. The basic delayed choice technique postpones the
choices for each variable until it is first accessed. The more
advanced copy propagation technique further postpones the
choices even if the values are being copied. Like lazy evalu-
ation, our techniques guarantee that each non-deterministic
choice is executed at most once.

Our techniques support primitive fields, but are partic-
ularly well-suited for linked structures (Section 4.2). The
techniques use a new object pool interface. We postpone
the choice of object identity until object’s first non-copy use,
reducing the amount of search. Furthermore, we avoid iso-
morphic structures [34, 41] which gives another source of
exponential performance improvement. Finally, to deter-
mine the feasibility of symbolic fresh-object constraints in
the current path, we use a new polynomial-time algorithm
(figures 11 and 12), which is in contrast to NP-hard path
condition constraints of symbolic execution [38, 47].

3) Implementation: We describe an implementation of
UDITA and of our optimizations on top of JPF [54], a pop-
ular model checker for Java. Our code is publicly available
as an extension (called delayed) in the JPF repository:

http://javapathfinder.sourceforge.net

4) Evaluation: We have performed several sets of experi-
ments to evaluate UDITA. The first set of experiments, on
six data structures show that our optimizations improve
the time to generate test inputs up to a given bound and
the time to find the first fault.

The second set of experiments compared UDITA with
Pex [52], a state-of-the-art testing tool based on symbolic
execution. Our results found that object pools are a pow-
erful abstraction for guiding exploration, orthogonal to the
path-bounding approaches used by tools such as Pex. In par-
ticular, even a naive implementation of object pools helped
Pex enumerate structures and find bugs faster.

The third set of experiments is on testing refactoring en-
gines, which are software development tools that take as
input program source code and refactor (transform) it to
change its design without changing its behavior [25, 45].

class IG {
Node[] nodes; int size;
static class Node {

Node[] supertypes;
boolean isClass; } }

Fig. 1: A simple representation of inheritance graph

Modern IDEs such as Eclipse or NetBeans include refactor-
ing engines for Java. A key challenge in testing refactoring
engines is generating input programs. Figures 5 and 6 show
some example programs with multiple inheritance that re-
vealed bugs in Eclipse. To generate such programs, we need
to both “generate inheritance graphs” and “add methods” in
the classes and interfaces in the graphs. Our experience with
UDITA’s combined declarative/imperative style shows that,
compared to our prior approach, ASTGen [19, 35], UDITA
is more expressive, resulting in shorter (and easier to
write) test generation programs, and sometimes provides
faster generation despite executing on the significantly
slower JPF virtual machine. Through these experiments,
we revealed new bugs in Eclipse and NetBeans, and even
a bug in the Sun Java compiler.

The fourth set of experiments, on testing parts of the
UDITA implementation, revealed several new bugs in
JPF, and one bug in our JPF extension that we subse-
quently corrected. These results suggest that UDITA is ef-
fective in helping detect real bugs in large code bases.

Our experimental results are publicly available at:
http://mir.cs.illinois.edu/udita

2. EXAMPLE
To illustrate UDITA and its key strengths, we consider gen-
eration of inheritance graphs for Java programs. We have
found such generation effective for testing real-world ap-
plications including compilers, interpreters, model checkers,
and refactoring engines (Section 5). The example illustrates
the ability of UDITA to describe data structures with non-
trivial invariants. Figure 1 shows a simple representation
of inheritance graphs in Java. A graph has several nodes.
Each node is either a class or an interface, and has zero or
more supertypes that are themselves classes or interfaces.

Specification of inheritance graphs. Each inheritance
graph needs to satisfy the following two properties:

1) DAG (directed acyclic graph): The nodes in the graph
should have no directed cycle along the references in supertypes.

2) JavaInheritance: All supertypes of an interface are inter-

faces, and each class has at most one supertype class.

UDITA allows the tester to express these properties us-
ing full-fledged Java code extended with non-deterministic
choices. Testers describe properties in UDITA using any
desired mix of declarative and imperative style. In a
purely declarative style, embodied in techniques such as
TestEra [36] and Korat [7, 22, 29, 41, 42], the tester writes
the predicates—what the test inputs should satisfy; then the
tool searches for valid tests. In contrast, in purely imperative
style, embodied in techniques such as ASTGen [19, 35], the
tester directly writes generators—how to generate valid in-
puts; then the tool executes these generators to generate the
inputs. We first present these two pure approaches, then dis-
cuss how UDITA allows freely combining them, and finally
how UDITA efficiently generates inputs.
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boolean isDAG(IG ig) {
Set<Node> visited = new HashSet<Node>();
Set<Node> path = new HashSet<Node>();
if (ig.nodes == null || ig.size != ig.nodes.length) return false;
for (Node n : ig.nodes)

if (!visited.contains(n))
if (!isInCycle(n, path, visited)) return false;

return true; }
boolean isInCycle(Node node,

Set<Node> path, Set<Node> visited) {
if (path.contains(node)) return false;
path.add(node); visited.add(node);
for (int i = 0; i < node.supertypes.length; i++) {

Node s = node.supertypes[i];
// two supertypes cannot be the same
for (int j = 0; j < i; j++)

if (s == node.supertypes[j]) return false;
// check property for every supertype of this node
if (!isInCycle(s, path, visited)) return false;

}
path.remove(node);
return true; }

boolean isJavaInheritance(IG ig) {
for (Node n : ig.nodes) {

boolean doesExtend = false;
for (Node s : n.supertypes)

if (s.isClass) {
// interface must not extend any class

if (!n.isClass) return false;
if (!doesExtend) { doesExtend = true;
// class must not extend more than one class

} else { return false; }
} }

return true; }

Fig. 2: Declarative approach for inheritance graphs

IG initialize(int N) {
IG ig = new IG(); ig.size = N;
ObjectPool〈Node〉 pool = new ObjectPool〈Node〉(N);
ig.nodes = new Node[N];
for (int i = 0; i < N; i++) ig.nodes[i] = pool.getNew();
for (Node n : ig.nodes) {

// next 3 lines unnecessary when using generateDAGBackbone
int num = getInt(0, N − 1);
n.supertypes = new Node[num];
for (int j = 0; j < num; j++) n.supertypes[j] = pool.getAny();
// next line unnecessary when using generateJavaInheritance
n.isClass = getBoolean(); }

return ig; }

void mainDecl(int N) {
IG ig = initialize(N);
assume(isDAG(ig));
assume(isJavaInheritance(ig));
println(ig); }

void mainImp(int N) {
IG ig = initialize(N);
generateDAGBackbone(ig);
generateJavaInheritance(ig);
println(ig); }

Fig. 3: Examples of bounded-exhaustive generation

Declarative approach. Figure 2 shows Java predicates
that return true when the above inheritance graph prop-
erties hold. To generate all test inputs from predicates,
the tester needs to specify bounds on possible values for
input elements, which in our example are the nodes, array
sizes, and isClass fields. For this purpose, UDITA uses non-

deterministic choices. JPF already has choices for primitive
values. For example, the assignment k=getInt(1, N) intro-
duces N branches in a non-deterministic execution, where
in branch i (for 1 ≤ i ≤ N) the variable k has value i.
JPF can systematically explore all (combinations) of non-
deterministic choices. UDITA additionally provides non-
deterministic choices for pointers/objects through the notion
of object pools (described in detail in Section 4.2). Figure 3

void generateDAGBackbone(IG ig) {
for (int i = 0; i < ig.nodes.length; i++) {

int num = getInt(0, i); // pick number of supertypes
ig.nodes[i].supertypes = new Node[num];
for (int j = 0, k = −1; j < num; j++) {

k = getInt(k + 1, i − (num − j));
// supertypes of ”i” can be only those ”k” generated before
ig.nodes[i].supertypes[j] = ig.nodes[k];

} } }
void generateJavaInheritance(IG ig) {
// not shown imperatively because it is complex:
// topologically sorts ”ig” to find what nodes can be classes or interfaces
}

Fig. 4: Imperative approach for inheritance graphs

shows the non-deterministic initialization of an inheritance
graph data structure. The method initialize proceeds in
several steps: (1) sets the graph size (the number of nodes),
(2) creates a pool of Node objects of this size, and (3) iterates
over all objects in the pool to non-deterministically initialize
their supertypes to point to other objects in the pool. The
getNew and getAny methods pick a fresh object and an arbi-
trary object from the pool, respectively. Running mainDecl

on UDITA generates all inheritance graphs of size N .

Imperative approach. Instead of generating possible
graphs and then filtering those that are not inheritance
graphs, Figure 4 shows an alternative that directly gener-
ates DAGs of size N with the generateDAGBackbone method.
We say that Figure 4 presents a generator for DAGs, which
is in contrast to the predicate isDAG in Figure 2. The gen-
erator establishes by construction that there are no direct
cycles (because supertypes of a node i can only be nodes k

that were generated before i).
Writing (imperative) generators instead of (declarative)

predicates can dramatically speed up the generation. How-
ever, using generators alone is highly non-trivial. Although
it was relatively easy to write code that generates all arbi-

trary DAGs, it is non-trivial to eliminate isomorphic graphs
(Section 4.2) or to properly label nodes as classes and inter-
faces (with generateJavaInheritance). Properties of other
data structures can be even harder to express imperatively.
For example, an entire research paper was devoted to effi-
cient generation of red-black trees [5]. In comparison, declar-
ative generation is often easier, anecdotally confirmed by the
fact that undergraduate students are able to write appropri-
ate checks [42]. This trade-off justifies the need for optimized
execution for predicate-based exploration, but also asks for
an approach to combine predicates and generators.

Unifying predicates and generators. UDITA makes
combination of predicates and generators possible because
they are both expressed in a unified framework: systematic
execution of non-deterministic choices. Consider the prop-
erties in our running example. For the DAG property, com-
paring the imperative (Figure 4) and declarative generation
(Figure 2), one could argue it is easier to write a generator
than a predicate. However, for the JavaInheritance prop-
erty, it is much easier to write a predicate than a generator.
UDITA allows the tester to combine, for example, a genera-
tor for DAG with a predicate for JavaInheritance: write a
new main method that invokes generateDAGBackbone followed
by assume(isJavaInheritance).

Test generation. After the tester writes some predicates
and/or generators, it is necessary to execute them to gen-
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class A implements B {
public A m() {

A a = null;
return a; } }

interface B extends C {
public B m(); }

interface C {
public C m(); }

class A implements B {
public C m() { // bug

C a = null;
return a; } }

interface B extends C {
public B m(); }

interface C {
public C m(); }

Fig. 5: IntroduceSuperType bug in Eclipse: when the

refactoring is applied on A, the return type of A.m is in-

correctly changed to C instead of displaying a warning or

suggesting changing the return type to B

import java.util.List;
class A implements B, D {

public List m(){
List l=null;
A a=null;
l.add(a.m());
return l; } }

interface D {
public List m(); }

interface B extends C {
public List m(); }

interface C {
public List m(); }

import java.util.List;
class A implements B, D {

public List<List> m() {
List<List<List>> l=null; //bug
A a=null;
l.add(a.m());
return l; } }

interface D {
public List<List> m(); }

interface B extends C {
public List<List> m(); }

interface C {
public List<List> m(); }

Fig. 6: InferGenericType bug in Eclipse: when the refac-

toring is applied on the input program (left), Eclipse

incorrectly infers the type of A.m.l as List<List<List>>,

which does not match the return type of A.m

erate the tests. JPF already provides an execution engine
for getInt and getBoolean non-deterministic choices, and a
naive implementation of the object pool’s getNew and getAny

choices (whose use is shown in Figure 3) can be simply done
with getInt (as discussed in Section 4.2). However, these
default implementations, which we call eager as they imme-
diately return a value, result in a combinatorial explosion,
e.g., mainDecl from Figure 3 for N = 4 does not terminate
in over an hour!

We provide more efficient implementations, which we call
delayed as they postpone choices of primitive values (getInt
and getBoolean) and additionally optimize exploration for
object pools (getAny and getNew). For example, mainDecl

from Figure 3 for N = 4 terminates in just 5.5 seconds with
our delayed choice. Imperative generation can be even faster
than declarative search. Section 5.1 shows our experimental
results for data structures. We evaluate mostly the com-
bined declarative/imperative style, since test programs are
much easier to write than for purely imperative style, and
generation for purely declarative style is several orders of
magnitude slower on basic JPF without delayed choice.

Section 5.3 shows our results for testing refactoring en-
gines, where we built on the inheritance graph generator to
produce Java programs as inputs to refactoring engines. Fig-
ures 5 and 6 show two example input programs, generated
by UDITA, which found bugs in Eclipse, specifically in the
InferGenericType and IntroduceSuperType refactorings.

3. UDITA FRAMEWORK OVERVIEW
UDITA provides a framework for building a library of
generic, reusable, and composable generators. The key as-
pects of the UDITA framework are: (1) the basic library
for primitive values and objects; (2) the ability to encap-
sulate UDITA generators into reusable components using
interfaces; and (3) the ability to compose these components.

class ObjectPool〈T〉 {
public ObjectPool〈T〉(int size, boolean includeNull) { ... }
public T getAny() { ... }
public T getNew() { ... } }

Fig. 7: Basic operations for object pools

interface IGenerator〈T〉 { T generate(); }
class IntGenerator implements IGenerator〈Integer〉 {

int lo, hi;
IntGenerator(int lo, int hi) { this.lo = lo; this.hi = hi; }
Integer generate() { return getInt(lo, hi); } }

class IGGenerator implements IGenerator〈IG〉 {
IG ig;
IGGenerator(int N) { ig = initialize(N); }
IG generate() {

assume(isDAG(ig) && isJavaInheritance(ig)); return ig; } }
class PairGenerator〈L, R〉 implements IGenerator〈Pair〈L, R〉〉 {

IGenerator〈L〉 lg; IGenerator〈R〉 rg;
PairGenerator(IGenerator〈L〉 lg, IGenerator〈R rg) { ... }
Pair〈L, R〉 generate() {

return new Pair〈L, R〉(lg.generate(), rg.generate()); } }

Fig. 8: UDITA interface for generators and some exam-

ple generators

Basic Library. The basic library for UDITA borrows
from JPF non-deterministic choices for primitive values.
For example, getInt(int lo, int hi) returns an integer be-
tween lo and hi, inclusively; and getBoolean() returns a
boolean value. UDITA also provides object pools for non-
deterministic choices of objects. Figure 7 shows the in-
terface for object pools. The constructor can create finite
(if size > 0) or infinite (if size < 0) pools, which may or
may not include the value null. The method getAny non-
deterministically returns any value from the pool (including
optionally null), whereas getNew returns an object that was
not returned by previous calls (and never null). Section 4.2
describes the implementation of these operations.

Generator Interface. UDITA provides IGenerator inter-
face for encapsulating generators, as shown in Figure 8. The
only method, generate, produces one object of the generic
type T. During the execution on JPF, this method will be
systematically explored for all non-deterministic choices, and
will generate many objects of the type T. The figure also
shows an example IntGenerator for integer values and an ex-
ample IGGenerator that encapsulates declarative style pred-
icates (isDAG and isJavaInheritance).

The design of UDITA generators is influenced by AST-
Gen [19] (which provides Java generators for abstract syntax
trees for testing refactoring engines) and QuickCheck [12]
(which provides a Haskell framework for generators).
UDITA provides a much simpler interface than ASTGen:
instead of one method, the basic IGenerator for ASTGen has
five methods [19, Sec. 3.2]. The cause of that complexity was
that ASTGen runs on a regular JVM; to obtain bounded-
exhaustive generation, the implementor of the interface must
manually manipulate the generator state (to reset it, ad-
vance it, store/restore it). In contrast, UDITA runs on JPF,
where state manipulations come for free because JPF im-
plements state exploration. Compared to QuickCheck [12],
which supports only random generation, UDITA focuses on
bounded-exhaustive generation, obtaining random genera-
tion for free as one of the possible JPF exploration strategies
(additional strategies include depth-first and breadth-first).
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3.1 Composing Generators
An important feature of generator frameworks such as AST-
Gen, QuickCheck, or UDITA is to allow reuse and com-
position of basic generators into more complex genera-
tors [12, 19]. UDITA again provides a substantially simpler
solution than ASTGen, since UDITA runs on JPF which
can systematically explore all combinations of values from
various non-deterministic choices. Figure 8 shows an ex-
ample generator that produces pairs of values based on
generators for left and right elements of pairs. Note that
the generate method of PairGenerator has only one line of
code. In contrast, the corresponding ASTGen generator has
ten lines of code [19, Sec. 3.3]. The reason is, again, that
ASTGen needs to explicitly iterate over possible values to
produce their combinations for bounded-exhaustive gener-
ation. QuickCheck provides composition through higher-
order functional combinators [12] but is designed for the
purely functional language Haskell, and does not have sup-
port for generating non-isomorphic graph structures. Nei-
ther ASTGen nor QuickCheck (nor any other framework
that we are aware of) support such unification of declara-
tive and imperative styles as UDITA.

4. TEST GENERATION IN UDITA
We next describe our test generation algorithms, which
rely on the notion of delayed (lazy) execution of non-
deterministic choices.

4.1 Test Generation for Primitive Values
Eager choice execution. We could, in principle, use a
straightforward implementation of getInt that immediately

chooses a concrete value and returns it. When the execution
backtracks, the implementation picks a different value. This
approach allows us to easily obtain a baseline implementa-
tion on top of JPF. Unfortunately, the combinatorial explo-
sion in typical test generation programs (e.g., the initialize

method in Figure 3) causes this baseline implementation to
explicitly consider a large number of unnecessary possibil-
ities. We therefore use a more efficient and more complex
approach, but preserve the simple non-deterministic seman-
tics on which testers can rely.

Delayed choice execution. UDITA provides efficient
test generation by extending JPF with lazy evaluation of
non-deterministic choices [23, 44]. The key idea of delayed
execution strategy is to delay the non-deterministic choices
of values to the point where the values are used for the first
time. Consequently, the order in which the values are used
for the first time creates a dynamic ordering of the variables
in the search space.

Algorithm for getInt. Our algorithm for delayed execu-
tion of getInt can be expressed as a program transformation
that postpones branching in the computation tree generated
by the program. The transformation extends the domain of
variables so that it stores a pointer to a mutable cell c where
c contains either 1) a concrete value (as before), or 2) an ex-
pression of the form Susp(a, b), denoting the set of values
{x | a ≤ x ≤ b} from which a concrete value may be cho-
sen in the future. A reference to Susp(a, b) corresponds to
representations of delayed expressions in implementations
of non-strict functional languages [23]. The transformation
changes the meaning of x=getInt(a, b) to be lazy, storing only
a symbolic representation (a, b) of possible values, which we

Source Code:

x0 = getInt(0,1);
x1 = getInt(0,1);
x2 = getInt(0,1);
x3 = getInt(0,1);
x4 = getInt(0,1);
y = x2;
assume(x0 ≤ x1);
assume(x1 ≤ x2);
assume(x2 ≤ x3);
assume(x3 ≤ x4);

Eager Execution: Delayed Execution: Copy Propagation:

x0 = Susp(0,1);
force(x0);

x1 = Susp(0,1);
force(x1);

x2 = Susp(0,1);
force(x2);

x3 = Susp(0,1);
force(x3);

x4 = Susp(0,1);
force(x4);

y = x2;
assume(x0 ≤ x1);
assume(x1 ≤ x2);
assume(x2 ≤ x3);

x0 = Susp(0,1);
x1 = Susp(0,1);
x2 = Susp(0,1);
x3 = Susp(0,1);
x4 = Susp(0,1);

force(x2);
y = x2;

force(x0);
force(x1);
assume(x0 ≤ x1);

assume(x1 ≤ x2);

force(x3);
assume(x2 ≤ x3);

force(x4);
assume(x3 ≤ x4);

x0 = Susp(0,1);
x1 = Susp(0,1);
x2 = Susp(0,1);
x3 = Susp(0,1);
x4 = Susp(0,1);
y = x2;

force(x0);
force(x1);
assume(x0 ≤ x1);

force(x2);
assume(x1 ≤ x2);

force(x3);
assume(x2 ≤ x3);

force(x4);
assume(x3 ≤ x4);

Fig. 9: Program and its Execution: Eager, Delayed, and

Copy Propagation

denote by x=Susp(a, b). We use statement force(x) to de-
note making an actual non-deterministic choice of the stored
symbolic value of x. The algorithm inserts force(x) before
the first non-copy use of the variable x, treating all variable
uses other than copying as strict operations. The delayed
execution can be viewed as moving down force(x) from the
point of definition of x to the point of (strict) use of x.
Figure 9 illustrates this transformation on an example that
picks an ordered 5-tuple of elements x0 ≤ x1 ≤ x2 ≤ x3 ≤
x4 whose values are in the set {0, 1}. Generalizing from the
5 variables x0,x1,x2,x3,x4, when picking an array of n sorted
elements from {0, 1}, eager execution fully explores a search

tree of size 2O(n). In contrast, delayed execution in this case
explores a tree of size O(n2), as can be easily proved by
induction. The delayed execution is more efficient because
it does not pick the value of a variable until this variable
is used in an assume statement, at which point the value
is immediately forced to be greater or equal than previous
values. The proof in [28, Sec. 3] shows the correctness and
properties of delayed choice execution.

Our example also includes a statement that copies x2 into
y. Such copy statement causes the basic delayed execution to
force (pick) the value of y. The enhanced copy propagation

instead copies the reference to the lazy value, postponing the
choice of concrete value even further. Appendix A.2 shows
an example where copy propagation gives an exponential
performance improvement over the basic delayed execution.

4.2 Test Generation for Linked Structures
Eager implementation. Figure 10 presents a Java-like
pseudo code for an eager implementation of object pools.
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class ObjectPool〈T〉 {
ArrayList〈T〉 allocated; int maxSize;

ObjectPool〈T〉(int maximumSize) {
allocated = new ArrayList〈T〉();
maxSize = maximumSize; }

T getNew() {
assume(allocated.size() < maxSize);
T res = new T(); allocated.add(res);
return res; }

T getAny() {
int i = getInt(0, allocated.size());
if (i < allocated.size()) return allocated.get(i);
else return getNew(); } }

Fig. 10: Eager choice implementation of object pools

We focus here on implementation of object pools of finite
size that return non-null objects only. Our implementation
also handles the (straightforward) extensions with infinite
object pools, and possibly-null objects.

Isomorphism avoidance. An important issue in generat-
ing object graphs is to avoid structures that are isomorphic
due to the abstract nature of Java references [7, 34]. In a
purely imperative approach, the control of isomorphism is up
to the tester and not UDITA. (Indeed, the code in Figure 4
generates isomorphic DAGs.) In a declarative approach that
uses the getAny method from object pools, UDITA automat-
ically avoids isomorphic structures, like Korat [7]. The im-
plementation in Figure 10 avoids isomorphism by returning
the first fresh object (as opposed to considering different
possibilities for a fresh object).

Delayed choice execution implementation. The ea-
ger implementation in Figure 10 serves as a reference for our
delayed choice implementation. The delayed choice imple-
mentation results in exploring the equivalent set of states as
the reference implementation but does so much more effi-
ciently. The high-level idea of delayed execution is the same
as for getInt, but the implementation for object pools is
more complex because getNew is a stateful command. As
a result, simply creating a suspension around the methods
from Figure 10 would not preserve the semantics because the
side effects on the allocated set would occur in a different
order. Consider the example

x1 = p.getAny(); x2 = p.getNew(); use(x2); use(x1);

The eager version results only in an execution where x1!=x2,
whereas the version with suspended methods would generate
both a state where x1==x2 and a state where x1!=x2.

To preserve the set of reachable states of the eager refer-
ence implementation, our implementation introduces sym-
bolic values at each call to getNew or getAny and also ac-
cumulates the constraints imposed by the requirement that
getNew returns objects distinct from previously returned ob-
jects. When the program uses symbolic objects (doing a
force of the value), UDITA assigns a concrete object to the
symbolic object, ensuring that the accumulated constraints
on distinct objects are satisfied. UDITA also ensures that
it will be possible to instantiate the remaining symbolic ob-
jects while satisfying all the constraints. In the terminology
of symbolic execution [38], UDITA maintains an efficient
representation of the path condition, which expresses that
certain symbolic objects are distinct, and ensures that the
path condition is always satisfiable. To see the non-triviality

class Sym〈T〉 { // symbolic variable
T chosen; int level; boolean isGetNew;
Sym〈T〉(int level, boolean isGetNew) { ... }

}
class ObjectPool〈T〉 {

List〈T〉 allChosen;
List〈List〈Sym〈T〉〉〉 levels;
int maxSize, lastLevel, minModelSize;

ObjectPool(int maximumSize) {
allChosen = new List〈T〉(); levels = new List〈List〈Sym〈T〉〉〉();
maxSize = maximumSize; lastLevel = −1; minModelSize = 0; }

Sym〈T〉 getAny() {
if (lastLevel < 0) return getNew();
sym = new Sym〈T〉(lastLevel, false);
levels.get(lastLevel).add(sym); }

Sym〈T〉 getNew() {
lastLevel++;
newLevel = new List〈Sym〈T〉〉();
levels.add(newLevel);
sym = new Sym〈T〉(lastLevel, true);
newLevel.add(sym);
minModelSize++;
assume(minModelSize <= maxSize); } }

Fig. 11: Delayed choice execution for object pools: data

structures, getAny, getNew

of our path conditions, consider the example of an object
pool of size 3:

p = new ObjectPool<Node>(3); n1 = p.getNew();
a1 = p.getAny(); a2 = p.getAny(); a3 = p.getAny();

n2 = p.getNew(); n3 = p.getNew();
use(a1); use(a2); use(a3);

The delayed execution will pick the concrete values of a1,
a2, a3 only at their use points. When it picks the values, it
must have enough information to deduce that all values a1,
a2, a3 must be equal; otherwise, it will be impossible, in the
pool of size 3, to assign values n2, n3 such that n2 /∈ {n1, a1,
a2, a3} and n3 /∈ {n1, a1, a2, a3, n2}.

Figures 11 and 12 show the pseudo-code of the desired
delayed execution algorithm for object pools, implemented
in UDITA. Type List〈C〉 denotes an indexable linked list
(such as Java ArrayList) storing objects of type C. Type
Sym〈T 〉 denotes a symbolic variable, whose chosen field de-
notes concrete field (and is null if the concrete object is not
chosen yet). The methods getAny and getNew from Figure 11
introduce a new symbolic variable and store it into the ap-
propriate position in the two-dimensional levels data struc-
ture; getAny stores the symbolic variable at the current level,
whereas getNew starts a new level. This structure encodes,
for j < i and for all applicable k, that

levels.get(i).get(0).chosen != levels.get(j).get(k).chosen

The force method from Figure 12 picks a concrete value for
a given symbolic variable by respecting the recorded con-
straints. After selecting in the candidate variable the set of
objects to which the symbolic variable could be made equal
to, it either 1) selects one of these objects or 2) introduces
a new concrete object. Finally, it recomputes the minimal
size of the model given by the current constraints, ensuring
that the current choice of variables is satisfiable in the pool
of the given size. Note that, although the problem has the
flavor of the NP-complete graph coloring problem, the struc-
ture of our constraints (building levels in layers) allowed us
to design the efficient test in the findMinModelSize method
from Figure 12.
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void force(Sym〈T〉 x) {
if (x.chosen == null) {

List〈T〉 candidates;
if (x.isGetNew) {

candidates = new List〈T〉();
for (int i = x.level; i ≤ lastLevel; i++) {

List〈T〉 currentLevel = levels.get(i);
for (int j = 1; j < currentLevel.size(); j++)

Sym〈T〉 s = currentLevel.get(j);
if (s.chosen != null &&

!candidates.contains(s.chosen))
candidates.add(s.chosen); }

} else { // x created by getAny

candidates = new List〈T〉(allChosen);
for (int i = x.level+1; i ≤ lastLevel; i++) {

Sym〈T〉 s = levels.get(i).get(0); // getNew

if (s.chosen != null) candidates.remove(s.chosen); }
}
int choice = getInt(0, candidates.size());
if (choice < candidates.size())

x.chosen = candidates.get(choice);
else {

x.chosen = new T();
allChosen.add(x.chosen); }

findMinModelSize();
assume(minModelSize <= maxSize);

} }
void findMinModelSize() {

List〈T〉 chi = new List〈T〉();
minModelSize = lastLevel;
for (int i = 0; i ≤ lastLevel; i++) {

foreach (Sym〈T〉 s in levels.get(i))
if (s.chosen != null && !chi.contains(s.chosen))

chi.add(s.chosen);
int levelModelSize = chi.size() + lastLevel − i;
minModelSize = max(minModelSize, levelModelSize); } }

Fig. 12: Picking a concrete object for symbolic variable

of object pool in delayed execution

4.3 Correctness of Delayed Object Pools
The correctness of our algorithm can be shown by view-

ing it as an efficient implementation of a symbolic execution
with disequality constraints. The only subtle part is showing
that the findMinModelSize method from Figure 12 correctly
computes the size of the smallest model of the equality and
disequality constraints imposed by current symbolic vari-
ables and any concrete values assigned to them. The cor-
rectness can be shown by considering the iteration I in which
minModelSize reaches its maximum. The concrete nodes at
levels up to I together with any getNew nodes at higher lev-
els must all be distinct, so each model is at least of size
minModelSize. Conversely, by a greedy assignment that fa-
vors previously chosen concrete objects, we can construct a
model of size minModelSize.

Correctness proof. The levels data structure encodes
a path condition of the form ∧i(xi 6= x′

i). The non-null
chosen fields encode the condition xi = ok for concrete ob-
jects ok. Each object pool also has an implicit condition
|{x1, . . . , xn}| ≤ maxSize where x1, . . . , xn are all symbolic
variables.

To show the correctness of this method, note that
levelModelSize in iteration i computes the size of the
model consisting of 1) the chi.size() already allocated ob-
jects in levels up to i, and 2) the lastLevel-i objects that
need to be chosen as values of getNew variables at levels
strictly above i. All of these objects must be distinct, so the
smallest model must have at least the sum of minModelSize
elements, for each value of variable i.

Having shown that the computed value is the lower bound
on the minimal model size, we next show the converse, by
describing a construction of a model of size minModelSize.
It suffices to specify the choice of concrete objects for all
getNew variables (stored in levels.get(i).get(0)) that
are not yet chosen: the remaining getAny variables can al-
ways be chosen equal to the getNew variables at the same
level. Let us remove from the constraints all concrete ob-
jects already chosen by a getNew variable, and remove all
getAny variables to which they are assigned. We use a
greedy algorithm to choose the remaining getNew variables
from level 0 to lastLevel. We choose either 1) a concrete
getAny object at a higher or equal level, or, if there are
not sufficiently many of those, 2) an additional fresh ob-
ject. Let I be the largest level at which levelModelSize

reaches maximum greater than lastLevel, and let C be the
value of chi.size() at this step. Then for all levels below I
the assignment process had sufficiently many objects already
assigned to getAny variables and did not need to use any
fresh objects. The number of concrete objects assigned to
variables up to level I is therefore C. When the assignment
process continues at levels above I , then all getAny objects
are used up (if there were some left, the value I would not
be the point of maximal levelModelSize). Consequently,
the number of additional distinct objects at levels above I
is exactly lastLevel − I. The total number of objects is
therefore C + lastLevel − I, which is exactly the value of
levelModelSize when it reaches maximum. This shows that
the constructed model has the size minModelSize computed
by findMinModelSize.

4.4 Benefits of Object Pools
Specification advantage. Previous work on symbolic
execution (e.g., CUTE [49]) uses equality and disequality
constraints on individual object references (== and !=). Our
work introduces the new object pool abstraction, which al-
lows testers to conveniently express “freshness” disequality
constraints of one reference against all references from a
given user-defined set.

Algorithmic advantage. Note that an attempt to en-
code object pool constraints using equalities and disequal-
ities over individual symbolic variables typically results in
constraints whose satisfiability is NP-hard. In particu-
lar, consider a straightforward encoding of the constraint
|{x1, . . . , xn}| ≤ maxSize on the maximal size of object
pool. The encoding would introduce maxSize fresh constants
a1, . . . , amaxSize denoting distinct references and require

n
^

i=1

maxSize
_

j=1

xi = aj

Such encoding thus introduces non-trivial disjunctions into
the problem. In contrast, we developed a polynomial-time

algorithm to test the satisfiability of object pool constraints.

5. EVALUATION
We implemented UDITA by modifying Java PathFinder
(JPF) version 4. The key changes were our delayed choice
algorithms and object pools. We implemented them using
JPF’s attribute mechanism [47] to store non-deterministic
values that have not been read yet. We correspondingly
modified the implementation of getInt to generate such de-
layed values. We also implemented object pools as described
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JPF Baseline Delayed Choice
program N structs time [s] explored time [s] expl.

DAG 3 34 11.14 4802 2.19 321
4 2352 o.o.m - 12.42 21196
5 769894 o.o.m - 1673.91 4997210

HeapArray 6 13139 29.00 160132 12.50 27664
7 117562 407.45 2739136 49.20 227494
8 1005075 7892.88 54481005 417.70 2325069

NQueens 6 4 13.81 46656 1.82 746
7 40 170.82 823543 3.60 3073
8 92 3416.38 16777216 6.50 13756

RBTree 6 20 5.91 8448 5.79 3588
7 35 21.76 54912 8.20 16983
8 64 107.49 366080 22.27 80470

SearchTree 4 490 5.00 3584 2.26 1484
5 5292 27.49 131250 8.29 21210
6 60984 1810.93 6158592 60.67 305052

SortedList 6 924 11.70 55987 5.10 3967
7 3432 126.14 960800 6.92 18026
8 12870 2495.49 19173961 17.87 80089

Fig. 13: Enumeration of structures satisfying their in-

variants (“o.o.m.” means “out of memory”)

in Section 4.2. Our code is publicly available, in the exten-
sion called delayed, from the JPF repository.

We performed several experiments to evaluate UDITA.
The first set of experiments, on a number of data struc-
tures, compares delayed choice with base JPF for bounded-
exhaustive test generation and for finding bugs. The second
set of experiments compares UDITA with symbolic execu-
tion in Pex [52]. The third set of experiments, on testing
refactoring engines, compares UDITA with ASTGen [19].
The fourth set of experiments uses UDITA to test parts
of the UDITA implementation itself. We ran the experi-
ments on an Intel Pentium 4 (with hyper-threading) 3.4GHz
desktop running Sun Java Virtual Machine (JVM) 1.6.0 10,
Eclipse 3.3.2, and NetBeans 6.5.

5.1 Testing Data Structures
We present an evaluation of delayed choice using a vari-
ety of data structure implementations: DAG represents di-
rected acyclic graphs related to the example introduced in
Section 2; HeapArray is an array-based heap data structure;
RBTree is red-black tree; SearchTree is binary search tree;
and SortedList is a doubly-linked list containing sorted ele-
ments. Additionally, NQueens is the traditional problem from
constraint solving [4]. For each structure, we wrote its rep-
resentation invariant using our combined declarative/imper-
ative style, and for finding bugs in RBTree we also consider a
purely declarative style. Our experimental setup compares
base JPF against JPF extended with our delayed choice ex-
ecution, using the same test generation program. We turn
off JPF state hashing in our experiments, because dupli-
cate states rarely arise in executions of our examples [29].
We perform two kinds of experiments: (1) enumerating all
structures of a given size, and (2) finding bugs in code.

Enumerating structures. Figure 13 shows the efficiency
of our approach for structure enumeration. For each pro-
gram and several bounds N , we tabulate the total number
of successful paths in the exploration tree (i.e., the number
of structures generated), the exploration time, and the total
number of explored paths. JPF generates the same number
of structures with and without delayed choice, but delayed
choice explores fewer paths than the base JPF, providing
significant speed-ups, from 2X up to 500X as size increases.

JPF Baseline Delayed Choice
program N time [s] explored time [s] expl.

Σ(1–4)∗ >1000.00 - 3.45 604
Σ(1–4) 2.86 168 2.88 132

RBTree bug1 6 4.83 3478 3.82 1514
7 11.30 21706 6.90 7169
8 48.98 157834 14.75 38457

Σ(1–6)∗ >1000.00 - 10.87 11881
Σ(1–6) 8.83 7166 8.39 3136

RBTree bug2 6 8.16 5548 7.81 2196
7 15.06 31787 9.60 9454
8 63.95 188384 22.11 42997

Σ(1–4)∗ >1000.00 - 3.86 604
Σ(1–4) 2.66 168 2.89 132

RBTree bug3 6 4.73 3478 5.02 1514
7 10.54 21555 5.72 6960
8 40.18 138853 11.61 32667

Σ(1–3)∗ >1000.00 - 1.51 98
Σ(1–3) 1.46 30 1.41 27

RBTree bug4 6 4.11 3451 4.55 1452
7 10.23 21437 5.71 6807
8 42.08 138853 13.31 32667

Fig. 14: Time taken and structures explored to find first

counterexample. N = Σ(x–y) denotes the generation of

all trees of sizes among {x, x + 1, . . . , y − 1, y}, with y the

smallest size that reveals the bug; ∗ is declarative mode

Finding bugs using white-box testing. UDITA is pri-
marily designed for “black-box testing” [55]: UDITA exe-
cutes test generation programs to create test inputs, and
then those inputs are run on the code under test without
UDITA. However, UDITA can be also applied for “white-
box testing” [55] by executing the code under test itself on
UDITA. Consider, for instance, using the following driver
code to test the remove method from a red-black tree (pre-
sented in Appendix A.1):

static void main(int N) {
RBTree t = new RBTree(); t.initialize(N);// Pick a graph
assume(t.isRBT()); // satisfying invariant ,
int v = getInt(0, N); // and pick a value .
t. remove(v); // Run code under test ,
assert(t. isRBT()); } // and check invariant .

Generating any tree that fails the assertion reveals a bug.
Figure 14 shows the effectiveness of our approach for re-
vealing bugs. Four bugs of omission were manually inserted
into the implementation of RBTree by a student not familiar
with our work. The “explored” column shows the number
of candidate structures explored until the bug is hit. Note
that the first row shows the results for purely declarative
style (similar to figures 2 and 3, with initialize using get-

Int/getAny/getNew), in which base JPF is extremely slow.
For combined declarative/imperative style, delayed choice
once again outperforms base JPF execution, by 3X for the
largest size.

Summary. The results show that delayed choice signifi-
cantly improves both the time to enumerate test inputs up
to a given bound, and the time to find the first bug in an in-
put of a given (sufficiently large) size. All experiments that
follow use delayed choice execution with UDITA.

5.2 Comparison with Symbolic Execution
Symbolic execution is a very active area of research,
with a number of recent testing tools including Crest [8],
CUTE [49], DART [31], DySy [17], EGT [10], EXE [11],
KLEE [9], Pex [52], SAGE [32], Splat [57], JPF’s Symbc [47].
Many of these tools build on the idea of combined concrete
and symbolic execution. However, many of these tools are
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not publicly available and/or do not support symbolic refer-
ences (either not at all or not with isomorphism avoidance).
This left us with relatively few possibilities, but we were
able to compare UDITA with Pex [52], a publicly available,
state-of-the art tool from Microsoft Research. Pex aims
at testing C#/.NET code. To solve path conditions, Pex
uses Z3 [20], one of the very best constraint solvers (see
http://www.smtexec.org). For the purpose of this compar-
ison, we translated our inheritance graph and red-black tree
code from Java into C#.

Enumerating structures. Pex, like other tools based on
symbolic execution, aims at exploring paths of the code un-
der test (with the goal of increasing coverage to find bugs),
unlike UDITA that is designed for generating all test inputs

of a given size (bounded-exhaustive testing). It turned out
that the only way to compare Pex and UDITA for enumera-
tion of structures was to implement object pools in Pex. We
developed a simple, eager implementation of object pools
using ChooseValueFromRange, which is the Pex’s equivalent
of the JPF’s getInt. As expected, the results for enumera-
tion showed that Pex can generate the same structures as
UDITA, but Pex generates them much slower due to the
simple implementation of object pools. We expect that a
delayed/lazy implementation of object pools in Pex would
similarly give substantial performance improvements, as we
have found it to be the case for JPF.

Finding bugs. The results of comparing Pex and UDITA
for finding bugs in data structures were more surprising.
Symbolic execution can be generally effective at finding bugs
by identifying the error path and solving path condition con-
straint for this path. We applied Pex to the the four buggy
red-black tree versions discussed in Section 5.1. Pex was
able to find three of these bugs (bug1, bug3, and bug4).

Surprisingly, Pex was not able to identify bug2 even when
running for over an hour. However, when we ran Pex with
our eager object pool extension, Pex was able to find all the
bugs within seconds! We reported these findings to the Pex
developers who are investigating bug2. Our view is that ob-
ject pools are a powerful abstraction for guiding exploration,
orthogonal to the path-bounding approaches used by tools
such as Pex. We therefore expect tools like Pex to inte-
grate object pools into their symbolic engines in the future,
effectively implementing delayed choice for object pools.

Summary. The use of object pools from UDITA is helpful
both for enumeration of test inputs and for finding bugs in
symbolic execution tools such as Pex. In addition to the
current JPF implementation, UDITA could be implemented
on top of other platforms, with similar benefits.

5.3 Testing Refactoring Engines
We applied UDITA to generate Java input programs for test-
ing refactoring engines as briefly described in Section 2, and
as we previously did with ASTGen [19, Sec. 5]. Since the in-
puts are generated automatically, ASTGen validates outputs
of refactoring engines using programmatic oracles such as
checking for engine crashes, obtaining non-compilable out-
put programs, or getting different outputs for Eclipse and
NetBeans (the latter also being known as differential test-
ing [43]). We perform two kinds of experiments: (1) rewrit-
ing some existing ASTGen generators in UDITA to compare
the ease of writing generators and the efficiency of genera-
tion, and (2) writing new generators that were extremely
difficult to express in ASTGen.

ASTGen UDITA
generator inputs time [s] LOC time [s] LOC

2ClsMethParent 2160 492.87 1316 117.92 835
3ClsMethChild 1152 265.19 1342 89.17 848
2ClsMethChild 576 135.34 1320 44.01 822
2Cls2FldChild 540 1.13 713 36.96 389
2Cls2FldRef 240 2.62 714 27.96 430

Fig. 15: Comparing ASTGen and UDITA
Eclipse NetBeans

refactoring time [s] inputs fail bug fail bug

RenameMethod 105.15 207 0 0 75 1
IntroSuperType 85.80 402 59 1 7 1
InferGenericType 258.55 414 171 1 n/a n/a

Fig. 16: Refactorings tested and faults found

Rewriting ASTGen generators. We rewrote five AST-
Gen generators in UDITA. Figure 15 shows the results. The
generators in UDITA have fewer lines of code (“LOC”, which
includes the top-level generator and the library it uses) and
are, in our experience, easier to write. UDITA generators
are about as efficient as ASTGen generators—sometimes a
bit faster, and sometimes a bit slower—which was quite sur-
prising to us at first: ASTGen runs on top of a regular
JVM, while UDITA runs on top of JPF, and JPF can be
two orders of magnitude slower than JVM. We did expect
UDITA generators to be easier to write but not to be faster,
at least not without special optimizations [29]. However,
our investigation shows that UDITA can be faster for three
reasons: (1) it has a lighter framework for generators (one
method in IGenerator for UDITA vs. five methods for AST-
Gen), (2) it has a faster backtracking due to JPF’s storing
and restoring of states rather than the re-execution of code
in ASTGen, and (3) combined declarative/imperative style
for iteration/generation allows more efficient positioning of
backtracking points (UDITA need not build an entire input
before realizing that backtracking is required).

Writing new generators. We wrote three new genera-
tors in UDITA that would be extremely difficult to write
in ASTGen. All these generators use inheritance graphs
which, as discussed in Section 2, are much easier to express
by combining declarative and imperative styles. UDITA is
more expressive than ASTGen since UDITA allows natural
mixing of these two styles. These generators allowed us to
test some refactorings we did not test with ASTGen (Intro-
duceSuperType, which replaces one class/interface with its
superclass/superinterface where possible, and InferGeneric-
Type, which finds the most appropriate generic type pa-
rameters for raw types [53]) and to more thoroughly test a
refactoring we did test (Rename Method). Figure 16 shows
the results. We revealed four new bugs in the Eclipse and
NetBeans refactoring engines, two of which are described in
figures 5 and 6. As can be seen from the table, the number
of failing tests is much larger than the number of (unique)
bugs; we used our recently proposed oracle-based test clus-
tering technique [35] to inspect the failures.

Differential testing of compilers. While testing the
refactoring engines, we effectively used the same input pro-
grams to also perform differential testing of the Sun javac
(version 1.6.0 10) and Eclipse (version 3.3.2) Java compilers.
This revealed two bugs in the Sun javac compiler, where it
incorrectly rejects valid programs that are accepted by the
Eclipse compiler. To confirm that these programs are in-
deed valid, we also compiled them with a third compiler,
the GNU Compiler for Java (GCJ version 4.3), which ac-
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interface C {
public C m(); }

interface B {
public B m(); }

interface A extends B, C {
public A m(); }

public class A {
private void m(){}
class B extends A {

void m(int i){m();}
}

}

Fig. 17: These programs generated using UDITA are

accepted by the Eclipse Java compiler but (incorrectly)

rejected by Sun javac compiler

generator time [s] inputs failures bugs

AnnotatedMethod 31.28 1280 0 0 (2)
ReflectionGet 23.71 160 80 1
DeclaredMethods 7.91 64 0 0
DeclaredMethodReturn 41.07 288 32 1
ReflectionSet 26.97 160 32 1
NotDefaultAnnotatedField 48.53 1760 0 0
Enum 1.67 78 0 0
ConstructorClass 12.01 387 27 1 (4)
DeclaredFieldTest 14.38 180 12 1
ClassCastMethod 27.96 102 75 1

Fig. 18: Generators for testing JPF, Note: Faults in

parentheses were found in the previous version of JPF

(revision 954)

cepted both of them. Figure 17 shows these programs that
were generated using UDITA.

Summary. The combined declarative/imperative style in
UDITA is better than purely imperative style in ASTGen:
UDITA is more expressive, results in shorter (and easier to
write) test generation programs, and, in some cases, even
provides faster generation (despite running on JPF, which
is much slower than JVM). We found several new bugs with
UDITA; details of all the bugs are online [1].

5.4 Testing JPF and UDITA
We also applied UDITA to generate Java input programs for
testing parts of UDITA itself. Specifically, we used differen-
tial testing [43] to check (1) whether (base) JPF correctly
implements a JVM, and (2) whether our delayed choice im-
plementation behaves as non-delayed choice.

Testing JPF. JPF is implemented as a specialized JVM
that provides support for state exploration of programs with
non-deterministic choices [54]. For programs without non-
deterministic choices, JPF should behave as a regular JVM.
We knew from our experience with JPF that it does not al-
ways behave as JVM, especially for some standard libraries
(e.g., related to reflection or native methods) or for latest
Java language features (e.g., annotations or enums), even
though the JPF implementation is developed to support
them. We wrote generators to produce small Java pro-
grams that exercise these libraries/features. We also wrote a
generic driver that would compile each generated program,
run it on JPF and JVM, and compare the outputs from the
two. Figure 18 shows the results. Through this process, we
found eleven unique bugs in an older version of JPF (five of
which were corrected in a more recent revision, 1829, from
the JPF repository). Detailed results are online [1].

Testing delayed choice implementation. Although we
proved that our delayed choice algorithm is correct, we still
need to test its implementation, especially the challenging
part of object pools (Section 4.2). We wrote a generator that
produces Java programs with various sequences of getAny

and getNew calls on an object pool (and then later reads the
returned values in various orders). We also wrote a script

to compile each program and run it on JPF both with and
without delayed choice. This process found an old bug in
our implementation (related to the computation of levels

from Section 4.2) which would manifest only for some se-
quences that mix between getNew calls a number of getAny

calls exactly equal to the pool size. We subsequently cor-
rected the bug, and (after manually proving the algorithm
in Section 4.2 correct), used the generator to increase our
confidence in the corrected implementation.

Summary. The use of UDITA helped us identify a number
of faults in parts of the UDITA implementation, including
in JPF.

6. RELATED WORK
There is a large body of work on automated test generation.
This paper focuses on test generation programs, combining
declarative [7, 22, 29, 36, 41, 42] and imperative [19, 35]
styles in a general-purpose programming languages. Re-
lated work on topics such as specification-, constraint-, and
grammar-based testing [39] is reviewed in detail in a recent
paper [19] and a PhD thesis [41]. The key technique that
enables efficient test generation for UDITA is delayed exe-
cution, so we review here related work on that topic.

Noll and Schlich [44] proposed delayed non-deterministic
execution for model checking assembly code. While their
and our approaches share the name, the algorithms differ:
UDITA precisely shares non-deterministic values when they
are copied, using lazy evaluation, whereas [44] copies non-
deterministic values, effectively using call-by-name seman-
tics and over-approximating state space, possibly exploring
executions that are infeasible in non-delayed execution. Fur-
ther differences stem from different abstraction levels, with
UDITA modeling each non-deterministic integer as one sym-
bolic value as opposed to a set of bits, and UDITA handling
graph isomorphism for allocated objects.

Techniques similar to delayed choice execution are com-
mon in constraint solving—both for constraints written in
imperative languages and for constraints written in declar-
ative languages. For example, Korat [7] implicitly uses de-
layed choice by monitoring field accesses and using them
in field initializations for the new candidates it explores.
Generalized symbolic execution [37] uses “lazy initialization”
to make non-deterministic field assignments on first-access.
Deng et al.’s [21] “lazier initialization” builds on generalized
symbolic execution and makes non-deterministic field assign-
ments on first-use. Visser et al. [55] use preconditions writ-
ten in Java for checking satisfiability but require the users to
provide “conservative preconditions” which are hard to pro-
vide manually or generate automatically. A key difference
between previous work and this paper is that we provide
a generic framework that supports delayed choice execu-
tion for arbitrary Java code extended with non-deterministic
choices for primitive values and objects. We also apply
UDITA on testing much larger code bases, finding bugs in
Eclipse, NetBeans, Sun javac, and JPF.

The ECLiPSe constraint solver [4] provides a constraint
logic programming (CLP) interface for writing declarative
constraints. ECLiPSe provides suspensions that delay test-
ing of predicates until more information is available. Re-
searchers have proposed translating imperative programs
into constraint programming engines [24] but faced limi-
tations of current CLP implementations. We believe that
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non-deterministic extensions of popular programming lan-
guages such as Java can lead both to advances of software
model checking and to scalable implementations of con-
straint solvers.

Recent research on automated test generation includes ap-
proaches based on exploration of method sequences [18, 51,
56] for generation of object-oriented unit tests. Such explo-
ration cannot be used to generate complex test inputs when
there are no appropriate methods, e.g., for building inher-
itance graphs. UDITA can directly generate complex test
inputs, and imperative style generators in UDITA can even
use method sequences.

Unlike symbolic execution [2, 3, 13, 14, 15, 17, 26, 27,
38, 48], UDITA relies primarily on concrete execution to
generate test inputs, and uses a polynomial-time algorithms
(Section 4) to ensure the feasibility of the currently explored
path. This is in contrast to traditional symbolic execution
approaches whose path conditions belong to NP-hard log-
ics (often containing propositional logic, uninterpreted func-
tions, and bitvector arithmetic). Several recent approaches
show promising results by combining symbolic with concrete
execution [11, 17, 31, 47, 49, 52] or with grammar-based in-
put generation [30]. In contrast to combination of concrete
executions with abstraction [6, 46], UDITA focuses on test
generation by efficiently covering a set of concrete execu-
tions, without approximation. We have no evidence that
any of the existing approaches can find bugs such as those
that UDITA found in Eclipse, NetBeans, Sun javac, or JPF.
Our experience with Pex [52] suggests that other tools by
themselves do not give the benefits of UDITA, but could be
used, similarly to Java PathFinder, as a platform on which
to build UDITA-like techniques.

7. CONCLUSIONS
We have found UDITA to be an expressive and convenient
framework for specifying complex test inputs. Because it
extends Java, it has the expressive power and the appeal
of a full-fledged programming language. Because it contains
non-deterministic constructs, it is appropriate for describing
tests in a wide range of styles, from predicates that indicate
properties, to generators that create only desired structures.
To describe linked structures, we have found the new object
pool abstraction to be particularly helpful. We have found
UDITA easier to use than previous frameworks.

UDITA quickly revealed bugs in data structure imple-
mentations, and was effective in systematically generating
structures up to a given size. The effectiveness of UDITA
was in large part due to our lazy evaluation technique for
non-deterministic choices, and the algorithms for delayed ex-
ecution of object pool operations without solving NP-hard
constraints. We have applied UDITA to real-world software
and uncovered previously unknown bugs in Eclipse, Net-
Beans, Sun javac, and Java PathFinder.
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APPENDIX

A. FURTHER EXAMPLES

A.1 Red-Black Trees
As another example to illustrate UDITA, we use red-black
trees [16], a widely used data structure underlying, for exam-
ple, the TreeMap class implementation of the Java Standard
library. Due to non-trivial data structure invariants, red-
black trees often appear as a benchmark for techniques that
check expressive properties [5, 36, 37, 40]. Figure 19 shows
the skeleton of a red-black tree implementation in Java.

Specification of red-black trees. The class invariant for
red-black trees consists of the following properties [16]:

1. treeness: The nodes reachable from root along the
left and right children should form a tree (have no
cycles and no two incoming pointers to any node), and
the parent field should appropriately point to a node’s
immediate predecessor.

2. coloring: 1) The children of a node colored red must
be colored black. 2) All simple paths from the root to
a leaf must have the same number of black nodes.

3. ordering: The values in the tree should be ordered for
binary search, i.e., for each node n, the values in the
left subtree should be smaller than the value in n, and
the values in the right subtree should be larger than
the value in n.

Suppose that we want to test the method remove which
deletes an element from a red-black tree. We need to gen-
erate inputs that satisfy the class invariant, run them on
remove, and check that the modified state still satisfies the
invariant (and potentially other properties).

Declarative test abstractions. The UDITA approach
follows Korat [7] in that the developers can use arbitrary
(Java) code to write predicates that encode properties of
test inputs. Figure 20 shows the isRBT Java predicate that
returns true exactly when the class invariant holds in the
current state (declarative style of specification).

To generate test inputs from predicates, the developer
needs to specify possible values for input elements, which
in our example are tree nodes, their colors, and values. For
this purpose, UDITA uses non-deterministic assignments
k=getInt(1, N). Figure 21 shows the non-deterministic ini-
tialization of a red-black tree data structure. It proceeds in
several steps: 1) pick the tree size (the number of nodes),
2) create a pool of objects of this size, and 3) iterate over
all objects in the pool and non-deterministically initialize
their fields to point to other objects in the pool. The getAny

method picks an arbitrary object from the pool and can be,
in the simplest form, implemented using getInt.

Generating inputs and testing code. Figure 22 shows
how we can put together generation of trees and values with
testing of the remove method, including checking the invari-
ant with the usual Java assert statement that signals an
error if the condition is not satisfied. The assume method
silently ignores the current execution and moves to other
executions if the condition is not satisfied.

class Tree {
Node root; int size;
static boolean RED = false, BLACK = true;
static class Node {

Node left, right, parent;
boolean color; int key; }

void insert(int value) { ... }
void remove(int value) { ... }
boolean contains(int value) { ... }

}

Fig. 19: A red-black tree implementation in Java

boolean isRBT() {
return treeness() && coloring() && ordering();

}
boolean treeness() {

if (root == null) return size == 0;
Set<Node> visited = new HashSet<Node>();
visited.add(t.root);
List<Node> workList = new LinkedList<Node>();
workList.add(t.root);
if (root.parent != null) return false;
while (!workList.isEmpty()) {

Node current = workList.removeFirst();
Node cl = current.left;
if (cl != null) {

if (!visited.add(cl)) return false;
if (cl.parent != current) return false;
workList.add(cl); }

Node cr = current.right;
if (cr != null) {

if (!visited.add(cr)) return false;
if (cr.parent != current) return false;
workList.add(cr); }

}
return size == visited.size();

}
boolean coloring() {

// Part 1): red node must have black children
...
// Part 2): number of black nodes on all paths is the same
int numberOfBlack = −1;
List<Pair> workList = new LinkedList<Pair>();
workList.add(new Pair(root, 0));
while (!workList.isEmpty()) {

Pair p = workList.removeFirst();
Node e = p.e; int n = p.n;
if (e != null && e.color == BLACK) n++;
if (e == null) {

if (numberOfBlack == −1) numberOfBlack = n;
else if (numberOfBlack != n) return false;

} else {
workList.add(new Pair(e.left, n));
workList.add(new Pair(e.right, n));

}
}
return true;

}
boolean ordering() { ... }

Fig. 20: Red-black tree class invariant as an executable

predicate

void initialize(int maxSize, int maxKey) {
size = getInt(1, maxSize);
ObjectPool〈Node〉 nodes =

new ObjectPool〈Node〉(size);
root = nodes.getAny();
for (Node n : nodes) {

n.left = nodes.getAny();
n.right = nodes.getAny();
n.parent = nodes.getAny();
n.color = getBoolean();
n.key = getInt(1, maxKey); } }

Fig. 21: Method performing non-deterministic initial-

ization of a red-black tree
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static void main(int N) {
RBTree t = new RBTree(); t.initialize(N);// Pick a graph
assume(t.isRBT()); // satisfying invariant ,
int v = getInt(0, N); // and pick a value .
t. remove(v); // Run code under test ,
assert(t. isRBT()); } // and check invariant .

Fig. 22: Testing the remove method

Tree generateRBT(int N) {
Tree t = new Tree();
t.root = generateTreeBackbone(N);
generateColoring(t); // not shown, very complex
generateOrdering(t); // not shown, fairly simple
t.size = numberOfNodes(t); // not shown, trivial
return t;

}
Node generateTreeBackbone(int N) {

if (N == 0) return null;
Node n = new Node();
int leftSize = getInt(0, N − 1);
int rightSize = getInt(0, N − 1 − leftSize);
n.left = generateTreeBackbone(leftSize);
if (n.left != null) n.left.parent = n;
n.right = generateTreeBackbone(rightSize);
if (n.right != null) n.right.parent = n;
return n;

}

Fig. 23: Code that directly generates trees

Imperative test abstractions. Instead of generating
possible graphs in Figure 21 and then filtering (Figure 20)
those that are not trees using the treeness method, Figure 23
shows a simpler and faster alternative that directly gener-
ates trees of size N with the generateTreeBackbone method.
While the treeness method from Figure 20 presents a predi-

cate characterizing trees, Figure 23 presents a generator for
trees. As mentioned, we call the former style declarative as it
only specifies what the trees look like, and we call the latter
style imperative as it specifies how to generate trees [19].

Writing (imperative) generators instead of (declarative)
predicates can dramatically speed up the generation. How-
ever, using generators alone is highly non-trivial. Although
it was easy to write code that generates arbitrary trees, gen-
erating only trees for which correct coloring exists is much
more difficult. In fact, an entire research paper was devoted
to such efficient generation of red-black trees [5]. In com-
parison, declarative generation is often easier, anecdotally
confirmed by the fact that undergraduate students are often
able to write appropriate checks [42]. This trade-off justifies
delayed choice execution as an optimization for predicate-
based execution exploration, but also asks for an approach
to combine predicates and generators.

Unifying predicates and generators. Our UDITA ap-
proach makes combination of predicates and generators pos-
sible because they are both expressed in a unified frame-
work: systematic execution of non-deterministic assign-
ments. Consider the properties in our running example. For
the treeness property, comparing the imperative generation
(Figure 23) and declarative generation (figures 20 and 21),
one could argue that it is easier to write a generator than
a predicate. However, for the coloring property, it is much
easier to write a predicate than a generator. UDITA allows
the tester to combine, for example, a generator for treeness

with a predicate for coloring. One would generate trees
with the generateTreeBackbone method of Figure 23 and find

void sort(int[] keys, int[] vals) {
for (int i = 0; i < keys.length − 1; i++)

for (int j = i+1; j < keys.length; j++)
if (keys[i] > keys[j]) {

int tmp = keys[i]; keys[i] = keys[j]; keys[j] = tmp;
tmp = vals[i]; vals[i] = vals[j]; vals[j] = tmp; }

}
static void main() {

int len = getInt(0, N);
int[] keys = new int[len]; int[] values = new int[len];
for (int i = 0; i < len; i++) {

keys[i] = getInt(0, N); values[i] = getInt(0, V−1); }
sort(keys, values);
assert (sorted(keys));

}

Fig. 24: Checking code that sorts data stored in two

arrays

appropriate node colors using the coloring predicate from
Figure 20.

In Section 5.1 we evaluate only the combined declara-
tive/imperative style, since test abstractions are much eas-
ier to write than for purely imperative style, and generation
for purely declarative style is several orders of magnitude
slower on basic JPF without delayed choice than with de-
layed choice (compare over an hour to 1.2 seconds just for
size 3). For red-black tree, delayed choice speeds up ba-
sic JPF both for test generation and for finding bugs; the
speedups for various sizes (from 6 to 9) range from 3X to
7X.

A.2 Copy Propagation Example
We illustrate the copy propagation feature of UDITA, which
keeps non-deterministic values symbolic even if they are
copied through memory locations. Consider first a version
of red-black tree that, in addition to the key field also has
a value field storing arbitrary objects. Because nodes are
stored according to key values, no value field in a tree will
be read by the remove method. Therefore, even if the value

fields are initialized with values belonging to a large set, the
search for code from Figure 22 will terminate equally fast,
proving that the initial value fields do not affect the execu-
tion of remove.

Consider, however, code shown in Figure 24 for sorting
data stored in the values array, according to keys stored in
the separate keys array. The correspondence between data
and key is established by the position; whenever in-place sort
moves keys, it also moves the corresponding values. Conse-
quently, both values and keys entries are read by the code.
The simple form of delayed execution would explore all V

N

possibilities for the values array. In contrast, our copy prop-
agation technique keeps the values symbolic when they are
copied, choosing concrete values only when the variable is
involved in a non-copy operation, e.g., an arithmetic op-
eration for primitives or field dereference for pointers. In
this example, such non-copy operations do not arise for the
elements of the values array. For N = 5, copy propaga-
tion makes the exhaustive exploration finish in 4.8 seconds,
regardless of the V bound. In contrast, the exhaustive explo-
ration without copy propagation does not complete within
an hour even for V=5.
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EPFL Technical Report LARA-REPORT-005, September 2009

14


	Introduction
	Example
	UDITA Framework Overview
	Composing Generators

	Test Generation in UDITA
	Test Generation for Primitive Values
	Test Generation for Linked Structures
	Correctness of Delayed Object Pools
	Benefits of Object Pools

	Evaluation
	Testing Data Structures
	Comparison with Symbolic Execution
	Testing Refactoring Engines
	Testing JPF and UDITA

	Related Work
	Conclusions
	Further Examples
	Red-Black Trees
	Copy Propagation Example


