
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Contract-Based Resource Verification for
Higher-Order Functions with Memoization

Ravichandhran Madhavan
EPFL, Switzerland

ravi.kandhadai@epfl.ch

Sumith Kulal
IIT Bombay, India

sumith@cse.iitb.ac.in

Viktor Kuncak ∗

EPFL, Switzerland
viktor.kuncak@epfl.ch

Abstract
We present a new approach for specifying and verifying resource
utilization of higher-order functional programs that use lazy eval-
uation and memoization. In our approach, users can specify the
desired resource bound as templates with numerical holes e.g. as
steps ≤ ? ∗ size(l) + ? in the contracts of functions. They can also
express invariants necessary for establishing the bounds that may
depend on the state of memoization. Our approach operates in two
phases: first generating an instrumented first-order program that ac-
curately models the higher-order control flow and the effects of
memoization on resources using sets, algebraic datatypes and mu-
tual recursion, and then verifying the contracts of the first-order
program by producing verification conditions of the form ∃∀ using
an extended assume/guarantee reasoning. We use our approach to
verify precise bounds on resources such as evaluation steps and
number of heap-allocated objects on 17 challenging data struc-
tures and algorithms. Our benchmarks, comprising of 5K lines of
functional Scala code, include lazy mergesort, Okasaki’s real-time
queue and deque data structures that rely on aliasing of references
to first-class functions; lazy data structures based on numerical rep-
resentations such as the conqueue data structure of Scala’s data-
parallel library, cyclic streams, as well as dynamic programming
algorithms such as knapsack and Viterbi. Our evaluations show that
when averaged over all benchmarks the actual runtime resource
consumption is 80% of the value inferred by our tool when esti-
mating the number of evaluation steps, and is 88% for the number
of heap-allocated objects.

Categories and Subject Descriptors D.2.4 [Software]: Program
Verification; D.3.1 [Software]: Formal Definitions

General Terms Languages, Performance, Reliability, Verification

Keywords complexity, lazy evaluation, dynamic programming

1. Introduction
Static estimation of performance properties of programs is an im-
portant problem that has attracted a great deal of research, and has

∗ This work is supported in part by the European Research Council (ERC)
Project Implicit Programming and Swiss National Science Foundation
Grant Constraint Solving Infrastructure for Program Analysis.

This is the authors’ version of the paper and includes detailed proofs.

resulted in techniques ranging from estimation of resource usage
in terms of concrete physical quantities [80] to static analysis tools
that derive upper bounds on the abstract complexities of programs
[1, 32, 35, 47]. Recent advances [7, 22, 32, 35, 74, 84] have shown
that automatically inferring bounds on more algorithmic metrics of
resource usage, such as the number of steps in the evaluation of an
expression (commonly referred to as steps) or the number of mem-
ory allocations (alloc), is feasible on programs that use higher-order
functions and datatypes, especially in the context of functional pro-
grams. However, most existing approaches aim for complete au-
tomation but trade off expressive power and the ability to interact
with users. Many of these techniques offer little provision for users
to specify the bounds they are interested in, or to provide invari-
ants needed to prove bounds of complex computation, such as op-
erations on balanced trees where the time depends on the height
or weight invariants that ensure balance. This is in stark contrast
to the situation in correctness verification where large-scale veri-
fication efforts are commonplace [34, 40, 41, 50]. Alternative ap-
proaches [18, 52] have started incorporating user specifications to
target more precise bounds and more complex programs.

In this paper, we show that such contract-based approach can be
extended to verify complex resource bounds in a challenging do-
main: higher-order functional programs that rely on memoization
and lazy evaluation. By memoization we refer to caching of out-
puts of a function for each distinct input encountered during an ex-
ecution, and by lazy evaluation we mean the usual combination of
call-by-name (which can be simulated by lambdas with a parame-
ter of unit type [66]) and memoization. These features are important
as they improve the running time (as well as other resources), of-
ten by orders of magnitude, while preserving the functional model
for the purpose of reasoning about the result of the computation.
They are also ubiquitously used, e.g. in dynamic programming
algorithms and by numerous efficient, functional data structures
[59, 62], and often find built-in support in language runtimes or li-
braries. The challenge that arises with these features is that reason-
ing about resources like running time and memory usage becomes
state-dependent and more complex than correctness—to the extent
that precise running time bounds remain open in some cases (e.g.
lazy pairing heaps described in page 79 of [59]). Nonetheless, rea-
soning about correctness remains purely functional making them
more attractive and amenable to functional verification in compari-
son to imperative programming models. We therefore believe that it
is useful and important to develop tools to formally verify resource
complexity of programs that rely on these features.

Although our objective is not to compute bounds on physical
time, our initial experiments do indicate a strong correlation be-
tween the number of steps performed at runtime and the actual
wall-clock execution time for our benchmarks. In particular, for a
lazy, bottom-up merge sort implementation [4] one step of evalua-
tion at runtime corresponded to 2.35 nanoseconds (ns) on average

1 private case class SCons(x: (BigInt,Bool), tfun:() ⇒ SCons) {
2 lazy val tail = tfun()
3 }
4 private val primes = SCons((1, true), () ⇒ nextElem(2))
5

6 def nextElem(i: BigInt): SCons = {
7 require(i ≥ 2)
8 val x = (i, isPrimeNum(i))
9 val y = i + 1

10 SCons(x, () ⇒ nextElem(y))
11 } ensuring(r ⇒ steps ≤ ? ∗ i + ?)
12

13 def isPrimeNum(n: BigInt): Bool = {
14 def rec(i: BigInt): Bool = {
15 require(i ≥ 1 && i < n)
16 if (i == 1) true else (n % i != 0) && rec(i − 1)
17 } ensuring (r ⇒ steps <= ? ∗ i + ?)
18 rec(n − 1)
19 } ensuring(r ⇒ steps ≤ ? ∗ n + ?)
20

21 def isPrimeStream(s: SCons, i: BigInt): Bool = {
22 require(i ≥ 2)
23 s.tfun ≈ (() ⇒ nextElem(i)) }
24

25 def takePrimes(i: BigInt, n: BigInt, s: SCons): List = {
26 require(0 ≤ i && i ≤ n && isPrimeStream(s, i+2))
27 if(i < n) {
28 val t = takePrimes(i+1, n, s.tail)
29 if(s.x. 2) Cons(s.x. 1, t) else t
30 } else Nil()
31 } ensuring(r ⇒ steps ≤ ? ∗ (n(n−i)) + ?)
32

33 def primesUntil(n: BigInt): List = {
34 require(n ≥ 2)
35 takePrimes(0, n−2, primes)

36 } ensuring(r ⇒ steps ≤ ? ∗ n2 + ?)

Figure 1. Prime numbers until n using an infinite stream.

with an absolute deviation of 0.01 ns, and for a real-time queue data
structure implementation [59] it corresponded to 12.25 ns with an
absolute deviation of 0.03 ns. These results further add to the im-
portance of proving bounds even if they are with respect to the ab-
stract resource metrics.

In this paper, we propose a system for specifying and verifying
abstract resource bounds, such as steps and alloc, of programs
written in a pure subset of Scala [57] with added support for
memoization and new specification constructs. In our approach,
users can specify the desired resource bound as templates with
numerical holes e.g. as steps ≤ ? ∗ size(l) + ? in the contracts of
functions along with other invariants necessary for proving the
bounds. Our system proves the bound by automatically inferring
values for the holes that will make the bound hold for all executions
of the function. For instance, our system was able to infer that the
number of steps spent in accessing the kth element of an unsorted
list l using a lazy, bottom-up merge sort algorithm [4] is bounded by
36(k · blog (l.size)c) + 53l.size+ 22. We empirically compared
the number of steps used by this program at runtime against the
bound inferred by our tool by varying the size of the list l from 10
to 10K and k from 1 to 100. Our results showed that the inferred
values were 90% accurate for this example (section 5 presents more
results). We now present an overview of how programs can be
specified and verified in our system using the pedagogical example
shown in Fig. 1 that creates an infinite stream of prime numbers.

Prime stream example. The class SCons shown in Fig. 1 defines a
stream that stores a pair of unbounded integer (BigInt) and boolean,
and has a generator for the tail: tfun which is a function from Unit to
SCons. The lazy field tail of SCons evaluates tfun() when accessed

1 def concrUntil(s: SCons, i: BigInt): Bool =
2 if(i > 0) cached(s.tail) && concrUntil(s.tail, i−1)
3 else true
4

5 def primesUntil(n: BigInt): List = {
6 // see Fig. 1 for the code of the body
7 } ensuring{r ⇒ concrUntil(primes, n−2) &&
8 (if(concrUntil(primes, n−2) in inSt)
9 steps ≤ ? ∗ n + ?

10 else steps ≤ ? ∗ n2 + ?) }

Figure 2. Specifying properties dependent on memoization state.

the first time and caches the result for reuse. The program defines a
stream primes that lazily computes for all natural numbers starting
from 1 its primality. The function primesUntil returns all prime
numbers until the parameter n using a helper function takePrimes,
which recursively calls itself on the tail of the input stream (line 28).
Consider now the running time of this function. If takePrimes is
given an arbitrary stream s, its running time cannot be bounded
since accessing the field tail at line 28 could take any amount of
time. Therefore, we need to know the resource usage of the closures
accessed by takePrimes, namely s.(tail)∗.tfun. However, we expect
that the stream s passed to takePrimes is a suffix of the primes
stream, which means that tfun is a closure of nextElem. To allow
expressing such properties we revisit the notion of intensional or
structural equivalence, denoted ≈, between closures [5].

Structural equality as a means of specification. In our system,
we allow closures to be compared structurally. Two closures are
structurally equal iff their abstract syntax trees are identical without
unfolding named functions (formally defined in section 2). For ex-
ample, the comparison at line 23 of Fig. 1 returns true if the tfun pa-
rameter of s is a closure that invokes nextElem on an argument that
is equal to i. We find this equality to be an effective and low over-
head means of specification for the following reasons: (a) Many
interesting data structures based on lazy evaluation use aliased ref-
erences to closures (e.g. Okasaki’s scheduling-based data structures
[59, 62]). Expressing invariants of such data structures requires
equating closures. While reference equality is too restrictive for
convenient specification (and also breaks referential transparency),
semantic or extensional equality between closures is undecidable.
Structural equality is well suited in this case. (b) Secondly, our ap-
proach is aimed at (but not restricted to) callee-closed programs
where the targets of all indirect calls are available at analysis time.
(Section 2 formally describes such programs.) In such cases, it is
often convenient and desirable to state that a closure has the same
behavior as a function in the program, as was required in Fig. 1.
(c) Structural equality also allows modeling reference equality of
closures by augmenting closures with unique identifiers as they are
created in the program.

While structural equality is a well-studied notion [5], we are not
aware of any prior works that uses it as a means of specification.
Using structural equality, we specify that the stream passed as
input to takePrimes is an SCons whose tfun parameter invokes
nextElem(i+2) (see function isPrimeStream and the precondition
of takePrimes). This allows us to bound the steps of the function
takePrimes to O(n(n − i)) and that of primesUntil to O(n2). For
primesUntil, our tool inferred that steps ≤ 16n2 + 28.

Properties depending on memoization table state. The quadratic
bound of primesUntil is precise only when the function is called
for the first time. If primesUntil(n) is called twice, the time taken
by the second call would be linear in n, since every access to tail
within takePrimes will take constant time as it has been cached
during the previous call to takePrimes. The time behavior of the
function depends on the state of the memoization table (or cache)

making the reasoning about resources imperative. To specify such
properties we support a built-in operation cached(f(x)) that can
query the state of the cache. This predicate holds if the function
f is a memoized function and is cached for the value x. Note
that it does not invoke f(x). The function concrUntil(s, i) shown
in Fig. 2 uses this predicate to state a property that holds iff the
first i calls to the tail field of the stream s have been cached.
(Accessing the lazy field s.tail is similar to calling a memoized
function tail(s).) This property holds for primes stream at the end
of a call to primesUntil(n), and hence is stated in the postcondition
of primesUntil(n) (line 7 of Fig. 2). Moreover, if this property holds
in the state of the cache at the beginning of the function, the number
of steps executed by the function would be linear in n. This is
expressed using a disjunctive resource bound (line 8). Observe that
in the postcondition of the function, we need to refer to the state
of the cache at the beginning of the function, as it changes during
the execution of the function. For this purpose, we support a built-
in construct “inSt” that can be used in the postcondition to refer to
the state at the beginning of the function, and an “in” construct
which can be used to evaluate an expression in the given state.
These expressions are meant only for use in contracts. We need
these constructs since the cache is implicit and cannot be directly
accessed by the programmers to specify properties on it. On the
upside, the knowledge that the state behaves like a cache can be
exploited to reason functionally about the result of the functions,
which results in fewer contracts and more efficient verification.

Verification Strategy. Our approach, through a series of trans-
formations, reduces the problem of resource bound inference for
programs like the one shown in Fig. 1 to invariant inference for
a strict, functional first-order program, and solves it by applying
an inductive, assume-guarantee reasoning. The inductive reasoning
assumes termination of expressions in the input program, which is
verified independently using an existing termination checker. We
use the Leon termination checker in our implementation [78], but
other termination algorithms for higher-order programs [31, 37, 68]
are also equally applicable. Note that memoization only affects re-
source usage and not termination, and lazy suspensions are in fact
lambdas with unit parameters. This strategy of decoupling termi-
nation checks from resource verification enables checking termi-
nation using simpler reasoning, and then use proven well-founded
relations during resource analysis. This allows us to use recursive
functions for expressing resource bounds and invariants, and en-
ables modular, assume-guarantee reasoning that relies on induction
over recursive calls (previously used in correctness verification).

Contributions. The following are the contributions of this paper:

• We propose a specification approach for expressing resource
bounds of programs and the necessary invariants in the presence
of memoization and higher-order functions (section 2).
• We propose a system for verifying the contracts of programs

expressed in our language by combining and extending existing
techniques from resource bound inference and software verifi-
cation (sections 3 and 4).
• We use our system to prove asymptotically precise resource

bounds of 17 benchmarks, expressed in an functional subset
of Scala [57], implementing complex lazy data structures and
dynamic programming algorithms comprising 5K lines of Scala
code and 123 resource templates (section 5).
• We experimentally evaluate the accuracy of the inferred bounds

by rigorously comparing them with the runtime values for the
resources on large inputs. Our results show that while the in-
ferred values always upper bound the runtime values, the run-
time values for steps is on average 80% of the value inferred by
the tool, and is 88% for alloc (section 5).

x, y ∈ Vars, x̄ ∈ Vars∗, c ∈ Cst (Variables & Constants)
a ∈ TVars (Template Variables)

f ∈ Fids , Ci ∈ Cids, i ∈ N (Function & Constructor ids)

Tdef ::= type d := (C1 τ̄ , · · · , Cn τ̄)

τ ∈ Type ::= Unit | Int | Bool | τ ⇒ τ | d
Blkα ::= let x := eα in eα | x match{(C x̄⇒ eα;)+}
pr ∈ Prim::= + | − | ∗ | · · · | ∧ | ¬
es ∈ Esrc ::= x | c | pr x | x eq y | f x | C x̄ | eλ | x y | Blks

eλ ∈ Lam ::= λ x.f (x, y)

ep ∈ Espec ::= es | Blkp | cached(f x) | inSt | in(ep, x) | res
| steps ≤ ub | alloc ≤ ub

ub ∈ Bnd ::= ep | et
et ∈ Etmp ::= a · x+ et | a
Fdef ::= (@memoize)? def f x := {ep} es {ep}

Figure 3. Syntax of types, expressions, functions, and programs.
The rule Blkα is parametrized by the subscript α.

2. Language and Semantics
Fig. 3 show the syntax of a simple, strongly-typed functional lan-
guage extended with memoization, contracts and specification con-
structs, that we will use to formalize our approach. Every expres-
sion has a static label belonging to Labels (omitted in Fig. 3). We
use e l to denote an expression with its label. To reduce clutter, we
omit the label if it is not relevant to the context. Tdef shows the
syntax of user-defined algebraic datatypes and Fdef shows the syn-
tax of function definitions. A program P is a set of functions defini-
tions in which every function identifier is unique, every direct call
invokes a function defined in the program, and the labels of expres-
sions are unique. As a syntactic sugar, we consider tuples as a spe-
cial datatype, and denote tuple construction using (x1, · · · , xn),
and selecting the ith element of a tuple using x.i.

In particular, our language supports a structural equality op-
erator eq, direct calls to named functions: f x, and indirect calls
or lambda applications: x y. We also define an if-else operation
if cond e1 else e2 that is similar to a match construct with two
cases. The annotation @memoize serves to mark functions that have
to be memoized. Such functions are evaluated exactly once for each
distinct input passed to them at run time. The language uses call-by-
value evaluation strategy. Nonetheless, lazy suspensions can be im-
plemented using lambdas with unit parameter and memoized func-
tions. Expressions that are bodies of functions can have contracts
(or specifications). Such expressions have the form {e1} e {e2}
where e1 and e2 are the pre-and post-condition of e respectively.
The syntax of specification expressions is given by Espec . The
postcondition of an expression e can refer to the result of e us-
ing the variable res, and to the resource usage of e using steps and
alloc. Users can specify upper bounds on resources as templates
et ∈ Etmp with holes. The holes always appear as coefficients of
variables defined in the program, which could be bound to more
complex expressions through let binders.

For ease of formalization we enforce the following syntac-
tic restrictions without reducing generality. All expressions ex-
cept lambda terms are in A-normal form i.e, the arguments of all
operations/functions are variables. All lambdas are of the form:
λx.f (x, y) where f is a named function whose argument is a pair
(a two element tuple) and y is a captured variable.

Notation and Terminology. Given a domain A, we use ā ∈ A∗
to denote a sequence of elements in A, and ai to refer to the ith

element. (Note that this is different from tuple selector x.i, which

For steps: cmiss = 2, cmatch(i) = i+ 1, cvar = clet = 0, for every other operation op: cop = 1. ⊕ = +
For alloc: ccons = cλ = cmiss = 1, for every other operation op: cop = 0. ⊕ = +

CST
c ∈ Cst

Γ ` c ⇓
ccst

c,Γ

VAR
x ∈ Vars

Γ : (C,H, σ) ` x ⇓
cvar

σ(x),Γ

PRIM
pr ∈ Prim

Γ ` pr x ⇓
cpr

pr(σ(x)),Γ

EQUAL

v = σ(x) ≈
H
σ(y)

Γ : (C,H, σ) ` x eq y ⇓
ceq

v ,Γ

LET
Γ ` e1 ⇓p v1 , (C′,H′, σ′) (C′,H′, σ[x 7→ v1]) ` e2 ⇓q v2 , (C′′,H′′, σ′′)

Γ : (C,H, σ) ` let x := e1 in e2 ⇓
clet⊕p⊕q

v2 , (C′′,H′′, σ)

CONS
a = fresh(H) H′ = H[a 7→ (cons σ̂(x̄))]

Γ : (C,H, σ) ` cons x̄ ⇓
ccons

a, (C,H′, σ)

MATCH
H(σ(x)) = Ci v̄ (C,H, σ[x̄i 7→ v̄]) ` ei ⇓q v , (C′,H′, σ′)

Γ : (C,H, σ) ` x match {Ci x̄i ⇒ ei)}ni=1 ⇓
cmatch(i)⊕q

v , (C′,H′, σ)

CONCRETECALL
(C,H, σ[paramΓ(f) 7→ u] ` bodyΓ(f) ⇓p v , (C′,H′, σ′)

Γ : (C,H, σ) ` f u ⇓p v , (C′,H′, σ)

LAMBDA
a = fresh(H) clo = (λx.f (x, y), [y 7→ σ(y)])

Γ : (C,H, σ) ` λx .f (x , y) ⇓
Cλ

a, (C,H[a 7→ clo], σ)

NONMEMOIZEDCALL
f ∈ Fids f /∈MemΓ Γ ` (f σ(x)) ⇓p v ,Γ′

Γ ` f x ⇓
ccall⊕p

v ,Γ′

INDIRECTCALL
H(σ(x)) = (λz.e, σ′) (C,H, (σ] σ′)[z 7→ σ(y)]) ` e ⇓p v , (C′,H′, σ′)

Γ : (C,H, σ) ` x y ⇓
capp⊕p

v , (C′,H′, σ)

MEMOCALLHIT
f ∈MemΓ ((f σ(x)), v) ∈H C

Γ : (C,H, σ) ` f x ⇓
chit

v ,Γ

MEMOCALLMISS
f ∈MemΓ u = σ(x) ¬

(
(f u) ∈H dom(C)

)
Γ ` (f u) ⇓p v , (C′,H′, σ′)

Γ : (C,H, σ) ` f x ⇓
cmiss⊕ccall⊕p

v , C′[(f u) 7→ v],H′, σ

CACHED
v ⇔

(
(f σ(x)) ∈H dom(C)

)
Γ : (C,H, σ) ` cached(f x) ⇓0 v ,Γ

CONTRACT
Γ ` pre ⇓p true,Γ1 Γ ` e ⇓q v ,Γ2 : (C2 ,H2 , σ2) (C2 ,H2 , σ2 [R 7→ q , res 7→ v]) ` post ⇓r true,Γ3

Γ ` {pre} e {post} ⇓q v ,Γ2
R ∈ {steps, alloc}

Figure 4. Resource annotated operational semantics for the concrete expressions of the language defined in Fig. 3.

is an expression of the language). We use A 7→ B to denote a
partial function from A to B. Given a partial function h, ĥ(x̄)
denotes the function that applies h point-wise on each element
of x̄, and h[a 7→ b] denotes the function that maps a to b and
every other value x in the domain of h to h(x). We use h[ā 7→ b̄]
to denote h[a1 7→ b1] · · · [an 7→ bn]. We omit h in the above
notation if h is an empty function. We define a partial function
h1] h2 as (h1] h2)(x) = if (x ∈ dom(h2)) h2 (x) else h1 (x).
Let labelsPdenote the set of labels of all expressions in a program
P . Let typeP (e) denote the type of an expression e in a program
P . Given a lambda eλ, we use FV (eλ) to denote the free variable
captured by eλ and target(eλ) to denote the function called in the
body of the lambda. The operation e[e′/x] denotes the syntactic
replacement of the free occurrences of x in e by e′. We use [a, b]
to denote a closed integer interval from a to b. Given a substitution
ι : TVars 7→ Z, we use e ι to represent substitution of the holes by
the values given by the assignment. We also extend this notation to
formulas later. We refer to programs and expressions without holes
as concrete programs and expressions.

We now define the semantics of the language (Fig. 4) and sub-
sequently define the problem of contract and resource verification.
We use a big-step semantics (similar to Lauchbury’s semantics for
lazy evaluation [46]) as it naturally leads to a compositional reason-
ing, which is used by our approach. We also define a reachability
relation on top of the big-step semantics to reason about environ-
ments that are reachable during an evaluation.

Semantic domains. Let Adr denote the addresses of heap-
allocated structures namely closures and datatypes. The state of an
interpreter evaluating expressions of our language is a quadruple
consisting of a cache C, a heap H, an assignment of variables to
values σ, and a set of function definitions, defined as follows:

u, v ∈ Val = Z ∪ Bool ∪Adr
FVal = Fids ×Val DVal = Cids ×Val∗

Clo = Lam × Store H ∈ Heap = Adr 7→ (DVal ∪ Clo)
σ ∈ Store = V ars 7→ Val C ∈ Cache = FVal 7→ Val
Γ ∈ Env ⊆ Cache ×Heap × Store × 2Fdef

We define a few helper functions on the semantic domains. Let
fresh(H) denote an element a ∈ (Adr \ dom(H)). Let bodyΓ(f)
and paramΓ(f) denote the body and parameter of a function f
defined in the environment Γ, and MemΓ ⊆ Fids denote the set
of memoized functions in the function definitions in Γ.

Structural equivalence. We define a structural equivalence re-
lation ≈

H
on the values Val with respect to a H ∈ Heap, as ex-

plained below. We say two addresses are structurally equivalent
iff they are bounded to structurally equivalent values in the heap.
Two datatypes are structurally equivalent iff they use the same
constructor and their fields are equivalent. Two closures are struc-
turally equivalent iff their lambdas are of the form λx.f (x, y) and
λw.f (w, z) and the captured variables y and z are bound to struc-
turally equivalent values. Formally, (subscript omitted below for
clarity)
∀a ∈ Z ∪Bool. a ≈ a
∀{a, b} ⊆ Adr. a ≈ b iff H(a) ≈ H(b)
∀f ∈ Fids, {a, b} ⊆ Val . (f a) ≈ (f b) iff a ≈ b
∀c ∈ Cids, {ā, b̄} ⊆ Valn .(c ā) ≈ (c b̄) iff ∀i ∈ [1 ,n].ai ≈ bi
∀{e1 , e2} ⊆ Lam.∀{σ1 , σ2} ⊆ Store.(e1 , σ1) ≈ (e2 , σ2)

iff target(e1) = target(e2) ∧ σ1(FV (e1)) ≈ σ2(FV (e2))
This equivalence satisfies congruence properties with respect to
the result and resource usage of expressions (formalized in Ap-
pendix A).

Judgements. We use judgements of the form Γ ` e ⇓p v ,Γ ′ to
denote that under an environment Γ ∈ Env , an expression e evalu-

ates to a value v ∈ Val and results in a new environment Γ′ ∈ Env ,
while consuming p ∈ Z units of a resource. When necessary we ex-
pand Γ as Γ : (C,H, σ, F) to highlight the individual components
of the environment. We omit any component of the judgement that
is not relevant to the discussion when there is no ambiguity. In
Fig. 4, we omit the function definitions from the environment as
they do not change during the evaluation.

Resource parametrization. We parametrize the operational se-
mantics in a way that it can be instantiated on multiple resources
using the following parametrization functions: (a) A cost function
cop that returns the resource requirement of an operation op such as
cons or app. cop may possibly have parameters. In particular, we
use cmatch(i) to denote the cost of a match operation when the ith

case was taken, which should include the cost of failing all the pre-
vious cases. (b) A resource combinator⊕ : Z∗ → Z that computes
the resource usage of an expression by combining the resource us-
ages of the sub-expressions. Typically, ⊕ is either + or max.

We specifically consider two resources in this paper: (a) the
number of steps in the evaluation of an expression denoted steps,
and (b) the number of heap-allocated objects (viz. a closure,
datatype or a cache entry) created by an expression denoted alloc.
In the case of steps, clet and cvar are zero as the operations are nor-
mally optimized away or subsumed by a machine instruction. cop
is 1 for every other operation except cmiss and cmatch(i). We con-
sider datatype construction and primitive operations on big integers
as unitary steps. We define cmatch(i) proportional to i as we need
to include the cost of failing all the i − 1 match cases. In the case
of alloc, cop is 1 for datatype and closure creations and also for
a cache miss since it allocates a cache entry. It is zero otherwise.
For both resources, the operation ⊕ is defined as addition (+). Our
implementation, however, supports other resources such as abstract
stack space usage and number of recursions.

Memoized Call Semantics. For brevity, we skip the discussion of
straightforward semantic rules shown in Fig. 4 and focus on rules
that are atypical. The semantics of calling a memoized function
is defined by the rules: MEMOCALLHIT and MEMOCALLMISS.
Calling a memoized function involves as a first step querying the
cache for the result of the call. In case the result is not found,
the callee is invoked, and the cache is updated once (and if) the
callee returns a value. Querying the cache involves comparing
arguments of the call for equality. We define a lookup relation
∈H that uses structural equivalence to lookup the cache as follows:
(f u) ∈H dom(C) = ∃u ′ ∈ Val .(f u ′) ∈ dom(C) ∧ u ′ ≈

H
u . We

parametrize the cost of searching and updating the cache using
the parameters chit and cmiss. To calculate the steps resource,
we consider lookup and update as unitary steps, and hence define
cmiss = 2 (as it involves a lookup and an update operation) and
chit = 1. In general, cmiss and chit may depend on the values of
the arguments.

Specifications. The construct cached(f x) evaluates to true in an
environment Γ iff the call f is cached for the value of x in Γ. Ob-
serve that the resource consumption of this construct is zero. This
is because the construct is syntactically excluded from being part
of the implementation of functions (see Fig. 3) which renders its
resource usage irrelevant. The rule CONTRACT defines the seman-
tics of an expression ẽ of the form {pre} e {post}. The expres-
sion evaluates to a value v only if pre holds in the input environ-
ment and post holds in the environment resulting after evaluating
e. Observe that the value, cache effects, and resource usage of ẽ are
equal to that of e. Also note that the resource variables steps and
alloc are bound to the resource consumption of e before evaluat-
ing the postcondition. The construct inSt is used by expressions in
the postcondition to refer to the state of the cache at the beginning

of the function, and in(e, x) evaluates an expression e in the cache
state given by x, as illustrated by the example shown in Fig. 2. For
brevity, we omit the formal semantics of the constructs in and inSt.
Appendix D formalizes their semantics along with a match con-
struct fmatch based on structural equality. In the rest of the section,
using the big-step semantics, we introduce a few concepts that are
used in this paper, and formally define the problem of resource ver-
ification for open programs.

Reachability Relation. We define a relation (similar to the
calls relation of Sereni, Jones and Bohr [37, 68]) that charac-
terizes the environments that may reach an expression during an
evaluation. For every semantic rule shown in Fig. 4 with n an-
tecedents: A1 · · ·AmB1 · · ·Bn, where A1 · · ·An are not big-step
reductions, and each Bi, i ∈ [1, n], is a big-step reduction of the
form: Γi ` ei ⇓pi vi ,Γi

′, we introduce n rules for each 1 ≤ i ≤ n.

A1 · · ·Am B1 · · ·Bi−1

〈Γ, e〉 〈Γi, ei〉

Let ∗ represent the reflexive, transitive closure of . We say that
an environment Γ′ reaches e′ during the evaluation of e from Γ iff
〈Γ, e〉 ∗〈Γ′, e′〉. We say that the evaluation of e under Γ diverges
iff there exists an infinite sequence 〈Γ, e〉 〈Γ1, e1〉 · · · . We say
an expression e (or a function f) terminates iff there does not exist
a Γ ∈ Env under which e (or bodyΓ(f)) diverges [68].

Valid environments. In reality, the environments under which an
expression is evaluated satisfies several invariants which are en-
sured either by the runtime (like the invariant that the cached values
of function calls correctly represent their results), or by the program
under execution. Similar to prior works on data structure verifica-
tion [39], we define the problem of contract/resource verification
only with respect to such valid environments under which an ex-
pression can be evaluated. Let Pc = P ′||P denote a closed program
obtained by composing a client P ′ with an open program P . The
evaluation of a closed program Pc starts from a distinguished entry
expression eentry (such as a call to the main function) under an ini-
tial environment ΓPc : (∅, ∅, ∅, F) where F is the set of function
definitions in the program Pc. We define the valid environments of
an expression e belonging to an open program P , denoted Enve,P ,
as {Γ | ∃P ′.〈ΓP ′||P , eentry〉 ∗〈Γ, e〉}.

When an expression belonging to a type correct program is eval-
uated under a valid environment, there are only two reasons why its
evaluation may be undefined as per the operational semantics (pro-
vided the primitive operations are total): (a) the evaluation diverges,
or (b) there is a contract violation during the evaluation.

Contract verification problem. Given a program P without tem-
plates. The contract verification problem is to decide for ev-
ery function defined in the program P of the form def f x := ẽ ,
where ẽ = {pre} e {post}, whether in every valid environ-
ment that reaches ẽ in which pre does not evaluate to false ,
e evaluates to a value. Formally, ∀Γ : (C,H, σ,F) ∈ Envẽ,P .
∃v. (Γ ` pre ⇓ false)∨Γ ` ẽ ⇓ v . (We omit the quantification on
v when there is no ambiguity.) Since contracts in our programs can
specify bounds on resources, the above definition also guarantees
that the properties on resources hold.

Resource inference problem. Recall that we allow the resource
bounds of functions to be templates. In this case, the problem is
to find an assignment ι for the holes such that in the program
obtained by substituting the holes with their assignment, the con-
tracts of all functions are verified, as formalized below. Let e ι de-
notes substituting the holes in an expressions e with the assignment
given by ι. The resource bound inference problem is to find an as-
signment ι such that for every function def f x := {pre} e {post}

where post may contain holes, ∀Γ ∈ Env . (Γ ` pre ⇓ false) ∨
Γ ` {pre} e {post ι} ⇓ v .

Encapsulated Calls. Our approach is primarily aimed at pro-
grams where the targets of all indirect calls that may be executed
are available at the time of the analysis. This includes whole pro-
grams that take only primitive valued inputs/parameters, and also
data structures that use closures internally but whose public inter-
faces do not permit arbitrary closures to be passed in by their clients
such as the program shown in Fig. 1 and lazy queues [59, 62]. We
formalize this notion below. We say an indirect call c = x y be-
longing to a program P is an encapsulated call iff in every environ-
ment Γ : (C,H, σ,F) ∈ Envc,P , ifH(σ(x)) is a closure (eλ

l , σ′),
l ∈ labelsP . A program P is call encapsulated iff every indirect
call in P is encapsulated. In our implementation, we perform a
type-level static analysis that leverages access modifiers like pri-
vate to identify encapsulated calls. E.g. for the program shown in
Fig. 1 our tool infers that the type ()⇒ SCons should be assigned
a closure created within the program based on the fact that no pa-
rameter of public constructors or methods has this type or any of
its subtype. Therefore, it identifies that the call tfun() at line 2 of
Fig. 1 is an encapsulated call.

3. Generating Model Programs
In the following sections, we describe our approach in two phases:
model generation phase (discussed in this section) and verification
phase (discussed in section 4). The goal of the model generation
phase is to generate a first-order program with recursion that accu-
rately models the resource usage of the input program without any
abstraction, only using theories suitable for automated reasoning.
We refer to output of this phase as the model. In particular, there
are three reductions that are handled by this phase: (a) Defunction-
alization of higher-order functions to first-order functions [64]. (b)
Encoding of cache as an expression that changes during the exe-
cution of the program, and (c) Instrumentation of expressions with
their resource usage while accounting for the effects of memoiza-
tion. We formally establish the soundness and completeness of the
translation with respect to the operational semantics shown in Fig. 4
by establishing a bisimulation between the input program and the
model (Theorem 2). In contrast to related works [7], which use de-
functionalization as a means to estimate the resource usage of input
programs, here we are only interested in the values (and not re-
sources) of expressions of the model. The expressions of the model
themselves track the resource usages.

Model Language. The model language is similar to the source
language without higher-order features, memoization, and special
specification constructs (i.e, Espec = Esrc). However, we introduce
two features that were not a part of the source language: (a) set
values and set primitives such as union ∪ and inclusion ⊆, and
(b) an error construct that halts the evaluation. The values of the
model language includes Val and also sets of values of the source
language (Set = 2Val). The environments of the model do not have
the cache component, i.e, Γ ∈ Env] = Heap× Store × 2Fdef .

Illustrative Example. We use the constant-time take operation on
a stream shown in Fig. 6 to illustrate the construction of the model,
and later in section 4 to illustrate the verification of the model.
Fig. 6(a) shows the take operation in the toy language used in the
formalism, and Fig. 6(b) shows the model program explained in this
section. In a real language, the function tail would be implemented
as a lazy field of the SCons constructor as shown in Fig. 1. But for
the purpose of verification, we treat it as a memoized function with
a single argument as shown here. The function concrUntil, which is
omitted, is similar to the Scala function shown in Fig. 2 that checks
if the tail function is memoized for the first n suffixes of a stream.

Expression Translation
JxKP st = (x, st, cvar)

Jpr xKP st = (pr x, st, cpr) if pr ∈ Prim

Jx eq yKP st = (x eq y, st, ceq)

JC x̄KP st = (C x̄, st, ccons) if C ∈ Cids

Jlet x := e1 in e2KP st =
let u := Je1KP st in
let w := Je2[u.1/x]KP u.2 in (w.1, w.2, clet ⊕ u.3 ⊕ w.3)

Jx match{Ci x̄i ⇒ ei}ni=1KP st = x match {(
Ci x̄i ⇒ let u := JeiKP st in (u.1, u.2, cmatch(i) ⊕ u.3)

)n
i=1
}

Call and Lambda Translation
Jf xKP st = if f does not have @memoize annotation

let w := f] (x, st) in (w.1, w.2, ccall ⊕ w.3)

Jf xKP st = if f has @memoize annotation
let w := f] (x, st) in

let xcost = if (Cf x) ∈ st chit else cmiss ⊕ ccall ⊕ w .3
in (w.1, w.2 ∪ {(Cf x)}, xcost)

JeλKP st = (Cl FV (eλ), st, cλ) if eλ/∼=,P has label l
J(x y)lKP st =

let w := Appl (x, y, st) in (w.1, w.2, capp ⊕ w.3)

Specification Construct Translation
Jcached(f x)KP st = ((Cf x) ∈ st, st, 0)

Jin(e, x)KP st = JeKP x
Contract Translation
J{pre} e {post}KP st = if R ∈ {steps, alloc}
{(JpreKP st).1}

JeKP st
{let y = Jpost[res.1/res][st/inSt][res.3/R]KP res.2 in y.1}

Function Definition Translation
Jdef f x := eKP = def f] (x, st) := JeKP st
Dispatch Functions
For every indirect call (x y)l in P where typeP (x) = τ ,
def Appl (cl, w, st) :=

cl match{ Cl1 y1 ⇒ Je′1KP st; · · · ;Cln yn ⇒ Je′nKP st
Cτ y ⇒ error }

where, ∀i ∈ [1, n]. Cli are constructors of dτ ,
(λai.ei)

li is a lambda in P and e′i = ei[yi/zi][w/ai]

Figure 5. Resource and cache-state instrumentation.

Observe that the lazy take operation (unlike takePrimes) returns a
(finite) stream with the first element and a suspension of take, which
when accessed constructs the next element. It requires that the input
stream is memoized at least until n in order to achieve a constant
time bound. Otherwise, the call to tail at line 26 may result in a
cascade of calls to take (via app). The challenge here is to verify
that such cascade of calls cannot happen. The take operation with
these contracts is in fact used by the Okasaki’s persistent Deque
data structure ([59] Page 111) that runs in worst-case constant time.

Closure encoding. We represent closures using algebraic
datatypes in a way that preserves the structural equiva-
lence of closures. We say two lambdas eλ = λx .f (x , y), and
eλ
′ = λx .f ′ (x , z) are compatible, and denote it as eλ ∼= eλ

′, iff
they invoke the same targets i.e, f = f ′. This relation is interest-
ing because during any evaluation two closures could be struc-
turally equivalent iff their lambdas are compatible i.e, eλ ∼= eλ

′

iff ∃H, σ, σ′ s.t. (eλ, σ) ≈
H

(eλ
′, σ′). In the generated model we

1 type Stream := (SCons (BigInt, Unit ⇒ Stream), SNil)
2 @memoize
3 def tail s = s match { SNil ⇒ SNil;
4 SCons (x, tfun) ⇒ (tfun Unit);
5 }
6 def take (n, s) =
7 { concrUntil(s, n) }
8 if (n ≤ 0) SNil else (s match {
9 SNil ⇒ SNil;

10 SCons (x, tfun) ⇒
11 let t := tail s in
12 let n1 := n − 1 in SCons(x, λa.take (n1, t));
13 }){ steps ≤ ? }

(a) A constant-time, lazy take operation

14 type tStream := (Take (BigInt, Stream), Other BigInt)
15 type Stream := (SCons (BigInt, tStream), SNil)
16 type Dcache := (Tail Stream)
17

18 def tail] (s, st) = s match { SNil ⇒ SNil;
19 SCons (x, tfun) ⇒ app (tfun, Unit, st); }
20 def app (cl,x,st) = cl match{ Take (n1,s1) ⇒ take] (n1,s1,st);}
21 def take] (n, s, st) =

22 { concrUntil] (s, n, st) }
23 if (n ≤ 0) (SNil, st, 3) else (s match {
24 SNil ⇒ (SNil, st, 5);
25 SCons (x, tfun) ⇒
26 let u := tail] (s, st) in
27 let nst := u.2 ∪ { (Tail s) } in
28 let ucost := if ((Tail s) ∈ st) 1 else u.3 + 3 in
29 let ns := (SCons (x, Take (n − 1, u.1)) in
30 (ns, nst, ucost + 10);
31 }){ res.3 ≤ ? }

Figure 6. Illustration of the translation shown in Fig. 5.

ensure that the closures of lambdas that are compatible are rep-
resented using the same datatype. For each lambda eλ, we define
a representative denoted eλ/∼=,P of the equivalence class with re-
spect to ∼= that belongs to a program P . (It is undefined if P does
not have a compatible lambda.) For each function type τ = A⇒ B
used in P , we add a datatype dτ to the model (defined shortly), and
replace every use of τ in the input program by the datatype dτ .

Let {eλi | i ∈ [1 ,n]} be the representatives (with respect to∼=)
of the lambda terms in the program P that are of type τ , and let
{li | i ∈ [1 ,n]} be their labels. The datatype dτ has n + 1 con-
structors denoted Cli , i ∈ [1 ,n] and Cτ . That is, dτ is of the form:
type dτ := (Cl1 τ1, · · · , Cln τn, Cτ Int). The ith constructor Cli
represents the closure of the ith lambda term eλi . The parameter of
the constructor represents FV (eλi). The type τi is obtained by re-
cursively replacing the function types by their closure datatypes in
typeP (FV (eλi)). The (n+ 1)th constructor Cτ of dτ is a stub for
a closure created outside the program under analysis and serves to
handle an error case (explained shortly). In Fig. 6(b), the datatype
tStream defined at line 14 represents the closures of lambdas of
type Unit⇒ Stream. The constructor Take of tStream represents the
closure of λa.take (n1, t) created at line 12. As shown at line 29,
the lambda is replaced by an instance of Take in the model. The
constructor Other represents the stub closure cτ .

Cache encoding. We instrument the expressions of the input
program to explicitly track the changes to the cache as the pro-
gram undergoes evaluation. Our instrumentation tracks only the
keys of the cache, which are elements of FVal , as it fully spec-
ifies the state of the cache at every instance. We introduce a
datatype Dcache to represent elements of FVal defined as follows:
type Dcache := (Cf1 τ1, · · · , Cfn τn), where fi’s are functions in

the program annotated with @memoize, and τi is the type of the pa-
rameter of fi. In Fig. 6, the datatype Dcache with one constructor:
(Tail Stream) corresponds to this datatype.

Translation of expressions. Fig. 5 formally defines the transfor-
mation J·KP that maps expressions of a input program P to a model
program P]. For every expression e, JeKP takes a state expression
st representing the keys of the cache before the evaluation of e and
returns the translated expression denoted e]. e] is a triple where the
first element e].1 corresponds to the value of e, the second element
e].2 corresponds to the keys of the cache after evaluation of e, and
the last element e].3 corresponds to the resource usage of e, which
are explained in the sequel.

Cache-state propagation. The propagation of cache state pro-
ceeds top down in a store-passing style following the control flow
of the program. To every function definition in the model, we add a
fresh parameter st (of type Set[Dcache]) that represents the state of
the cache at the beginning of the function (see translation of func-
tion definitions). This parameter is propagated through the bodies
of the function recording all the calls that are memoized along the
way. (E.g. see the translation of let expression.) The state parame-
ter is used at two places: (a) by calls to memoized functions, and
(b) by the cached construct to check whether the call given as argu-
ment is memoized. Consider the translation of a call to a memoized
function shown in Fig. 5. It uses the input state parameter st to
check whether the call would be a cache hit by testing if st con-
tains (Cf x) which represents the FVal : (f x). The resource usage
in the cache hit case is given by chit, whereas in the miss case it is
a combination of cmiss, the cost of the call ccall and the resource
usage of the callee w.3. Finally, (Cf x) is added to the output state
to record that the call is memoized. Observe that the call always
happens in the model regardless of whether or not it was memo-
ized before. This encodes the referential transparency of memoized
functions i.e, the value of the call is always equal to the result of
the invoked function, and avoids having to specify an invariant on
the cache. (Recall that we are not interested in the resource usage
of the model.) During the translation of contracts, the precondition
is translated using the initial state st and the postcondition using
the state resulting after the translation of the body res.2, as in the
operational semantics. Any changes to the state caused by the con-
tracts are discarded at the end of the contracts. The uses of res in
the postcondition is replaced by res.1, the uses of a resource R by
res.3, and the uses of inSt, representing the input cache state, by st.

Fig. 6(b) illustrates the result of propagating the state through
the body of take function as outputted by our tool. Observe that
after the call tail] (s, st) at line 26, an instance of (Tail s) is added
to the output state to record that the call is memoized, and that the
computation of steps at line 28 depends on whether or not (Tail s)
belongs to the input state st.

Resource Instrumentation. The instrumentation for resources
closely mimics the computation of resources in the operational
semantics. It proceeds bottom-up, first instrumenting the sub-
expressions of an expression e, and then using the resource us-
ages of the sub-expressions to instrument e, with the exception of
a call to a memoized function, which uses the state (propagated top
down) reaching the call expression to handle the cache hit case.
The model shown in Fig. 6(b) is obtained after a few straightfor-
ward static simplifications performed by our tool. For instance, the
constants such as 10 and 5 that appear in the resource expressions
are the result of adding up all the constants in the instrumented ex-
pressions along the same branch (or match case) in the program.

Defunctionalization. We translate an indirect call: x y to a
guarded disjunction of direct calls through a process known as de-
functionalization [64]. We replace every indirect call x y with label

l by a call to a dispatch function Appl constructed as follows. The
parameters of the function are (a) a closure cl of type dτ where
τ = typeP (x), (b) the argument of the call w, and (c) a state pa-
rameter st denoting the state of the cache at the entry of the func-
tion. The dispatch function matches the closure cl to each possi-
ble constructor and in each case Cli , where li is the label of the
lambda λai.ei represented by the constructor, invokes the expres-
sion Je′iKP st where e′i is the result of replacing in ei the parameter
of the lambda ai with x and the free variable of the lambda with
the field of Cli . If the closure matches Cτ , the model halts with
an error as this case corresponds to the scenario where a function
not defined within the program P is applied to an argument. Such
a function, being arbitrary, may either not terminate or can have a
precondition that is violated by the arguments it is applied to. The
model soundly flags this case as an error. We eliminate this case if
we can statically infer (based on type encapsulation) that the tar-
gets of the closures are strictly within the program under analysis.
Observe that in Fig. 6 the call to tfun inside the function tail is
translated to a call to the dispatch function app. (The case Other
is omitted in app as we assume that the call is encapsulated.) Even
though the set of possible cases in the function Appl could be large,
many of those cases that are not feasible at runtime are not explored
by our underlying verifier (section 4) which uses targeted unfolding
[52] to unfold calls only along satisfiable (abstract) paths.

Soundness and Completeness of the Model. We now establish
the soundness and completeness of the model for verification
of contracts of an input program P . The proofs of all theorems
that follow are presented in Appendix B. Let P be a program.
Let {H,H]} ⊆ Heap. Define a relation ∼

H,H],P
on the se-

mantic domains as follows: (subscripts omitted below for clarity)
1.∀a ∈ Z ∪Bool. a ∼ a
2.∀c ∈ Cids, {ā, b̄} ⊆ Valn. c ā ∼ c b̄ iff ∀i ∈ [1, n].ai ∼ bi
3.∀(eλ, σ) ∈ Closure, v ∈ Val , l ∈ labelsP .(eλ, σ) ∼ Cl v iff

σ(FV (eλ)) ∼ v ∧ (eλ/∼=,P is defined and has label l)

4.∀f ∈ Fids defined in P, {a, b} ⊆ Val . f a ∼ Cf b iff a ∼ b
5.∀C ∈ Cache, S ∈ Set. C ∼ S iff

|domP (C)| = |dom(S)| ∧ (∀x ∈ domP (C).∃y ∈ S.x ∼ y)

6.∀{a, b} ⊆ Adr. a ∼ b iff H(a) ∼ H](a)

7.∀{σ, σ]} ⊆ Store . σ ∼ σ] iff

dom(σ) ⊆ dom(σ]) ∧ ∀x ∈ dom(σ). σ(x) ∼ σ](x)
where, domP (C) = {(f u) ∈ dom(C) | f is defined in P}.

The relation formally captures that a cache is simulated by a set of
instances of Dcache (rule 4 and 5), and that a closure is simulated
by an instance of the datatype dτ if the lambda of the closure has
a representative in the program P with respect to ∼= (rule 3). We
now define a simulation relation ∼P that relates an environment
Γ : (C,H, σ) ∈ Env with an environment Γ] : (H], σ]) ∈ Env],
like a bisimulation relation between transition systems. But, some-
what unique to our setting, Γ is simulated by a pair (Γ], S) where
S ∈ Set . We say Γ∼P (Γ], S) iff C ∼

H,H],P
S and σ ∼

H,H],P
σ].

Theorem 1 (Bisimulation.). Let P be a program. Let e, st and
e′ be expressions such that Let e′ = JeKP st. Let Γ ∈ Env and
Γ] ∈ Env] be such that Γ] ` st ⇓ S and Γ∼P (Γ],S).

(a) If Γ ` e ⇓p v ,Γo then ∃Γ]o ∈ Env], u ∈ DVal such that
Γ] ` e ′ ⇓ u,Γ]o and
• Γo∼P (Γ]o , u.2) • v ∼

Ho,H]o,P
u.1 • p = u.3

(b) If Γ] ` e ′ ⇓ u,Γ]o then ∃Γo ∈ Env , v ∈ Val , p ∈ N
such that Γ ` e ⇓p v ,Γo and
• Γo∼P (Γ]o , u.2) • v ∼

Ho,H]o,P
u.1 • p = u.3

Using the above theorem, we now establish that for every func-
tion f in the program P , verifying the contracts of its translation
f] will imply that the contracts of f hold and vice-versa. A tricky
aspect here is that there exist valid environments Γ ∈ Env that
binds addresses to lambdas not in the scope of the program P under
which f evaluates to a value. Such environments do not have any
counterparts (with respect to ∼P) in Env]. The following theorem
holds despite this because if such lambdas are invoked by P , the
contracts of f and f] do not hold for all environments as there ex-
ists an environment each in Env and Env] that results in a contract
violation in f and enforces the error condition in f] respectively.

Theorem 2 (Model Soundness and Completeness). Let P be a
program and P] the model program. Let ẽ = {p} e {s} and
ẽ′ = {p′} e ′ {s ′}. Let def f x := ẽ be a function definition in P ,
and let def f] (x, st) := ẽ′ be the translation of f , where st is the
state parameter added by the translation.
∀Γ] ∈ Env]ẽ′,P] .∃u. Γ] ` p′ ⇓ false ∨ Γ] ` ẽ ′ ⇓ u iff

∀Γ ∈ Envẽ,P .∃v. Γ ` p ⇓ false ∨ Γ ` ẽ ⇓ v

Appendix B has the proofs of the above theorems. A corollary
of the above theorem is that the model is sound and complete for
the inference of resource bounds. That is, for any assignment to
holes ι, ∀Γ] ∈ Env] ẽ′,P] . Γ] ` p′ ⇓ false ∨ Γ] ` (ẽ ′ ι) ⇓ u iff
∀Γ ∈ Envẽ,P .Γ ` p ⇓ false ∨ Γ ` (ẽ ι) ⇓ v .

4. Model Verification and Inference
In this section, we discuss our approach for verifying contracts and
inferring constants in the resource bounds of the model programs.

Modular reasoning for first-order programs. Approaches based
on function-level modular reasoning for first-order programs verify
the postcondition of each function f in the program under the as-
sumption that the precondition of f and the pre-and post-condition
of the functions called by f (including itself) hold at all call sites.
The precondition of each function is verified at their call sites inde-
pendently. This assume/guarantee reasoning is essentially an induc-
tive reasoning over the calls made by the functions, which would be
well-founded and hence sound only for terminating evaluations of
the function bodies (also referred to as partial correctness). (Sec-
tion 2 formally defines termination.) The termination of functions
in the program is also verified independently. We now formalize
this reasoning and subsequently present an extension for handling
defunctionalized programs more effectively.

Let e1 and e2 be two properties i.e, boolean-valued expressions.
Let e1 → e2 denote that whenever e1 does not evaluate to false , e2

evaluates to true i.e, ∀Γ ∈ Env]. Γ ` e1 ⇓ false∨Γ ` e2 ⇓ true .
(The operation → can be considered as an implication with re-
spect to the operational semantics of the model language.) We use
|=P e1 → e2 to denote that under the assumption that all functions
in P terminate and that the pre-and post-condition of callees hold at
all call sites in P , e1 → e2 is guaranteed. The modular reasoning
described above corresponds to the following two rules:

Function-level modular reasoning:
• For each def f x = {pre} e {post}, |=P pre → post [e/res]

• For each call site c = f x in P , |=P path(c)→ pre(c)
Recall that the variable res refers to the result of e in the post-

condition of e. For a call c = f x , we use pre(c) to denote the
precondition of f after parameter translation. The path condition
path(c) denotes the static path (possibly with disjunctions and
function calls) to c from the entry of the function containing c.
For instance, the path condition of the call tail] (s,st) at line 26 of
the program shown in Fig. 6(b) is: concrUntil] (s, n, st) ∧ n > 0 ∧
s = SCons (x,tfun). For programs with templates, the assume/guar-
antee assertions generated as above would have holes (TVars).

The goal is then to find an assignment ι for holes such that all as-
sume/guarantee assertions of all functions are valid. (For brevity,
we have omitted the formal definition of the assumptions and path
as they are commonly known. Appendix C presents their formal
definition.)

Observe that this modular reasoning requires that the as-
sume/guarantee assertions hold for all environments Γ ∈ Env]

(by the definition of →), even though for contract verification
it suffices to consider only valid environments that reach the
function bodies. (However, Γ can be assumed to satisfy invariants
ensured by the runtime, e.g. that the variables in the environment
are bound to type-correct values etc.) This means that pre-and
post-conditions of functions should capture all necessary invari-
ants maintained by the program. This obligation dramatically
increases the specification/verification overhead when applied as
such to the model programs. For example, consider the call to
take] within app at line 20 in the program shown in Fig. 6(b).
The path condition to the call is not strong enough to imply
the precondition of the call namely concrUntil] (s1,n1,st). To
make this example verify, it would in fact require concrUntil]

to hold on the arguments of every instance of Take reachable
from the recursive datatype Stream, due to the mutual recur-
sion between app, take] and tail]. That is, the precondition
of app would need a function pre (cl,st) defined as follows:
def pre (cl, st) = cl match{
Take (n1,s1) ⇒ concrUntil] (s1,n1,st) ∧

(s1 match { SCons(x, t) ⇒ pre (t, st); SNil ⇒ true});
}

This scenario happens very often when dealing with recursive,
lazy data structures [59]. Our initial attempts to synthesize a
precondition such as the above for App functions resulted in
formulas too complicated for the state-of-the-art SMT solvers
to solve. In the sequel, we discuss an approach to alleviate this
specification overhead based on the observation that the property
concrUntil] actually holds at the points where the closure Take is
created and is monotonic with respect to the changes to the cache.

Cache Monotonic Properties. Informally, a property p ∈ Espec

is cache monotonic iff whenever it holds in an environment with
a cache C1, it also holds in all environments where the cache
has more entries than C1. These properties are interesting because
once established they can be assumed to hold at any subsequent
point in the evaluation (similar to heap-monotonic type states in-
troduced by Fähndrich and Leino [27]). We find that in almost all
cases the properties that are needed to establish resource bounds
are (or can be converted to) cache monotonic properties. Intu-
itively, this phenomenon seems to result from anti-monotonicity
of resource usage i.e, the resource usage of an expression can-
not increase when it is evaluated under a cache that has more en-
tries. Below we formalize cache monotonicity and later describe
how we exploit it in verification. Let Γ1 : (C1 ,H1 , σ1 ,F) and
Γ2 : (C2 ,H2 , σ2 ,F). We say Γ1 v Γ2 iff every component of
Γ2 has more entries than the corresponding component of Γ1 i.e,
(k , v) ∈ C1 ⇒ (k , v) ∈ C2 , where C could be H, C or σ. A
property pr is cache monotonic iff ∀{Γ1,Γ2} ⊆ Env .(Γ1 v
Γ2 ∧ Γ1 ` pr ⇓ true) ⇒ Γ2 ` pr ⇓ true . To check if a prop-
erty pr is cache monotonic it suffices to check the following prop-
erty on the translation of pr with respect to J·KP defined in Fig. 5:
(st1 ⊆ st2 ∧ JprKP st1)→ JprKP st2 .

Creation-dispatch rule for encapsulated calls. Recall that each
indirect call x y has a set of target lambdas that are estimated
at the time of model construction based on typeP (x). Let Λ =
{ei | i ∈ [1, n]}, where ei = λx.fi (x, yi), be the lambdas in
the program that are the possible targets of encapsulated calls in a
program P (defined in section 2). Let Clo] = {Ci wi | i ∈ [1, n]}

Figure 7. Counter-example guided inference for numerical holes.

be the closure constructions in the model of P representing the
lambdas Λ. In the model program, the dispatch functions Appl
corresponding to the encapsulated calls invoke the function f]i (the
translation of fi) in each case Ci wi (see Fig. 5 and the illustration
Fig 6(b)). Let DispCalls = {f]i (x, zi, st) | i ∈ [1, n]} be the calls
invoked by such Appl functions. Let Props = {ρi | i ∈ [1, n]} be
a set of boolean-valued expressions (properties) in Espec defined on
the captured argument yi of the lambda ei ∈ Λ (i.e, ρi has only yi
as free variable). We augment the function-level assume/guarantee
rules with the following condition: if each property ρi is cache
monotonic, and hold at the point of creation of the lambda ei for
the state of the cache at that point, it can be assumed to hold at the
point of dispatch. Formally,

Modular reasoning with creation-dispatch rule
I. For each def f x := {pre} e {post}, |=P pre → post [e/res]

II. For each call site c /∈ DispCalls , |=P path(c)→ pre(c)

III. (Cache monotonicity) For each ρi ∈ Props

|=P (st1 ⊆ st2 ∧ JρiKP st1)→ JρiKP st2
IV. For each closure construction site c = Ci wi in Clo]

|=P path(c)→ (JρiKP st(c))

V. For each call site c = f]i (x, zi, st) in DispCalls

|=P (path(c) ∧ Jρi [zi/yi]KP st)→ pre(c)
In the above rules, st(c) denotes the cache-state expression

propagated by the translation function J·KP to an expression c in the
model program. Note that there is exactly one cache-state expres-
sion reaching every point in the model program by the definition of
the translation shown in Fig. 5. For instance, the state expression
reaching the line 20 of Fig. 6(b) is st, whereas the state expression
reaching the line 29 is nst.

While the above reasoning holds irrespective of the how the
properties ρi are chosen for each lambda ei, we use a particular
strategy in our implementation. For each ei = λx .fi (x , yi),
we choose ρi to be the disjuncts of the precondition of the
call fi (x , yi) that only refer to the captured variable yi.
E.g. for the model shown in Fig. 6(b), our approach would
verify that (a) concrUntil is a cache monotonic property:
|=P (st1 ⊆ st2 ∧ concrUntil(s, i , st1))→ concrUntil(s, i , st2),
and (b) that the property concrUntil(u.1, n−1,nst) holds at the
point of creation of the closure Take(n−1,u.1) at line 29. The
property concrUntil(s1,n1,st) is assumed to hold while checking
the precondition of call to take] at line 20. With this extension
we do not need any more preconditions than what is stated in the
program to verify the program.

Theorem 3 (Soundness of creation-dispatch reasoning). Let P
be a program and P] the model program. Let def f] x := ẽ where
ẽ = {p} e {s} be a function definition in P]. If every function
defined in P terminate and the assume/guarantee assertions (I)
to (V) defined above hold, the contracts of f] holds i.e, ∀Γ] ∈
Env]ẽ,P] .∃u. Γ] ` p ⇓ false ∨ Γ] ` ẽ ⇓ u .

Solving parametric verification conditions. To solve the asser-
tions generated by assume/guarantee reasoning and infer values for
the holes, we extend the template inference algorithm proposed
by us in previous research [51, 52] and implemented in the Leon
verification and synthesis system [13, 71] (leondev.epfl.ch).
Fig. 7 shows a block diagram of the inference algorithm which we
briefly describe in the sequel. Given an assume/guarantee assertion
|=P e1 → e2 the VC generation phase converts it to a quantifier-
free formula (VC) of the form φ(x̄, ā), where the variables ā cor-
responds to the numerical holes, such that the assume/guarantee
assertion holds if there exists a assignment ι for ā such that φ ι is
unsatisfiable. (The VC could be thought of as a ∃∀ formula where
the holes are existentially quantified, and the rest including uninter-
preted function symbols are universally quantified.)

Converting an assume/guarantee assertion to a many-sorted,
first-order theory formula is straightforward. The primitives types
such as Int, Bool and the primitive operations are mapped to the cor-
responding sorts and theory operations. The user-defined datatypes
are mapped to algebraic datatypes. Match expressions are con-
verted to disjunctions, and let expressions to equalities. The func-
tion calls in the expressions are unfolded upto a certain depth and
treated uninterpreted. The pre-and post-conditions of the function
calls are assumed (and hence conjoined) at their call sites. Non-
linear operations over x̄ are axiomatized in the VC. The VCs thus
generated belong to the theory T of uninterpreted functions, al-
gebraic datatypes, sets, and nonlinear arithmetic. But, due to the
syntactic restrictions on the templates (shown in Fig. 3), the VCs
would be linear parametric formulas [51] in which every nonlinear
term is of the form a · x for some a belonging to ā and x belong-
ing to x̄. Each VC is solved using a counter-example guided algo-
rithm (discussed shortly). If the solving fails, a new VC is generated
by further unfolding recursive functions and instantiating nonlinear
axioms, and the process is repeated until a solution is found or a
timeout is reached.

Solving linear parametric formulas with sets. Given a linear
parametric VC of the form: φ(x̄, ā), the solution for ā that will
make φ unsatisfiable is computed using an iterative but terminat-
ing algorithm that progresses in two phases: an existential solving
phase (phase I), and a universal solving phase (phase II). Phase
I discovers candidate assignments ι for the free variables ā. It
initially starts with an arbitrary guess, and subsequently refines
it based on the counter-examples produced by Phase II. Phase II
checks if the candidate assignment ι makes φ unsatisfiable. That
is, if φ ι is unsatisfiable. If not, it chooses a disjunct d(x̄, ā) sat-
isfiable under ι that has only numerical variables by axiomatizing
uninterpreted functions and algebraic datatypes in a complete way
[52]. This numerical disjunct is then given back to phase I. Phase
I generates and solves a quantifier-free nonlinear constraint C(ā),
based on Farkas’ Lemma [20], to obtain the next candidate assign-
ment for ā that will make d(x̄, ā) and other disjuncts previously
seen unsatisfiable. Each phase invokes the Z3 [25] and CVC4 [8]
SMT solvers in portfolio mode on quantifier-free formulas. This al-
gorithm was shown to be complete for linear parametric formulas
belonging to the combined theory of real arithmetic, uninterpreted
functions and algebraic datatypes [52]. Below we extend this result
to include sets. (Proof detailed in Appendix C.)

Theorem 4. Given a linear parametric formula φ(x̄, ā) with free
variables x̄ and ā, belonging to a theory T that is a combina-
tion of quantifier-free theories of uninterpreted functions, algebraic
datatypes, and sets, and either integer linear arithmetic or real
arithmetic, finding a assignment ι such that dom(ι) = |ā| and
(φ ι) is T -unsatisfiable is decidable.

Encoding Runtime Invariants and Optimizations. For improv-
ing automation and performance, we explicitly encode certain in-

B I (dynamic/static) * 100 (optimal/static) * 100
steps alloc steps alloc

sel 10k 99 99 100 100
prims 1k 60 89 82 100
fibs 10k 99 99 100 100
hams 10k 86 83 98 100
slib 10k 65 75 85 88
rtq 220 93 83 97 87
msort 10k 90 91 96 97
deq 220 48 48 59 62
num 220 94 97 96 100
conq 220 72 54 82 72
lcs 1k 88 100 95 100
levd 1k 90 100 96 100
hmem 10k 79 100 92 100
ws 10k 99 100 100 100
ks 1k 94 100 99 100
pp 10k 77 70 88 84
vit 100 42 100 86 100

Avg. 81 88 91 94

Figure 9. (a) Mean percentage ratio of runtime resource usage
to the static bounds inferred. (b) Comparison of pareto-optimal
resource bounds for the runtime data to the static bounds inferred.

variants (described below) ensured by the runtime that are not cap-
tured by the model, during VC generation. (a) We encode the refer-
ential transparency of the functions in the input program (namely,
that the result of the function is independent of the cache state)
in the VC in the following way. In principle, this corresponds to
the axiom ∀x , st1 , st2 .(f] (x , st1)).1 = (f] (x , st2)).1 for every
function f] in the model. We encode this axiom efficiently by
adding the predicate f] (x , st1) = UFf (x) for every application
of f] in the VC, where UFf is a unique uninterpreted function
for f]. This helps achieve a completely functional reasoning for
correctness properties needed for proving resource bounds. (b) We
encode the monotonic evolution of the cache by adding the pred-
icate: st ⊆ f] (x , st).2 for every application of f] in the VC. (c)
Also, whenever the counter-example guided solving fails, we un-
fold only calls along the disjuncts d(x̄, ā) encountered during the
solving phase (referred to as targeted unfolding [52]). This prevents
unfolding along paths known to be unsatisfiable in the VC thus mit-
igating the overheads due to defunctionalization.

5. Evaluation
We implemented the approach described in the previous sec-
tions (leondev.epfl.ch), and used our system to verify resource
bounds of many algorithms. In this section, we summarize the re-
sults of our experiments. All evaluations presented in this section
were performed on a machine with a 4 core, 3.60 GHz, Intel Core
i7 processor, 32GB RAM, running Ubuntu operating system.

Benchmark statistics. Fig. 8 shows selected benchmarks that
were verified by our approach. Each benchmark was implemented
and specified in a purely functional subset of Scala extended with
our specification constructs. We carefully picked some of the most
challenging benchmarks from the literature of lazy data-structures
and dynamic programming algorithms. For instance, the bench-
mark rtq has been mentioned as being outside the reach of prior
works (section Limitations of [22]). For each benchmark, the fig-
ure shows the total lines of Scala code and the size of the compiled

leondev.epfl.ch
leondev.epfl.ch

Benchmark LOC BC T S AT steps ≤ Resource bounds alloc ≤
Lazy data-structures
Lazy Selection Sort (sel) 70 36kb 4 1 1m 15k · l.size+ 8k + 13 2k · l.size+ 2k + 2

Prime Stream (prims) 95 51kb 7 2 1m 16n2 + 28 6n− 11

Fibonacci Stream (fibs) [12] 199 59kb 5 5 2m 45n+ 4 4n

Hamming Stream (hams) [12] 223 78kb 8 6 1m 129n+ 4 16n

Stream library (slib) [72] 408 0.1mb 22 5 1m 25l.size+ 6 3l.size

Lazy Mergesort (msort) [4] 290 0.1mb 6 8 1m 36kblog l.sizec+ 53l.size+ 22 6kblog l.sizec+ 6l.size+ 3

Real time queue (rtq) [58, 59] 207 69kb 5 6 1m 40 7

Deque (deq) [58, 59] 426 0.1mb 16 7 5m 893 78

Lazy Numerical Rep.(num)[59] 546 0.1mb 6 25 1m 106 15

Conqueue (conq) [61, 62] 880 0.2mb 12 33 5m 29|xs.lvl − ys.lvl|+ 8 2|xs.lvl − ys.lvl|+ 1

Dynamic Programming
LCS (lcs) [21] 121 37kb 4 4 1m 30mn+ 30m+ 30n+ 28 2mn+ 2m+ 2n+ 3

Levenshtein Distance(levd) [24] 110 37kb 4 4 1m 36mn+ 36m+ 36n+ 34 2mn+ 2m+ 2 + 3

Hamming Numbers (hm) [12] 105 44kb 3 3 3m 66n+ 65 3n+ 4

Weight Scheduling (ws) [21] 133 44kb 3 5 1m 20jobi+ 19 2jobi+ 3

Knapsack (ks) [21] 122 48kb 5 4 1m 17(w · i.size) + 18w + 17i.size+ 18 2w + 3

Packrat Parsing (pp) [30] 249 73kb 7 5 1m 61n+ 58 10n+ 10

Viterbi (vit) [76] 191 63kb 6 7 1m 34k2t+ 34k2 − 6kt+ 14k + 47t+ 26 2kt+ 2k + 4t+ 5

Figure 8. Selected benchmarks comprising of ∼5K lines of Scala code and 123 resource bounds each for steps and alloc.

JVM byte code in columns LOC and BC. The benchmarks com-
prise a total of 4.5K lines of Scala code and 1.2MB of bytecodes.
The column T shows the number of functions with resource bound
templates, and the column S the number of specification functions.
We do not verify resource bounds of specification functions but
only verify their termination [78]. The column AT shows the time
taken by our system rounded off to minutes to verify the specifi-
cations and infer the constants. As shown by the figure, all bench-
marks were verified within a few minutes. The column Resource
bounds shows a sample bound for steps and alloc resource. The
constants in the bound were automatically inferred by the tool.

We verified a total of 123 bounds each for steps and alloc.
Many bounds used recursive functions, and almost 20 bounds
had nonlinear operations. (Nonlinear operations like blogc are
expressed as a recursive function that uses integer division:
log(x) = if(x >= 2) log(x/2) + 1 else (base cases). Their proper-
ties like monotonicity are manually proved and instantiated.) A few
bounds were disjunctive (like the bound shown in Fig. 1, and conq).
However, in our experience, the most challenging bounds to prove
were the constant time bounds of scheduling-based lazy data struc-
tures viz. rtq, deq, num, and conq due to their complexity.

Evaluation of accuracy of the inferred bounds. We instrumented
the benchmarks for tracking steps and alloc resources as defined
by the operational semantics, and executed them on concrete in-
puts that were likely to expose the worst case behavior. We var-
ied the sizes of the inputs in fixed intervals upto 10k for most
benchmarks. However, for those benchmarks with nonlinear be-
havior we used smaller inputs that scaled within a cutoff time of
5 min, as tabulated in the column I of Fig. 9. For scheduling based
data structures (discussed shortly) we varied the input in powers of
two until 220, which results in their worst-case behavior. For every
top-level (externally accessible) function in a benchmark, we com-
puted the mean ratio between the runtime resource usage and the
static resource usage predicted by our tool using the following for-
mula: Mean

(
resource consumed by the ith input

static estimate for ith input × 100
)

. The column dy-
namic/static * 100 of Fig. 9 shows this metric for each benchmark

when averaged over all top-level functions in the benchmark. As
shown in the figure, when averaged across all benchmarks the run-
time resource usage was 81% of what was inferred statically for
steps, and is 88% for alloc. In all cases, the inferred bounds were
sound upper bounds for the runtime resource usage. We now dis-
cuss the reasons for some of the inaccuracy in the inferred bounds.

In our system, there are two factors that influence the overall
accuracy of the bound: (a) the constants inferred by tool, and
(b) the resource templates provided by the user. For instance, in
the prims benchmark shown in Fig. 1 the function isPrimeNum(n)
has a worst-case steps count of 11i − 7, which will be reached
only if i is prime. (It varies between O(

√
i) and O(i) otherwise.)

Hence, for the function primesUntil(n), which transitively invokes
isPrimeNum function on all numbers until n, no solution for the
template: ? ∗ n2 + ? can accurately match its worst-case, runtime
steps count. Another example is the O(k · blog(l.size)c) resource
bound of msort benchmark. In any actual run, as k increases the
size of the stream that is accessed (which is initially l) decreases.
Hence, blog(l.size)c term decreases in steps.

To provide more insights into the contribution of each of these
factors to the inaccuracy, we performed the following experiment.
For each function, we reduced each constant in its resource bound,
keeping the other constants fixed, until the bound violated the re-
sources usage of at least one dynamic run. We call such a bound a
pareto optimal bound with respect to the dynamic runs. Note that
if there are n constants in the resource bound of a function, there
would be n pareto optimal bounds for the function. We measured
the mean ratio between the resource usage predicted by the pareto
optimal bound and that predicted by the bound inferred by the tool.
The column optimal/static * 100 of Fig. 9 shows this metric for
each benchmark when averaged over all pareto optimal bounds of
all top-level functions in the benchmark. A high percentage for this
metric is an indication that any inaccuracy is due to imprecise tem-
plates, whereas a low percentage indicates a possible incomplete-
ness in the resource inference algorithm, which is often due to non-
linearity or absence of sufficiently strong invariants. As shown in
Fig. 9, the constants inferred by the tool were 91% accurate for

steps and 94% accurate for alloc, when compared to the pareto op-
timal values that fits the runtime data. Furthermore, the imprecision
due to templates is a primary contributor for inaccuracy, especially
in benchmarks where the accuracy is lower than 80% (such Viterbi
and prims). In the sequel, we discuss the benchmarks and the re-
sults of their evaluation in more detail.

Cyclic streams. The benchmarks fibs and hams implement infi-
nite fibonacci and hamming sequences as cyclic streams using lazy
zipWith and merge functions. Their implementations were based on
the related work of Vasconcelos et al. [74]. In comparison to their
work in which the alloc bounds computed for hams were 64% accu-
rate for inputs smaller than 10, our system was able to infer bounds
that were 83% accurate for inputs up to 10K.

Scheduling-based lazy data structures. The benchmarks rtq,
deq, num, and conq use lazy evaluation to implement worst-case
constant time, persistent queues and deques using a strategy called
scheduling. These are one of the most efficient persistent data struc-
tures. For instance, the rtq [58] benchmark takes a few nanoseconds
to persistently enqueue an element into a queue of size 230. The
conq data structure [62] is used to implement data-parallel opera-
tions provided by the standard Scala library. Though the data struc-
tures differ significantly in their internal representation, invariants,
resource usage and the operations they support, fundamentally they
consists of streams called spines that track content, and a list of ref-
erences to closures nested deep within the spines: schedules. The
schedules help materialize the data structure lazily as they are used
by a client. We are not aware of any prior approach that proves
the resource bounds of these benchmarks. We also discovered and
fixed a missing corner case of the rotateDrop function shown in Fig
8.4 of [59], which was unraveled by the system.

As the results in Fig. 9 show, the inferred bounds were at least
83% accurate for rtq and num benchmarks, but have low accuracy
for deq and conq benchmarks. On further analysis of deq we found
that the bounds inferred by our system for the inner functions
of deq were, in fact, 90% accurate in estimating the worst-case
usage for the dynamic runs. But the worst-case manifested only
occasionally (about once in four calls) when invoked from the top-
level functions. The low accuracy seems to result from the lack of
sufficient invariants for the top-level functions that prohibit the calls
to inner functions from consistently exhibiting worst-case behavior.

Other lazy benchmarks. The benchmark slib is a collection of
operations over streams such as map, scan, cycle etc. The oper-
ations were chosen from the Haskell stream library [72]. We ex-
cluded functions such as filter that can potentially diverge on in-
finite streams. The bounds presented are for a specific client of
the library. The benchmarks msort and sel implement lazy sorted
streams that allows accessing the kth minimum without perform-
ing the entire sorting. In particular, msort uses a lazy bottom-up
merge sort [4] wherein a logical tree of closures of the merge func-
tion is created and forced on demand.

Dynamic programming algorithms. We verified the resource
bounds of dynamic programming algorithms [21, 24] shown in
Fig. 8 by expressing them as memoized recursive functions. In par-
ticular, the benchmark pp is a memoized implementation of a pack-
rat parser presented by Ford [30] for the parsing expression gram-
mar used in that work. As shown in Fig. 9, the inferred bounds for
steps are on average 90% accurate for the dynamic programming
algorithms except pp and vit, and is 100% accurate in the case of
alloc for all benchmarks except pp. In the case of vit, the main rea-
son for inaccuracy stems from the cubic template (shown in Fig. 8),
as highlighted by the results of comparison with the pareto optimal
bound shown in Fig. 9. In the case of pp, the evaluations were per-
formed on random strings as were unable to precisely deduce the

worst-case input. Nevertheless, the bounds inferred were 100% ac-
curate for the inner functions: pAdd, pMul, and pPrim.

6. Related Work
Static Resource Analysis for Lazy Evaluation. Danielsson [22]
present a lightweight type-based analysis for verifying time com-
plexity of lazy functional programs and applied it to implicit
queues. As noted in the paper, the approach is limited in handling
aliasing of lazy references, which is crucial for our benchmarks.
Vasconcelos et al. [69, 74] present a typed-based analysis for in-
ferring bounds on memory allocations of Haskell programs. They
evaluated their system on cylic hamming and fibonacci stream,
which were included in our benchmarks, and discussed in section 5.
In contrast to the above works, our approach is targeted at verifying
user-specified bounds, and has been evaluated on more complex,
real-world programs for relatively large input sizes.

Static Resource Bounds Analysis. Automatic static inference of
resource bounds of programs has been an actively researched area.
Some of the recent works include [1, 2, 7, 17, 29, 32, 35, 38, 47,
53, 70, 84]. Being fully automated, these approaches target sim-
pler programs and bounds that depend on less complex invariants
compared to our approach. Another related line of work include
semi-automatic formal frameworks amenable to deriving machine-
checked proofs of resource bounds [9, 23, 66, 67]. In particular,
Sands [66, 67] present a theoretical framework for reasoning about
lazy evaluation. We are not aware of any machine-checked proofs
for the resource bounds of the lazy data structures considered in our
study. Recent works on resource analysis have started incorporating
user specifications. Alonso et al. [3] presented an approach where
resource bounds are specified by users as templates. Carbonneaux
et al. [18] presented a system to verify stack space bounds of C
programs written for embedded systems using a quantitative Hoare
logic. Previously, we proposed an approach [52] for inferring re-
source bounds using user-defined templates and specifications for
first-order, non-lazy functional programs with algebraic datatypes.

Coinductive datatypes. Leino and Moskal [49] use coinduction
to verify programs with possibly infinite lazy data structures. They
do not consider resource properties of such programs. Blanchette et
al.[14, 15] present a formal framework for soundly mixing recur-
sion and corecursion in the context of interactive theorem provers.

Imperative and Higher-order Verification. Verification Systems
such as [16, 26, 36, 48, 60, 65, 83] and interactive theorem provers
[10, 19, 56] have been used to verify complex, imperative pro-
grams. Automation in our system appears above the one in inter-
active provers, and could be further improved using quantifier in-
stantiation, induction, and static analysis [11, 33, 63]. While most
approaches for imperative programs target a homogeneous, muta-
ble heap, in this work we consider an almost immutable heap ex-
cept for the cache, and use a set representation to handle mutations
to the cache efficiently. We believe that similar separation of heap
into mutable and immutable parts can benefit other forms of re-
stricted mutation like write-once fields [6].

Works such as [28, 42–44, 54, 55, 73, 75, 77–79, 81, 82] target
correctness verification of higher-order, functional programs. Many
of these systems allow users to write contracts on function-valued
parameters, or refinement predicates on function types [28, 75].
We are not aware of any contract-based verifiers for higher-order
programs that allow specifying resource properties, as in our ap-
proach. Our approach allows named functions, with contracts and
resource templates, to be used inside lambdas. However, it dis-
allows contracts on function-valued parameters and instead pro-
vides intensional-equality-based constructs to specify their prop-
erties. Though this makes the contracts very specific to the imple-

mentation, it has the advantage of reducing specification burden for
closed or encapsulated programs. Supporting contracts on function-
valued parameters that can refer to resource bounds would be an
interesting future direction to explore.

References
[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost

analysis of object-oriented bytecode programs. Theor. Comput. Sci.,
413(1):142–159, 2012.

[2] C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional
rankings, program termination, and complexity bounds of flowchart
programs. In Static Analysis Symposium, SAS, pages 117–133, 2010.

[3] D. E. Alonso-Blas and S. Genaim. On the limits of the classical
approach to cost analysis. In Static Analysis Symposium, SAS, pages
405–421, 2012.

[4] H. Apfelmus. Quicksort and k-th smallest elements. 2009.

[5] A. W. Appel. Intensional equality ;=) for continuations. SIGPLAN
Not., 31(2), Feb. 1996.

[6] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures
for parallel computing. ACM Trans. Program. Lang. Syst., 11(4):598–
632, Oct. 1989.

[7] M. Avanzini, U. D. Lago, and G. Moser. Analysing the complexity of
functional programs: higher-order meets first-order. In International
Conference on Functional Programming, ICFP, pages 152–164, 2015.

[8] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli. CVC4. In Computer Aided
Verification, CAV, pages 171–177, 2011.

[9] R. Benzinger. Automated higher-order complexity analysis. Theoret-
ical Computer Science, 318(1):79 – 103, 2004.

[10] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer, 2004.

[11] T. A. Beyene, C. Popeea, and A. Rybalchenko. Solving existentially
quantified horn clauses. In Computer Aided Verification, CAV, 2013.

[12] R. Bird and P. Wadler. An Introduction to Functional Programming.
Prentice Hall International (UK) Ltd., 1988.

[13] R. W. Blanc, E. Kneuss, V. Kuncak, and P. Suter. An overview of the
Leon verification system. In Scala Workshop, 2013.

[14] J. C. Blanchette, A. Popescu, and D. Traytel. Foundational extensible
corecursion: a proof assistant perspective. In International Conference
on Functional Programming, ICFP, pages 192–204, 2015.

[15] J. C. Blanchette, A. Popescu, and D. Traytel. Witnessing
(co)datatypes. In European Symposium on Programming, ESOP,
pages 359–382, 2015.

[16] I. Bogudlov, T. Lev-Ami, T. W. Reps, and M. Sagiv. Revamping
TVLA: making parametric shape analysis competitive. In Computer
Aided Verification, CAV, pages 221–225, 2007.

[17] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Ana-
lyzing runtime and size complexity of integer programs. ACM Trans.
Program. Lang. Syst., pages 13:1–13:50, 2016.

[18] Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao. End-
to-end verification of stack-space bounds for C programs. In Program-
ming Language Design and Implementation, PLDI, 2014.

[19] A. Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. In Programming Language Design
and Implementation, PLDI, pages 234–245, 2011.

[20] M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant
generation using non-linear constraint solving. In Computer Aided
Verification, CAV, 2003.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms (Second Edition). MIT Press and McGraw-Hill, 2001.

[22] N. A. Danielsson. Lightweight semiformal time complexity analysis
for purely functional data structures. In Principles of Programming
Languages, POPL, pages 133–144, 2008.

[23] N. Danner, J. Paykin, and J. S. Royer. A static cost analysis for
a higher-order language. In Workshop on Programming languages
meets program verification, PLPV, pages 25–34, 2013.

[24] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms.
McGraw-Hill, 2008.

[25] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems TACAS,
pages 337–340, 2008.

[26] D. Distefano and M. J. Parkinson J. jStar: Towards practical verifi-
cation for java. In Object-oriented Programming Systems Languages
and Applications, OOPSLA, pages 213–226, 2008.

[27] M. Fähndrich and K. R. M. Leino. Heap monotonic typestates. In
International Workshop on Aliasing, Confinement and Ownership in
Object-oriented Programming, IWACO, page 58, 2003.

[28] R. B. Findler and M. Felleisen. Contracts for higher-order func-
tions. In International Conference on Functional Programming, ICFP,
pages 48–59, 2002.

[29] A. Flores-Montoya and R. Hähnle. Resource analysis of complex pro-
grams with cost equations. In Programming Languages and Systems -
12th Asian Symposium, APLAS, pages 275–295, 2014.

[30] B. Ford. Packrat parsing: Simple, powerful, lazy, linear time, func-
tional pearl. In International Conference on Functional Programming
ICFP, pages 36–47, 2002.

[31] J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and
R. Thiemann. Automated termination proofs for haskell by term
rewriting. ACM Trans. Program. Lang. Syst., 33(2):7:1–7:39, Feb.
2011.

[32] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. SPEED: precise and
efficient static estimation of program computational complexity. In
Principles of Programming Languages, POPL, 2009.

[33] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The
SeaHorn verification framework. In Compuer Aided Verification, CAV,
2015.

[34] J. Harrison. Handbook of Practical Logic and Automated Reasoning.
Cambridge University Press, 2009.

[35] J. Hoffmann, K. Aehlig, and M. Hofmann. Resource Aware ML. In
Computer Aided Verification, CAV, pages 781–786, 2012.

[36] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens. VeriFast: A powerful, sound, predictable, fast verifier for
C and Java. In Proceedings of NASA Formal Methods, NFM, pages
41–55, 2011.

[37] N. D. Jones and N. Bohr. Termination analysis of the untyped lamba-
calculus. In Rewriting Techniques and Applications, RTA, pages 1–23,
2004.

[38] S. Jost, K. Hammond, H. Loidl, and M. Hofmann. Static determination
of quantitative resource usage for higher-order programs. In Principles
of Programming Languages, POPL, pages 223–236, 2010.

[39] D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for data
structures. In Foundations of Software Engineering, FSE, pages 105–
116, 2006.

[40] M. Kaufmann, J. S. Moore, and P. Manolios. Computer-Aided Rea-
soning: An Approach. Kluwer Academic Publishers, Norwell, MA,
USA, 2000.

[41] G. Klein, P. Derrin, and K. Elphinstone. Experience report: Sel4:
Formally verifying a high-performance microkernel. In International
Conference on Functional Programming, ICFP, pages 91–96, 2009.

[42] K. Knowles and C. Flanagan. Hybrid type checking. ACM Trans.
Program. Lang. Syst., 32(2):6:1–6:34, Feb. 2010.

[43] N. Kobayashi. Types and higher-order recursion schemes for verifi-
cation of higher-order programs. In Principles of Programming Lan-
guages, POPL, pages 416–428, 2009.

[44] N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CE-
GAR for higher-order model checking. In Programming Language
Design and Implementation, PLDI, pages 222–233, 2011.

[45] V. Kuncak, H. H. Nguyen, and M. Rinard. Deciding Boolean Algebra
with Presburger Arithmetic. Journal of Automated Reasoning, 36(3),
2006.

[46] J. Launchbury. A natural semantics for lazy evaluation. In Principles
of Programming Languages, POPL, 1993.

[47] D. Le Métayer. Ace: An automatic complexity evaluator. ACM Trans.
Program. Lang. Syst., 10(2):248–266, Apr. 1988.

[48] K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In Logic for Programming, Artificial Intelligence, and
Reasoning, pages 348–370, 2010.

[49] K. R. M. Leino and M. Moskal. Co-induction simply - automatic co-
inductive proofs in a program verifier. In Formal Methods, FM, pages
382–398, 2014.

[50] X. Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, July 2009.

[51] R. Madhavan and V. Kuncak. Symbolic resource bound inference,
EPFL-REPORT-190578. Technical report, EPFL, 2014.

[52] R. Madhavan and V. Kuncak. Symbolic resource bound inference
for functional programs. In Computer Aided Verification, CAV, pages
762–778, 2014.

[53] J. A. Navas, E. Mera, P. López-Garcı́a, and M. V. Hermenegildo.
User-definable resource bounds analysis for logic programs. In Inter-
national Conference on Logic Programming, ICLP, pages 348–363,
2007.

[54] P. C. Nguyen and D. V. Horn. Relatively complete counterexamples
for higher-order programs. In Programming Language Design and
Implementation, PLDI, pages 446–456, 2015.

[55] P. C. Nguyen, S. Tobin-Hochstadt, and D. V. Horn. Soft contract
verification. In international conference on Functional programming,
ICFP, pages 139–152, 2014.

[56] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[57] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: a
comprehensive step-by-step guide. Artima Press, 2008.

[58] C. Okasaki. Simple and efficient purely functional queues and deques.
Journal of Functional Programming, 5:583–592, 10 1995.

[59] C. Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

[60] R. Piskac, T. Wies, and D. Zufferey. Grasshopper - complete heap
verification with mixed specifications. In Tools and Algorithms for the
Construction and Analysis of Systems, TACAS, pages 124–139, 2014.

[61] A. Prokopec. Data Structures and Algorithms for Data-Parallel Com-
puting in a Managed Runtime. PhD thesis, EPFL, 2014.

[62] A. Prokopec and M. Odersky. Conc-trees for functional and parallel
programming. In Languages and Compilers for Parallel Computing,
LCPC, pages 254–268, 2015.

[63] A. Reynolds and V. Kuncak. Induction for SMT solvers. In Verifi-
cation, Model Checking, and Abstract Interpretation, VMCAI, pages
80–98, 2015.

[64] J. C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397,
1998.

[65] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-
valued logic. In Principles of Programming Languages, POPL, pages
105–118, 1999.

[66] D. Sands. Calculi for Time Anlaysis of Functional Programs. PhD
thesis, Imperial College, University of London, 1990.

[67] D. Sands. Complexity analysis for a lazy higher-order language. In
European Symposium on Programming, ESOP, pages 361–376, 1990.

[68] D. Sereni. Termination analysis of higher-order functional programs.
PhD thesis, University of Oxford, UK, 2006.

[69] H. R. Simões, P. B. Vasconcelos, M. Florido, S. Jost, and K. Ham-
mond. Automatic amortised analysis of dynamic memory allocation

for lazy functional programs. In International Conference on Func-
tional Programming, ICFP, pages 165–176, 2012.

[70] M. Sinn, F. Zuleger, and H. Veith. A simple and scalable static analysis
for bound analysis and amortized complexity analysis. In Computer
Aided Verification CAV, pages 745–761, 2014.

[71] P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive
programs. In Symposium on Static Analysis SAS, 2011.

[72] W. Swierstra. Stream: A library for manipulating infinite lists.
https://hackage.haskell.org/package/Stream-0.4.7.2/
docs/Data-Stream.html. 2015.

[73] S. Tobin-Hochstadt and D. V. Horn. Higher-order symbolic execution
via contracts. In Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA, pages 537–554, 2012.

[74] P. B. Vasconcelos, S. Jost, M. Florido, and K. Hammond. Type-based
allocation analysis for co-recursion in lazy functional languages. In
European Symposium on Programming, ESOP, 2015.

[75] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones.
Refinement types for haskell. In International Conference on Func-
tional Programming, ICFP, pages 269–282, 2014.

[76] A. Viterbi. Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm. IEEE Transactions on Information
Theory, 13(2):260–269, April 1967.

[77] N. Voirol, E. Kneuss, and V. Kuncak. Counter-example complete
verification for higher-order functions. In Symposium on Scala, pages
18–29, 2015.

[78] N. Voirol and V. Kuncak. Automating verification of functional pro-
grams with quantified invariants, EPFL-REPORT-222712. Technical
report, EPFL, 2016.

[79] D. Vytiniotis, S. Peyton Jones, K. Claessen, and D. Rosén. HALO:
Haskell to logic through denotational semantics. In Principles of
Programming Languages, POPL, pages 431–442, 2013.

[80] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The worst-case
execution-time problem—overview of methods and survey of tools.
ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53, May 2008.

[81] D. N. Xu. Hybrid contract checking via symbolic simplification. In
Workshop on Partial Evaluation and Program Manipulation, PEPM,
pages 107–116, 2012.

[82] D. N. Xu, S. Peyton Jones, and K. Claessen. Static contract checking
for haskell. In Principles of Programming Languages, POPL, pages
41–52, 2009.

[83] K. Zee, V. Kuncak, and M. C. Rinard. Full functional verification
of linked data structures. In Programming Language Design and
Implementation, PLDI, 2008.

[84] F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis
of imperative programs with the size-change abstraction. In Static
Analysis Symposium, SAS, pages 280–297, 2011.

A. Formal Definitions, Semantics and Proofs
A.1 Semantics and Properties of Input Language
In all the formalism that follow we adopt the following convention.
If Γi (or Γi) is an environment then we refer to its individual
components C of the environment, namely (C,H, σ,F), using Ci
(or Ci), respectively.

Reachability relation. Fig 10 shows the complete, formal defini-
tion of the reachability relation .

Terminating Evaluations. An evaluation is non-terminating iff
there exists an infinite sequence: 〈Γ, e〉 〈Γ1, e1〉 · · · . An evalu-
ation is terminating iff there are no infinite sequences starting from
〈Γ, e〉. For a terminating evaluation, there is a natural number n
such that the length of every chain is upper bounded by n. That
is, ∃n ∈ N.¬

(
∃k > n, e,Γ′.〈Γ, e〉 k〈Γ′, e〉

)
. This is because the

https://hackage.haskell.org/package/Stream-0.4.7.2/docs/Data-Stream.html
https://hackage.haskell.org/package/Stream-0.4.7.2/docs/Data-Stream.html

LET1
〈Γ, let x := e1 in e2〉 〈Γ, e1〉

LET2
Γ ` e1 ⇓ v1 , (C′,H′, σ′)

〈Γ, let x := e1 in e2〉 〈(C′,H′, σ′[x 7→ v1]), e2〉

MATCH
H(σ(x)) = Ci v̄

〈Γ : (C,H, σ), x match {Ci x̄i ⇒ ei)}ni=1〉 〈(C,H, σ[x̄i 7→ v̄]), ei〉

CONCRETECALL
〈Γ : (C,H, σ), f u〉 〈(C,H, σ[paramΓ(f) 7→ u]), bodyΓ(f)〉

NONMEMOIZEDCALL
f ∈ Fids f /∈MemΓ

〈Γ, f x〉 〈Γ, f σ(x)〉

INDIRECTCALL
H(σ(x)) = (λz.e, σ′)

〈Γ : (C,H, σ), x y〉 〈(C,H, (σ] σ′)[z 7→ σ(y)]), e〉

MEMOCALLMISS
f ∈MemΓ ¬

(
(f σ(x)) ∈H dom(C)

)
〈Γ, f x〉 〈Γ, f σ(x)〉

PRE
〈Γ, {pre} e {post}〉 〈Γ, pre〉

BODY
Γ ` pre ⇓ true

〈Γ, {pre} e {post}〉 〈Γ, e〉

POST
Γ ` pre ⇓ true Γ ` e ⇓q v ,Γ2 : (C2 ,H2 , σ2)

〈Γ, {pre} e {post}〉 〈(C2,H2, σ2[R 7→ q, res 7→ v]), post〉

Figure 10. Definition of the reachability relation.

number of distinct chains is finite, as for every 〈Γ, e〉 there exists at
most three different successors (see Fig. 4).

Structural Induction over Big-step Semantic Rules. We now es-
tablish an induction strategy to prove properties of the operating
semantics. To prove that a property ρ(Γ, e, v,Γ′, p) holds for an
evaluation Γ ` e ⇓p v ,Γ′ we perform induction over the depth
of the evaluation. That is, we inductively establish that ∀n ∈
N. ¬

(
∃k > n, e,Γ′′.〈Γ, e〉 k〈Γ′′, e〉

)
⇒ ρ(Γ, e, v,Γ′, p). This

boils down to the following strategy. For every semantics rule
RULE, we assume that the property holds for the big-step reduc-
tions in the antecedent and establish that it holds in the consequent.
The base cases of the induction are the rules: CST, VAR, PRIM,
EQUAL, CONS, LAMBDA, MEMOCALLHIT and CACHED, which
do not have any big-step reductions in the antecedents. Every other
rule is an inductive step. We refer to this as structural induction over
the big-step semantic rules. Many of the theorems that follow are
established using this form of structural induction.

Structural induction over ≈ and ∼. Recall that the relations ≈,
and∼ are defined recursively. As is usual, we define their semantics
using least fixed points. Let R ⊆ A be a relation defined by a
recursive equation R = h(R) where h is some function that uses
the relation R. The relations ≈, ∼̂ and ∼ can be viewed as being
in this form. The solution for the above equation is the least fixed
point of h. Since relations are sets of pairs, there exists a natural
partial order on the relations namely ⊆. The ordered set (2A,⊆)
is a complete lattice, which implies that there exists a unique least
fixed point for every Scott-continuous function (by Knaster-Tarski
theorem). Also, the least fixed point can be computed using Kleene
iteration. Let R0 = ∅ and Ri = h(Ri−1). The least fixed point

of h, and hence the solution to R, is
n⋃
i=0

Ri. This definition of R

naturally lends itself to an inductive reasoning: to prove a property
on R, we establish that (a) the property holds for ∅, and (b) that
if it holds for Ri−1 it holds for Ri. In the context of ≈ and ∼,
assuming that the property holds for Ri−1 means that the relation
can be assumed to hold in the right hand sides of the definition of
the relation. We refer to this as structural induction over R.

Determinization of the semantics. The semantics shown in Fig. 4
has a source of non-determinism namely the function fresh(H)
that arbitrarily chooses a fresh address not belonging dom(H). We

make this function deterministic by fixing a well-ordering on the
elements of Adr and requiring that fresh(H) always returns the
smallest address not bound in the heap H. That is, fresh(H) =
min(Adr \ dom(H)).

Acyclic Heaps. We say a heap H ∈ Heap does not have any
cycles iff there exists a well-founded, irreflexive (i.e, strict) partial
order < on dom(H) such that for every (a, v) ∈ Heap, either v ∈
Z ∪ Bool, or v = cons ū and ∀i ∈ [1 , |ū|].ui ∈ Adr ⇒ ui < a ,
or v = (eλ, σ

′) and ∀a′ ∈ range(σ′) ∩ Adr .a′ < a. The relation
< is well-founded.

Lemma 5. Let H be an acyclic heap. The structural equivalence
relation ≈

H
is reflexive, transitive and symmetric. That is,

(a) x ≈
H
y ∧ y ≈

H
z ⇒ x ≈

H
z

(b) x ≈
H
y ⇒ y ≈

H
x

(c) x ≈
H
x

Proof. The transitivity and symmetry properties follow from a sim-
ple structural induction (due to the transitivity and symmetry of
equality over integers and booleans). The reflexivity property triv-
ially holds for integers and booleans. To prove the property for ad-
dresses, we induct over the well-founded relation <. The base case
consists of addresses in the heap that are mapped to values that do
not use other addresses. The reflexivity property clearly holds in
this case. The inductive case consists of addresses that are mapped
to values, namely data or closure or function values, that may use
addresses satisfying the reflexivity property. Here again it is easy to
see that the claim holds, since for two closure/data/function values
to be structurally equal they have to invoke the same function or
use the same constructor.

In the rest of the paper, we consider only acyclic heaps even if
not explicitly mentioned.

Containment ordering on partial functions. Given two partial
functions {h1, h2} ⊆ A → B, we say h1 v h2 iff h2 has more
entries than h1. That is, a ∈ dom(h1) implies h1(a) = h2(a). The
ordering v satisfies reflexivity, transitivity and anti-symmetry,
and hence is a partial order. We extend this partial order to the

environments as defined below

(C1 ,H1 , σ1 ,F) v (C2 ,H2 , σ2 ,F) ,

C1 v C2 ∧H1 v H2 ∧ σ1 v σ2

Structural Simulation Relation. Similar to structural equiva-
lence, we define a structural simulation ≈

H1,H2

, with respect to two

heaps, between the elements of the semantic domains as follows:
(The subscriptsH1,H2 are omitted below for clarity.)
∀a ∈ Z ∪Bool. a ≈ a
∀{a, b} ⊆ Adr. a ≈ b iff H1(a) ≈ H2(b)
∀f ∈ Fids, {a, b} ⊆ Val . (f a) ≈ (f b) iff a ≈ b
∀c ∈ Cids, {ā, b̄} ⊆ Valn .(c ā) ≈ (c b̄) iff ∀i ∈ [1 ,n].ai ≈ bi
∀{e1 , e2} ⊆ Lam.∀{σ1 , σ2} ⊆ Store.(e1 , σ1) ≈ (e2 , σ2)

iff target(e1) = target(e2) ∧ σ1(FV (e1)) ≈ σ2(FV (e2))

Notice that the only change compared to ≈
H

is the rule for
addresses which now uses different heaps. The following are some
properties preserved by structural simulation. (We omit the proof of
the following properties as they are straightforward to derive from
the definitions.)

• ifH1 v H2, ≈
H1,H2

reduces to ≈
H2

• (Symmetry) x ≈
H1,H2

y implies y ≈
H2,H1

x

• (Transitivity) x ≈
H1,H2

yand y ≈
H2,H3

z implies x ≈
H1,H3

y

• If u ≈
H1,H2

v then (u ≈
H1,H2

v′ ⇔ v ≈
H2

v′) and (u′ ∼
H,H2

v ⇔

u ≈
H1

u′).

Structural Abstraction Relation. Using the structural simulation
relation, we now define a structural abstraction relation . between
two environments.

(C1 ,H1 , σ1 ,F) . (C2 ,H2 , σ2 ,F) ,

C1 .
H1,H2

C2 ∧ σ1 .
H1,H2

σ2, where,

σ1 .
H1,H2

σ2 iff ∀x ∈ dom(σ1).σ1(x) ≈
H1,H2

σ2(x), and

C1 . C2 iff ∀k ∈ dom(C1).

∃k′ ∈ dom(C2).k ≈
H1,H2

k′ ∧ C1(k) ≈
H1,H2

C2(k′)

Note that v is a stronger relation than ..

Structural Equivalence of Environments. We say two environ-
ments are structurally equivalent iff Γ1 . Γ2 and vice-versa. That
is,

Γ1 ≈ Γ2 iff (Γ1 . Γ2 ∧ Γ2 . Γ1)

Congruence and substitutability of≈. In any given environment,
substituting a value of a variable by a structurally equivalent value
preserves the result as well as the resource usage of the evaluation
of any expression e.

Lemma 6. For all {Γ1,Γ2} ⊆ Env such that Γ1 ≈ Γ2, for all
expression e,

Γ1 ` e ⇓p u,Γ1
′ ⇒ ∃v, q,Γ2

′. Γ2 ` e ⇓q v ,Γ2
′

∧ Γ1
′ ≈ Γ2

′ ∧ u ≈
H′

1,H
′
2

v ∧ p = q

Proof. The claim directly follows by structural induction over the
operation semantic rules shown in Fig. 4.

Immutable Heap Properties. Below we present two lemmas that
establish the immutable nature of the heap using the operational
semantic rules.

Lemma 7. Let Γ : (C,H, σ,F), Γ1 : (C1 ,H1 , σ1 ,F) and e be
an expression. If 〈Γ, e〉 〈Γ1, e1〉 or Γ ` e ⇓ v ,Γ1 thenH v H1

and C v C1. That is, the evaluation can only add more entries to
the heap and cache, and cannot update existing entries.

Proof. This directly follows from the semantic rules shown in
Fig. 4. Every time an address is added to the heap, it is chosen to
be a fresh address that is not already bound in the heap. A function
value is added to a cache iff a structurally equivalent value does
not belong to the domain of the cache. As proved in Lemma 5, the
structurally equivalence relation is reflexive. Thus, a function value
is added to the cache only if it does not already have a binding in
the cache.

Lemma 8. Let Γ : (C,H, σ,F) ∈ Env and e be an expression.
Let Γ1 = (C,H1, σ, F) where H ⊆ H1. If Γ ` e ⇓p u,Γ′ then
Γ1 ` e ⇓p v ,Γ1

′ and u ≈
H′

1

v. That is, adding more entries to

the heap preserves the result of the evaluation with respect to the
structural equivalence relation ≈.

Proof. This follows from a structural induction over the big-step
semantic rules shown in Fig. 4 and Lemma 7. The theorem follows
from two facts (a) all of the semantics rules access the heap H via
the store σ e.g. as H(σ(x)), and (b) there are no rules that can
change the value of an address bounded in the heap.

Domain Invariants. The environments that arise during an
evaluation of a program P satisfies several invariants that are
ensured by the runtime. Below we characterize the invariants. Let
P be a type-correct program. Let EnvP ⊆ Env be the set of
environments such that for every Γ : (C,H, σ,F) ∈ EnvP the
following properties hold.

(a) (dom(σ) ∩Adr) ⊆ dom(H)

(b) For all variable x in P ,
x ∈ dom(σ) implies that σ(x) inhabits typeP (x).

(c) Every function definition in F has a unique function identifier.
(d) F contains every function definition in P .
(e) For all λx. f (x, y) ∈ range(H), f is defined in F .
(f) ¬∃{k, k′} ⊆ dom(C). k 6= k′ ∧ k ≈

H
k′

(g) ∀(k, v) ∈ C.∃C′, C′′,H′ s.t. C′ v C′′ v C ∧H′ v H′′ v H
∧(C′,H′, {},F) ` k ⇓ v , (C′′,H′′, {},F)

The last invariant states that every key that is stored in the cache
evaluates to the value that is cached in some smaller environment.
The semantics rules shown in Fig. 4 preserve the domain invariants.
That is, if Γ ∈ EnvP and 〈e,Γ〉 〈e′,Γ′〉 then Γ′ ∈ EnvP .
Moreover, if Γ is defined on all the free variables of e, denoted
fv(e), then Γ′ will be defined on all the free variables of e′.

Lemma 9. Let e and e′ be expressions in a program P . Let
Γ ∈ EnvP and Γ′ ∈ Env . If Γ ` e ⇓ v ,Γ′ then Γ′ ∈ EnvP .

Proof. The proof follows by structural induction over the opera-
tional semantics. The invariant (g) follows from the following fact
that when a key is added to a cache by the MEMOCALLMISS rule,
the property holds by definition for the input cache and heap. Say
the input cache and heap of MEMOCALLMISS are C1 and H1 and
the output heap and cache are C′1 and H′1 In this case, the invari-
ant (g) holds for the following assignment: C = C′′ = C′1 (see
Fig. 4), C′ = C1. Similarly, H = H′′ = H′1 and H′ = H1. Every
subsequent evaluation can only increase the size of the cache and

heap (by Lemma 7), and hence the invariant (g) is preserved once
it holds.

Corollary 10. Let e and e′ be expressions in a program P . Let
Γ ∈ EnvP and Γ′ ∈ Env . (a) If 〈e,Γ〉 ∗〈e′,Γ′〉 then (a)
Γ′ ∈ EnvP and (b) fv(e) ⊆ dom(Γ)⇒ fv(e′) ⊆ dom(Γ′).

Proof. Note that is defined using the big-step semantics rules
as shown by Fig.10. The proof follows from a straightforward
induction over k where 〈e,Γ〉 k〈e′,Γ′〉 and the above lemma
(Lemma 9)

In the rest of the paper whenever we say Γ ∈ Env we assume
that Γ ∈ EnvP if the program under consideration is clear from the
context.

Valid Environments. Recall that in section 2 we define the valid
environments Enve,P that reach an expression e in a program P as

{Γ | ∃P ′.〈ΓP ′||P , eentry〉 ∗〈Γ, e〉}

We also impose a constraint that the evaluation 〈ΓP ′||P , eentry〉
is terminating, unless the functions in program P are non-
terminating. This is because for every Γ ∈ Γẽ,P there always exist
a program P ′′ such that 〈ΓP′′||P, eentry〉 ∗〈Γ, ẽ〉, but the evalua-
tion terminates (or halts) immediately after (and if) it returns from
the function f .

By Lemma 9, all valid environments satisfy the above do-
main invariants, since they are satisfied by ΓP ′||P . Moreover, Γ :
(C,H, σ,F) ∈ Enve,P implies that fv(e) ⊆ dom(σ).

Weak Referential Transparency and Weak Cache Correctness.
In our language, we allow expressions to query the state of the
cache using the construct cached. While this is indispensable for
specifying properties about the state of the cache, this also makes
the expressions of the language not referentially transparent. How-
ever, as captured by the syntax shown in Fig. 3, these constructs
are restricted to the specifications (i.e, contracts). The source ex-
pressions Esrc of our language exhibit a weak form of referentially
transparency with respect to the changes to the cache. The weak
referential property guarantees that if a source expression evaluates
to a value u at a point in the evaluation, then if it evaluates to a
value v at a later point in the evaluation then u and v are equiv-
alent. Formally, we say that a source expression evaluated under
two environments related by . should produce structurally similar
values, provided the evaluations produce any value at all. This is
stated and proved below. (Note that the heaps and caches that may
arise during an execution are related by v by Lemma 7, and hence
are also related by the weaker relation ..)

Lemma 11. Let Γ1 : (C1 ,H1 , σ1 ,F) in EnvP . For all expres-
sion es ∈ (Esrc ∪ FVal), if Γ1 ` es ⇓ u,Γ1

′ then ∀Γ2 :
(C2 ,H2 , σ2 ,F) ∈ EnvP s.t. Γ1

′ . Γ2,

Γ2 ` es ⇓ v ,Γ2
′ ⇒ u ≈

H′
1,H

′
2

v

Proof. We prove the lemma using structural induction on the eval-
uation Γ1 ` es ⇓ u,Γ1

′. Say the evaluation Γ1 ` es ⇓ u,Γ1
′ uses

one of the base cases, namely the rules CST, VAR, PRIM, EQUAL,
CONS, LAMBDA, MEMOCALLHIT. Note that the rule CACHED is
not a part of the source expressions (see Fig. 3) and thus can be
excluded from the base cases. Firstly, by Lemma 7, we know that
Γ1 v Γ1

′. (The store components of Γ1 and Γ1
′ are identical.)

Therefore, Γ1 . Γ2. Every case other than MEMOCALLHIT uses
only the heap and the store (and not the cache). Since Γ1 . Γ2,
the free variables in the expressions are bound to structurally sim-
ilar values in Γ1 and Γ2. It is easy to see that in each of the cases

the resulting values are also structurally similar. Now say the eval-
uation Γ1 ` es ⇓ u uses MEMOCALLHIT. Therefore, e is of the
form (f x) and σ1(x) ≈

H1

k where k is a key in the cache C1. Since

Γ1 . Γ2, σ1(x) ≈
H1,H2

σ2(x) and there exists a k′ ∈ dom(C2)

such that k ≈
H1,H2

k′. By the properties of ≈, σ2(x) ≈
H2

k′ Hence,

the evaluation of Γ2 ` es ⇓ u must also use the rule MEMOCALL-
HIT. In both cases, the value of the expression is looked up from
the corresponding caches, and hence are structurally similar (by the
definition of .).

Now say the evaluation Γ1 ` es ⇓ u,Γ1
′ uses one of the in-

ductive cases: LET, MATCH, CONCRETECALL, NONMEMOIZED-
CALL, MEMOCALLMISS and CONTRACT. If Γ1 ` es ⇓ u,Γ1

′

uses any rule RULE other than MEMOCALLMISS, then
Γ2 ` es ⇓ v ,Γ2

′ will also use the same rule, which is deter-
mined by the syntax of the expression (see Fig. 4). Say now
〈Γ1, es〉 〈Γ3, e

′〉 and 〈Γ2, es〉 〈Γ4, e
′〉. Firstly, the environment

Γ3 and Γ4 are obtained from a prior big-step evaluation given by
an antecedent of RULE, after possible updations to the store com-
ponent. Let Γ3 ` e ′ ⇓ ,Γ3

′. By Lemma 7 and the given facts,
C1 v C3 v C′3 v C′1 .

H′
1,H2

C2 v C4. Consider the store compo-

nent of Γ3, which is identical to Γ3
′, and Γ4 namely σ3 and σ4. Any

new mappings added to the store components depend on the prior
big-step reductions in the antecedent of RULE, which satisfies the
induction hypothesis. Thus, the new entries added are structurally
similar. Hence, σ′3 = σ3 .

H′
3,H4

σ4. Therefore, Γ3
′ . Γ4. By in-

duction hypothesis, e′ evaluates to structurally similar values in Γ3

and Γ4. Since this holds for every antecedent of RULE and since in
all inductive cases the result of the rule is obtained directly from the
result of an antecedent evaluation involving a source expression or
function value (see Fig. 4, especially rule CONTRACT), both evalu-
ations Γ1 ` es ⇓ u,Γ1

′ and Γ2 ` es ⇓ v ,Γ2
′ produce structurally

similar results. That is, u ≈
H′

1,H
′
2

v.

Now say the evaluation Γ1 ` es ⇓ u,Γ1
′ uses the MEMO-

CALLMISS rule. In this case, since C2 has more entries than C1,
Γ2 ` es ⇓ v ,Γ2

′ will use the rule MEMOCALLHIT, as explained
below. In this case, we know that es = (f y) and ((f σ′1(y)), u) ∈
C′1. (Recall that the rule MEMOCALLMISS records the function
value and the result of the evaluation in the cache.) Since C′1 .

H′
1,H1

C2, there exists an entry (k, v) ∈ C2 such that ((f σ′1(y)) ≈
H′

1,H2

k

and u ≈
H′

1,H2

v. Since σ′1 . σ2, σ′1(y) ≈
H′

1,H2

σ2(y). Thus

(f σ′1(y)) ≈
H′

1,H2

(f σ2(y)). By the property of≈, (f σ2(y)) ≈
H2

k.

By the definition of MEMOCALLHIT, the result of the evaluation
under Γ2 is v. Since H2 v H′2, u ≈

H′
1,H

′
2

v which implies the

claim.

Weak Cache Correctness. Consider the following property on an
environment Γ : (C,H, σ,F) that states that every key in the cache
is mapped to a value that it will evaluate to under Γ (if the key
evaluates to any value at all).

WeakCacheCorr(Γ) ,
∀k ∈ dom(C). (Γ ` k ⇓p v , (C′,H′, σ′,F ′))⇒ v ≈

H′
C(k)

We now show that WeakCacheCorr is an invariant with re-
spect to the semantic reduction.

Lemma 12. For all expression e, For all Γ1 : (C1 ,H1 , σ1 ,F) in
EnvP ,

WeakCacheCorr(Γ1)∧Γ1 ` e ⇓ u,Γ1
′ ⇒WeakCacheCorr(Γ1

′)

Proof. We prove the lemma using structural induction over the
evaluation Γ1 ` es ⇓ u,Γ1

′. First consider the base cases: rules
CST, VAR, PRIM, EQUAL, CONS, LAMBDA, MEMOCALLHIT and
CACHED. In each of these cases, either the input and output en-
vironments are identical, or the output environment has one new
binding in the heap. By Lemma 8, the claim holds in all the base
cases.

Say the evaluation Γ1 ` es ⇓ u,Γ1
′ uses one of the induc-

tive cases: LET, MATCH, CONCRETECALL, NONMEMOIZED-
CALL, MEMOCALLMISS and CONTRACT. First, note that intro-
ducing new bindings to the store σ does not affect the property
WeakCacheCorr , as the definition of WeakCacheCorr does not
use σ. This together with the inductive hypothesis imply that all
the environments used in the antecedent of all the rules satisfy
WeakCacheCorr . In all rules except MEMOCALLMISS the heap
and cache components of the output environment are obtained di-
rectly from an antecedent. Therefore, by inductive hypothesis the
environment Γ1

′ satisfies the property WeakCacheCorr . Consider
now the rule MEMOCALLMISS. Let k ∈ FVal ∩ dom(C1) be
a key in the cache C1. Now, by the domain invariants, there ex-
ists a H0 v H1 and C0 v C1 such that Γ0 ` k ⇓ u0 ,Γ0

′, where
u0 = C1(k), Γ0 = (C0,H0, {}), Γ0

′ = (C′0,H′0, {}) and C′0 v C1.
Since C′0 v C1 v C′1 and {} v σ′1, Γ0

′ . Γ1
′. Therefore, by

Lemma 11,

Γ1
′ ` k ⇓ w ,Γ4 ⇒ u0 ≈

H′
0,H4

w

⇒ C1(k) ≈
H′

1,H4

w, since C1(k) = u0 andH′0 v H1 v H′1

⇒ C1(k) = C′1(k) ≈
H4

w, since C1 v C′1 andH′1 v H4

Therefore, WeakCacheCorr(Γ1
′)

Cache Monotonicity. We now present the definition of cache
monotonicity, which was also discussed in section 4. A boolean-
valued expression e is cache monotonic iff ∀{Γ1,Γ2} ⊆ Env .

(Γ1 v Γ2 ∧ Γ1 ` e ⇓ true)⇒ Γ2 ` e ⇓ true

In the above definition, we can also substitute v by .. That is,
a cache monotonic property satisfying the above definition is also
monotonic with respect to the relation . as state below.

Lemma 13. Let e be a cache monotonic property. That
is, ∀{Γ1,Γ2} ⊆ Env . (Γ1 v Γ2 ∧ Γ1 ` e ⇓ true) ⇒
Γ2 ` e ⇓ true .

(Γ1 . Γ2 ∧ Γ1 ` e ⇓ true)⇒ Γ2 ` e ⇓ true

Proof. Let Γ1 = (C1 ,H1 , σ1 ,F). Say Γ1 ` e ⇓ true and Γ1 .
Γ2. We now show that there exists a Γ3 such that Γ2 ≈ Γ3

and Γ1 v Γ3. First define as mapping M from every address in
dom(H2) to a unique address not in dom(H1). Let Γ4 be the
environment obtained by applying the mappingM to every address
in every component of Γ2. In other words, Γ4 is obtained from Γ2

by renaming addresses to not overlap with Γ1. Clearly, Γ4 ≈ Γ2

and hence Γ1 . Γ4. Define Γ3 as (C3,H3, σ3, F), where

H3 = H1 ∪H4

C3 = C4 \ {(k, v) | (k, v) ∈ C4 ∧ ∃k′.k′ ≈
H1,H4

k ∧ k′ ∈ dom(C1)}

∪ C1
σ3 = σ4 \ {(x, v) | x ∈ dom(σ1)} ∪ σ1

Clearly, by construction Γ1 v Γ3. Now Γ4 ≈ Γ3 because for
every cache or store entry removed from Γ4 we add a structurally
similar entry to Γ4 taken from Γ1 which is . Γ4. By cache
monotonicity, Γ3 ` e ⇓ true . By Lemma 6, Γ2 ` e ⇓ true . Hence
the claim.

Referential Transparency and Cache-monotonicity requirement
of Contracts. As mentioned earlier, the loss of referential trans-
parency in our language is due to the presence of contracts that
may use the specification construct cached. In order to guarantee
full referential transparency of the source expressions, we impose
the restriction that the contracts of memoized functions in the in-
put programs should be cache monotonic. This property is soundly
enforced by the model program defined in section 3 (as is proven
later). The following theorem states that a stronger form of refer-
ential transparency holds with this restriction. The property guar-
antees that if a source expression evaluates to a value u at a point
in the evaluation, then it will evaluate to a value v at a later point
in the evaluation such that u and v are structurally similar. That is,
memoization has absolutely no effect on the result of the function
calls (which are source expressions).

Lemma 14. Let F ⊆ 2Fdef be a set of function definitions such
that for all def f x := {p} b {s} in F , p and s are cache mono-
tonic properties. Let Γ1 : (C1 ,H1 , σ1 ,F) in EnvP . For all ex-
pression es ∈ (Esrc ∪ FVal), if Γ1 ` es ⇓ u,Γ1

′ then ∀Γ2 :
(C2 ,H2 , σ2 ,F) ∈ EnvP s.t. Γ1

′ . Γ2,

Γ2 ` es ⇓ v ,Γ2
′ ∧ u ≈

H′
1,H

′
2

v

Proof. The proof for this lemma is very similar to the proof of
Lemma 11 except for the case of CONTRACT. Thus we only show
the proof for this rule below. Say the evaluation Γ1 ` es ⇓ u,Γ1

′

uses the rule CONTRACT. In this case, es is of the form {p} eb {s}.
As per the language syntax, this means that es is the body of a
function definition in F . It is given that p is cache monotonic. By
the definition of the rule CONTRACT, Γ1 ` p ⇓ true . Since Γ1 v
Γ1
′ . Γ2, by Lemma 13, Γ2 ` p ⇓ true . Since eb ∈ Esrc , by

inductive hypothesis, Γ2 ` eb ⇓ v ,Γ2
′ and u ≈

H′
1,H

′
2

v. Now Γ1
′ .

Γ2 v Γ2
′. Since s is also cache monotonic, Γ1

′ ` s ⇓ true , which
holds by the definition of CONTRACT, implies that Γ2

′ ` s ⇓ true .
Hence, all antecedents of the rule CONTRACT are satisfied under
Γ2 for expression es. Hence Γ2 ` es ⇓ v ,Γ2

′ and u ≈
H′

1,H
′
2

v.

Hence the claim.

Strong Cache Correctness. Analogous to the weak cache cor-
rectness property that was induced by weak referential trans-
parency, we now establish that given a valid programP where func-
tion definitions have cache monotonic contracts, a stronger cache
correctness property, defined below, follows from the strong refer-
ential transparency (Lemma 14).

CacheCorr(Γ) ,
∀k ∈ dom(C). (Γ ` k ⇓p v , (C′,H′, σ′,F)) ∧ v ≈

H′
C(k)

We now show that CacheCorr is an invariant with respect to the
semantic reduction given a valid program P .

Lemma 15. Let F be a set of function definitions such that for all
def f x := {p} b {s} in F , p and s are cache monotonic proper-
ties. For all expression e, for all Γ1 : (C1 ,H1 , σ1 ,F) in EnvP ,

CacheCorr(Γ1) ∧ Γ1 ` e ⇓ u,Γ1
′ ⇒ CacheCorr(Γ1

′)

Proof. The proof of this lemma is very similar to the proof of
Lemma 12, except for the rule MEMOCALLMISS. Analogous to
the proof of Lemma 12, we now use the Lemma 14 to establish that
the CacheCorr property holds for the output environment for the
rule MEMOCALLMISS.

Let k ∈ FVal ∩ dom(C1) be a key in the cache C1. By the
domain invariants, there exists a H0 v H1 and C0 v C1 such
that Γ0 ` k ⇓ u0 ,Γ0

′, where u0 = C1(k), Γ0 = (C0,H0, {}),
Γ0
′ = (C′0,H′0, {}) and C′0 v C1. Since C′0 v C1 v C′1 and

{} v σ′1, Γ0
′ . Γ1

′. Therefore, by Lemma 14,

Γ1
′ ` k ⇓ w ,Γ4 ∧ u0 ≈

H′
0,H4

w

⇒ C1(k) ≈
H′

1,H4

w, since C1(k) = u0 andH′0 v H1 v H′1

⇒ C1(k) = C′1(k) ≈
H4

w, since C1 v C′1 andH′1 v H4

Therefore, CacheCorr(Γ1
′)

In the rest of the section, we assume that every environment in
EnvP also satisfy WeakCacheCorr and CacheCorr properties
(if the contracts are cache monotonic), which are also like domain
invariants that preserved by the semantics.

Contract Violation. Given an expression ẽ with contract: ẽ =
{p} e {s}. We say the contract of ẽ is violated under Γ iff
Γ ` p ⇓ false ∨ ∃Γ′.(〈Γ, ẽ〉 〈Γ′, s〉 ∧ Γ′ ` s ⇓ false).

Lemma 16. Let e be an expression in a type-correct program P .
Let Γ : (C,H, σ,F) ∈ EnvP be such that fv(e) ⊆ dom(σ). If
¬∃v.Γ ` e ⇓ v then either e has a contract and is violated under
Γ, or ∃Γ′, e′.〈Γ, e〉 〈Γ′, e′〉 and ¬∃v.Γ′ ` e ′ ⇓ v .

Proof. Since the semantic rules shown in Fig. 4 cover every possi-
ble expression in the language, The expression e should match the
expression in the consequent of one or more semantic rules. Say e
matches a rule RULE.

Case (a): RULE is not CONTRACT. We now prove that every
value accessed by RULE, except for those that are defined by big-
step reductions, is defined.

Case (a.1): If RULE is not one of CONTRACT, PRIM, INDI-
RECTCALL, LET, or MATCH. Every other value required by RULE
are either the output of a total function like fresh which is always
defined, or σ(x) or σ(H(x)), where x is a free variable in e′, σ and
H are the store and heap components of Γ′ (see Fig. 4). By defi-
nition, fv(e) ⊆ dom(σ), and Γ satisfies all the domain invariants.
Thus, both σ(x) and σ(H(x)) are defined.

Case (a.2): Say RULE is one of INDIRECTCALL, MATCH,PRIM
or LET. In addition to requiring that σ(x) or σ(H(x)) are defined,
these rule require more properties on shape (or type) of σ(x) to be
applicable. In the case of INDIRECTCALL, σ(H(x)) is required
to be a closure. In the case of MATCH, σ(H(x)) is required to
be a datatype with the constructors that are pattern matched in the
MATCH construct. In the case of PRIM, σ(x) should have the type
of the argument of the primitive operation pr. (Recall that every
primitive operation is total.) By definition, Γ satisfies all the domain
invariants. Therefore, σ(x) should inhabit the typeP (x). Since we
are given that the program P type checks, typeP (x) will satisfy
the above requirements in each of the rules. Hence, every value

required by RULE that are not defined by big-step reductions will
be defined.

If every big-step reduction Γ′ ` e ′ ⇓ v in the antecedent
of RULE produces any value, then clearly ∃v.Γ ` e ⇓ v (see
Fig. 4). Since this is not the case, ∃Γ′, e′.〈Γ, e〉 〈Γ′, e′〉 and
¬∃v.Γ′ ` e ′ ⇓ v .

Case (b): Say RULE is CONTRACT. That is, e is an expression
with contract i.e, {p} e ′ {s}. First, if the pre-or post-condition of
e evaluates to false , then the contract of e is violated and hence
the claim holds trivially. If e′ evaluates to any value and p or s
evaluate to true then e evaluates to a value, contradicting the claim.
Therefore, e′ or p or s does not evaluate to a value. Hence the
claim.

Lemma 17. Let e be an expression in a type-correct program
P . Let Γ : (C,H, σ,F) ∈ EnvP be such that fv(e) ⊆
dom(σ). If ¬∃v.Γ ` e ⇓ v then (a) there exists an infinite se-
quence 〈Γ, e〉 s1 s2 · · · ,or (b) ∃Γ′ ∈ EnvP and an expres-
sion with contract ẽ such that 〈Γ, e〉 ∗〈Γ′, ẽ〉 and the contract of
ẽ is violated under Γ′.

Proof. It is easy to show by induction and Lemma 16 that
∀n ∈ N, (a) ∃Γ′, e′.〈Γ, e〉 n〈Γ′, e′〉 ∧ ¬∃v.Γ′ ` e ⇓ v or (b)
∃ẽ.〈Γ, e〉 ∗〈Γ′, ẽ〉 and there is contract violation in ẽ.

Say there is no infinite sequence starting from 〈Γ, e〉,
otherwise the claim trivially holds. Therefore, ∃n ∈
N.¬

(
∃k > n, e,Γ′.〈Γ, e〉 k〈Γ′, e〉

)
. This means that there does

not exist a sequence of length n+ 1 such that 〈Γ, e〉 n+1〈Γ′, e′〉.
By the lemma 16, this implies that ∃ẽ.〈Γ, e〉 ∗〈Γ′, ẽ〉 and there is
contract violation in ẽ under Γ′.

A.2 The Intermediate Semantics I
We now present a new intermediate semantics denoted I which is
used as an intermediate step in establishing the correctness of the
model programs. The semantics I is defined by the same set of
rules as the operational semantics shown in shown in Fig. 4, except
for the rule MEMOCALLHIT which is replaced by the rule shown
below. We denote the reduction with respect to the semantics I
using ⇓I whenever it is necessary to distinguish the reductions with
respect to semantics I from those of the operational semantics.

MEMOCALLHIT2
f ∈MemΓ

((f σ(x)), v) ∈H C Γ ` (f σ(x)) ⇓I
q

u, (C′,H′, σ′)

Γ : (C,H, σ) ` f x ⇓I
chit

u, (C,H′, σ)

The semantics I is an over-approximation of the operation se-
mantics. That is, if the semantics I evaluates an expression e to a
value u under and environment Γ, then the operation semantics also
produces an equivalent value for the expression under the environ-
ment Γ, while consuming the same amount of resources. But, the
semantics I may have more crashes compared to the operational
semantics. The following lemma formalizes this property.

Lemma 18. Let P be a program. For every expression e and
environments {Γ1,Γ2} ⊆ EnvP such that Γ1 ≈ Γ2.

Γ2 ` e ⇓I
p

v ,Γ2
′ ⇒

(
Γ1 ` e ⇓

p
u,Γ1

′ ∧ u ≈
H′

1,H
′
2

v ∧ Γ1
′ ≈ Γ2

′
)

Proof. We prove this using structural induction on the evalua-
tion Γ2 ` e ⇓I

p
v ,Γ2

′. The base cases are the rules CST, VAR,

PRIM, EQUAL, CONS, LAMBDA, MEMOCALLHIT2 and CACHED.
In all cases except MEMOCALLHIT2 it is easy to see that the

claim holds since the rules in semantics I and the operational se-
mantics are identical in these cases. Say Γ2 ` e ⇓I

p
v ,Γ2

′ uses

MEMOCALLHIT2. By definition p = chit. Firstly, the evalua-
tion Γ1 ` e ⇓ u,Γ1

′ will use the rule MEMOCALLHIT. This is
because C1 ≈

H1,H2

C2 and ((f σ2(x)), v) ∈H2 C2 implies

((f σ1(x)), v) ∈H1 C2. By the definition of the rules MEM-
OCALLHIT2 and MEMOCALLHIT, the cache and sigma compo-
nents of Γ1

′ and Γ2
′ are identical to Γ1 and Γ2, respectively. More-

over, H2 v H′2 and H1 v H′1. Therefore, Γ1
′ ≈ Γ2

′. The re-
source usage p = chit in both cases. We now show that u ≈

H′
1,H

′
2

v.

By the definition of MEMOCALLHIT2, we know that
Γ2 ` (f σ2 (x)) ⇓I v , (C′,H′2 , σ′) for some C′ and σ′. By the in-
ductive hypothesis, Γ1 ` (f σ1 (x)) ⇓ u ′, (C′′,H′′, σ′′), for some
C′′, H′′ and σ′, and u′ ≈

H′′,H′
2

v. Since WeakCacheCorr(Γ1)

holds, u′ ≈
H′′

u. Hence, by the properties of ≈, u ≈
H′′,H′

2

v. But

since u ∈ dom(H1) and H1 = H′1 v H′′, u ≈
H′

1,H
′
2

v. Hence

the claim. It is easy to see in each of the inductive cases that the
claim holds since they are identical in both semantics I and the
operational semantics, and because Γ1 ≈ Γ2.

The following Lemma formalizes that the semantic I is sound
for contract verification.

Lemma 19. Let P be a program. Let ẽ = {p} e {s}
and let def f x := ẽ be a function definition in P ,

If ∀Γ ∈ Envẽ,P .∃v. Γ ` p ⇓I false ∨ Γ ` ẽ ⇓I v then
∀Γ ∈ Envẽ,P .∃u. Γ ` p ⇓ false ∨ Γ ` ẽ ⇓ u

Proof. The claim directly follows from the Lemma 18, and the fact
that for all Γ ∈ Env , Γ ≈ Γ.

Now consider the other direction namely completeness of the
semantics I for contract checking. In the sequel we assume that
the program P under consideration has only cache-monotonic con-
tracts. Notice that Lemma 19 holds even without this assumption.

Lemma 20. Let P be a program in which all contracts of all
function definitions are cache monotonic. For every expression e
and environments {Γ1,Γ2} ⊆ EnvP such that Γ1 ≈ Γ2.

Γ1 ` e ⇓
p

v ,Γ1
′ ⇒

(
Γ2 ` e ⇓I

p
u,Γ2

′ ∧ u ≈
H′

1,H
′
2

v ∧ Γ1
′ ≈ Γ2

′
)

Proof. We slightly adapt the structural induction strategy for
this lemma. Given that CacheCorr(Γ1) is a domain in-
variant (as proven in Lemma 15), we know that ∀k ∈
dom(C). (Γ1 ` k ⇓ v , (C′,H′, σ′,F)) ∧ v ≈

H′
C(k). Therefore,

there exists an evaluation among these, and Γ1 ` e ⇓
p

v ,Γ1
′, that

has the largest depth. We induct on the depth of that evaluation.
This allows us to use the hypothesis even on the evaluations such
as the above.

The proof of this lemma is very similar to the proof
of Lemma 18, except for the case of MEMOCALLHIT.
Say Γ1 ` e ⇓

p
v ,Γ1

′ uses MEMOCALLHIT. The evaluation

Γ2 ` e ⇓ u,Γ2
′ will use the rule MEMOCALLHIT2, since Γ1 ≈

Γ2. Since CacheCorr(Γ1), Γ1 ` (f σ1 (x)) ⇓ u ′,Γ′ and u ≈
H′
u′.

By inductive hypothesis, Γ2 ` (f σ2 (x)) ⇓I v ,Γ′′, and u′ ≈
H′,H′′

v. Therefore, the antecedents of the MEMOCALLHIT2 rule holds.

Hence, Γ2 ` e ⇓I v ,Γ2
′. By the definition of the rules MEMO-

CALLHIT2 and MEMOCALLHIT, the cache and sigma compo-
nents of Γ1

′ and Γ2
′ are identical to Γ1 and Γ2, respectively. More-

over, H2 v H′2 and H1 v H′1. Therefore, Γ1
′ ≈ Γ2

′. The re-
source usage p = chit in both cases.

From the above facts, u′ ≈
H′,H′′

v and u ≈
H′

u′ and H′′ = H′2
(by the definition of MEMOCALLHIT2). Hence, u ≈

H′,H′
2

v Since

u = C1(k) ∈ dom(H1), for some k ≈
H1

(f σ2(x)), and H1 =

H′1 v H′, u ≈
H′

1,H
′
2

v. Hence the claim.

The following Lemma formalizes that the semantic I is com-
plete for contract verification if the contracts in the program are
cache monotonic.

Lemma 21. Let P be a program. Let ẽ = {p} e {s}
and let def f x := ẽ be a function definition in P ,

If ∀Γ ∈ Envẽ,P .∃u. Γ ` p ⇓ false ∨ Γ ` ẽ ⇓ v then
∀Γ ∈ Envẽ,P .∃v. Γ ` p ⇓I false ∨ Γ ` ẽ ⇓I v

Proof. The claim directly follows from Lemma 20, and the fact that
for all Γ ∈ Env , Γ ≈ Γ.

B. Semantics of Model Programs
In this section, we formalize the semantics of language constructs
newly introduced in the model language and subsequently charac-
terize the model environments.

Semantics of Set Constructs. Fig. 11 shows the semantics of the
set operations that are used in the model generation. The semantics
assumes expressions are in A-normal form, as in the case of Fig. 4.
For brevity, the translation shown in Fig. 5 creates terms not in A-
normal form. They can be lifted to A-normal form by introducing
new let binders.

Valid Model Environments. We now formally define Env]e,P]

for an expression e belonging to a model program P]. Recall that
to define Enve,P , we considered all clients P ′ that closes P and
all the environments that may reach e in such closed programs. A
similar definition for a model program P] is possible. However,
since the cache in the model program is an expression of the model
program, considering all possible clients of P] is a overkill because
it may include clients that do not update the expression denoting
the cache in accordance with the operational semantics of the input
language. Therefore, we define the valid environments of the model
P] using the valid environments of program P . In other words, we
only consider the clients of the model program that are consistent
with the clients of the input program.

We now define a relation ∼̂
H,H],P

very similar to ∼
H,H],P

defined

in section 3. Let hashΓ : Lam 7→ N be a function that maps
structurally equal lambdas in Γ to the same natural number. That
is,

∀{eλ, eλ′} ⊆ range(H). eλ ≈
H

eλ
′ ⇒ hash(eλ) = hash(eλ

′)

Define domP (C) as the set of all keys in the cache C that refer to
functions in the program P . That is,

domP (C) = {(f u) ∈ dom(C) | f is defined in P}

SUBSET

v ⇔
(
∀u ∈ σ(x).∃u′ ∈ σ(y).u ≈

H
u′
)

Γ] : (H, σ) ` x ⊆ y ⇓ v ,Γ]

CONTAINS

v ⇔
(
∃u′ ∈ σ(y).σ(x) ≈

H
u′
)

Γ] : (H, σ) ` x ∈ y ⇓ v ,Γ]

UNION
v = σ(x) ∪ σ(y)

Γ] : (H, σ) ` x ∪ y ⇓ v ,Γ]

SETCONS
v = {σ(x)}

Γ] : (H, σ) ` {x} ⇓ v ,Γ]

Figure 11. Semantics of set operations used by the model.

Define a relation ∼̂ between the semantic domains of the input
and the model language as follows:
1.∀a ∈ Z ∪Bool. a ∼̂ a
2.∀c ∈ Cids, {ā, b̄} ⊆ Valn. c ā ∼̂ c b̄ iff ∀i ∈ [1, n].ai ∼̂ bi
3.∀(eλ, σ) ∈ Closure, v ∈ Val , l ∈ labelsP .(eλ, σ) ∼̂ Cl v iff

σ(FV (eλ)) ∼̂ v ∧ (eλ/∼=,P is defined and has label l)

4.∀(eλ, σ) ∈ Closure, v ∈ Val , l ∈ labelsP .

(eλ, σ) ∼̂ (CtypeP (eλ) hash(eλ)) iff eλ/∼=,P is undefined
5.∀f ∈ Fids defined in P, {a, b} ⊆ Val . f a ∼̂ Cf b iff a ∼̂ b
6.∀C ∈ Cache, S ∈ Set. C ∼̂ S iff

|domP (C)| = |dom(S)| ∧ (∀x ∈ domP (C).∃y ∈ S.x ∼̂ y)

7.∀{a, b} ⊆ Adr. a ∼̂ b iff H(a) ∼̂ H](a)

8.∀{σ, σ]} ⊆ Store . σ ∼̂ σ] iff

dom(σ) ∪ {st} = dom(σ]) ∧ ∀x ∈ dom(σ). σ(x) ∼̂ σ](x)
Note that the only difference between ∼ and ∼̂ is the rule

4, which is relates a closure not created within P to a constructor
representing an error scenario. Let Γ : (C,H, σ,F) ∈ Env and
Γ] : (H], σ], F ′) ∈ Env] and S ∈ 2Val . As before,

Γ ∼̂ P (Γ], S) iff C ∼̂
H,H],P

S, σ ∼̂
H,H],P

σ]∧F ′ = {JdKP | d ∈ F∩P}

Let def f] (x, st) := ẽ′ be a function definition in P] that is a
translation of the definition def f x := ẽ in P .

Envẽ′,P] ={Γ] : (H], σ], F ′) ∈ Env] |
∃Γ ∈ Envẽ,P .Γ ∼̂ P (Γ], σ](st))} (1)

We define Env]e,P] only if e is a body of a function in the
model as the theorems that follow would need only these.

B.1 Soundness and Completeness Proofs.
In this section we detail the proofs of theorems stated in section 3
by establishing and utilizing several intermediate Lemmas. As be-
fore in all the formalism that follow if Γi (or Γi) is an environment
then we refer to its individual components C of the environment,
namely (C,H, σ,F), using Ci (or Ci), respectively.

Lemma 22. LetH1,H2 be two heaps and let P be a program. The
relation ∼̂

H,H],P
is monotonic with respect to v on the heaps.

That is, if x ∼̂
H,H],P

y,H v Ho, andH] v H]o then, x ∼̂
Ho,H]o,P

y.

Proof. This can be established using straightforward structural in-
duction over the definition of ∼.

Lemma 23. Let P be a program. Let u, v be two values andH,H]
be two heaps. The simulation relation ∼̂

H,H],P
is preserved by the

structural equality relations ≈
H

and ≈
H]

and vice versa. That is, if

u ∼̂
H,H],P

v then (u ∼̂
H,H],P

v′ ⇔ v ≈
H]

v′) and (u′ ∼̂
H,H],P

v ⇔ u ≈
H

u′).

Proof. We omit the subscripts of ∼ and ≈ in the rest of the proof.
We show the proof for one part: if u ∼ v then (u′ ∼ v ⇔ u ≈ u′).
The proof of the other part is symmetric.

Say u ≈ u′. We now show that u′ ∼ v using structural
induction on ≈. If u is an integer or boolean, the claim follows
immediately as u′ = u. Say u is an address of (C w̄) i.e, H(u) =
(C w̄). By the definition of ≈ and ∼, u′ and v are also addresses
of (C w̄′) and (C z̄) such that for all i ∈ [1, |u|], wi ≈ w′i and
wi ∼ zi, respectively. By inductive hypothesis, w′i ∼ zi. Hence,
the claim.

Now say u is an address of a closure (eλ, σ
′). If eλ/∼=,P is

defined and has label l, v = (Cl t) and σ′(FV (eλ)) ∼̂ t. Since
u ≈ u′, u′ = (eλ

′, σ′′), eλ
′/∼=,P = eλ/∼=,P (by the definition

of the ∼= relation) and σ′′(FV (eλ)) ≈ σ′(FV (eλ)). By induction
hypothesis, σ′′(FV (eλ)) ∼̂ t. Hence, u′ ∼̂ v.

If eλ/∼=,P is not defined, v = (CtypeP (eλ) hash(eλ)). Since
u ≈ u′, u′ = (eλ

′,) and eλ
′/∼=,P is not defined. By the definition

of hash , hash(eλ) = hash(eλ
′). Hence, u′ ∼̂ v.

Say u′ ∼ v. We now show that u ≈ u′ using structural
induction on∼. If u is an integer or boolean the claim immediately
follows as in that case u = v = v′ ∈ N ∪ Bool. Say u is an
address of (C w̄) i.e, H(u) = (C w̄). By the definition of ≈ and
∼, u′ and v are also addresses of (C w̄′) and (C z̄) such that for
all i ∈ [1, |u|], wi ∼ zi and w′i ∼ zi, respectively. By inductive
hypothesis, wi ≈ w′i. Hence, the claim. The case where u is an
address of a closure can be similarly proven.

Lemma 24. Let P be a program. Let Γ ∈ EnvP and Γ] ∈ Env]P
be such that Γ ∼̂ (Γ],S). (∀x ∈ domP (C).∃y ∈ S. x ∼̂ y) and
(∀y ∈ S.∃x ∈ domP (C). x ∼̂ y).

Proof. The first part of the claim follows by the definition of ∼̂ .
That is, (∀x ∈ domP (C).∃y ∈ S. x ∼̂ y). By skolemization, the
above implies that there exists a function g : domP (C) → S. We
know that |domP (C)| = |dom(S)| by the definition of ∼̂ . If g is
injective, it should also be bijective and hence the claim holds. If g
is non-injective, there exists an element s ∈ S such that x1 ∼̂ s and
x2 ∼̂ s for some {x1, x2} ⊆ domP (C) ⊆ dom(C) and x1 6= x2.
By Lemma 23, x1 ≈

H
x2. But by the domain invariants, every key

in the cache is unique with respect to structural equality. Therefore,
this case is not possible.

Lemma 25. Let P be a program. Let Γ ∈ EnvP and Γ] ∈ Env]P
be such that Γ ∼̂ (Γ],S). Let x ∈ dom(σ) and f ∈ Fids be a
function defined in P .

(
∃u.(f u) ∈ domP (C) ∧ u ≈

H
σ(x)

)
iff(

∃u′.(Cf u′) ∈ S ∧ u′ ≈
H]

σ](x)

)
Proof. Consider the only if direction. Say (f u) ∈ domP (C) and
u ≈
H
σ(x). By the definition of ∼̂ , ∃y ∈ S.(f u) ∼ y. In other

words, ∃u′.(Cf u′) ∈ S∧u ∼ u′. We are given that σ(x) ∼ σ](x)
and σ(x) ≈

H
u. By Lemma 23, u ∼ σ](x). This together with the

fact that u ∼ u′ imply that u′ ≈
H
σ](x). Hence, the claim. The

other direction is symmetric (by Lemma 24).

Correctness of the model programs for contract verification.
Below we establish that if Γ ∼̂ (Γ], S), evaluating an expression
e under Γ results in fewer crashes than evaluating the translation

of e under Γ. That is, Γ progresses as long as Γ] progresses on the
translation of e.

Lemma 26. Let P be a program. Let st be an expression of
the model language. Let Γ ∈ EnvP and Γ] ∈ Env]P be such
that Γ] ` st ⇓ S and Γ ∼̂ (Γ],S). Let e be any expression. If
Γ] ` (JeKP st) ⇓ u,Γ]o then ∃Γo ∈ Env , v ∈ Val , p ∈ N such
that Γ ` e ⇓Ip v ,Γo and
• Γo ∼̂ (Γ]o , u.2) • v ∼̂

Ho,H]o,P
u.1 • p = u.3

Proof. We prove this using structural induction over the evalution
Γ] ` (JeKP st) ⇓ u,Γ]o .

Base cases. Say the evaluation Γ] ` (JeKP st) ⇓ u,Γ]o uses one
of the rules: CST, VAR, PRIM, EQUAL, CONS, LAMBDA and
CACHED. Let e′ = JeKP st. The free variables of e′ and e are
identical, and by the definition of ∼̂ , fv(e) ⊆ dom(σ]) =
dom(σ)∪{st}. Hence, there is a value defined for all free-variables
in σ. Since Γ satisfies all the domain invariants, the antecedent of
every base case rule is defined. Therefore, Γ ` e ⇓Ip v ,Γo for some
v, p and Γo.

We now establish the claim: p = u.3 in all the base cases. In
all base cases, the cost of the operation cop is a constant as per the
semantics I , and is exactly same as u.3 as per the translation J·KP .
Therefore, p = u.3 holds trivially.

Consider now the claim: Γo ∼̂ (Γ]o , u.2). Recall that the relation
∼ is monotonic with respect to the ordering v between the
heaps. In all the base cases, the cache and store components of
the input and the output environments Γ and Γo are identical.
The heaps of Γ and Γ] are contained in the heaps of Γo and Γ]o .
Moreover, as per the translation, st and u.2 are also identical.
Therefore, by Lemmas 7 and 22, Γ ∼̂ (Γ], S) directly implies
Γo ∼̂ (Γ]o , u.2).

Consider now the claim: v ∼̂
Ho,H]o

u.1. In the case of CST it is

easy to see that the values returned by e are identical primitive
values (in N ∪ Bool) in both evaluations under Γ and Γ]. In
the case of PRIM, the arguments of the operations are integer or
boolean. By the definition of ∼̂ , the arguments are equal in both
σ and σ]. Hence the output of PRIM is also equal under both
environments. (We allow only deterministic primitive operations.)
Therefore, v ∼̂

Ho,H]o
u.1 in both cases.

Consider the case of VAR. Say σ(x) = a and σ](x) = a′.
It is given that a ∼̂

H,H]
a′. By definition, v = a and u.1 = a′.

Hence, the claim holds by Lemmas 7 and 22. In the case of CONS,
(a 7→ cons σ̂(x̄)) is added to H and (a′ 7→ cons σ̂](x̄)) is added
to H], for some fresh a and a′ that are not bounded in H and H],
respectively. It is given that σ ∼̂

H,H]
σ]. Therefore, a ∼̂

H,H]
a′ by the

definition of ∼̂ , which by Lemma 22 implies a ∼̂
Ho,H]o

a′. Therefore,

v ∼̂
Ho,H]o

u.1. The LAMBDA case can be similarly proved.

Consider now the CACHED case, i.e, e is cached(f x) (for some
f and x). We are given that σ(x) ∼̂

H,H]
σ](x). By the definition of

∼̂
H,H]

, (f σ(x)) ∼̂
H,H]

(Cf σ
](x)), provided f is define in the pro-

gram P , which holds because we require that every named func-
tion used in the program are defined in the program. By Lemma 25,
∃u′.(Cf u′) ∈ S ∧u′ ≈

H]
σ](x), where Γ] ` st ⇓ S , if and only if

∃u.(f u) ∈ dom(C)∧u ≈
H
σ(x). By the semantics of set inclusion

shown in Fig. 11 and ∈H, (Cf x) ∈ st evaluates to true under Γ]

iff cache(f x) evaluates to true under Γ.

Consider now the rule EQUAL. That is, e is of the form x eq y.
This evaluates to true under Γ iff σ(x) ≈

H
σ(y). It is given that

σ(x) ∼̂
H,H]

σ](x) and σ(y) ∼̂
H,H]

σ](y). By Lemma 23, if σ(x) ≈
H

σ(y) is true then σ(y) ∼̂
H,H]

σ](x), which in turn by the same lemma

implies that σ](x) ≈
H]

σ](y). Similarly, if σ(x) ≈
H
σ(y) is false

then by Lemma 23, ¬(σ(y) ∼̂
H,H]

σ](x)) which in turn implies that

¬(σ](x) ≈
H]

σ](y)). Hence, the claim.

Proof of Inductive Step. Say the evaluation
Γ] ` (JeKP st) ⇓ u,Γ]o matches one of the rules: LET, MATCH,
CONCRETECALL, CONTRACT, INDIRECTCALL, MEMO-
CALLHIT (which is an inductive case in semantics I), and
MEMOCALLMISS. The last three rules listed above are the most
interesting ones. The rest follow by inductive hypothesis.

Consider now the MEMOCALLHIT rule. In this case p = u.3 =
chit. Also, Γo ∼̂ (Γ]o , u.2), since the output caches, state expres-
sions and stores are identical to the input in both evaluations Γ
and Γ], and the output heaps are only larger. Consider now the
claim: v ∼̂

H,H]
u.1. Here, v and u.1 are the result of the evaluation

(f σ(x)) (as per semantics I), and (f σ](x)) under Γ and Γ], re-
spectively. Thus, by inductive hypothesis, v ∼̂

Ho,H]o
u.1. The proof

for MEMOCALLMISS case is very similar, except that in this case
C]o is added a new entry Cf σ](x) (by the semantics of set union).
However, Co is also added a new entry (f σ(x)) 7→ v. Since
(f σ(x)) ∼̂ Cf σ](x) by definition, the claim that Γo ∼̂ (Γ]o , u.2)
holds in this case as well.

Consider now the case INDIRECTCALL i.e, e = (x y)l. The
translated expression JeKP st invokes the function Appl defined in
Fig. 6. Let σ(x) = (eλ, σ

′).
Now say eλ/∼=,P is not defined. By definition of ∼̂ ,

σ](x) = (CtypeP (eλ) hash(eλ)). Therefore Appl with ex-
ecute the error expression, and thus will crash. That is,
¬∃Γ]o , u.Γ] ` (JeKP st) ⇓ u,Γ]o . Hence the claim trivially holds.

Now say eλ/∼=,P = (λx.f (x, z), σ′)l, where dom(σ′) =
{z}. By definition of ∼=, target(eλ) = f . By the definition of
∼̂ , σ](x) = (Cl t) where σ′(z) ∼̂ t. By the definition of
Appl (Fig. 6) and the match construct, Γ] ` (JeKP st) ⇓ u,Γ]o re-
duces to Γ]

′ ` (Jf (y , yi)KP st) ⇓ u,Γ]o , where Γ]
′

= (H], σ]]
(yi 7→ t)). Now consider Γ′ = (C,H, σ] σ′).
Clearly, Γ′ ∼̂ (Γ]

′
, σ](st)). Therefore, by induction hypothesis,

Γ′ ` f (y , z) ⇓p v ,Γo, Γo ∼̂ (Γ]o , S), p = u.3 and u ∼̂
v

. (Note
that the variables yi and z can be renamed to a variable say
r /∈ dom(σ) so that the calls are syntactically identical and the
induction hypothesis can be applied.) By the definition of the rule
INDIRECTCALL, the above implies that Γ ` e ⇓p v ,Γo and hence
the claim holds.

Corollary 27. Let P be a program. Let st be an expression
of the model language. Let Γ ∈ EnvP and Γ] ∈ Env]P be such
that Γ] ` st ⇓ S and Γ ∼P (Γ],S). Let e be any expression. If
Γ] ` (JeKP st) ⇓ u,Γ]o then ∃Γo ∈ Env , v ∈ Val , p ∈ N such
that Γ ` e ⇓Ip v ,Γo and
• Γo ∼P (Γ]o , u.2) • v ∼

Ho,H]o,P
u.1 • p = u.3

Proof. Notice that here the environments (and the states) are related
by ∼P which is stronger than ∼̂ . Thus the only fact that is
not implied by Lemma 26 is that Γo ∼P (Γ]o , u.2). It is easy to

see that this property holds from the proof argument of the above
lemma.

We now show that the evaluation of an expression e under an
environment Γ with respect to the semantics I , and the evaluation
of JeKP st under Γ] such that Γ ∼̂ (Γ], σ](st)) bisimulate each
other, provided every indirect call invoked by the expression e
during its evaluation under Γ is an encapsulated call (see section 2
for the definition of encapsulated calls).

Lemma 28. Let P be a program. Let st be an expression of the
model language. Let Γ ∈ EnvP and Γ] ∈ Env]P be such that
Γ] ` st ⇓ S and Γ ∼̂ (Γ],S). Let e be any expression such that
if 〈Γ, e〉 ∗〈Γ′, x y〉, H′(σ′(x)) = (eλ

l, σ′′) and l ∈ labelsP .
If Γ ` e ⇓Ip v ,Γo then ∃Γ]o ∈ Env], u ∈ DVal such that
Γ] ` (JeKP st) ⇓ u,Γ]o and
• Γo ∼̂ (Γ]o , u.2) • v ∼̂

Ho,H]o,P
u.1 • p = u.3

Proof. The proof of this lemma is very similar to the proof of
Lemma 26 expect for a minor difference in the handling of the case
where e is an indirect call. We are given that every indirect call
encountered during the evaluation of e is an encapsulated call. As
a result, when the expression e is an indirect call (x y)l

′
(the rule

INDIRECTCALL), we are guaranteed that σ(x) = (eλ
l, σ′) and

eλ/∼=,P is defined, since eλ itself belongs to the program P . Thus,
the evaluation of (JeKP st) under Γ] cannot go through the error

case of Appl′ function, which implies that Γ] ` (JeKP st) ⇓ u,Γ]o
will be defined for the rule INDIRECTCALL.

Corollary 29. Let P be a program. Let st be an expression
of the model language. Let Γ ∈ EnvP and Γ] ∈ Env]P be such
that Γ] ` st ⇓ S and Γ ∼P (Γ],S). Let e be any expression.
If Γ ` e ⇓Ip v ,Γo then ∃Γ]o ∈ Env], u ∈ DVal such that
Γ] ` (JeKP st) ⇓ u,Γ]o and
• Γo ∼P (Γ]o , u.2) • v ∼

Ho,H]o,P
u.1 • p = u.3

Proof. Notice that here we do not have the assumption that e
invokes only encapsulated, indirect calls, since this is implied by
the fact that the environments are related by the stronger relation
∼P . Analogous to Lemma 27, the only fact that is not implied
by Lemma 28 is that Γo ∼P (Γ]o , u.2). It is easy to see that this
property holds from the proof argument of the above lemma.

Theorem 1.(Bisimulation.) Let P be a program. Let st be an
expression of the model language. Let e′ = JeKP st. Let Γ ∈ EnvP
and Γ] ∈ Env]P be such that Γ] ` st ⇓ S and Γ∼P (Γ],S).

(a) If Γ ` e ⇓p v ,Γo then ∃Γ]o ∈ Env], u ∈ DVal such that
Γ] ` e ′ ⇓ u,Γ]o and
• Γo∼P (Γ]o , u.2) • v ∼

Ho,H]o,P
u.1 • p = u.3

(b) If Γ] ` e ′ ⇓ u,Γ]o then ∃Γo ∈ Env , v ∈ Val , p ∈ N
such that Γ ` e ⇓p v ,Γo and
• Γo∼P (Γ]o , u.2) • v ∼

Ho,H]o,P
u.1 • p = u.3

Proof. This theorem follows from the Corollaries 27 and 29, and
the fact that the semantics I bisimulates the operational semantics
as established by Lemmas 18 and 20.

The following theorem establishes the soundness and cor-
rectness of the model programs. While the soundness of the
model holds regardless of the cache monotonicity requirement of
contracts, for completeness we expect that the contracts in the
program satisfy the property (since semantics I is complete under

that condition as shown in Lemma 20). The fact that the translation
J·KP is sound regardless of cache monotonicity of contracts
provides a way to check this property using the translation J·KP .
Also, it is to be noted that the completeness theorem is proven only
for the language used in the formalism and described in section 2.
In particular, the completeness proof uses the property that the
fields of a constructor can be read at any point, and also that any
constructor can be created at any point in the program by passing
in type-correct arguments. In particular in a language that supports
access modifiers like private/public, the completeness property
becomes more trickier to establish.

Theorem 2.(Model Soundness and Completeness) Let P be a
program and P] the model program. Let ẽ = {p} e {s} and
ẽ′ = {p′} e ′ {s ′}. Let def f x := ẽ be a function definition in P ,
and let def f] (x, st) := ẽ′ be the translation of f , where st is the
state parameter added by the translation.
∀Γ] ∈ Env]ẽ′,P] .∃u. Γ] ` p′ ⇓ false ∨ Γ] ` ẽ ′ ⇓ u iff

∀Γ ∈ Envẽ,P .∃v. Γ ` p ⇓ false ∨ Γ ` ẽ ⇓ v

Proof. Firstly, for every Γ] ∈ Env]e,P there exists an environment
Γ ∈ Enve,P such that Γ ∼̂ (Γ], σ](st)) and vice-versa. That is
the relation ∼̂ is total with respect to the domains Enve,P and
Env]e,P . This is because, by the definition of Env]e,P , for every
Γ] ∈ Env]e,P there exists an environment Γ ∈ Γe, P such that
Γ ∼̂ (Γ], σ](st)). For every Γ ∈ Enve,P we can construct an
Γ] ∈ Env]e,P as follows:
(a) σ] = σ∪(st 7→ S), where S = {(Cf u) | (f u) ∈ domP (C)}
(b) H] = {(a,map(v)) | (a, v) ∈ H}, where map((eλ, σ

′))
is (Cl σ

′(FV (eλ))) if eλ/∼=,P is defined and has label l,
map((eλ, σ

′)) is CtypeP (eλ) hash(eλ) if eλ/∼=,P is not defined,
and map(v) = v otherwise.

Proof for call-encapsulated programs.
In this case, we consider the programs where every indirect call

in the program is an encapsulated call. In this case the claim follows
from the totality of ∼̂ relation and the Lemmas 26 and 28. Note
that the requirements of the Lemma 28 hold, since the program is
call-encapsulated.

Proof for general programs. The only-if direction (soundness)
directly follows from Lemma 26 and the totality of ∼̂ described
above. Below, we prove the if direction (completeness). That is,
if ∀Γ ∈ Envẽ,P .∃v. Γ ` p ⇓ false ∨ Γ ` ẽ ⇓ v then ∀Γ] ∈
Env]ẽ′,P] .∃u. Γ] ` p′ ⇓ false ∨ Γ] ` ẽ ′ ⇓ u . Now, there are
two cases to consider. If 〈Γ, e〉 ∗〈Γ′, c a〉 implies H′(σ′(c)) =
(eλ

l, σ′′) ∧ l ∈ labelsP , then by Lemma 28 the claim holds.
Therefore, say 〈Γ, e〉 n〈Γ′, c a〉, for some n ∈ N, and

H′(σ′(x)) = (eλ
l, σ′′) ∧ l /∈ labelsP . That is, the evalua-

tion of e under Γ invokes a lambda created outside the program.
Without loss of generality assume that c a is the first such call.
That is, every call reached before n steps is an encapsulated call.
Now, it is easy to see that H′(σ′(c)) = H(σ′(c)). This is be-
cause if σ′(c) is not bound in the input heap, it has to be bound
subsequently. But we know that every expression that executes
until encountering the call c a belongs to the program P since
we assume that c a is the first call-back that executes code out-
side P . Thus, any closure created during the evaluation of e un-
til c a belongs to P . Therefore, σ′(c) should be bound in the in-
put heap. Let σ′(c) = a and H(a) = (λr.h (r, s), σ′′). Now,
consider a new environment Γerr defined as follows: Γerr =
(C,H[a 7→ map(v)], σ, F ∪ {def g t = {false} h t {true}}),
where map((λr.h (r, s), σ′′)) = (λr.g (r, s), σ′′), for some r,
s and σ′′, and map(v) = v otherwise. That is, the new envi-
ronment wraps the body of the lambdas compatible with H(a)
by a contract whose precondition is false . By the totality of ∼̂ ,

∃Γ] ∈ Env]e,P such that Γ ∼̂ (Γ], σ](st)). Note that firstly (a)
λr.h (r, s)/∼=,P will not be defined as it is external to the pro-
gram P . Consider now the following definition of the hash func-
tion for the newly introduced lambdas: hash((λr.g (r, s), σ′′)) =
hash((λr.h (r, s), σ′′)). Clearly, this hash function preserves
structural equality, i.e, ∀{eλ, eλ′} ⊆ range(Herr). eλ ≈

Herr
eλ
′ ⇒ hash(eλ) = hash(eλ

′), and hence is well-defined. There-
fore, it is easy to see that Γerr ∼̂ (Γ], σ](st)) by our construction.
Hence, 〈Γerr, e〉 n〈Γ′err, c a〉 and ∃S.Γ′ ∼̂ (Γ′err, S). Clearly,
evaluating (c a) under Γ′err results in a contract violation as the
precondition of g will not hold. Now, if Γerr ∈ Enve,P we get a
contradiction to our assumption that the contract of the function f
holds in all valid environments, which implies the claim. We now
complete the proof by showing that Γerr ∈ Enve,P

Since Γ ∈ Enve,P , there exists a program P ′

such that 〈ΓP ′||P , eentry〉 ∗〈Γ, e〉. This implies that
〈ΓP ′||P , eentry〉 ∗〈Γ1, (f z)〉, where f is the function whose
contracts we are trying to verify, and Γ1 = (C,H, σ[z 7→ σ(x)])
is the environment before parameter translation. Let P ′′ be a
program obtained by augmenting P ′ with the function g defined
as above (renaming g if there already exists a function with the
same name in P ′). Let Γ′err = (Cerr,Herr, σerr[z 7→ σ(x)]), i.e,
Γerr before parameter translation. In our language, given a value
w and a environment Γ = (C,H, σ,F) it is possible to create an
expression e such that Γ ` e ⇓ v , (C,H′, σ) such that v ≈

H′
w.

This is because a value v is, in principle, a closed expression
without free variables obtained by recursively replacing each
address a by its mapping in the heap H(a). The recursion will
stop as the heaps are acyclic. For brevity, we ignore the formal
construction of such an expression. (Since our language doesn’t
support any access modifiers, every constructor can be constructed
at any point in the program.)

Given this property, we construct an expression eerr that pro-
duces the value σerr(z). Since eerr is closed it can be inserted
at any point in the program. We replace the call (f z) by the ex-
pression let z := eerr in (f z). Let the new program thus ob-
tained be called P3. Thus, there exists a program P3 such that
〈ΓP3||P , eentry〉

∗〈Γerr, e〉. Hence, Γerr ∈ Enve,P .

C. Correctness of Verification
Reducing Error construct to a precondition. Recall that the
model programs use an error construct in the bodies of Appl
functions corresponding to (non-encapsulated) indirect calls. Let
def Appl (cl, x, st) be one such function corresponding to an in-
direct call (y z). The error construct will be encountered during
the evaluation of Appl if and only if cl = CtypeP (y). In this case,
the result of the evaluation is undefined. The same effect can be
achieved if we add a precondition to Appl namely cl 6= CtypeP (y).
It is obvious that theAppl with the precondition is equivalent to the
Appl function with the error construct. For simplicity, in the rest of
section, we assume that the model programs are free of error con-
structs, which have been lifted to the preconditions of Appl func-
tions. This provides us the property that the Lemma 17 applies to
the model programs as well.

C.1 Soundness of Assume/Guarantee Reasoning
In this section, we formalize and prove the soundness of the as-
sume/guarantee reasoning explained in section 4 in more detail and
prove its correctness. Note that we apply the assume/guarantee rea-
soning only on the model programs, which has only direct calls due
to defunctionalization.

Let us first formally define the assume/guarantee assertion
|=P e1 → e2 . As defined in section 4, let e1 → e2 be

∀Γ ∈ {(C,H, σ,F) ∈ Env] | x ∈ dom(σ)}
Γ ` e1 ⇓ false ∨ Γ ` e2 ⇓ true

Note that in the above definition we only consider environments
that have a binding for the parameter x, since we know this is
guaranteed by the semantics (Lemma 9). Let fv(e) denote the set
of free variables in the expression e. Let

Calls(Γ, e) = {(Γ′, (f x)) | 〈Γ, e〉 ∗〈Γ′, (f x)〉}
We define an assumption AP (Γ, e) as:∧{

∃v.Γ′ ` (f x) ⇓ v | (Γ′, (f x)) ∈ Calls(Γ, e)
}

That is the pre-and post-conditions of all the callees transitively
invoked by e are satisfied and the callees are terminating in the
environment that reaches them. An assume/guarantee assertion
|=P e1 → e2 denotes the following:

∀Γ ∈ {(C,H, σ,F) ∈ Env] | fv(e1) ∪ fv(e2) ⊆ dom(σ)}.
¬AP (Γ, e1) ∨ ¬AP (Γ, e2) ∨ Γ ` e1 ⇓ false ∨ Γ ` e2 ⇓ true

Helper Functions. We define a few helper functions
used by the assume/guarantee assertions. Given a function
def f x := {p} e {s} ∈ P , let preP (f x) = p[x/y]. (We omit the
subscript P when there is no ambiguity).

Path Condition and Reaching State. Recall that assume-
guarantee rules use two expressions namely the path condition
path(c) and the state reaching a site st(c), where c is call or con-
struction site in the model program. Below we define the two ex-
pressions using the operational semantics. However, in our imple-
mentation they are statically computed from the program source (in
the case of st this is somewhat trivial). We skip the formal details of
how these expressions are satically computed, since here our focus
is on the soundness of the assume-guarantee reasoning.

Let c = (g x)l be a call-site in a function definition def f x := ẽ
in the model program. We define path(c) as any boolean-valued
expression that satisfies the following property:

∀(H, σ) ∈ Env] s.t. fv(ẽ) ⊆ dom(σ).

〈Γ, ẽ〉 ∗〈Γ′, (g x)l〉 ⇒ Γ′ ` path((g y)l) ⇓ true

That is, every environment that reaches the call-site makes the
expression true.

Let e′ be an expression within a function definition
def f (x, st) := ẽ in the model program. If e′ = JeKP s for some
expressions e and s, st(e′) = s. Otherwise, if e′′ is the smallest
expression containing e′ and of the form JeKP s, then st(e′) = s.
(Note that such an e′′ always exist.) In other words, st(e′) is the
state expression that reaches the expression e in the translation of
JẽKP st.

Lemma 30. Consider the function-level, assume/guarantee rules
shown below.
• For each def g x = {pre} e {post} in P ,
|=P pre → post [e/res]

• For each call site c = g x in P ,
|=P path(c)→ pre(c)

If the above rules hold, the following property holds for all n ∈ N
∀(def f x := ẽ) ∈ P s.t. ẽ = {p} e {s}.
∀Γ ∈ {(C,H, σ,F) ∈ Env] | x ∈ dom(σ)}.(
∃k > n, h ∈ Fids, y ∈ Vars,Γ′.〈Γ, ẽ〉 k〈Γ′, (h y)〉

)
∨ (∃v.Γ ` p ⇓ false ∨ Γ ` ẽ ⇓ v)

Proof. We prove this using induction on n. Intuitively, n imposes
a limit on the number of direct function calls we need to consider
while proving that the contract of the function f holds. The base
case are evaluations that make zero direct calls. For every function
def f x := ẽ ∈ P where ẽ = {p} e {s}, we need to prove that

∀Γ ∈ {(C,H, σ,F) ∈ Env] | x ∈ dom(σ)}.(
∃k > 0, h ∈ Fids, y ∈ Vars.〈Γ, ẽ〉 k〈Γ′, (h y)〉

)
∨ (∃v.Γ ` p ⇓ false ∨ Γ ` ẽ ⇓ v)

Consider a Γ such that ¬
(
∃k > 0, h, y.〈Γ, ẽ〉 k〈Γ′, (h y)〉

)
.

Otherwise the claim trivially holds. This essentially means that we
do not encounter a direct call either during the evaluation of p or ẽ
under Γ. Therefore,

Calls(Γ, p) ∪ Calls(Γ, ẽ) = ∅ (2)
⇒ AP (Γ, p) ∧ AP (Γ, ẽ), by the def. of AP (3)
⇒ p → s[e/res], since |=P p → s[e/res] (4)
⇒ Γ ` p ⇓ false ∨ Γ ` s[e/res] ⇓ true (5)
By the operational semantics of contract expressions Fig. 4,
⇒ ∃v.Γ ` p ⇓ false ∨ Γ ` {true} e {s} ⇓ v (6)
Since every call-free evaluation terminates in our language

and by Lemma 17,
Γ ` p ⇓ false ∨ Γ ` p ⇓ true (7)
By 6 and 7, ∃v.Γ ` p ⇓ false ∨ Γ ` {p} e {s} ⇓ v (8)

Hence the claim holds in the base case.
Inductive step: Assume that the claim holds for all evaluations

with m calls. We now show that the claim holds for all evaluations
with m+ 1 calls. That is, we need to prove that

∀Γ ∈ {(C,H, σ,F) ∈ Env] | x ∈ dom(σ)}.(
∃k > m+ 1, h ∈ Fids, y ∈ Vars,Γ′.〈Γ, ẽ〉 k〈Γ, (h y)〉

)
∨ (∃v.Γ ` p ⇓ false ∨ Γ ` ẽ ⇓ v)

As before, let us consider a Γ such that
¬
(
∃k > m+ 1, h, y,Γ′.〈Γ, ẽ〉 k〈Γ′, (h y)〉

)
. Otherwise the

claim trivially holds. That is, all direct calls made by ẽ under Γ
have depth at mostm+ 1. Let S denote the top-level calls made by
ẽ. These are all calls that appear in the syntax tree of e. Formally,

S ={(Γ′, (g x)) | ∃i ∈ N.〈Γ, ẽ〉 i〈Γ′, (g x)〉
∧ ¬∃j < i, h.(〈Γ, ẽ〉 j〈Γ′′, (h x)〉)} (9)

Note that by the definition of , every call transitively made during
the evaluation of ẽ should be reachable (w.r.t) from the body of
a callee in S in ≤ m depth (otherwise ẽ would invoke a call at a
depth > m+ 1 violating the assumption). That is,

∀(Γ′, (g y)) ∈ S s.t. def f x := {preg} eg {postg} ∈ P.

¬
(
∃i > m.〈Γ′[x 7→ σ′(y)], {preg} eg {postg}〉 i〈Γ′′, (g x)〉

)
By inductive hypothesis the above implies that

∀(Γ′, (g y)) ∈ S s.t. def f x := {preg} eg {postg} ∈ P.
∃v.Γ′[x 7→ σ′(y)] ` preg ⇓ false

∨ Γ′[x 7→ σ′(y)] ` {preg} eg {postg} ⇓ v

Based on the operational semantics and the definition of pre, the
above can be rewritten as

∀(Γ′, (g y)) ∈ S.∃v.Γ′ ` pre(g y) ⇓ false ∨ Γ′ ` (g y) ⇓ v
(10)

As a consequence of the above fact we also know that every call
invoked inside pre(g y) terminates and results in a value. That is,

∀(Γ′, (g y)) ∈ S. AP (Γ′, pre(g y)) (11)

Now consider the definition of the path condition path of a call
(g y)l with label l contained in the body ẽ of a function f . By
definition,

∀Γ ∈ Env].〈Γ, ẽ〉 ∗〈Γ′, (g y)l〉 ⇒ Γ′ ` path((g y)l) ⇓ true
(12)

⇒ ∀(Γ′, (g y)) ∈ S. Γ′ ` path(g y) ⇓ true (13)

⇒ ∀(Γ′, (g y)) ∈ S. AP (Γ′, path(g y)) (14)

That is, every environment that reaches (g y) will satisfy the
path condition of (g y). We are given that the following assertion
holds:

∀ call-site c in P . |=P path(c)→ pre(c) (15)

⇒ ∀(Γ′, (g y)) ∈ S. ¬AP (Γ′, path(g y)) ∨ ¬AP (Γ′, pre(g y))

∨ Γ′ ` path(g y) ⇓ false ∨ Γ′ ` pre(g y) ⇓ true (16)

⇒ ∀(Γ′, (g y)) ∈ S. Γ′ ` pre(g y) ⇓ true, by 11, 13, 14
(17)

⇒ ∀(Γ′, (g y)) ∈ S.∃v. Γ′ ` (g y) ⇓ v , by 10 (18)

⇒ ∀(Γ′, (g y)) ∈ Calls(Γ, ẽ).∃v. Γ′ ` (g y) ⇓ v , by the def. of Calls
(19)

⇒ AP (Γ, ẽ) ∧ AP (Γ, p) (20)
Also, 19 implies that evaluations of p and ẽ terminates.
As in the base case, the above fact, 20 and |=P p → s[e/res] imply that
∃v.Γ ` p ⇓ false ∨ Γ ` {p} e {s} ⇓ v (21)

Hence, the claim.

Lemma 31 (Partial correctness of function-level, assume/guar-
antee reasoning). Let def f] x := ẽ where ẽ = {p} e {s} be a
function definition in P]. ∀Γ ∈ Env]ẽ,P] such that there exists
no infinite sequence 〈Γ, ẽ〉 〈Γ′, e′〉 · · · , ∃u. Γ ` p ⇓ false ∨
Γ ` ẽ ⇓ u .

Proof. Let Γ ∈ Env]ẽ,P] . If there exists no infinite sequence
〈Γ, ẽ〉 〈Γ′, e′〉 · · · , then there exists a n ∈ N such that
¬
(
∃k > n, e,Γ′.〈Γ, ẽ〉 k〈Γ′, e〉

)
. We know that Γ ∈ Envẽ,P im-

plies that x ∈ dom(σ). Hence, by Lemma 30, ∃u. Γ ` p ⇓ false∨
Γ ` ẽ ⇓ u .

Lemma 32 (Soundness of function-level, assume/guarantee rea-
soning). Let def f] x := ẽ where ẽ = {p} e {s} be a function def-
inition in P]. If every function defined in P] terminate and sat-
isfy the rules of function-level assume/guarantee reasoning, the
contract of f] holds i.e, ∀Γ ∈ Env]ẽ,P] .∃u. Γ] ` p ⇓ false ∨
Γ] ` ẽ ⇓ u .

Proof. The proof follows from Lemma 31 and the definition of
termination of a function, which requires that the body of the
function does not diverge.

Soundness of Creation/dispatch reasoning. We now formalize
and prove the soundness of the extended assume/guarantee reason-
ing based on creation and dispatch sites of encapsulated calls, and
cache monotonic properties (shown below).

I. For each def f x := {pre} e {post}, |=P pre → post [e/res]

II. For each call site c /∈ DispCalls , |=P path(c)→ pre(c)

III. (Cache monotonicity) For each ρi ∈ Props

|=P (st1 ⊆ st2 ∧ JρiKP st1)→ JρiKP st2
IV. For each closure construction site c = Ci wi in Clo]

|=P path(c)→ (JρiKP st(c))

V. For each call site c = f]i (x, zi, st) in DispCalls

|=P (path(c) ∧ Jρi [zi/yi]KP st)→ pre(c)

Similar to Lemma 30, we now prove a lemma that establishes
that the above assume-guarantee rules are essentially a part of an
induction reasoning. For the simplicity of the proof, we assume
that (JρiKP st(c)) is invoked just before the construction site c =
(Ci wi), and that the result of ρi is ignored (including the state).
That is, we replace (Ci wi) by let := (JρiKP st(c)) in (Ci wi).
It is obvious that this transformation is semantics preserving. But
the benefit of this is that it simplifies the statement of the following
Lemma, which now only talks about the named functions defined
in the program.

Lemma 33. Let P be a program and P] the model program. If
every function defined in P] terminate and the assume/guarantee
assertions (I) to (V) defined above hold, the following property
holds for all n ∈ N

∀ program P ′.∀Γ ∈ Env .(
∃(def f x := ẽ) ∈ P,Γ] ∈ Env] s.t.

〈ΓP′||P, eentry〉 ∗〈Γ, ẽ〉 ∧ Γ ∼̂ (Γ], σ](st))∧
∃k > n, e′,Γ′.〈Γ], JẽKP st〉 k〈Γ′, e′〉

)
∨

∀def f x := ẽ ∈ P, ẽ = {p} e {s},Γ] ∈ Env].

if
(
〈ΓP′||P, eentry〉 ∗〈Γ, ẽ〉

)
∧ Γ ∼̂ (Γ], σ](st)) then(

∃v.Γ] ` JpKP st ⇓ false ∨ Γ] ` JẽKP st ⇓ v
)

Proof. We prove this by induction on n. Intuitively, n limits the
depth of evaluation of any expression in the model program P],
during a run starting from the entry expression eentry . Let P ′

be a client program. The base case is when n = 1. Consider a
function definition def f x := ẽ . Let e′ = JẽKP st, and let e′ =
{p′} b′ {s ′}. Let 〈ΓP′||P, eentry〉 ∗〈Γ, ẽ〉 and Γ ∼̂ (Γ], σ](st)).

Now, if the evaluation of e′ under Γ] has depth more than 1 then
the claim trivially holds. Therefore, say the evaluation of e′ under
Γ] has depth at most 1. Hence, it cannot make any function calls.
(Note that there are only direct calls in the model program.)

Calls(Γ], p′) ∪ Calls(Γ], e′) = ∅
By 2 – 8, ∃v.Γ ` p′ ⇓ false ∨ Γ ` e ′ ⇓ v

Hence the claim holds in the base case.
Now, consider the inductive case and say the claim holds upto

some number m. Now, if the evaluation of e′ under Γ] has depth
more than m then the claim trivially holds. Therefore, say the
evaluation of e′ under Γ] has depth at most m+ 1.

(a) Say ¬∃c ∈ DispCalls,Γ′.〈e′,Γ]〉 ∗〈c,Γ′〉. In this
case, for all (c,) ∈ Calls(Γ], e ′), |=P path(c)→ pre(c) holds.
Hence, by 9 – 21, ∃v.Γ ` p′ ⇓ false ∨ Γ ` e ′ ⇓ v .

(b) Therefore, say there exists a c = g] (x , z , st) ∈ DispCalls
and Γ]3 ∈ Env] such that 〈e′,Γ]〉 ∗〈c,Γ]3 〉. Let w = σ]3(z).
By the definition of DispCalls and the model translation,
〈e′,Γ]〉 ∗〈Appl (y, a, st′),Γ]1 〉 2〈Appl (cl, x, st),Γ]2 〉
 ∗〈c,Γ]3 〉 where σ]1 (H]1 (y)) = σ]2 (H]2 (cl)) = (Cg w). By
Lemma 26, 〈ẽ,Γ〉 ∗〈(y q),Γ1〉 and Γ1 ∼̂ (Γ]1 , σ

]
1(st′)).

Therefore, there exists an address a such that σ1(y) = a,
H1(a) = ((λx.g (x, p))l, [p 7→ v]) and v ∼̂ w.

By definition of DispCalls the call (y q) is an en-
capsulated call. Therefore, (λx.g (x, p))l belongs to the
program P i.e, l ∈ labelsP . Let “def cr x = { eb }”
be the function in P that contains the lambda with
label l. The closure ((λx .g (x , p))l , [p 7→ v]) should
have been created at some point during the run start-
ing from eentry . Therefore, there exists a sequence
〈ΓP ′||P , eentry〉 ∗〈 , cr x〉 〈Γ0, eb〉 ∗〈Γ′0, λx.g (x, p)〉,
Γ′0 ` λx .g (x , p) ⇓ a, (C′0 ,H′0 [a 7→ (λx .g (x , p), [p 7→ v])], σ′0),
H′0 v H1 and C′0 v C1.

Let Γ]0 be such that Γ0 ∼̂ (Γ]0, σ
]
0(st)) and let e ′b = JebKP st .

Subclaim: forall k ∈ N. ∀Γin ∈ Env]eb,P ∀Γ
] such

that Γin ∼̂ (Γ]in, σ
]
in(st)). If 〈Γin, eb〉 k〈Γ′, e′〉 then (a) there

exists an chain 〈Γ]in, e′b〉 r and r > m + 1, or (b) ∃s.
〈Γ]in, e′b〉 ∗〈Γ]

′
, Je′KP s〉 and Γ′ ∼̂ (Γ]

′
, S) and Γ]

′ ` s ⇓ S .

Proof. We prove this subclaim by induction on k. The inductive
and base cases are very similar and so we prove them together as
shown below. Let is and e be expressions and let e′ = (JeKP is) be
the translation of e with respect to is. Let Γ] be some expression
such that 〈Γ], e〉 is reachable from 〈Γ]in, e′b〉 and Γ ∼̂ (Γ], S) and
Γ] ` is ⇓ S . Say 〈Γ, e〉 〈Γo, eo〉.

We now prove that one of the claim of the lemma holds. In
the relations (shown in Fig. 10) introduced by all rules except
LET and CONTRACT, the environments Γ and Γo differ only by the
store component. By the definition of the translation and the oper-
ational semantics it is easy to see that there exists an Γ]o such that
〈Γ], e′〉 〈Γ]o, JeoKP is〉 and Γo ∼̂ (Γ]o, S) and Γ]o ` is ⇓ S .

Now consider the rule LET. Let e = let x := e1 in e2. By the
definition of the translation: e′ = let x := Je1KP is in Je2KP x.2
By definition, there are two relations introduced by
the rule. Consider the relations: 〈Γ, e〉 〈Γ, e1〉 and
〈Γ], e′〉 〈Γ], Je1KP is〉. These clearly satisfy the claim.

Consider the other relation defined as follows: If
Γ ` e1 ⇓ u1 ,Γ1 then 〈Γ, e〉 〈Γo, e2〉, where Γo =
(C1,H1, σ1[x 7→ u1]). We also have similar relation for
the translated expression. If Γ] ` Je1 KP st ⇓ v ,Γ]1 then
〈Γ], e′〉 〈Γ]o, Je2KP x.2〉, where Γ]o = (H]1, σ

]
1[x 7→ v1]). Now

there are two cases to consider
(a) There exists a chain 〈Γ], Je1KP st〉 r and r > m. In this

case, there exists an chain 〈Γ]in, e′b〉 r and r > m+ 1, since are
given that 〈Γ], e′〉 is reachable from 〈Γ]in, e′b〉. Hence the claim
holds.

(b) There does not exist a chain 〈Γ], Je1KP st〉 r and r > m.
Now, we claim that ∃v1. Γ] ` Je1 KP st ⇓ v1 ,Γ

]
1 . This is because,

by Lemma 17, the the evaluation could be undefined only if either
the evaluation does not terminate or because there is a contract
violation during the evaluation The former case is not possible
since there does not exist a chain 〈Γ], Je1KP st〉 r and r > m.
The latter case is not possible because every call (h g) encountered
during the evaluation (under an environment Γ]

′′
) cannot have a

chain 〈Γ]′′, (h g)〉 r and r > m (otherwise 〈Γ], Je1KP st〉 r

and r > m, which contradicts the given fact). Therefore, by the
(outer) induction hypothesis the call should produce a value. That
is, there can be no contract violation.

We have now shown that Γ] ` Je1 KP st ⇓ v1 ,Γ
]
1 is defined.

Therefore, 〈Γ], e′〉 〈Γ]o, Je2KP x.2〉 is defined. By Lemma 26,
Γ ` e ⇓ u1 ,Γ1 is defined. Thus, 〈Γ, e〉 〈Γo, e2〉 is also defined
and Γo ∼̂ (Γ]o, S

′) and Γ]o ` x .2 ⇓ S Hence, the claim holds.
The rule contract can be similarly proven.

With this above established claim let us again re-
visit the evaluation: 〈Γ0, eb〉 ∗〈Γ′0, (λx.g (x, p))l〉,
Γ′0 ` λx .g (x , p) ⇓ a, (C′0 ,H′0 [a 7→ (λx .g (x , p), [p 7→ v])], σ′0),
H′0 v H1 and C′0 v C1. Due to the above subclaim, we know
that one of the following cases hold: (a) either there exists
〈Γ]0, e′b〉 r and r > m + 1. or (b) 〈Γ]0, e′b〉 ∗〈Γ]

′
0, (Cl p)〉

and ∃s.Γ′0 ∼̂ (Γ]
′
0, S) and Γ]

′
0 ` s ⇓ S . In the former case the

lemma holds as the first disjunct of the lemma is satisfied as Γ]0
belongs to Env]e′,P] . Therefore consider the latter case.

Let cc = (Cl p). By definition, st(cc) is the state expression
reaching the construction site cc. Therefore s = st(cc). By the
definition of path , for any function definition def f x := e ′b and
closure construction site cc in f .

∀Γ] ∈ Env].〈Γ], e′b〉 ∗〈Γ]
′
, cc〉 ⇒ Γ]

′ ` path(cc) ⇓ true
(22)

Therefore, Γ]
′
0 ` path(cc) ⇓ true (23)

⇒ AP (Γ]
′
0, path(cc)) (24)

Let ρ′ = (JρiKP st(c)). We know that the fv(ρi) ⊆ {p}, where
p is argument of the constructor (captured variable). Now, by the
assume-guarantee reasoning rule (IV), we are given that

|=P path(cc)→ ρ′ (25)

⇒ ∀Γ]′.¬AP (Γ]
′
, path(cc)) ∨ Γ]

′ ` path(cc) ⇓ false

∨ ¬AP (Γ]
′
, ρ′) ∨ Γ]

′ ` ρ′ ⇓ true (26)

⇒ ¬AP (Γ]
′
0, ρ
′) ∨ Γ]

′
0 ` ρ′ ⇓ true, by 23, 24 (27)

Now recall that we have assumed that ρ′ is invoked just before
the closure construction cc. Therefore, ∃Γ] v Γ]

′
0 such that

∃v.Γ] ` ρ′ ⇓ v , since we are given that 〈Γ]0, e′b〉 ∗〈Γ]
′
0, cc〉.

Hence, AP (Γ], ρ′) holds. It is easy to see that, Calls(Γ]
′
0, ρ
′) =

Calls(Γ], ρ′) since Γ] v Γ]
′
0. (Note that the model program

does not have memoization and is purely functional.) There-
fore, AP (Γ]

′
0, ρ
′) also holds. Substituting this in 27 we get,

Γ]0
′ ` ρ′ ⇓ true . By Lemma 26, Γ′0 ` ρi ⇓ true .
Now, we know thatH′0 v H1 and C′0 v C1. We are also given

by the assume-guarantee rule (III) that

|=P st1 ⊆ st2 ∧ JρiKP st1 → JρiKP st2 (28)

⇒ ∀Γ] s.t. dom(σ]) ⊆ fv(ρi) ∪ {st1, st2}.
¬AP (Γ], JρiKP st1) ∨ AP (Γ], JρiKP st2)

∨ Γ] ` (st1 ⊆ st2) ⇓ false ∨ Γ] ` JρiKP st1 ⇓ false

∨ Γ] ` JρiKP st2 ⇓ true (29)

⇒ ∀Γ] s.t. Γ]
′
0 v Γ] ∧ st2 ∈ dom(σ]).

Γ] ` (st(cc) ⊆ st2) ⇓ false∨
¬AP (Γ], ρ′) ∨ AP (Γ], JρiKP st2)

∨ Γ] ` ρ′ ⇓ false ∨ Γ] ` JρiKP st2 ⇓ true (30)

By the definition of the model programs, the depths of the evalua-
tions of the expressions of the model program are independent of
the state parameter. Recall that as shown by Fig. 6 the state parame-
ter only influences the value of the last element of the tuple, namely
the resource usage component. Therefore, Calls(Γ], JρiKP st2) =

Calls(Γ], ρ′). We are given that AP (Γ]
′
0, ρ
′) holds. Therefore as

Γ]
′
0 v Γ], AP (Γ], ρ′) and AP (Γ], JρiKP st2) also holds. Substi-

tuting this and the fact that Γ′0 ` ρi ⇓ true in 30 we get,

∀Γ] s.t. Γ]
′
0 v Γ] ∧ st2 ∈ dom(σ]).

Γ] ` (st(cc) ⊆ st2) ⇓ false ∨ Γ] ` JρiKP st2 ⇓ true (31)

By Lemma 26 and the totality of ∼̂ relation,

∀(C1,H′0, σ′0).¬(C′0 v C1) ∨ (C1 ,H, σ) ` ρi ⇓ true (32)

⇒ ∀Γ′.¬(Γ′0 v Γ′) ∨ Γ′ ` ρi ⇓ true (33)

Since we know C′0 v C1 and H′0 v H1. The above implies
that

(C1 ,H1 , σ
′
0) ` ρi ⇓ true (34)

(C1 ,H1 , [p 7→ σ′0 (p)]) ` ρi ⇓ true, since fv(ρi) ⊆ {p} (35)

We are given that σ′0(p) = v, v ∼̂
H1,H

]
3

w, σ]3(z) = w,

C1 ∼̂
H1,H

]
1

σ]1(st′), σ]1(st′) = σ]3(st) and H]1 v H
]
3. The last three

facts imply that C1 ∼̂
H1,H

]
3

σ]3(st). Hence,

(C1,H1, [p 7→ σ′0(p)]) ∼̂
H1,H

]
3

((H]3, [p 7→ σ]3(z)]), σ]3(st))

Therefore, by Lemma 26 and 35,

(H]3 , [p 7→ σ]3 (z)]) ` Jρi [z/p]KP st ⇓ true (36)

Γ]3 ` Jρi [z/p]KP st ⇓ true (37)

Now, we are given that 〈e′,Γ]〉 ∗〈c,Γ]3 〉, where e′ = JẽKP st By
assume-guarantee assertion (V),

|=P (path(c) ∧ Jρi [zi/yi]KP st)→ pre(c) (38)

⇒ Γ]3 ` pre(c) ⇓ true, (39)
by the reasoning shown in 16 – 18 and 37

Therefore, for every (Γ]
′
, c) ∈ DispCalls ∩ Calls(Γ], e′),

Γ]
′ ` pre(c) ⇓ true . By the reasoning shown by 18 and

37, for every (Γ]
′
, c) ∈ Calls(Γ], e′) \ DispCalls ,

Γ]
′ ` pre(c) ⇓ true . Therefore, as shown by 19 – 21, AP (Γ], e′)

and AP (Γ], p′). Hence, by the assume-guarantee assertion (I),
∃v.Γ] ` JpKP st ⇓ false ∨ Γ] ` JẽKP st ⇓ v .

Theorem 3.(Soundness of creation-dispatch reasoning) Let P be
a program and P] the model program. Let def f] x := ẽ where
ẽ = {p} e {s} be a function definition in P]. If every function
defined in P terminate and the assume/guarantee assertions (I)
to (V) defined above hold, the contracts of f] holds i.e, ∀Γ] ∈
Env]ẽ,P] .∃u. Γ] ` p ⇓ false ∨ Γ] ` ẽ ⇓ u .

Proof. Let def g] x := ẽ ′ be a function definition in P], where
ẽ′ = JeKP st. Let Γ] ∈ Env]ẽ′,P] . By definition, there exists a
Γ ∈ Env and a program P ′ such that

(
〈ΓP′||P, eentry〉 ∗〈Γ, ẽ〉

)
∧

Γ ∼̂ (Γ], σ](st)). Also, by definition of Enve,P , 〈ΓP′||P, eentry〉
is a terminating evaluation given that all functions in the pro-
gram P are terminating. Now say there exists an infinite chain
of the form 〈Γ], JeKP st〉 〈Γ]1, Je1KP s1〉 · · · . By Lemma 26
and the definition of (Fig. 10), there exists an infinite
chain: 〈Γ, e〉 〈Γ1, e1〉 · · · , which is a contradiction to the
given fact that the evaluation 〈ΓP′||P, eentry〉 is terminating.
Therefore, there cannot be any infinite chains of the form:
〈Γ], JeKP st〉 〈Γ]1, Je1KP s1〉 · · · . Hence, the evaluation of
〈Γ], JeKP st〉 is terminating

By the same argument, for every other function
def h] x := JẽhKP st ∈ P] there does not exist a Γ]h such

IN
C′ = σ(x) (C′,H, σ) ` e ⇓p v ,Γ′

Γ : (C,H, σ) ` in(e, x) ⇓0 v ,Γ′

STAR
Γ ` e ⇓p v ,Γ′ : (C′,H′, σ′)

Γ ` e? ⇓0 v , (C,H′, σ′)

FMATCH
H(σ(x)) = (λx.fi (x, y), σ1)) (C,H, σ[yi 7→ σ1 (y)]) ` ei ⇓p v , (C′,H′, σ′)

Γ : (C,H, σ) ` x fmatch{λx1 .fi (xi , yi)⇒ ei}ni=1 ⇓0 v , (C′,H′, σ)

CONTRACT
Γ ` pre ⇓p true,Γ1 Γ ` e ⇓q v ,Γ2 : (C2 ,H2 , σ2) (C2 ,H2 , σ2 [R 7→ q , res 7→ v , inSt 7→ C, outSt 7→ C2]) ` post ⇓r true,Γ3

Γ : (C,H, σ) ` {pre} e {post} ⇓q v ,Γ2

where R ∈ {steps, alloc}

Figure 12. Semantics of the specification constructs fmatch, in, inSt, outSt and ∗.

that 〈ΓP′||P, eentry〉 ∗〈Γh, ẽh〉 and Γh ∼̂ (Γ]h, σ
]
h(st))

and 〈Γ]h, JẽhKP st〉 · · · is infinite. Thus, there ex-
ists a n ∈ N such that ¬∃def h x := ẽh ∈ P,Γ]h ∈
Env] s.t. 〈ΓP′||P, eentry〉 ∗〈Γh, ẽ〉 ∧ Γ ∼̂ (Γ]h, σ

]
h(st)) ∧ ∃k >

n, e′,Γ′.〈Γ]h, JẽKP st〉 k〈Γ′, e〉. Hence, by Lemma 33,
∃u. Γ] ` p ⇓ false ∨ Γ] ` ẽ ⇓ u for every function defini-
tion in P]. Hence, the contracts of the function f] also holds.

C.2 Decidability of Inference Algorithm
Theorem 4. Given a linear parametric formula φ(x̄, ā) with free
variables x̄ and ā, belonging to a theory T that is a combina-
tion of quantifier-free theories of uninterpreted functions, algebraic
datatypes, and sets, and either integer linear arithmetic or real
arithmetic, finding a assignment ι such that dom(ι) = |ā|, and
(φ ι) is T -unsatisfiable is decidable.

Proof Sketch. We express the problem as trying to decide the
validity of a formula of the form: ∃ā.∀x̄′.

(
∀f̄ .φ′(x̄′, f̄ , ā)

)
∧(

∀s̄.φset(x̄′, s̄)
)
, where, f̄ are the uninterpreted function symbols

in φ, s̄ are variables of set sort, x̄′ are variables of other sorts, and
φset is a formula in Tset that has only set operations. This is possi-
ble because the existentially quantified variables ā are only numer-
ical variables. Since the theory of sets admit decidable quantifier
elimination [45], the above formula could be reduced to an equiv-
alent formula of the form ∃ā.∀x̄′, f̄ .φ′′(x̄′, ā), which can decided
using the algorithm presented in [52], and depicted in Fig. 7.

D. Extended Specification Constructs
Our implementation support a few other specification constructs
beyond those presented in Fig. 3 to enable easier specification. As
mentioned in section 2, we support a construct in(e, x) that evalu-
ates an expression in a cache-state given by x, and a construct inSt
to access the state of the cache at the beginning of a function in
the postcondition of the function. Analogously, we also support a

construct outSt to refer to the state of the cache at the end of the
function in the postcondition. In the construct in(e, x) the variable
x has a cache. The constructs inSt and outSt are the only expres-
sions that have these type. Therefore, even though the construct
in(e, x) allows evaluating an expression under a cache given by x.
The cache can only be obtained either through inSt or outSt expres-
sions. Essentially, in(e, x) is used to evaluate an expression under a
cache encountered previously during the evaluation. Fig. 6 shows
the translation of these expressions during the model program gen-
eration.

To define the semantics of these constructs, we modify the do-
main of values Val to also include a cache. That is, Cache ⊆ Val .
Fig. 12 shows their semantics with respect to the modified domain,
and redefines the semantics of the contracts in the presence of these
constructs. Besides these, we also introduce two constructs: fmatch
and ∗ explained below. The construct e? computes the result of
an expression e without caching the result of e for reuse. This is a
side-effect-free operation that is to be used in places where only the
result of the expression is relevant. We support a construct fmatch
of the form: x fmatch{λxi.fi (xi, yi) ⇒ ei}ni=1 that performs
structural matching on closures, i.e, matching based on structural
equality. For instance, this expression matches x to the first case if
x evaluates to a closure of the form: (λx.f1 (x, y), [y 7→ u]). It
binds the variable y in the match case to the value u, and evalu-
ates e1 using the new binding. Fig. 12 shows the semantics of these
constructs. Below we show the translation of these constructs in the
model program.

Jx fmatch{λxi.fi (xi, yi)⇒ ei}ni=1KP st =
x match{Cli yi ⇒ JeiKP st}ni=1,

where li is the label of λxi.fi (xi, yi)/∼=,P
Je?KP st = (JeKP st).1

The soundness and completeness theorems, and other Lemmas
presented in the previous section translate to programs with these
additional specification constructs.

	Introduction
	Language and Semantics
	Generating Model Programs
	Model Verification and Inference
	Evaluation
	Related Work
	Formal Definitions, Semantics and Proofs
	Semantics and Properties of Input Language
	The Intermediate Semantics I

	Semantics of Model Programs
	Soundness and Completeness Proofs.

	Correctness of Verification
	Soundness of Assume/Guarantee Reasoning
	Decidability of Inference Algorithm

	Extended Specification Constructs

