
Compiler Extensions for Amy

Computer Language Processing

LARA

Autumn 2017

1 Introduction

In this document you will find some compiler extension ideas for the last assign-
ment of the semester. The ideas are grouped in sections based on the broader
subject they cover. Every extension indicates the maximum size of a group that
is allowed to take it up next to its title. Some assignments suggest additional
features which allow the group to include additional members.

2 Your own idea!

We will be very happy to discuss an idea you come up with yourselves.

3 Language features

Projects in this section extend Amy by adding a new language feature. To
implement one of these projects, you will probably need to modify every stage
of the compiler, from lexer to code generation. If the project is too hard, you
might be allowed to skip the code generation part and only implement the
runtime of your project in the interpreter.

3.1 Imperative features (2+)

With the exception of input/output, Amy is a purely functional language: none
of its expressions allow side effects. Your task for this project is to add imper-
ative language features to Amy. These should include:

• Mutable local variables.

1

var i: Int;

var j: Int = 0;

i = j;

j = i + 1;

Std.printInt(i);

Std.printInt(j) // prints 0, 1

Make sure your name analysis disallows plain vals to be mutated.

• While loops.

def fact(n: Int): Int = {

var res: Int = 1;

var j: Int = n;

while(1 < j) {

res = res * j;

j = j - 1

};

res

}

• Bonus: Arrays. You should support at least array initialization, indexing
and extracting array length. If you add this feature, you can add an
additional member to the group.

3.2 Implicit parameters (1)

Much like Scala, this feature allows functions to take implicit parameters.

def foo(i: Int)(implicit b: Boolean): Int = {

if (i <= 0 && !b) { i }

else { foo(i - 1) + i } // good, implicit parameter in scope

}

foo(1)(true); // good, argument explicitly provided

foo(1); // bad, no implicit in scope

implicit val b: Boolean = true;

foo(1); // good, implicit in scope

// equivalent to foo(1)(b)

implicit val b2: Boolean = false;

foo(1) // Bad, two boolean implicits in scope.

When a function that takes an implicit parameter is called and the implicit
parameter is not explicitly defined, the compiler will look at the scope of the
call for an implicit variable/parameter definition of the same type. If exactly
one such definition is found, the compiler will complete the call with the defined
variable/parameter. If more than one or no such definitions are found, the
compiler will fail the program with “implicit parameter conflict” or “no implicit
found” errors respectively.

2

3.3 Implicit conversions (1)

Much like Scala, this feature allows specified functions to act as implicit con-
versions.

implicit def i2b(i: Int): Boolean = { !(i == 0) }

2 || false // Good, returns true

def foo(b: Boolean): List = { ... }

foo(42) // Also good

1 + true // Bad, no implicit in scope.

def b2s(b: Boolean): String = { ... }

1 ++ "Hello" // Bad, we cannot apply two conversions

An implicit conversion is a function with the qualifier implicit. It must
have a single parameter. At any point in the program, when an expression e

of type T1 is found but one of type T2 is expected, the compiler searches the
current module for an implicit conversion of type (T1) => T2. If exactly one
such conversion f is found, the compiler will substitute the e by f(e) (and the
program typechecks). If multiple such conversions are found, the compiler fails
with an ambiguous implicit error. If none is found, an ordinary type error is
emitted.

Only a single conversion is allowed to apply to an expression. For example,
in the above example, we cannot implicitly apply i2b and then b2s to get a
String.

3.4 Tuples (1)

Add support for tuples in Amy. You should support tuple types, literals, and
patterns:

def maybeNeg(v: (Int, Boolean)): (Int, Boolean) = { // Type

v match {

case (i, false) => // pattern

(i, false) // literal

case (i, true) =>

(-i, false)

}

}

There are two ways you could approach this problem:

• Treat tuples as built-in language features. In this case, you need to support
tuples of arbitrary size.

• Desugar tuples into case classes. A phase after parsing and before name
analysis will transform all tuples to specified library classes, e.g. Tuple2, Tuple3

etc. In this case, you cannot support tuples of arbitrary size, but you still
need to support all sizes up to, say, 10. With this approach, you don’t have
to modify any compiler phases from the name analysis onwards, except
maybe to print error messages that make sense to the user.

3

3.5 Improved string support (1+)

Improve string support for Amy. As a starting point, you can add functionality
like substring, length, and replace, which will require mostly some WebAssem-
bly/JavaScript coding. To avoid adding additional trees, you can represent
these functions as built-in methods in Std.

If you want a more elaborate project for a larger group, you can add Char as
a build-in type, which opens the door for additional functionality with Strings.
You can also implement string interpolation. In general, look at Java/Scala
strings for inspiration.

3.6 Higher-order functions (2+)

Add support for higher-order functions to Amy. You need to support function
types and anonymous functions.

def compose(f: Int => Int, g: Int => Int): Int => Int = {

(x: Int) => f(g(x))

}

compose((x: Int) => x + 1, (y: Int) => y * 2)(5) // returns 11

def map(f: Int => Int, l: List): List = {

l match {

case Nil() => Nil()

case Cons(h, t) => Cons(f(h), map(f, t))

}

}

map((x: Int) => x + 1, Cons(1, Cons(2, Cons(3, Nil()))))

// Returns List(2, 3, 4)

def foo(): Int => Int = {

val i: Int = 1;

val res: Int => Int = (x: Int) => x + i

// Problem! How do we access i from within res?

res

}

foo()(42) // Returns 43

You have to think how to represent higher order functions during runtime.
In a bytecode setting, a first approach is to represent a higher-order function

as a pointer to a named function, which is then called indirectly. You have to
read about tables and indirect calls in WebAssembly.

This works fine for compose or map above, but not for foo. The problem is
that higher order functions can refer to variables in their scope, like res above
refers to i. The set of those variables are called the environment of the function.
If its environment is empty, the function will be called closed. Above, we have
no way to refer to i from within res at runtime: i is in the frame of foo which

4

https://docs.scala-lang.org/overviews/core/string-interpolation.html

is not accessible in res. In fact, by the time we need i, foo may have returned
and its frame disappeared!

The way to solve this problem is a technique called closure conversion. The
idea is the following: At runtime, a function are represented as a closure, i.e. a
function pointer along with the environment it captures from its scope. When
we create a closure at runtime, we create a pair of values in memory, one of
which points to the code (which will be a function) and the other to the en-
vironment, which will be a list of the captured variables. When we call the
function, we really call the function pointer in the closure. We need to make
sure to extract and somehow pass to the function pointer its environment from
the other pointer. You can find a detailed explanation of closure conversion
here.

In the interpreter, things are simpler in both cases: you can define a new
value type FunctionValue which contains all necessary information. In fact,
you should probably start here as an exercise.

For your project, we recommend that you assume all functions in the source
code are closed, but if you are motivated to implement closure conversion, we
will allow an additional group member.

3.7 Custom operators (2)

Allow the user to define operators.

operator def :::(l1: List, l2: List): List = {

l1 match {

case Nil() => l2

case Cons(h, t) => Cons(h, t ::: l2)

}

}

Cons(1, Cons(2, Nil())) ::: Cons(3, Nil()) // returns List(1, 2, 3)

You can choose specific priorities for the operators based e.g. on their first
character, or you can allow the user to define it; e.g. operator 55 def :::(...)

could signify that ::: has a precedence between + and * (with || having 10, up
to * having 60).

You can also choose to have built-in binary operators of Amy subsumed by
this project. Of course, their implementation will be left to be hard-coded by
the compiler backend:

operator 50 def +(i1: Int, i2: Int): Int = { error("+") }

In any case, your parser will be in no position to know what operators are
available in your program before actually parsing it. Therefore, when you have
more than one operators in a row, your parser will just have to parse the tree
as a flat sequence of operand, operator, operand, . . . , and then fix the mess
afterwards. Of course other solutions are welcome.

5

https://cs420.epfl.ch/s/acc17_05_closure-conversion.pdf

4 Type systems

4.1 Hindley-Milner type inference (2)

Allow users to skip type annotations by inferring types for them!

def fact(i) = {

if (i <= 1) { i }

else { fact(i - 1) * i }

}

You should use the Hindley-Milner type inference algorithm. Notice that,
without polymorphism, your work is much easier.

4.2 Polymorphic types (2)

Allow polymorphic types for functions and classes.

abstract class List[A]

case class Nil[A]() extends List[A]

case class Cons[A](h: A, t: List[A]) extends List[A]

def length[A](l: List[A]): Int = {

l match {

case Nil() => 0

case Cons(_, t) => 1 + length(t)

}

}

case class Cons2[A, B](h1: A, h2: B, t: List[A]) extends List[A]

// Wrong, type parameters don’t match

You can assume the sequence of type parameters of an extending class is
identical with the parent in the extends clause (see example).

4.3 Subtyping (2)

Add subtyping support to Amy. Case classes are now types of their own:

val y: Some = Some(0) // Correct, Some is a type

val x: Option = None() // Correct, because None <: Option

val z: Some = None() // Wrong

y match {

case Some(i) => () // Correct

case None() => () // Wrong

}

Since case classes are types, you can declare a variable, parameter, ADT
field or function return type to be of a case class type, like any other type.

6

http://lara.epfl.ch/w/_media/cc17:lecture10.pdf

Case class types are subtypes of their parent (abstract class) type. This
means you can assign case class values to variables declared with the parent
type. In general, you have to modify type checking to account for the subtyping
relation. Take particular care of the least upper bound functions and expressions
that use them.

Since we have subtyping, you can now optionally support the Nothing type in
source code, which is a subtype of every type and the type of error expressions.

5 Alternative frontends/backends

This section contains projects that do not modify the language features of Amy,
but change the implementation of a part of the Amy compiler frontend or back-
end.

5.1 Parser combinators (1)

Reimplement the Amy parser and optionally lexer using parser combinators.
You can use this library.

5.2 JVM backend (2)

Implement an alternative backend for Amy which outputs JVM bytecode. You
can use this library. You first have to think how to represent Amy values in a
class-based environment, and then generate the respective bytecode from Amy
ASTs.

5.3 C backend (3)

Implement an alternative backend for Amy which outputs C code. You have to
think how to represent Amy values in C, and then generate respective C code
from Amy ASTs.

6 Execution

This section suggests projects that change how Amy code is executed.

6.1 Memory deallocation (3)

Allow explicit memory deallocation by the user.

val x: List = Cons(1, Nil());

length(x); // OK

free(x);

length(x) // Wrong, might return garbage

7

https://github.com/lihaoyi/fastparse
https://github.com/psuter/cafebabe

When an object in linear memory is freed, the space it used to occupy is
considered free and can be allocated again. Any further reference to the freed
object is undefined behavior.

You need to change how memory allocation works in code generation to
maintain a list of free blocks, which will now not be a continuous part at the
end of the memory. The list should not be external, but rather implemented in
the memory itself: each free block needs to contain a pointer to the next one.
Each block will also need to record its size. This means that free blocks have
to be of size at least 2 words. When you allocate an object, you need to look
through the list of blocks for one that fits and if none does, the program should
fail. Make sure you always modify the free list in the simplest way possible, i.e.
the blocks in the list don’t have to be in the same order as in memory.

6.2 Lazy evaluation (2)

Change the evaluation strategy of Amy to lazy evaluation. Only input and
output are evaluated strictly.

val x: Int = (Std.printInt(42); 0); // Nothing happens

val y: Int = x + 1 // Still nothing...

Std.printInt(y); // 42 and 1 are printed

val l: List = Cons(1, Cons(2, Cons(error("lazy"), Nil())));

// No error is thrown

l match {

case Nil() => () // At this point, we evaluate l just enough

// to know it is a Cons

case Cons(h, t) => Std.printInt(h) // Prints 1

case Cons(h1, Cons(h2, Cons(h3, _))) =>

// Still no error...

Std.printInt(h3)

// This forces evaluation of the third list element

// and an error is thrown!

}

// We can do neat things like define infinite lists, i.e. streams

def countFrom(start: Int): List = Cons(start, countFrom(start + 1))

Std.printString(L.listToString(

take(countFrom(0), 5)

) // Will terminate and return ‘List(1, 2, 3, 4, 5)’

Each value is not evaluated until it is required. Things that are not evaluated
have to live in the runtime state as thunks, or suspensions to be evaluated later.
A thunk is essentially a closure (see Section 3.6) with memoization: it is either
an already calculated value, or an expression to be evaluated and an evaluation

8

environment. In turn, an evaluation environment is a mapping from identifiers
to other thunks.

You have to make sure that pattern matching only evaluates expressions as
much as needed. Maybe this will help you understand the concept.

Because of the difficulty of this project, you should only implement it in the
evaluator.

6.3 Final code optimizations (1+)

Optimize the WebAssembly binary produced by your Amy compiler.
The simplest thing you can do is eliminate some obvious redundancies such as

i32.const 0

if (result i32)

e1

else

e2

end

// equivalent to e2

if (result i32)

i32.const 1

else

i32.const 0

end

// completely redundant

Preferably, you can implement a control flow analysis and some abstract
interpretations to implement more advanced optimizations, also involving local
parameters. This would involve a larger group.

6.4 Tail call optimization (1)

Implement tail call optimization for Amy. Tail-recursive functions should not
create any additional stack frames, i.e. use the call instruction.

A way to implement tail recursive functions is to do a source-to-source trans-
formation which transforms tail recursive functions to loops. You will need to
define new ASTs.

When it comes to tail calls that are not tail recursion, things are tougher. If
you feel like also handling those cases, look here for ideas.

6.5 Browser mode (2)

Adapt Amy to run in the browser. You will need to define new primitive func-
tions that make sense in a browser (buttons, popups etc) and implement them
in JavaScript. You will also need to fix and adapt the html wrapper file that
we provide with the compiler.

6.6 REPL: Read-Eval-Print Loop (3)

Implement a REPL for Amy. It should support defining classes, functions and
local variables, and evaluating expressions. You don’t have to support redefini-
tions. You can take a look at the Scala REPL for inspiration.

9

https://en.wikibooks.org/wiki/Haskell/Laziness#Thunks_and_Weak_head_normal_form
https://cs420.epfl.ch/s/acc17_10_tail-calls.pdf

6.7 Virtual machine (3)

Develop your own VM to run WebAssembly code! To simplify things, you will
implement the VM in Scala. Your VM should take as input a wasm Module

from amyc’s CodeGen Pipeline (so you don’t need to implement a parser from
wasm text or binary) and execute the code contained within. Despite using
Scala, you still need to follow the VM execution model as much as possible:
translate labels to addresses, use an array for the memory, a stack for execution
etc. You can choose the VM parameters, such as memory size, any way you
choose, and hard-code built-in functions that are not already implemented in
WebAssembly.

10

	Introduction
	Your own idea!
	Language features
	Imperative features (2+)
	Implicit parameters (1)
	Implicit conversions (1)
	Tuples (1)
	Improved string support (1+)
	Higher-order functions (2+)
	Custom operators (2)

	Type systems
	Hindley-Milner type inference (2)
	Polymorphic types (2)
	Subtyping (2)

	Alternative frontends/backends
	Parser combinators (1)
	JVM backend (2)
	C backend (3)

	Execution
	Memory deallocation (3)
	Lazy evaluation (2)
	Final code optimizations (1+)
	Tail call optimization (1)
	Browser mode (2)
	REPL: Read-Eval-Print Loop (3)
	Virtual machine (3)

