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Abstract. Pattern matching is a widespread programming language
construct that enables definitions of values by cases, generalizing if-then-
else and case statements. The cases in a pattern matching expression
should be exhaustive: when the value does not match any of the cases, the
expression throws a run-time exception. Similarly, each pattern should be
reachable, and, if possible, patterns should be disjoint to facilitate rea-
soning. Current compilers use simple analyses to check patterns. Such
analyses ignore pattern guards, use static types to approximate possible
expression values, and do not take into account properties of user-defined
functions.

We present a design and implementation of a new analysis of pattern
matching expressions. Our analysis detects a wider class of errors and
reports fewer false alarms than previous approaches. It checks disjoint-
ness, reachability, and exhaustiveness of patterns by expressing these
conditions as formulas and proving them using decision procedures and
theorem provers. It achieves precision by propagating possible values
through nested expressions and approximating pattern-matching guards
with formulas. It supports user-defined “extractor” functions in patterns
by relying on specifications of relationships between the domains of such
functions. The result is the first analysis that enables verified, declara-
tive pattern matching with guards in the presence of data abstraction.
We have implemented our analysis and describe our experience in check-
ing a range of pattern matching expressions in a subset of the Scala
programming language.

1 Introduction

Pattern matching is a widely used conditional construct in programming lan-
guages. It specifies a computation as a sequence of tests on the shape of a
given value and binds variables to value components if the test succeeds. Pro-
gramming languages often support pattern matching on values of algebraic data
types, which facilitates reasoning about programs while preserving their efficient
execution. These constructs are among central features of modern functional
programming languages [3, 21, 18, 2] and are often credited with increased pro-
grammer productivity (e.g., [22]). Moreover, recent research incorporates pattern
matching into object-oriented programming languages [19,8,23,29], showing how
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to reconcile it with subtyping and data abstraction, and pointing out scenarios
where it is more convenient than dynamic dispatch and its generalizations [20].

In this paper we describe a new static analysis for pattern matching. Its
distinguishing features are

1. Verification of constraints on values (such as integers and objects) and not
just tree-like constraints on shape. Our analysis takes into account pattern
guards, conditionals, procedure preconditions and postconditions. The track-
ing of predicates on values differentiates our analysis from many approaches
that focus on tree patterns including the work on statically checkable pattern
abstractions [10];

2. Support for specification and verification of user-defined patterns. Follow-
ing [8], this approach enables developers to provide multiple implementation-
independent views of same data though extractor functions. In our system,
however, developers can also specify the partitioning properties for such
views. Our analysis checks reachability, exhaustiveness, and disjointness of
patterns that use such views, as well as the fact that the partitioning prop-
erties are in fact satisfied by the bodies of extractor functions.

We also discuss our experience with a prototype implementation [5] of our
pattern-matching analysis. To check the desired properties, our system first en-
codes them as logical formulas and then attempts to prove them using a system
that combines decision procedures and theorem provers, which was originally
developed for the Jahob verification system [16]. Our system accepts programs
in a first-order functional subset of Scala [25, 1, 8] and checks exhaustiveness,
disjointness, reachability of patterns, as well as any auxiliary specifications that
the developer introduced to make the checking of patterns possible. In addition
to Scala, we expect our techniques to be useful for other programming languages
such as F# [28,29].

Contributions. We summarize the contributions of this paper as follows:

– We describe an approach for checking patterns in the presence of guards,
user-defined functions, data abstraction and information hiding.

– We show how to implement this approach by reducing pattern matching
questions to validity of formulas.

– We present a prototype implementation of this approach and its evaluation
on a series of examples that illustrate a range pattern-matching scenarios.
Our results suggest that the approach is useful in improving software relia-
bility and that the performance of the analysis is acceptable.

2 Overview of Our Approach

In this section we continue introducing features of our analysis through examples
and discuss our approach to pattern specification and verification.
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sealed abstract class Tree {
def contains(key: Int):Boolean = (this:Tree) match {

case Empty() ⇒ false
case Node( , value:Int, ) if value == key ⇒ true
case Node( , value:Int, right:Tree) if value < key ⇒ right.contains(key)
case Node(left:Tree, value:Int, ) if value > key ⇒ left.contains(key)

}
}
class Empty extends Tree
class Node(val l: Tree, val v: Int, val r: Tree) extends Tree

Fig. 1. Binary search tree

2.1 Verifying Constraints on Values

The simple Scala example in Figure 1 shows one of the ways in which our anal-
ysis goes beyond the standard compiler warnings. The example introduces an
algebraic data type Tree, which in an ML-like language would be given by a
recursive type declaration Tree = Leaf | Node of Tree * int * Tree. The
figure also defines the membership function contains, which uses binary search to
test if the given key is stored in the tree. The function performs pattern match-
ing on the tree denoted by the receiver object this. The function considers four
cases: an empty tree, a node storing the desired key, a node storing a smaller key
and a node storing a larger key. Each case is expressed using a case construct
inside the match expression. It consists of the expression identifying the shape
of the value and binding variables to its components, optionally followed by the
if keyword and a boolean guard expression that imposes an additional condition
for the case to apply. Note that, for a given tree, exactly one of the four cases
in Figure 1 applies.

Pattern matching as a declarative construct. There are several desirable
properties that a pattern matching expression should satisfy:

– exhaustiveness: for every value being matched, at least one of the cases
should apply;

– disjointness: for every value being matched, ideally, at most one of the cases
should apply;

– reachability: no case should be subsumed by previous ones, that is, no case
should represent unreachable code.

Most current compilers attempt to check exhaustiveness and reachability for
patterns expressed using solely structural constraints (such as Node(...)), but do
not attempt any checks that also involve guards (such as value < key). Com-
pilers typically do not emit any warnings for disjointness, although they may
derive such information internally (again, ignoring guards) to optimize pattern
matching code. Typically, the compiler conservatively requires the case with a
guard to be covered by cases that have no guards, which results in false warning
in examples such as Figure 1. Consequently, the declarative spirit of the pattern
matching construct is not ensured statically and programs risk the possibility of
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run-time errors or unintended meaning of the code. Programmers become en-
couraged to write patterns that rely on sequential evaluation order and insert
catch-all cases that have no visible specification of when they apply, preventing
reordering of patterns and increasing the risk of difficult-to-find semantic errors.
The checks made possible by our analysis reestablish the declarative status of
the pattern matching by enforcing desired pattern matching properties even in
the presence of guards and other constraints on program values.

Handling guards using theorem provers and decision procedures.
Guards are expressions of the underlying programming language and can con-
tain, e.g., arithmetic operations, field dereference, and function calls. This gener-
ality makes questions about guards difficult and is perhaps the main reason why
compilers ignore them. The analysis we present in this paper overcomes this lim-
itation by encoding pattern matching questions as logical formulas, then using
theorem provers and decision procedures to prove these formulas. Our approach
is therefore related to, e.g., ESC/Java [11], but we implemented it in a simpler,
first-order purely functional language fragment. We believe that the focus on
functional subset is appropriate given that patterns are generally required to be
side-effect-free in order to enable optimizations [7].

An important question when using theorem provers in verification is the
behavior of the system on typical examples that arise in practice. As a step
towards answering this question, we wrote or adapted several examples that
demonstrate various cases where questions about patterns hold and do not hold
(Section 5). We found that our system was able to quickly prove generated valid
formulas by applying Jahob’s theorem proving engine [16] to reduce formulas to
the input to the CVC3 prover [14]. The experience with these examples suggests
that our approach is effective in practice.

Tracking constraints. Because our analysis tracks not only types but also
properties on values, it must take into account program context in which a
pattern-matching expression occurs. Consider the example in Figure 2. Note
that, when the inner match expression evaluates, key != value holds, because
the guard of the outer pattern succeeded. Therefore, the two cases in the inner
match expression are exhaustive, even though they would not be exhaustive in
general. A similar situation would arise for a match expression occurring inside a
standard if statement. Our system correctly handles such scenarios by generating

def contains(key: Int): Boolean = (this : Tree) match {
case Node( ,value: Int, ) if key != value ⇒

(this : Tree) match {
case Node(left: Tree,value: Int, ) if key < value ⇒ left.contains(key)
case Node( ,value:Int, right: Tree) if key > value ⇒ right.contains(key)

}
case Node( ,value: Int, ) if key == value ⇒ true
case Empty() ⇒ false

}

Fig. 2. A version of binary search with nested patterns
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formulas that maintain constraints on values at each program point and using
these constraints when checking pattern properties.

2.2 Verified User-Defined Patterns

Our analysis supports data abstraction and user-defined patterns, viewing simple
algebraic patterns as a particular case of user-defined patterns. The example in
Figure 3 illustrates user-defined patterns in Scala based on extractor (unapply)
functions [8, 7] and shows how to specify properties of such functions in our
system.
Unapply functions. The example in Figure 3 introduces the list data type
denoted by the Lst class, then defines both the usual decomposition with Cons
pattern and the “backward” decomposition using the Snoc pattern.

/∗ domain Dom Nill = Nill & Dom Cons = Cons & Dom Snoc = Cons &
Dom Cons \Un Dom Nill = Lst & Dom Cons \Int Dom Nill = empty
Dom Snoc \Un Dom Nill = Lst & Dom Snoc \Int Dom Nill = empty ∗/

sealed abstract class Lst
class Cons(val head: Elem, val tail: Lst) extends Lst
class Nill extends Lst
class Elem
object Nill {

def apply(): Nill = new Nill()
def unapply(n: Nill): Boolean = true

}
object Cons {

def apply(head: Elem, tail: Lst): Cons = new Cons(head,tail)
def unapply(c: Cons): Option[(Elem,Lst)] = Some(Tuple2(c.head,c.tail))

}
object Snoc {

def unapply(c: Cons): Option[(Lst,Elem)] = (c : Cons) match {
case Cons(c : Elem, xs: Lst) ⇒ (xs : Lst) match {

case Nill() ⇒ Some(Tuple2(Nill(),c))
case Snoc(ys: Lst, y: Elem) ⇒ Some(Tuple2(Cons(c,ys),y))

}
}

}
...
(lst: Lst) match {

case Nill() ⇒ lst
case Cons(x: Elem, Nill()) ⇒ lst
case Cons(x: Elem, Snoc( ,y: Elem)) ⇒ Cons(x,Cons(y,Nill())) }

Fig. 3. Two views of a list in our system

The standard decomposition uses Nill and Cons patterns. Cons(x,y) succeeds
whenever the list is non-empty. When it succeeds, it binds x to the first element
of the list and y to the rest of the list. In Scala, the programmer can define the
Cons pattern as the unapply partial function of the Cons object, as in Figure 3
(we denote this function Cons.unapply). To represent the fact that Cons(x,y)
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pattern match succeeds on value v and binds (x,y) to values (a,b), Scala uses
the condition Cons.unapply(v)=Some(a,b). To represent that the pattern match
fails, Scala uses Cons.unapply(v)=None. Each pattern therefore translates into
unapply calls. The definition of the Cons.unapply function is a straightforward
pair of field dereferences. The formal parameter of Cons.unapply has the type of
Cons class, which means that a pattern match will fail on an object that is not
a subtype of Cons. The simple Nill pattern consists solely of the type test on the
Nill class. The sealed keyword implies that Cons and Nill are the only subclasses
of Lst.

Domain constraints for specifying defined patterns. The bodies of un-
apply functions are arbitrary pure computations. How can a compiler check ex-
haustiveness, disjointness and reachability of such user-defined patterns? In Fig-
ure 3 example, for every non-null Lst object, exactly one of the two functions
Nill.unapply, Cons.unapply return Some(...), but this need not be the case in gen-
eral. The compiler clearly needs additional information on the behavior of unap-
ply functions. However, exposing function bodies would violate the abstraction
and prevent modular checking. Our system solves this tension by introducing
domain specifications for unapply functions, expressed as special comments at
the beginning of code in Figure 3. For each user-defined pattern P.unapply we
introduce the set Dom P of all values for which the pattern succeeds, that is,
for which P.unapply returns Some(...). The domain declaration is a conjunction
of set inclusion and equality constraints among such set expressions built from
domain sets and the sets representing classes. The key piece of information that
our system needs to check pattern matching on lists is that the two sets Dom Nill,
Dom Cons form a partition of Lst, expressed in Figure 3 by the constraint that
their intersection is empty and their union is Lst.

Our system uses domain constraints to check pattern matching expressions
without the need to access function bodies. On the other hand, as the part of
verifying data type implementation, our system ensures that the implementa-
tions of unapply methods satisfy these domain constraints. Our system therefore
supports assume-guarantee reasoning with domains as a simple form of algebraic
specifications [15]. Because they are simple and directly capture the properties
needed to analyze pattern matching, we believe that our domain constraints
are more appropriate for our system than the alternative of using specification
variables (model fields) [16,17].

Multiple views. Having seen how to define the standard view of the list,
consider now the alternative “backward” list decomposition given by the Snoc
pattern in Figure 3. The Snoc pattern splits a non-empty list into its initial prefix
and its last element. Note that Snoc satisfies the same domain specification as
Cons. In fact, the domains of both Snoc.unapply and Cons.unapply are equal to
the Cons set, the set of all (non-null) objects of the Cons class.

Our system proves that all domain constraints in this example hold using a
theorem prover. When verifying that the recursive Snoc body conforms to the
specification Snoc = Cons, the system uses a built-in inductive rule. The system
can then use these domain constraints to check the uses of patterns, for example,
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the final expression in Figure 3. The system successfully detects that the three
patterns in this expression are exhaustive, disjoint, and reachable.

Contracts and invariants for more complex properties. Our system can
also check function preconditions and postconditions. It also checks invariants as
part of the verification of constructors, because in our functional language class
invariants can never be violated once they are established by the constructor.
Figure 4 shows fragment from an example that we checked in our system and
which was originally part of a class assignment.

/∗ domain Dom Const = Const & Dom Var = Var &
Dom Abstr = Abstr & Dom App = App ∗/

sealed abstract class Term
class Const extends Term
class Var(val index: Int) extends Term
class Abstr(val t: Term) extends Term
class App(val t1: Term, val t2: Term) extends Term
class Eval {

def isValue(t: Term): Boolean = /∗ postcondition res ↔ t \in Abstr ∗/
t.isInstanceOf[Abstr]

def step(t: Term): Term = (t : Term) match {
case Var( ) ⇒ t
case Const() ⇒ t
case Abstr(t1: Term) ⇒ Abstr(this.step(t1))
case App(v1: Abstr, t2: Term) if !this.isValue(t2) ⇒ App(v1, this.step(t2))
case App(t1: Term, t2: Term) if !this.isValue(t1) ⇒ App(this.step(t1), t2)
case App(Abstr(t1:Term),v2:Term) if this.isValue(v2) ⇒ this.subst(t1,1,v2)

}
}

Fig. 4. A pattern matching expression in a lambda evaluator

The code Figure 4 shows an evaluation step function on lambda calculus
terms represented in de Bruijn notation. To determine which lambda subterm
to evaluate, the match expression in step uses a guard containing isValue func-
tion call. Our system proves these patterns with guards exhaustive, disjoint,
and reachable. In this process it crucially relies on the postcondition of isValue.
The system also checks that isValue implementation satisfies its postcondition.
Already at the examples of this complexity we find that checking pattern prop-
erties manually is very unreliable (e.g., it was non-obvious to us that this pattern
matching is exhaustive or disjoint). The confidence that our system gave us was
valuable during program development and transformations such as reordering
the cases. The postcondition in this example is admittedly simple. In general,
we find that pattern matching properties are often of local nature, so in many
cases we need few specifications beyond the domain constraints.

Recursive type refinement invariants. Type refinements [12] are a useful
class of constraints that impose a recursive restriction on the subset of values of
a given type. For example, a simplifying transformation in the implementation
of our analysis system replaces each formula syntax tree of the form (P → Q)
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with the tree ((¬P ) ∨ Q). Ideally, subsequent pattern matching on such trans-
formed formula should not need to cover the case of implication (→). Our system
supports such examples by allowing developers to introduce of new sets of ob-
jects (denoting, for example, formula syntax trees without implication node),
then use these sets in postconditions of constructors, patterns, and other func-
tions. We have used this approach when specifying Propositional Logic example
summarized in Section 5.

2.3 Related Work

User defined patterns and views have been proposed before [31, 26, 7, 8]. What
distinguishes our analysis from previous ones is the simultaneous support for 1)
data abstraction with information hiding (through domain constraints), and 2)
analysis of guards that express constraints on values (such as linear arithmetic
and uninterpreted function symbols).

Active patterns [29] are an extension to F# to allow pattern-matching over
abstract data types, in a way very similar to unapply functions. Contrary to
unapply functions, however, active patterns are categorized into several pat-
tern classes, depending on the sets of values they match. Some of these (“total
patterns”) allow compile-time checks for completeness and redundancy, while
for others (“partial” and “parameterized patterns”), no way of performing such
checks is proposed.

Predicate dispatch [9] was proposed as a unification of multiple dispatching
mechanism, including functional-style pattern matching. [20] presents an imple-
mentation as an extension to Java, and demonstrates how it can be used to
emulate a reasonably large subset of pattern-matching expressions. The system
presented is general enough to allow mathematical expressions and comparisons
in guards. Completeness and disjointness of the predicate guards are both re-
quired and verified and compile-time, using a predecessor of CVC3 that we also
employ in our analysis. As in dynamic dispatch, pattern-matching can only be
performed at the method level, so nested patterns are not supported. JMatch also
introduces pattern matching into Java [19], but does not address completeness
of disjointness of patterns.

Refinement types [13] enable specification of subsets of values of algebraic
data types given by sets recognized by tree automata. A similar approach was
used in [10] to introduce pattern abstractions that are similar to Scala’s unapply
functions that we use in our work. These abstractions however do not take guards
into account, but could be extended in this direction [6].

[30] describes a translation of a purely functional language with pattern
matching into Isabelle [24]. This approach could also enable checking pattern
matching properties, given an automated approach for proving Isabelle formulas.
Our system directly generates formulas specialized to checking pattern matching
properties and we believe that this was important for being able to prove such
formulas automatically.
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3 Generating Formulas for Pattern Matching Properties

Our system checks the following properties:

– for each match expression it checks exhaustiveness, disjointness, and reach-
ability;

– for each domain constraint it checks that the corresponding unapply functions
satisfy it;

– for each function body, it checks that its postcondition holds, and that the
preconditions and constructor invariants hold for each function call within
the body.

Our system checks each of these properties by generating corresponding formulas
and trying to prove them. We next describe the process of generating these
formulas.

3.1 Exhaustiveness, Disjointness, and Reachability

Consider a matching expression with n patterns of the following form:

(s: T) match {
case p1 ⇒ . . .
case p2 ⇒ . . .
. . .
case pn ⇒ . . .

}

For each pattern pi, let ξ(s, pi) denote that the pattern pi matches the scrutinee
s. Then matching is

– exhaustive iff
∨

1≤i≤n

ξ(s, pi) holds;

– disjoint iff
∧

1≤i<j≤n

¬(ξ(s, pi) ∧ ξ(s, pj)) holds;

– reachable if
∨

1≤i≤n

(
(

∧
1≤j<i

¬ξ(s, pj)) → ¬ξ(s, pi)
)

does not hold.

Denote any of the above three properties by formula P . Such property P by itself
typically does not contain enough information to be provable. What is missing is
1) global information about the program, denoted by G, and 2) local information
about the conditions that hold at the entry of the pattern matching expression,
denoted by L. The formula we generate is therefore of the form (G ∧ L) → P .
We check the validity of this formula for exhaustiveness and disjointness, and
check its non-validity for reachability.

3.2 Translating Structural Patterns

Consider the case pi of the form (case t if g)). The formula ξ(s, pi) consists
of 1) the part describing t (the structural part of the pattern, and 2) the part
describing the guard g. We next describe the translation of t.

There are three kinds of structural patterns:
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1. wildcard, which is a placeholder imposing no constraints;
2. variable pattern, which binds a variable to a value if it has the specified

type;
3. class pattern, which corresponds to an unapply call.

The system generates true as the constraint for wildcards, and generates simple
set-membership atomic formula x ∈ T for variable pattern x : T .

To translate a class pattern, the system encodes a call to unapply method.
The system also assumes the postcondition of the unapply method. It handles
nested patterns by introducing fresh variables to denote intermediate results
during pattern matching computation. The generated formula has the form of
an implication; the bindings for fresh variables appear on the left-hand side of the
implication. When proving formula validity, these fresh variables are universally
quantified, ensuring the desired meaning.

3.3 Translating Guards

The second part of ξ(s, pi) is the translation of guards, which relies on the trans-
lation of expressions in our functional programming language into formulas of
our logic. Figure 5 shows this translation. It proceeds recursively on the structure
of the expression. It replaces function calls with uninterpreted function symbol
applications and assumes the postconditions of called functions.

As in the translation of nested patterns, the translation requires introducing
fresh variables for subexpressions and binding them appropriately on the left-
hand side of the implication. The auxiliary function Class denotes the class in
which a method or field is declared.

3.4 Local Conditions

Our system builds formula L containing local information about values at a
given program point by traversing syntax tree of function body and accumulat-
ing conditions in branching statements that lead to this program point. When
translating patterns and guards it reuses the translation for generating ξ(s, pi)
formulas.

3.5 Axioms

Our system builds formula G containing global information about the program
as a conjunction of the following kinds of formulas.
Subtyping. Our system represents information about Scala types using sets of
objects. Type membership is encoded as set membership. Immediate subclasses
of a given class are represented as subsets, which are disjoint if the class is
abstract and whose union is the superclass if the class is sealed.
Class fields. Our system models class fields as uninterpreted function symbols
mapping objects into values of appropriate type. We use universally quantified
axioms to encode the types of fields.
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def expr2formula(e: Expression): (Formula,Alias) = e match {
case se.isInstanceOf[A] ⇒

val (f se,se obj) = expr2formula(se)
return (f se ∧ (fresh v = (se obj ∈ A)) , fresh v)

case new A(arg) ⇒
val (f arg,res arg) = expr2formula(arg)

val form = (fresh A ∈ A) ∧ invariant(A) ∧
f arg ∧ A getField arg(fresh A) = res arg

return (form , fresh A)

case se.m(arg) ⇒
val (f se,se obj) = expr2formula(se)
val (f arg,res arg) = expr2formula(arg)
var form = f se ∧ f arg

form = form ∧
[res 7→ fresh res, this 7→ se obj, arg 7→ res arg] postcondition(m) ∧
fresh res = Class(m) m(se obj,res arg)

return (left , fresh res)

case se.v ⇒
val (f se,se obj) = expr2formula(se)
val form = f se ∧ (fresh v = Class(v) getField v(se obj))
return (form , fresh v)

case e1 binop e2 ⇒
(f e1,res e1) = expr2formula(e1)
(f e2,res e2) = expr2formula(e2)
return (f e1 ∧ f e2 ∧ (fresh res = (res e1 binop res e2)) , fresh res)

case L: Literal ⇒ return (fresh L = L , fresh L)
case C: Constant ⇒ return (fresh C = C , fresh C)
case x : Identifier ⇒ return (fresh X = x , fresh X)

}

Fig. 5. Translating expressions into formulas

Extractors. Our system also introduces axioms that encode information about
return types of extractors.
Domains. The system assumes the domain conditions as part of global ax-
ioms. These conditions are key for proving properties of pattern matching in our
approach.
Constraint. The developer can introduce additional axioms into our system
using the constraint declaration. We currently use this feature to state axioms
that implicitly define sets that correspond to type refinements [12].

3.6 Checking Domain Constraints

To check a domain constraint C, our system computes a formula AP (x) charac-
terizing Dom P for each P.unapply function.



12

In most cases the system then emits a set comprehension of the form Dom P
= {x.AP (x)} for each variable Dom P occurring in C and attempts to prove C.
This approach leaves the problem of unfolding the definitions of Dom P to the
theorem prover, which is beneficial when one simple constructor calls another
one. In the case of recursive P.unapply function, however, our system explicitly
unfolds the definition of Dom P to be able to assume the domain constraint for
recursive invocations of P.unapply.

Once it proves a domain constraint conjunct, the system assumes it when
proving subsequent conjuncts (as well as when proving pattern matching prop-
erties).

3.7 Checking Postconditions, Preconditions, and Invariants

To express validity of preconditions, postconditions and invariants, our system
generates verification conditions using standard techniques. This task is simpli-
fied by the fact that our language is purely functional and contains no loops.
The system inlines function contracts at function call sites, retaining modular
analysis approach and avoiding inference of invariants over statically unbounded
paths.

4 Proving Formula Validity

Proving validity of generated formulas is a crucial step in our analysis. Fortu-
nately, we were able to rely on previously developed infrastructure and tools
for this step. We have used formDecider, a theorem proving engine originally
developed for the Jahob verification system [16]. In our particular application
the task of this engine was to eliminate set operations and comprehensions using
quantifiers, then invoke the CVC3 prover [14] which performed the main part of
the reasoning task. We found this approach to be effective, as discussed in the
next section.

5 Evaluation

This section summarizes our experience with a prototype system [5] that im-
plements our analysis. Our system checks pattern matching properties (exhaus-
tiveness, disjointness, reachability), the correctness of implementation of the
corresponding domain constraints, as well as preconditions, postconditions, and
invariants that we found useful when enforcing pattern matching properties. As
the table in Figure 6 shows, we used our system to verify the examples mentioned
in the introduction, as well as additional benchmarks. For each example the first
column shows the number of lines of code, the total number of function appli-
cations, and the total number of unapply function calls (generated from pattern
matching expressions). We briefly discuss the properties of these examples (the
full source code of the examples and the prototype implementation are in the
public svn repository [5]).



13

Test Pattern Matching Spec Verification
(lines/calls/unapply) exhaustive disjoint reachable pre/post/inv domain

Binary Search gen 0.12s 0.12s 0.16s 0.06s 0.03s

Tree (40/19/3 ) prove 0.18s 0.16s *4.41s 0.17s 0.22s

ConsSnoc gen 1.12s 0.12s 0.13s 0.05s 0.05s

(60/25/8 ) prove 0.12s 0.27s *6.43s 0.16s 0.48s

Lambda Evaluator gen 0.14s 0.16s 0.15s 0.08s 0.03s

(160/72/18 ) prover 0.23s 0.95s *21.9s 1.20s 0.18s

Leftist Heap gen 0.12s 0.13s 0.13s 0.07s 0.02s

(115/55/11 ) prover 0.14s 0.18s *11.9s 0.66s 0.08s

Propositional Logic gen 0.13s 0.13s 0.12s 0.09s 0.05s

(125/64/10 ) prover 0.25s 1.86s *9.48s 3.35s 0.53s

ScalacTypers gen 0.12s 0.12s 0.12s 0.05s 0.02s

(80/13/2 ) prover 0.08s *5.90s *10.5s 0.13s 0.01s

Verification Condition gen 0.21s 0.23s 0.22s 0.68s 0.36s

Generator (440/270/49 ) prover 2.84s 44.9s *69.2s 40.5s 12.9s

Fig. 6. Benchmarks

Binary Search Tree is the example from Figure 1 that illustrates the effec-
tiveness of our system on patterns with guards.

ConsSnoc is the dual view of the linked list with Cons and Snoc patterns, as
shown in Figure 3.

Lambda Evaluator is a complete implementation of call-by-value semantics
for untyped lambda calculus, in small-step style. Its fragment was shown in
Figure 4.

Leftist Heap is the implementation of a working leftist heap that follows [27].

Propositional Logic defines abstract syntax tree for propositional formulas,
defines simplification that recursively transforms away nodes of certain type and
then manipulates such simplified nodes. This example illustrates type refine-
ments in our system.

ScalacTypers is a simple code fragment inspired by the type checker in Scala
compiler implementation that searches for a particular subtree in the syntax tree.
It illustrates the application of user-defined patterns to simulate a generalization
of OR-patterns.

Verification Condition Generator is a verification condition generator for a
simple imperative language, written as a class assignment. It contains 49 unapply
calls and illustrates the scalability of our prototype analyzer.
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5.1 Experience with the analysis system

Table 6 summarizes the results of running our analyzer. We ran the tests on a 2
quad-core Xeon 2.66Ghz with 16GB of RAM, running Debian GNU/Linux (64bit
version). However, our system uses no parallelization and we observed similar
behavior on standard desktop machines. We used CVC3 prover version 1.2.1.
The running times in the table are in seconds. For each example we show the
time taken to generate the formulas (gen) and the time taken in the theorem
prover (prove). The star to the left of a running time entry means that the
prover exceeded the timeout. We used one second as the prover timeout; the
prover proved all valid formulas in our examples within this time limit.

Note that all desirable conditions that our system checks reduce to formula
validity, except for reachability. Reachability reduces to the satisfiability of a
formula representing a path reaching a pattern-matching case. Consequently,
when a program has all desired properties, we expect the prover to succeed in
all cases except for reachability where we expect it to time-out or detect that
the formula is satisfiable.

The examples in Figure 6 satisfy all expected properties for pattern matching,
as well as the domain specifications, preconditions, postconditions, and invari-
ants. The exception is ScalacTypers, which contains pattern matching expres-
sions that are not disjoint and intentionally rely on sequential order of pattern
evaluation. In addition to the correct versions of examples in Figure 6 we also
applied our prototype to versions of these and other examples that contain er-
rors in each of the kinds of properties our system checks. For such cases the
system typically timeouts (except for reachability where unreachable cases were
identified quickly).

Overall, we found that the system was very useful in increasing our confi-
dence in the correctness of code that uses pattern matching with guards, and
its performance was acceptable. This is particularly the case for exhaustiveness
checks that prove the absence of run-time errors (or user-defined exceptions that
the user would be forced to insert given a less precise analysis).

6 Conclusions

The support for checking user-defined patterns brings the benefits of pattern
matching checks to reusable and maintainable code that admits representation
change. The support for pattern matching guards enables verification of more
declarative pattern matching expressions (such as disjoint patterns with guards)
and provides implicit documentation for invariants on values that programs ma-
nipulate (such as pattern matching that is exhaustive due to invariants on the
data type). We have presented an analysis that supports both of these features
and shown that it is effective in a range of pattern matching code fragments.

Our results were possible thanks for the state-of-the-art theorem provers. Im-
perative program verification has driven the advance of such theorem provers for
a long time [4]. At the same time, programming language researchers have identi-
fied functional programming as a style that aids correctness of data-manipulating
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programs. We believe that it is time to revisit applications of modern provers to
functional programs. We find pattern matching to be a good starting point for
such applications due to its wide-spread use and visible limitations of current
analyses. Overcoming these limitations is a productive way to introduce pre-
cise program analysis and verification techniques into verification of functional
programs.

In the future we expect to investigate the integration of our prototype checker
into Scala compiler, including interactions of our analysis with Scala’s sophisti-
cated type system.

Acknowledgements. We thank Martin Odersky and Burak Emir for useful
discussions on Scala and pattern matching.
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