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Abstract

Modular heap analysis techniques analyze a program by computing
summaries for every procedure in the program that describes its effects
on an input heap, using pre-computed summaries for the called proce-
dures. In this article, we focus on a family of modular heap analyses
that summarize a procedure’s heap effects using a context-independent,
shape-graph-like summary that is agnostic to the aliasing in the input
heap. The analyses proposed by Whaley, Salcianu and Rinard, Buss et
al., Lattner et al. and Cheng et al. belong to this family. These analyses
are very efficient. But their complexity and the absence of a theoretical
formalization and correctness proofs makes it hard to produce correct
extensions and modifications of these algorithms (whether to improve
precision or scalability or to compute more information). We present a
modular heap analysis framework that generalizes these four analyses.
We formalize our framework as an abstract interpretation and estab-
lish the correctness and termination guarantees. We formalize the four
analyses as instances of the framework. The formalization explains the
basic principle behind such modular analyses and simplifies the task of
producing extensions and variations of such analyses.

We empirically evaluate our framework using several real-world C]
applications, under six different configurations for the parameters, and
using three client analyses. The results show that the framework offers
a wide range of analyses having different precision and scalability.

R. Madhavan, G. Ramalingam, and K. Vaswani. A Framework For Efficient
Modular Heap Analysis. Foundations and TrendsR© in Programming Languages,
vol. 1, no. 4, pp. 269–381, 2014.
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1
Introduction

Compositional or modular analysis [Cousot and Cousot, 2002] is a key
technique for scaling static analysis to large programs. Our interest is
in techniques that analyze a procedure in isolation, using pre-computed
summaries for called procedures, computing a summary for the ana-
lyzed procedure. Such analyses are widely used and have been found
to scale well. However, computing such summaries for a heap analysis
(or points-to analysis) is challenging because of the aliasing in the in-
put heap. For example, consider the procedure P shown in Fig. 1.2(a).
Its behaviour on two different input heaps is shown in Fig. 1.2(b) and
Fig. 1.2(c). (The heaps are depicted as shape graphs. The input heap
is shown at the top and the corresponding output heap at the bottom).
It can be seen that the behaviour of P varies significantly depending on
the aliasing between the variables x and y in the input heap. A sound
summary for P should be able to approximate the behaviour of P in
both these scenarios.

Existing modular heap analyses can be broadly classified into the
following categories. (The following classification is not exhaustive.
There are modular analyses such as [Nystrom et al., 2004] that cannot
be easily classified into any of the categories mentioned. It is also pos-
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P (x, y) {
[1] t = new ();
[2] x.next = t;
[3] t.next = y;
[4] retval = y.next;

}

Figure 1.1: A procedure P whose behaviour depends on the aliasing in the input
heap.

Input1 Input2

Output1 Output2

(a) (b)

Figure 1.2: (a) Output of P when x and y are not aliases in the input heap. (b)
Output of P when x and y are aliases in the input heap.
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sible to design analyses that belong to more than one of the categories
though we aren’t aware of any.) (a) Analyses such as [Calcagno et al.,
2009] compute conditional summaries that are applicable only in the
contexts that satisfy certain conditions (e.g., aliasing or non-aliasing
conditions). (b) Some analyses such as [Chatterjee et al., 1999], [Dillig
et al., 2011], [Jeannet et al., 2010] enumerate all relevant configurations
of the input heap belonging to a fixed abstract domain and generate
summaries for each configuration. A major challenge with this approach
is reducing the number of configurations that are enumerated, which
can quickly become intractable, and finding efficient ways of repre-
senting them. (c) A few analyses, namely, [Whaley and Rinard, 1999],
[Cheng and Hwu, 2000], [Liang and Harrold, 2001], [Lattner et al.,
2007], [Buss et al., 2008] compute context-independent summaries that
are agnostic to the aliasing in the input heap without enumerating the
possible configurations of the input heap. To our knowledge, these are
the only existing analyses having this property.

The analysis proposed by Whaley and Rinard [Whaley and Rinard,
1999] was later on refined and improved by Salcianu and Rinard [Sal-
cianu and Rinard, 2005]. We will refer to this analysis as the WSR
analysis. Adopting the terminology of [Lattner et al., 2007], we will re-
fer to the analysis proposed by Lattner et al. as Data Structure Analysis
(DSA).

In this article, we consider analyses belonging to the final category.
They are interesting for several reasons. (a) They have a number of ap-
plications, discussed shortly. (b) The analyses are very efficient. DSA
scales to the entire Linux kernel comprising 3 million lines of code in
3 seconds. An optimized version of WSR analysis discussed in [Mad-
havan et al., 2011] scales to C] libraries with 250 thousand lines of
code. (c) Being modular, they can analyze open programs, libraries,
and, in fact, any arbitrary chunk of code without requiring any knowl-
edge of the environment. Moreover, the summaries computed are such
that they be refined incrementally when more knowledge about the
environment becomes available.

These analyses have been used in a number of applications. Salcianu
and Rinard present an application of their analysis to compute the
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side-effects of a procedure, which are the effects of the procedure on
the pre-existing state, and use it to classify procedures as pure (having
no side-effects) or impure [Salcianu and Rinard, 2005]. This analysis,
referred to as purity analysis, itself has a number of applications.

Whaley and Rinard applied their analysis to identify objects that
can be safely allocated in the stack instead of the heap [Whaley and Ri-
nard, 1999]. We use an extension of the WSR analysis to statically ver-
ify the correctness of the use of speculative parallelism [Prabhu et al.,
2010]. Lattner et al. use their analysis to perform pool allocation in
which different instances of data structures are allocated to distinct
memory pools, which enables certain compiler optimizations [Lattner
and Adve, 2005b].

However, the complexity of the analyses makes the task of extending
and modifying these analyses challenging and time consuming. Ques-
tions such as the following often arise while designing new applications
based on the analyses and there is no easy way of answering them. Can
the scalability of the WSR analysis be improved at the expense of pre-
cision? Can DSA be extended to yield more precise results when more
time and resources are available? Is it possible to integrate a modular
static analysis that requires heap information (such as an information
flow analysis) with these analyses as typically done in top-down whole
program analyses? A sound theoretical formulation of the analyses will
greatly aid in answering such questions.

Upon investigating the theoretical basis of these analyses, we real-
ized that, in spite of the apparent dissimilarity between the analyses
and the differences in the precision, scalability, and functionality, there
are some fundamental ideas common to all of these analyses. This mo-
tivated us to develop a parametric framework for designing efficient
modular heap analyses. The analyses listed earlier become specific in-
stances of our framework.

We formulate our framework as a parametric abstract interpreta-
tion and establish the correctness and termination of the semantics. We
present several transformations and optimizations (collectively called
as specializations) of our framework and establish their correctness us-
ing the standard theory of abstraction interpretation. Our framework
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with its parametric domains, parametric semantics and several correct-
ness preserving transformations provides a convenient mechanism for
obtaining modular heap analyses with different levels of precision and
scalability.

We formally establish that the four analyses: [Whaley and Rinard,
1999], [Cheng and Hwu, 2000] [Lattner et al., 2007] (except for the
handling of indirect calls), [Buss et al., 2008] are specific instances of our
framework. We exclude the analysis proposed in [Liang and Harrold,
2001] (called as MoPPA) as it is very similar to [Lattner et al., 2007].
Nevertheless, it can also be expressed as an instance of our framework.

Formulating the analyses as instances of the framework has sev-
eral advantages. It provides an immediate proof of correctness and ter-
mination for the analyses. It also helps understand the abstractions
performed by the analyses and identify opportunities for making them
more precise or scalable. In fact, we were able to identify several corner
cases that were not handled by some of the algorithms and were able to
fix them. Since we were unable to find complete formalization of some
of the analyses, it is not clear to us if the problems we identified are
bugs in the algorithm or gaps in the informal descriptions.

We implemented the framework in our open source heap analy-
sis tool Seal (seal.codeplex.com). Seal is a fairly robust tool which
has been used in several program analysis applications. We empirically
studied the different configurations of the framework using Seal. We
present a summary of the results in Chapter 8. The results throw light
on the importance of the parameters of the framework by measuring
their impact on the precision and scalability of three client analyses.

The framework presented in this article has some limitations. Most
importantly, it does not support strong updates on heap locations and
path-sensitivity. To our knowledge, all existing modular heap analysis
approaches (such as [Dillig et al., 2011], [Jeannet et al., 2010]) that
perform strong updates on heap locations enumerate the possible con-
figurations of the input heap. Nevertheless, we believe that both these
challenges can be addressed without resorting to enumeration of the
input heap configurations. We briefly outline a potential approach in
the Future Works section (see Chapter 9).

seal.codeplex.com
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The following are the main contributions of this article:

• We propose a modular heap analysis framework that is a gener-
alization of a family of existing modular heap analyses. To our
knowledge, this is the first attempt to connect and develop a com-
mon theory for the different modular heap analyses proposed in
the past.

• We formulate our framework as an abstract interpretation and
prove the correctness and termination properties.

• We present several correctness preserving transformations that
are applicable to all instances of the framework.

• We formalize four existing modular heap analyses as abstractions
of instances of our framework, thereby provide a proof of correct-
ness and termination for the analyses. The formalization exposes
the relationships between the analyses and provides ways of im-
proving and modifying them.

• We present an empirical evaluation of the framework by analyzing
ten open source C] applications with six different configurations
of the framework. We used three client analyses, namely, Purity
and Side Effects Analysis, Escape Analysis and Call-graph Anal-
ysis to measure the precision and scalability of each of the six
configurations.



2
An Informal Overview

The distinguishing aspect of the analyses belonging to our framework
is the use of a graph based representation of state transformations.
We illustrate this using the example shown in Fig. 2.1(a) which was
introduced in the introduction.

The transformer graph τ shown in Fig. 2.1(b) summarizes the heap-
effect of the procedure P. We omit the null node from the figures to keep
them simple. Vertices in a transformer graph are of two types: internal
(shown as circles with a solid outline) and external nodes (shown as
circles with a dashed outline). Internal nodes represent new heap ob-
jects created during the execution of the procedure. E.g., vertex n0 is

P (x, y) {
[1] t = new ();
[2] x.next = t;
[3] t.next = y;
[4] retval = y.next;

}
(a) (b)

Figure 2.1: (a) A procedure P . (b) Summary graph τ of the procedure P .

276



277

an internal node and represents the object allocated in line 1. External
nodes, in many cases, represent objects that exist in the heap when
the procedure is invoked (but they could also represent nodes allocated
inside a method as explained in the following). In our example, n1, n2,
and n3 are external nodes. Specifically, n1 represents the object pointed
to by formal parameter x when the procedure begins execution, as in-
dicated by the arrow from x to n1. Similarly, n2 represents the object
pointed to by formal parameter y when the procedure begins execution.

Edges in the graph are also classified into internal and external
edges, shown as solid and dashed edges respectively. The edges n1 → n0
and n0 → n2 are internal edges. They represent updates performed
by the procedure (i.e., new points-to edges added by the procedure’s
execution) in lines 2 and 3. External edges correspond to reads, the
edge n2 → n3 is an external edge created by the dereference “y.next”
in line 4. This edge helps identify the node(s) that the external node
n3 represents: namely, the objects obtained by dereferencing the next
field of objects represented by n2.

In simple cases, internal nodes are used to represent objects created
during the execution of the procedure, while external nodes are used to
represent pre-existing objects (in the initial state when the procedure
begins executing). More generally, external nodes are used to denote
objects referenced via an access path starting from one of the procedure
parameters. Thus, one may loosely associate an external node with a
set of access paths.

A transformer graph τ can be interpreted as a procedure Pτ . Fig. 2.2
depicts the procedure corresponding to the transformer graph shown
in Fig. 2.1(b). Every external or internal node w in a transformer
graph τ corresponds to a variable var(w). If w is an internal node
then var(w) is assigned a newly created object. Every external edge
〈u, f, w〉 corresponds to a field-read statement var(w) = var(u).f and
every internal edge 〈u, f, w〉 corresponds to a field-write statement
var(u).f = var(w). In the simplest case, the reads and writes encoded
by the transformer graph via external and internal edges are assumed
to happen in any order any number of times. Clearly, the procedure Pτ
is an abstraction of the procedure P .
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(x, y) => {
[1] while(*) {
[2] if(*) var(n1) = x;
[3] if(*) var(n2) = y;
[4] var(n0) = new ();
[5] if(*) var(n1).next = var(n0);
[6] if(*) var(n0).next = var(n2);
[7] if(*) var(n3) = var(n2).next;
[8] }
[9] t = var(n0);
[10] retval = var(n3);

}

Figure 2.2: Interpretation of τ as a procedure Pτ . (p1, . . . , pn) => {B} denotes
a procedure with parameters p1, . . . , pn and body B. (*) denotes non-deterministic
choice.

(a) Input graph g1 (b) Output graph g′1 = τ〈g1〉

(c) Input graph g2 (d) Output graph g′2 = τ〈g2〉

Figure 2.3: Result of applying of τ on two different concrete states.
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The above described interpretation of the transformer graph as a
procedure may explain how it captures the transformation of every
concrete state simultaneously. For example, consider an invocation of
procedure P in an initial state given by graph g1 shown in Fig. 2.3(a).
The summary transformer when applied on the graph g1 results in g′1 =
τ〈g1〉 which represents the state after the procedure’s execution (shown
in Fig 2.3(b)). The graph g′1 is a conventional shape (or points-to)
graph that represents a set of concrete states. The transformed graph
g′1 represents the possible outputs of the procedure Pτ when executed
with the concrete state g1. Since the procedure Pτ is an abstraction of
the procedure P , g′1 is an abstraction of the output of the procedure P
when executed with the concrete state g1.

An important aspect of the transformer graphs is that it can be
used even in the presence of potential aliases in the input (or cut-
points [Rinetzky et al., 2005]). Consider the input state g2 shown in
Fig. 2.3(c), in which parameters x and y point to the same object u1.
Executing the procedure Pτ on the input graph g2 will result in the set
of concrete graphs represented by the shape graph shown in Fig. 2.3(d).
Fig. 2.3(d) is a conservative approximation of the output of the proce-
dure P (Fig. 1.2(b) shows the actual output).

Transformer graphs Vs Shape graphs Semantically, transformer
graphs represent state transformations whereas shape graphs represent
concrete states. However, one might still wonder that since vertices
in a transformer graph represent concrete objects and edges represent
points-to relations between objects, it may be appropriate to refer to
transformer graphs also as shape graphs. While the exact terminology
is not important, what is important is to be aware of the differences
between transformer graphs and conventional shape graphs.

Unlike conventional shape graphs, the vertices and edges in a trans-
former graph represent different concrete objects in different contexts.
For example, in the transformer graph shown in Fig. 2.1, n1 represents
o1 when the input graph is g1 shown in Fig. 2.3(a), and represents u1
when the input graph is g2 shown in Fig. 2.3(c). Furthermore, unlike
conventional shape graphs, a single concrete object may be represented
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by multiple nodes in the transformer graphs. For instance, in the trans-
former graph shown in Fig. 2.1 when the input concrete graph is g2
shown in Fig. 2.3(c), the nodes n1 and n2 represent the same concrete
object u1, and the nodes n3 and n0 represent the object newly allocated
by the procedure.

As a consequence, the absence of an edge from an abstract node (say
u) to an abstract node (say v) does not imply that objects represented
by u cannot point to the objects represented by v, since the objects
may have other representatives in the transformer graph.

For these reasons, many properties that hold for a shape graph do
not hold for a transformer graph. For example, even if two variables
point to non-intersecting sets of nodes in a transformer graph, it does
not imply that the variables cannot alias (in any context).

The above informal description highlights the following properties
of the transformer graphs:

• Transformer graphs are abstractions of state transformers, or
equivalently, procedures. To think of them as abstractions of state
is flawed.

• Transformer graphs track the (pointer valued) reads and writes
performed by the procedure they summarize using internal and
external edges, respectively.

• Transformer graphs can be applied to any concrete state irrespec-
tive of the aliasing between the heap cells. However, the output
is a conservative approximation as the transformer graphs are
abstractions of the procedure they summarize.



3
The Language and Concrete Semantics

Notation and Terminology Given a function f : A 7→ 2 B, the func-
tion f̂ : 2 A 7→ 2 B is defined by: f̂(S) =

⋃
x∈S f(x). Given two functions

f1 : A 7→ 2 B, f2 : B 7→ 2 C we use (f1 ◦ f2)(x) to denote the compo-
sition of f1 with f2 i.e., f̂2(f1(x)). Note that f1 is applied first in the
composition f1 ◦ f2. An element of A 7→ 2 B corresponds to a relation
between A and B, and ◦ represents relational composition.

Syntax A program consists of a set of procedures. A procedure P
consists of a control-flow graph, with an entry vertex entry(P ) and an
exit vertex exit(P ). The entry vertex has no predecessor and the exit
vertex has no successor. Every edge of the control-flow graph is labelled
by a primitive statement. The set of primitive statements are shown in
Fig. 3.1. Every procedure ends at a special primitive statement exit. We
use u S→ v to indicate an edge in the control-flow graph from vertex u
to vertex v labelled by statement S. We use a simple language in which
all variables and fields are of pointer type.

Concrete Semantics Domain Let Vars denote the set of variable
names used in the program, partitioned into the following disjoint sets:

281
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the set of global variables Globals, the set of local variables Locals
(assumed to be the same for every procedure), and the set of formal
parameter variables Params (assumed to be the same for every proce-
dure). Let Fields denote the set of field names used in the program.
Every statement in the program has a label belonging to the set Labels.
Let Nc be an unbounded set of locations used for dynamically allocated
objects. (We will refer to an element of Nc as a vertex, node, or ob-
ject.) We use a fairly common representation of the concrete state as a
concrete (points-to or shape) graph.

A concrete state or points-to graph g ∈ Gc is a triple (V,E, σ), where
V ⊆ Nc represents the set of objects in the heap, E ⊆ V×Fields×V (a
set of labelled edges) represents values of pointer fields in heap objects,
and σ ∈ Σc = Vars 7→ V represents the values of program variables. In
particular, (u, f, v) ∈ E iff the f field of the object u points to object
v. (Note that this represents the state from the perspective of a single
procedure. In particular, this state does not include a call-stack, since
the modular semantics can be defined without explicitly introducing a
stack.) We assume Nc includes a special element null. Variables and
fields of new objects are initialized to null.

Our concrete domain C = Gc 7→ 2Gc is the set of functions that
map a concrete state to a set of concrete states. We define a partial
order vc on C as follows: fa vc fb iff ∀g ∈ Gc.fa(g) ⊆ fb(g). Let tc
denote the corresponding least upper bound (join) operation defined
by: fa tc fb = λg.fa(g) ∪ fb(g). The subscript c may be omitted when
no confusion is likely.

Lemma 3.1. (C,vc,tc) is a complete lattice with the least element
λgc.∅.

Concrete Semantics Every primitive statement S has a semantics
[[S]]c ∈ C, as shown in Fig. 3.1. Every statement has a label ` ∈ Labels
which is not used in the concrete semantics and is, hence, omitted
from the figure. The execution of most statements transforms a con-
crete state to another concrete state, but the signature allows us to
model non-determinism (e.g., dynamic memory allocation can return
any unallocated object). The signature also allows us to model exe-
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Statement S Concrete Semantics [[S]]c(V,E, σ)

v1 = v2 {(V,E, σ[v1 7→ σ(v2)]}

v = new C {(V ∪ {n},E ∪ {n} × Fields × {null},
σ[v 7→ n]) | n ∈ Nc \ V}

v1.f = v2 {(V, {〈u, l, v〉 ∈ E | u 6= σ(v1)
∨l 6= f} ∪ {〈σ(v1), f, σ(v2)〉}, σ)}

v1 = v2.f {(V,E, σ[v1 7→ n]) | 〈σ(v2), f, n〉 ∈ E}

exit {(V,E, λx. if x ∈ (Params ∪ Locals) then null
else σ(x))}

Call P (v1, · · · , vk) Semantics defined below

Figure 3.1: Primitive statements and their concrete semantics.

cution errors such as null-pointer dereference, though the semantics
presented simplifies error handling by treating null as just a special
object. We will describe the semantics of a procedure-call statement
along with concrete semantic equations.

We now define a concrete summary semantics [[P ]]\ ∈ C for every
procedure P . The semantic function [[P ]]\ maps every concrete state gc
to the set of concrete states that the execution of P with initial state
gc can produce.

We introduce a new variable ϕu for every vertex in the control-flow
graph (of any procedure) and a new variable ϕu,v for every edge u→ v

in the control-flow graph. The semantics is defined as the least fixed
point of the equations shown in Fig. 3.2. The value of ϕu in the least
fixed point is a function that maps any concrete state g to the set
of concrete states that arise at program point u when the procedure
containing u is executed with an initial state g. Similarly, ϕu,v captures
the states after the execution of the statement labelling edge u→ v.

Note that the above collection of equations is similar to those used
in Sharir and Pnueli’s functional approach to interprocedural analy-
sis [Sharir and Pnueli, 1981] (extended by [Knoop and Steffen, 1992]),
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ϕv = λg.{g} v is an entry vertex (3.1)
ϕv = GCc(

⊔
c{ϕu,v | u→ v}) v is not an entry vertex (3.2)

ϕu,v = GCc(ϕu ◦ [[S]]c) where u S→ v

and S is not a call-stmt (3.3)

ϕu,v = GCc(ϕu ◦ CallS(ϕexit(Q))) where u S→ v

and S is a call to proc Q (3.4)

Figure 3.2: Concrete semantics equations.

with the difference that we are defining a concrete semantics here, while
[Sharir and Pnueli, 1981] is focused on abstract analyses. The equations
are a simple functional version of the standard equations for defining
a collecting semantics, with the difference that we are simultaneously
computing a collecting semantics for every possible initial state of the
procedure’s execution.

The first three equations are self explanatory except for the function
GCc : C 7→ C, which is the garbage collection operation lifted to the
domain of state transformers in C and is defined below.

GCc(f) = λgi.{RemoveUnreach(gi, go) | go ∈ f(gi)}
RemoveUnreach (Vi,Ei, σi) (Vo,Eo, σo) =

let L = {x ∈ V | x is not reachable from σ̂(Vars) ∪ Vi }
(Vo \ L,Eo \ {〈u, f, v〉 | u ∈ L}, λx.σo(x) \ L)

Given a function f ∈ C, GCc removes from the output graphs in the
range of f the objects that are not reachable from the objects in the
input graph and from the variables in the program. The objects in the
input graph are commonly referred to as the prestate [Salcianu and
Rinard, 2005].

Since the exit statement resets all local variables and parameters
to null in the summary computed at the exit point of a procedure, the
output graphs would have only objects that are reachable through the
objects in the input graph or through some global variable. In other
words, all the objects that are locally created by the procedure and are
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pushS(σ) = λv. v ∈ Globals → σ(v)
| v ∈ Locals → null
| v = Param(i)→ σ(ai)

popS(σ, σ′) = λv. v ∈ Globals → σ′(v)
| v ∈ Locals ∪ Params → σ(v)

CallS(f) = λ(V,E, σ).{(V′,E′, popS(σ, σ′))
| (V′,E′, σ′) ∈ f(V,E, pushS(σ))}

Figure 3.3: Definition of the functions pushS ∈ Σc 7→ Σc, popS ∈ Σc×Σc 7→ Σc, and
CallS for a procedure call statement “Call Q(a1,...,ak)”. In the figure, Param(i)
denotes the i-th formal parameter.

not accessible in the callers are removed from the output graphs of a
summary function f .

Consider Eq. 3.4, corresponding to a call to a procedure Q. The
value of ϕexit(Q) summarizes the effect of the execution of the whole pro-
cedure Q. In the absence of local variables and parameters, we can de-
fine the right-hand-side of the equation to be simply GCc(ϕu◦ϕexit(Q)).

The function CallS(f), defined in Fig. 3.3, models the semantics
of the parameter passing mechanism. Given a concrete state (V,E, σ)
before the call, we reset the values of all local variables to null and as-
sign the formal parameter variables to the values of the corresponding
actual arguments. We refer to this operation as pushS as it corresponds
to pushing the arguments on to the call stack and creating a new acti-
vation frame for the callee. We then apply the callee summary f that
captures the effect of the procedure call on the calling context. Finally,
the local variables and parameters are restored to their values before
the call which corresponds to poping the activation frame of the callee.
Hence, we refer to this operation as popS . For simplicity, we omit return
values from our language.

We define [[P ]]\ to be the value of ϕexit(P ) in the least fixed point of
equations (3.1)-(3.4). Specifically, let VE denote the set of vertices and
edges in the control flow graph of a program. The above equations can
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be expressed as a single equation ϕ = F \(ϕ), where F \ is a monotonic
function from the complete lattice VE 7→ C to itself. Hence, F \ has a
least fixed point by Tarski’s fixed point theorem.

The goal of the analysis is to compute an approximation of the set
of quantities [[P ]]\ using abstract interpretation.



4
The Analysis Framework

In the rest of the article we present several abstract analyses that ap-
proximate the concrete semantics presented in Chapter 3.

We represent an abstract analysis by a pair (A,FA), where A is an
abstraction of the concrete domain C, and FA maps the vertices and
edges of control flow graphs to abstract transfer functions in An → A
(for some positive integer n). For a vertex v of a control flow graph its
transfer function is given by FA(v) (which is typically a join operation).
Similarly, for an edge u S→ v of a control flow graph, its transfer function
is given by FA(S).

The abstract analyses we present are parametric: that is, their do-
mains and transfer functions have parameters. Instantiating the pa-
rameters using suitable definitions produces an instance. The proper-
ties that hold for the parametric semantics (like correctness and termi-
nation) carry over to the instances. Such parametric analyses can be
considered as a framework that represents a family of abstract analy-
ses. In this section, we present and discuss the most general abstract
analysis (AG ,FG).

287
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The Abstract Graph Domain We now formally define the fairly stan-
dard abstract shape (or points-to) graphs used to represent a set of con-
crete states. The domain is parameterized by a set Na, the universal
set of all abstract graph nodes. For example, many analyses identify
an abstract graph node using the label of the allocation-site. In this
case, we let Na be the set of all statement labels. An abstract shape
graph g ∈ Ga is a triple (V,E, σ), where V ⊆ Na represents the set of
abstract heap objects, E ⊆ V×Fields×V (a set of labelled edges) repre-
sents possible values of pointer fields in the abstract heap objects, and
σ ∈ Vars 7→ 2V is a map representing the possible values of program
variables.

Given a concrete graph g1 = 〈V1,E1, σ1〉 and an abstract graph
g2 = 〈V2,E2, σ2〉 we say that g1 can be embedded into g2, denoted
g1 � g2, if there exists a function h : V1 7→ V2 such that

〈x, f, y〉 ∈ E1 ⇒ 〈h(x), f, h(y)〉 ∈ E2 (4.1)
∀v ∈ Vars. σ2(v) ⊇ {h(σ1(v))} (4.2)

The concretization γG(ga) of an abstract graph ga is defined to be
the set of all concrete graphs that can be embedded into ga:

γG(ga) = {gc ∈ Gc | gc � ga}

4.1 The Abstract Functional Domain

A transformer graph τ ∈ AG is a tuple (EV,EE, σin, IV, IE, σ, ), where
EV ⊆ Na is the set of external vertices, IV ⊆ Na is the set of internal
vertices, EE ⊆ V ×Fields× EV is the set of external edges, where V =
EV∪IV, IE ⊆ V ×Fields×V is the set of internal edges, σin ∈ Vars 7→ 2V
is a map representing the values of parameters and global variables in
the initial state, and σ ∈ Vars 7→ 2V is a map representing the possible
values of program variables in the transformed state.  ⊆ IE × EE is
a may happen before relation that tracks the relative ordering between
the internal and external edges. 〈u, f, w〉  〈x, f, y〉 means that the
write statement var(u).f = var(w) may precede the read statement
var(y) = var(x).f in the procedure Pτ .
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Recall that in the informal overview of the transformer graph pre-
sented in Chapter 2, the program representation of a transformer graph
shown in Fig. 2.2 ignores the control-flow between the field-read and
field-write statements i.e. they were assumed happen in any order. A
natural way to make the abstraction Pτ more precise is to preserve
some of the control flow that exists in the procedure P in Pτ . For this
purpose, we augment our abstract domain with a happens-before re-
lation ( ) that tracks the ordering between the external and internal
edges.

It turns out that only the read-write ordering i.e., the ordering
between external and internal edges will affect the precision of a trans-
former graph. The write-write ordering (ordering between internal
edges) or the read-read ordering (ordering between external edges) do
not affect the precision. Though, unlike reads, writes do not commute,
the ordering between them can be ignored in the transformer graphs
as all writes in Pτ are non-deterministic writes. (Notice that the writes
are guarded by non-deterministic if statements in Pτ .)

Definition 4.1. Let τ = (EV,EE, σin, IV, IE, σ, ) be a transformer
graph. A node u is said to be a parameter node if u ∈ range(σin)

Definition 4.2. Let τ = (EV,EE, σin, IV, IE, σ, ) be a transformer
graph. Escaping(τ) = {y | ∃x ∈ range(σin) s.t. y is reachable from
x via IE ∪ EE edges }

Intuitively, if τ is a transformer graph at some program point then
Escaping(τ) corresponds to the set of objects that may be reachable
from some prestate of P at that program point. (The concrete state
before an invocation of P is referred to as a prestate of P ). 1

Let f ∈ C be a concrete summary. Let VE represent the union of
all the vertices in f(g) that are reachable from the vertices in g, for

1The definition of escaping we have presented here slightly differs from the com-
mon usage of the term escaping which also includes the objects reachable from the
global variables at a given program point. Our definition does not include such ob-
jects if they are not reachable from the prestate. This definition is motivated by our
usage context which is explained in section 5. This definition is a generalization of
the escape set of the WSR analysis.
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each g ∈ Gc. For any transformer graph τ that is an abstraction of f ,
Escaping(τ) is an abstraction of VE .

Converting a Transformer graph τ to a Procedure Pτ

Interpreting a transformer graph as program helps understand the in-
tuition behind several operations on the transformer graph. Fig. 4.1
formally presents the schema of the procedure Pτ corresponding to a
transformer graph τ = (EV,EE, σin, IV, IE, σ, ). We use the program
representation of a transformer graph only to convey the intuition be-
hind the operations on the transformer graph but do not use it to
formally define any of the operations.

For simplicity, we assume that the ordering relation  = IE × EE
i.e., any write may happen before any read, and only informally de-
scribe how to extend the definition to accommodate a more precise
ordering relation. In Fig. 4.1, the statements generated from the σin
and the internal and external edges are guarded by non-deterministic
if statements implying that they may or may not execute. The vari-
able assignment statements generated from σ are enclosed by a non-
deterministic case statement implying that at least one of these state-
ments must execute. These constructs precisely capture the semantics
of the components of the transformer graphs.

One way to extend this conversion to support a more a precise
ordering relation  (that indicates that certain writes cannot happen
before certain reads) is to associate with every write statement W a
boolean variable bW , initialized to false. The variable is set to true after
W inside the if(∗) construct that containsW . Every read statement R
is guarded by the condition ¬(b1 ∨ . . .∨ bn) where b1, b2, . . . , bn are the
boolean variables of the write statements that do not happen before
R.

4.2 Concretization function

We now define the concretization function γT : AG → C. Given a
transformer graph τ = (EV,EE, σin, IV, IE, σ, ) and a concrete graph
gc = (Vc,Ec, σc), we need to construct a graph representing the trans-
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(p1, p2, . . . , pn) => {
while(*) {
Init(p1)
...

Init(pk)
var(z1) = new ();
...
var(zs) = new ();
if(*)
var(u1) = var(w1).f1;
...

if(*)
var(un) = var(wn).fn;

if(*)
var(x1).gi = var(y1);
...

if(*)
var(xm).gm = var(ym);

}
Fin(v1)
...

Fin(vt)
}

Init(pi) = {
//let σin(pi) = {a1, · · · , aj}
if(*) var(a1) = pi;
...

if(*) var(aj) = pi;
}

Fin(vi) = {
//let σ(vi) = {b1, · · · , bj}
case {
(*) → vi = var(b1);
...

(*) → vi = var(bj);
}

}

Figure 4.1: The program Pτ corresponding to a transformer graph τ =
(EV,EE, σin, IV, IE, σ, ), where Params ∪ Globals = {p1, p2, . . . , pk}, Vars =
{v1, v2, . . . , vt}, IV = {z1, · · · , zs}, EE = {〈u1, f1, w1〉, . . . , 〈um, fm, wn〉}, IE =
{〈x1, g1, y1〉, . . . , 〈xs, gs, ym〉}. In the figure, Init and Fin are macros.
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formation of gc by τ . As explained in section 4.1, the transformer graph
can be interpreted as a program Pτ in which every internal and exter-
nal vertex u becomes a variable var(u) and every internal and external
edge becomes a read or write statement. The output of the procedure
Pτ when executed with the concrete state gc is the transformation rep-
resented by τ . However, we define the concretization function mathe-
matically without explicitly constructing the procedure Pτ .

Given a graph gc ∈ C, γT (τ)(gc) is defined in two steps: in the first
step, we compute the set of vertices each node in τ represents, which is
equivalent to computing the points-to set for each of the variables in the
program Pτ . In the second step, we compute an abstract graph ga at the
exit of the procedure Pτ using the points-to sets of the variables. These
two steps together constitute the operation τ〈gc〉 (which was illustrated
in the Fig. 2.3). The result of γT (τ)(gc) is the concrete image of τ〈gc〉,
which is the set of all graphs that can be embedded in τ〈gc〉.

We now define a function η[[τ, gc]] : (IV ∪ EV) 7→ 2(IV∪Vc) that maps
each node in the transformer graph τ to a set of concrete nodes in gc as
well as internal nodes in τ . (We ignore the implicit parameters τ and gc
of η whenever it is clear from the context). For any node u ∈ (EV∪ IV),
η(u) is equivalent to the points-to set of var(u) in Pτ . η is defined as
the least solution of the following set of constraints over the variable µ.

v ∈ IV⇒ v ∈ µ(v) (4.3)
v ∈ σin(X)⇒ σc(X) ∈ µ(v) (4.4)

〈u, f, v〉 ∈ EE, u′ ∈ µ(u), 〈u′, f, v′〉 ∈ Ec ⇒ v′ ∈ µ(v) (4.5)
〈u, f, v〉 ∈ EE, 〈u′, f, v′〉 ∈ IE,

µ(u) ∩ µ(u′) 6= ∅,
〈u′, f, v′〉 〈u, f, v〉

⇒ µ(v′) ⊆ µ(v) (4.6)

Explanation of the constraints:
An internal node v maps to itself (Eq. 4.3) as it represents a newly

allocated object. If X is a parameter then an external node v ∈ σin(X)
represents the node pointed to by X in the input state gc (Eq. 4.4). This
is because, by the construction of Pτ , var(v) will be assigned to X and
hence the points-to set of var(v) will include the targets of X.
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An external edge 〈u, f, v〉 corresponds to a read statement var(v) =
var(u).f in Pτ . If a concrete node u′ belongs to the points-to set of
var(u) (i.e. u′ ∈ µ(u)) and if u′’s f field points-to v′ in the input
concrete graph (i.e, 〈u′, f, v′〉 ∈ Ec) then v′ belongs to the points-to set
of var(v) (i.e. v′ ∈ µ(v)) as given by Eq. 4.5. Note that in the program
Pτ no strong updates are possible. Therefore, the edge 〈u′, f, v′〉 could
not be removed by any statement in the program.

Finally, a read statement var(v) = var(u).f implies that var(v)
may point to objects assigned to the f field of var(u) or its aliases
during the procedure’s execution. Eq. 4.6 handles this case. The pre-
condition identifies var(u′) as a potential alias for var(u) by checking if
their points-to sets intersect, and identifies the writes performed on the
f field of var(u′) that precede the read: var(v) = var(u).f , using the
happens before ( ) relation. For every such write: var(u′).f = var(v′),
the objects pointed to by var(v′) are included in the points-to set of
var(v).

Given a mapping function η, we define the transformed abstract
graph τ〈gc〉 as 〈V′,E′, σ′〉, where

V′ = Vc ∪ IV (4.7)

E′ = Ec ∪
⋃

〈u,f,v〉∈IE
η(u)× {f} × η(v) (4.8)

σ′ = λx.
⋃

u∈σ(x)
η(u) (4.9)

The transformed graph is an abstract graph that represents all con-
crete graphs that can be embedded in the abstract graph. Thus, we
define the concretization function as below:

γT (τa) = λgc.γG(τ〈gc〉).

Containment Ordering A natural “precision ordering” exists on
AG , where τ1 is said to be more precise than τ2 iff γT (τ1) vc
γT (τ2). However, this ordering is not of immediate interest to us.
(It is not even a partial order, and is hard to work with computa-
tionally.) We utilize a stricter ordering in our abstract fixed point
computation. Let τ1 = (EV1,EE1, σin1, IV1, IE1, σ1, 1) and τ2 =
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(EV2,EE2, σin2, IV2, IE2, σ2, 2). We define a relation vco on AG by:
τ1 vco τ2 iff every component of τ1 is contained in the corresponding
component of τ2, i.e, EV1 ⊆ EV2, EE1 ⊆ EE2, ∀x.σin1(x) ⊆ σin2(x),
IV1 ⊆ IV2, IE1 ⊆ IE2, ∀x.σ1(x) ⊆ σ2(x) and  1⊆ 2.

Lemma 4.1. vco is a partial-order on AG with a join operation, de-
noted tco. Further, γT is monotonic with respect to vco: τ1 vco τ2 ⇒
γT (τ1) vc γT (τ2).

Abstraction function αT It can be observed that there exists multiple
elements in the abstract domain representing the same concrete value.
There is no specific way of making a distinguishing choice among the
possible alternatives. Hence, we do not define an abstraction function
αT .

Our abstract interpretation formulation uses only a concretization
function. While this form is less common, it is sufficient to establish the
soundness of the analysis as explained in [Cousot and Cousot, 1992],
section 7. Specifically, a concrete value f ∈ C is correctly represented
by an abstract value τ ∈ AG , denoted f ∼ τ , iff f vc γT (τ). We seek
to compute an abstract value that correctly represents the least fixed
point of the concrete semantic equations.



5
Parametric Abstract Semantics

Fig. 5.1 shows the constituents of the most general abstract seman-
tics. The equations 5.1–5.4 are the abstract semantics equations that
approximate the concrete semantics equations 3.1–3.4. We introduce a
variable ϑu for every vertex u in the control-flow graph denoting the
abstract value at a program point u, and a variable ϑu,v for every edge
u → v in the control-flow graph denoting the abstract value after the
execution of the statement in edge u→ v.

We denote using τid (defined shortly) the transformer graph rep-
resenting the identity function. FG(S) is the abstract semantics (or
transfer function) of a statement S. SimplifyS is a function from AG to
AG that reduces the number of vertices in the input graph (see The-
orem 5.6). GCG is an abstract garbage collection operation analogous
to the concrete garbage collection operation (see Theorem 5.7).

The operations SimplifyS and GCG have a special property that
they can be applied over the abstract value of any edge u S→ v or
vertex of the control flow graph without affecting the correctness or
termination of the analysis. This is the reason for separating these
operations from the semantics equations in Fig. 5.1. Hence, Fig. 5.1
represents a family of abstract semantics equations that extend the

295
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Semantics Equations

ϑv = τid v is an entry vertex (5.1)

ϑv = tco{ϑu,v | u
S→ v} v is not an entry vertex (5.2)

ϑu,v = FG(S)(ϑu) where u S→ v,S is not a call-stmt (5.3)

ϑu,v = FG(S)(ϑu, ϑexit(Q)) where u S→ v,S is a call to Q (5.4)

Correctness Preserving Operations

SimplifyS ∈ AG 7→ AG
GCG ∈ AG 7→ AG

Figure 5.1: Constituents of the parametric abstract semantics.

equations 5.1–5.4 by composing Simplify and GCG with the transfer
functions of any arbitrary set of edges and vertices of the control flow
graphs.

5.0.1 Parameters of the Abstract Semantics

Recall that the domain AG defined earlier is parameterized by the set
Na. Similarly, the abstract semantics is also parameterized by the fol-
lowing functions which are used while creating abstract nodes. (In the
following, (2 Na \∅) denotes the power set of Na without the empty set.)

(a) An initialization function InitBind : (Params ∪ Globals) 7→
(2 Na \ ∅) that initializes Params and Globals to abstract vertices.

(b) An abstract vertex creation function AllocS : (optional Na) 7→
(2 Na \∅), where S is a statement. This function is used for creating new
abstract objects. The function is passed an optional candidate vertex
and returns a set of vertices representing newly created objects.

(c) An abstract vertex load function LoadS : Na × Fields ×
(optional Na) 7→ (2 Na \ ∅), where S is a statement. This function
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is used to model the reads performed on abstract objects. The function
is passed a vertex that is dereferenced, the dereferenced field and an
optional candidate vertex. It returns a set of vertices representing the
dereferenced object.

In most cases, InitBind, LoadS and AllocS return a single abstract
vertex. Notice that the parameters are defined for each program state-
ment. This allows the parameter functions to have a statement spe-
cific definition. The parameters help define a generic semantics that is
completely oblivious to the naming strategies used to name abstract
vertices.

In fact, different instances of our framework use different naming
strategies. For instance, the WSR analysis initializes parameter and
global variables to abstract vertices that have the same name as the
variables. The internal and external vertices are named using the labels
of the statements that resulted in their creation. Formally, this corre-
sponds to the following definition of the parameters in our framework.

Na = {nx | x ∈ Labels ∪ Params ∪Globals}
InitBind = λx.{nx}

Alloc`:v=new() = λx.{n`}
Load`:v1 =v2 .f = λ(x, f, y).{n`}

The correctness of the abstract semantics does not depend on the
definitions of the parameters. The termination of the abstract semantics
only requires the parameter definitions to be terminating functions.
The abstract semantics of the framework (presented shortly) uses the
parameters in a controlled way in order to ensure these properties.
However, the scalability and the precision of the abstract semantics
depend on the definition of the parameters to a large extent.

This we believe is the main practical advantage of the framework.
This allows us to tune the abstract semantics to the required level of
precision and scalability without having to be concerned with the cor-
rectness or termination of the analysis. As we will illustrate later with
concrete instances, the framework offers a large spectrum of options to
experiment with.
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Stmt S FG(S)(EV,EE, σin, IV, IE, σ, )

v1 = v2 (EV,EE, σin, IV, IE, σ[v1 7→ σ(v2)], )

v = new C let N = AllocS() in
let IEnew = N × Fields × {null} in
(EV,EE, σin, IV ∪N, IE ∪ IEnew, σ[v 7→ N ], )

v1.f = v2 (EV,EE, σin, IV, IE ∪ σ(v1)× {f} × σ(v2), σ, )

v1 = v2.f

let g = λu.

(∃x.〈u, f, x〉 ∈ EE)→
⋃

〈u,f,x〉∈EE
LoadS(u, f, x)

| LoadS(u, f) in
let EVnew =

⋃
u∈σ(v2)

g(u) in

let EEnew =
⋃

u∈σ(v2)
{u} × f × g(u) in

(EV ∪ EVnew,EE ∪ EEnew, σin, IV, IE, σ[v1 7→ EVnew],
 ∪ {(ie, ee) | ie ∈ IE, ee ∈ EEnew})

exit
(EV,EE, σin, IV, IE,

λx.(x ∈ Params ∪ Locals)→ null | σ(x))

Figure 5.2: Abstract semantics of primitive instructions.

5.1 Abstract Semantics of Primitive Statements

The transformer graph τid used in Fig. 5.1 is the transformer graph
representing the identity function and is defined as follows.

τid = (EV, ∅, σin, ∅, ∅, σin, ∅), where

EV =
⋃

x∈Params∪Globals
InitBind(x)

σin = λv. v ∈ Params ∪Globals → InitBind(v) | v ∈ Locals → {null}

Fig. 5.2 shows the transfer functions for the primitive statements.
The function FG(S) can be considered as the most basic abstract se-
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mantics without any optimizations. The transfer function of a variable
assignment statement v1 = v2 makes the targets of v1 equal to the
targets of v2.

Consider the transfer function of an object allocation statement
v = new C. The transfer function creates new abstract nodesN for rep-
resenting the newly allocated object using the Alloc parameter. (Alloc
will generally create a single abstract node to represent the newly cre-
ated object. However, the definition also permits the use of multiple
abstract objects). The abstract nodes are added to the set of inter-
nal vertices as they represent an object created within the analysed
procedure.

Recall that in our concrete semantics the fields of the newly created
object are initialized to null. We capture this effect in the abstract se-
mantics by creating new edges from the abstract nodes N to the null
object. These edges are added to the set of internal edges as they rep-
resent writes. Finally, the abstract nodes N are made the new targets
of the variable v.

The transfer function of a field-write statement v1.f = v2 is straight-
forward. It creates new internal edges from the targets of v1 to the
targets of v2 labelled by the field f . The internal edges basically record
that the field f of the targets of v1 are assigned to the targets of v2.

The transfer function of a field-read statement v1 = v2.f is quite
involved. However, in essence, the goal is to create external vertices to
model the targets of v2.f , and to create external edges to record that
the field f of the targets of v2 are read. One important question is how
to choose the external vertices to represent the targets of v2.f? The
choice of the external vertices may affect the precision and scalability
of the analysis.

For example, consider a transformer graph τ in which the targets
of v2 are two nodes u and v i.e, σ(v2) = {u, v}. Also, say that there
exists two variables v3 and v4 whose targets are u and v, respectively.
That is, σ(v3) = {u} and σ(v4) = {v}. If we use a single node w as
the target of both the external edges starting from u and v, we end
up collapsing the targets of v3.f and v4.f as well. This would result
in loss of precision. On the other hand, using two different vertices
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as the targets of edges starting from u and v will increase the sizes
of the transformer graph, which may increase the running time of the
analysis. Therefore, we parameterize the creation of the targets of the
external edges in the transfer function of a field-read statement. Most
of the sophistication in the transfer function presented in Fig. 5.2 is for
achieving this parameterization. We describe the transfer function in
detail below.

We refer to a vertex that belongs to σ(v2) as a dereferenced ver-
tex. The function g, defined in Fig. 5.2, determines the targets of the
f field of a dereferenced vertex u using the parameter Load. If u al-
ready has external edges on field f of the form 〈u, f, x〉 then, for every
such edge, we apply the LoadS parameter over the triple (u, f, x). This
allows us to define a semantics in which the external vertices created
during the previous field-read statements are reutilized. For example,
if LoadS(u, f, x) is defined as {x} then the targets of the previous reads
of the field f of the vertex u would be reused to represent the targets
of the current read. On the other hand, if there exists no external edge
from u on field f then we apply Load on (u, f) as we do not have a
candidate vertex to reuse.

Once we know the targets of the f fields of the dereferenced ver-
tices, the rest of the semantics is straight forward. We add the targets
of all the dereferenced vertices, computed by the function g, to the ex-
ternal vertex set. We also make them the new targets of v1. For every
dereferenced vertex u, we create external edges from u to the vertices
in g(u). Note that the internal edges existing in the transformer graph
before the field-read statement represent writes that have happened
before the current read. We update the happens before relation  to
reflect this fact.

5.2 Abstract Semantics of Procedure Call

Let S : Q(a1, a2, · · · , an) be a call statement. Let τr be the transformer
graph in the caller before the statement S and let τe be the abstract
summary of Q. The function FG(S)(τr, τe) is defined as follows:

FG(S)(τr, τe) = pop]S(τe〈〈push]S(τr)〉〉S , τr) (5.5)
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push]S(σ) = λv. (v = Param(i)→ σ(ai)
| v ∈ Globals → σ(v)
| v ∈ Locals → null)

pop]S(σ, σ′) = λv. (v ∈ Params ∪ Locals → σ(v)
| v ∈ Globals → σ′(v))

push]S(τ) = (EV,EE, σin, IV, IE, push]S(σ))

pop]S(τ ′, τ) = (EV′,EE′, σin′, IV′, IE′, pop]S(σ, σ′))

Figure 5.3: Definitions of the abstract push and pop operations push]S and pop]S .
In the figure, S is the call statement Q(a1, · · · , an), τ = (EV,EE, σin, IV, IE, σ, )
and τ ′ = (EV′,EE′, σin′, IV′, IE′, σ′).

where, the push]S and pop]S , defined in Fig. 5.3, are the abstract ana-
logues of the concrete pushS and popS operations. They perform the
mapping of the formal arguments to actual parameters and vice versa.
The function 〈〈〉〉 : AG ×AG 7→ AG is the composition operation for the
transformer graphs and is explained in the sequel.

5.2.1 The Composition Operation

Given two transformer graphs τ1 and τ2, τ2〈〈τ1〉〉S is a transformer graph
equivalent to applying τ1 followed by τ2. We describe the basic idea
behind the composition operation using an example before presenting
a formal definition.

Consider Fig. 5.4. Let τ1 and τ2 be the two transformer graphs
shown at the top of the Fig. 5.4. The programs Pτ1 and Pτ2 constructed
from τ1 and τ2 are shown at the bottom of the Fig. 5.4. For conciseness
we use the node ids to denote the corresponding variables. Fig. 5.5(a)
shows the program P ′ obtained by composing the programs Pτ1 and
Pτ2 i.e, P ′ = Pτ1 ;Pτ2 . The goal is to construct a transformer graph that
is an abstraction of the program P ′. Unfortunately, P ′ itself cannot be
interpreted as a transformer graph. This is because P ′ has multiple
while loops and has statements that assign values to program variables
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(x, y) => {
[1] while(*) {
[2] if(*) u1 = x;
[3] if(*) u1 = y;
[4] u2 = new ();
[5] if(*) u1.next = u2;
[6] }
[7] x = u1;
[8] y = u2;

}

(x, y) => {
[1] while(*) {
[2] if(*) n1 = x;
[3] if(*) n2 = y;
[4] n0 = new ();
[5] if(*) n1.next = n0;
[6] if(*) n0.next = n2;
[7] if(*) n3 = n2.next;
[8] }
[9] t = n0;
[10] retval = n3;
[11] x = n1;
[12] y = n2;

}
(a) (b)

Figure 5.4: (a) Transformer graph τ1 and its program interpretation Pτ1 . (b) Trans-
former graph τ2 and its program interpretation Pτ2 .

x, y (see lines [7] and [8]). In a program that corresponds to a trans-
former graph such statements can occur only at the end of the program
(see the formal definition of constructing a program from a transformer
graph presented in section 4.1).

The statements at lines [7] and [8] define the values of the variables
after the application of τ1. They can be eliminated by replacing the
parameter nodes of Pτ2 corresponding to the parameter variables x
and y, namely n1 and n2, by the values of x and y at the end of Pτ1 ,
namely u1. After this step, the two loops can be abstracted into a single
while loop encompassing the statements of the loops. The program thus
obtained is shown in Fig. 5.5(b). The lines [13]–[15] in P ′ become lines
[7]–[9] in Pτ ′ , in which n1 and n2 are replaced by u1. This program can
be interpreted as a transformer graph τ ′ which is shown in Fig. 5.5(c).
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(x, y) => {
[1] while(*) {
[2] if(*) u1 = x;
[3] if(*) u1 = y;
[4] u2 = new ();
[5] if(*) u1.next = u2;
[6] }
[7] x = u1;
[8] y = u1;
[9] while(*) {
[10] if(*) n1 = x;
[11] if(*) n2 = y;
[12] n0 = new ();
[13] if(*) n1.next = n0;
[14] if(*) n0.next = n2;
[15] if(*) n3 = n2.next;
[16] }
[17] t = n0;
[18] retval = n3;
[19] x = n1;
[20] y = n2;

}

(x, y) => {
[1] while(*) {
[2] if(*) u1 = x;
[3] if(*) u1 = y;
[4] u2 = new ();
[5] if(*) u1.next = u2;
[6] n0 = new ();
[7] if(*) u1.next = n0;
[8] if(*) n0.next = u1;
[9] if(*) n3 = u1.next;
[10] }
[11] t = n0;
[12] retval = n3;
[13] x = u1;
[14] y = u1;

}

(a) (b)

(c)

Figure 5.5: (a) The procedure P ′ = Pτ1 ;Pτ2 . (b) Procedure Pτ ′ obtained by elim-
inating parameter nodes of τ2. (c) The transformer graph corresponding to Pτ ′ ,
which is equal to τ2〈〈τ1〉〉S .
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The approach illustrated above generalizes to any pair of trans-
former graphs. Informally, to compose a transformer graph τ1 with τ2
we perform the following steps. For every parameter variable X of τ2,
we eliminate the parameters nodes σin(X) from every component of
the transformer graph τ2 by replacing each of them with σ1(X), which
are the (possible) value of the variable X resulting at the end of τ1.
We define the (internal and external) edges of the composed graphs
as the union of the edges of τ1 and the edges of τ2 obtained after the
elimination of parameter nodes.

The initial variable mapping σin of the composed graph is given by
σin1. The final variable mapping of the composed graph is given by the
mapping obtained after the elimination of parameter nodes from σ2.
The internal and external vertices, other than the parameter nodes,
contained in the transformer graph τ2 are retained in the composed
transformer graph. With this informal description we now proceed to
the formal definition.

Let V2 = EV2 ∪ IV2. We first define a function η[[τ2, τ1]] : V2 7→ 2 Na

that maps the vertices in τ2 to a set of abstract vertices belonging to τ1
and τ2. We elide the implicit parameters of η namely τ1, τ2 whenever it
is clear from the context. η is defined using the following constraints:

x ∈ (EV2 \ range(σin2))⇒ x ∈ η(x) (5.6)
x ∈ σin2(X)⇒ σ1(X) ⊆ η(x) (5.7)

x ∈ IV2 ⇒ AllocS(x) ∈ η(x) (5.8)
〈u, f, x〉 ∈ EE2, a ∈ η(u)⇒ LoadS(a, f, x) ∈ η(x) (5.9)

The first two constraints 5.6 and 5.7 follow from the informal expla-
nation. The parameter nodes of a variable X are mapped to the values
of X at the end of Pτ1 which is given by σ1(X), and the remaining ex-
ternal vertices are mapped to themselves. The constraints 5.8 and 5.9
add more flexibility to the composition operation by incorporating the
parameters of the abstract semantics. This will be explained in more
detail shortly.

For example, consider the composition of the transformer graph τ1
with the transformer graph τ2 shown in Fig. 5.4(a) and (b), respec-
tively. In this case, η(n1) = η(n2) = {u1}, η(n3) = LoadS(u1, next, n3)
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transIE(IE, µ) =
⋃

〈u,f,v〉∈IE
µ(u)× {f} × µ(v)

transEE(EE, µ) =
⋃

〈u,f,v〉∈EE
{

⋃
a∈µ(u)

{a} × {f} × LoadS(a, f, v)}

transSigma(σ, µ) = λx. µ̂(σ(x))

transHB( , µ) =
⋃

ie ee

transIE({ie}, µ)× transEE({ee}, µ)

Figure 5.6: Translation of a transformer graph with respect to a mapping µ.

and η(n0) = AllocS(n0). For now, assume that the Load and Alloc
functions return the candidate vertex passed to the functions. That is,
LoadS(u1, next, n3) = {n3} and AllocS(n0) = {n0}.

Consider the family of operations trans shown in Fig. 5.6 that given
a mapping µ on abstract nodes translates a component of a transformer
graph, which could be a set of internal or external edges, a happens
before relation, or a mapping from variables to abstract objects (σ),
by applying the function µ point-wise on every vertex contained in
the component. The translation of external edges, however, applies the
parameter Load instead of µ to the targets of external edges.

Intuitively, if the trans function is applied over η (defined by 5.6–
5.9) and a component of the transformer graph τ2 then it replaces the
parameters nodes of τ2 by the values at the end of τ1 in the given
component of τ2.

For example, for the transformer graphs τ1 and τ2 shown in
Fig. 5.4(a) and (b) respectively, transEE({〈n2, next, n3〉}, η) is equal
to {〈u1, next, n3〉}, transIE({〈n1, next, n0〉}, η) equals {〈u1, next, n0〉},
and transSigma(x 7→ n1, η) = (x 7→ u1), where η is the mapping function
presented earlier.

We define the composed transformer graph as:

τ2〈〈τ1〉〉S = Append(τ1, τ2, η),

where Append, defined below, is a function that translates the compo-
nents of τ2 by applying η and appends it to τ1. Let the components of
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τ1 be denoted using subscript 1 and those of τ2 using the subscript 2.
Append(τ1, τ2, η) = (EV′,EE′, σin′, IV′, IE′, σ′, ′), where

EV′ = EV1 ∪ (EV2 \ range(σin2) ∪ {v | 〈u, f, v〉 ∈ EE′}
IV′ = IV1 ∪ ˆAllocS(IV2)
EE′ = EE1 ∪ transEE(EE2, η)
IE′ = IE1 ∪ transIE(IE2, η)
σin
′ = σin1

σ′ = transSigma(σ2, η)
 ′ = 1 ∪transHB( 2, η) ∪ IE1 × EE2

Except for the definitions of EV′ (the set of external vertices of the
composed graph) and ′ the other definitions are straight forward. EV′
includes all the external vertices of τ1, all the external vertices of τ2
except the parameter vertices, and all the vertices that were created us-
ing the Load parameter during the translation of external edges (these
vertices are the targets of external edges in the composed transformer
graph).

The ordering relation ′ includes IE1×EE2 as we are concatenating
τ1 with τ2 which implies that the edges in τ1 happen before those in τ2.

5.2.2 Parmeterizing the Composition Operation

We now explain the need for incorporating the parameters Alloc and
Load in the definition of composition operation presented above.

The parameters Alloc and Load enable fine tuning of the context-
sensitivity of the analysis. It is well known that when abstract objects
representing newly allocated objects are named based on their alloca-
tion sites, cloning (or renaming) of abstract objects for each call site
during a heap analysis increases the context-sensitivity of the analysis
(e.g, see [Liang and Harrold, 2001], [Lattner et al., 2007]). Since the
internal vertices represent objects newly allocated within the analysed
scope and they may be named based on their allocation sites, we in-
corporate the parameter AllocS to support cloning of internal vertices
during call statements.
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The parameter LoadS serves a similar purpose, namely to support
the cloning of external vertices. Since the external vertices are some-
what unique to the transformer graphs, the need for cloning them may
not be immediately obvious. Hence, as an example, consider again the
transformer graphs and programs shown in Fig. 5.4(a) and (b). Con-
sider a slight variation of τ1 in which the variable y additionally points-
to a node u3.

In this case, the parameter node n2 of τ2 will have to be replaced
by two nodes u1 and u3 during the composition operation. Without
any form of cloning, the statement at line [7] in procedure Pτ2 , shown
in Fig. 5.4(b), would be replaced by two new statements n3 = u1.next

and n3 = u3.next. The node n3 would then represent the targets of
both u1.next and u3.next. Though this wouldn’t affect correctness, it
may result in loss of precision as the targets of two possibly different
references are collapsed in the composed transformer graph.

Thus, for the generality of the semantics, we compute the targets of
the external edges (or field-reads) created during the composition oper-
ation using the parameter LoadS . In this example, the target of u1.next

would be determined using LoadS(u1, next, n3) and that of u3.next us-
ing LoadS(u3, next, n3).

5.3 Simplifying the Transformer Graphs

5.3.1 The SimplifyS Operation

We now describe the Simplify operation that reduces the number of
vertices in a transformer graph without altering its concrete image. In
a nutshell, the Simplify operation propagates the reads and writes on
an external vertex w to the vertices in the transformer graphs that
represent a subset of concrete objects represented by w.

Let τ = (EV,EE, σin, IV, IE, σ, ) be a transformer graph. Say there
is an external edge 〈u, f, w〉 ∈ EE, an internal edge 〈u, f, x〉 ∈ IE and the
internal edge may happen before the external edge (i.e, write happens
before the read). In this case, the values of x may flow to w. Clearly,
w represents a superset of concrete objects represented by x. Hence, a
write (or read) on w can be considered as a write (or read) on x. That
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x ∈ EV ∪ IV⇒ x ∈ Incl(x) (5.10)
〈u, f, v〉 ∈ IE, 〈u′, f, v′〉 ∈ EE,

Incl(u) ∩ Incl(u′) 6= ∅,
〈u, f, v〉 〈u′, f, v′〉

⇒ Incl(v) ⊆ Incl(v′) (5.11)

〈u, f, v〉 ∈ EE, a ∈ Incl(u)⇒ LoadS(a, f, v) ∈ Incl(v) (5.12)

Figure 5.7: The function Incl (for a transformer graph (EV,EE, σin, IV, IE, σ, ))
is defined as the least solution satisfying the above constraints.

is, 〈w, f, y〉 ∈ IE (or EE) implies 〈x, f, y〉 ∈ IE (or EE), respectively. The
function Incl : V 7→ V, defined in Fig. 5.7, maps every vertex w to
the set of vertices whose values may flow to w. We clone the external
vertices during Simplify (as shown in Fig. 5.7) for the same reasons
described while presenting the composition operation in section 5.2.1.

SimplifyS(τ) = removeNonEscaping(τ ′), where
τ ′ = (EV ∪ {v | 〈u, f, v〉 ∈ EE′}, IV, σin,EE′, transIE(IE, Incl),

transSigma(σ, Incl), transHB( , Incl))
EE′ = transEE(EE, Incl)

where, the trans operations, defined in section 5.2.1, apply the
mapping Incl point-wise on each of the vertices in a given com-
ponent of a transformer graph. We now describe the operation
removeNonEscaping.

The operation removeNonEscaping, formally defined in Fig. 5.8,
performs the actual simplification by removing edges and vertices
from a transformer graph. We say that a vertex (internal or ex-
ternal) in a transformer graph τ is non-escaping if it does not be-
long to Escaping(τ). Given a transformer graph τ , the operation
removeNonEscaping removes external edges starting from non-escaping
vertices and external vertices that do not have any external edges end-
ing at them. When a vertex is removed from a transformer graph, all
edges (internal or external) that start or end at the vertex would also
be removed from the transformer graph.



5.3. Simplifying the Transformer Graphs 309

removeNonEscaping(EV,EE, σin, IV, IE, σ, ) =
let EEun = {〈u, f, v〉 ∈ EE | u /∈ Escaping(τ)} in
let EVun = {w ∈ EV | ¬∃〈u, f, w〉 ∈ (EE \ EEun)} in
let IEun = {〈u, f, v〉 ∈ IE | u (or) v belongs to (EVun \ IV)} in
let σ′ = λx.σ(x) \ (EVun \ IV) in
let  ′= \{(ie, ee) ∈ | ie ∈ IEun ∨ ee ∈ EEun} in
(EV \ EVun,EE \ EEun, σin, IV, IE \ IEun, σ′, ′)

Figure 5.8: Definition of the function removeNonEscaping : AG 7→ AG .

Correctness of the Simplify Operation The correctness of the sim-
plify operation is formalized in Theorem 5.6. The lemma states the con-
crete images of a transformer graph τ and SimplifyS(τ) are equal. This
implies that the edges and vertices removed by the removeNonEscaping
operation are redundant. Let w be a vertex read from a non-escaping
vertex x i.e, 〈x, f, w〉 ∈ EE. The proof of the Theorem 5.6 establishes
that, under all contexts, the concrete objects that w may represent
is the union of all the concrete objects represented by the vertices in
Incl(w) that are escaping. This implies that the external edge 〈x, f, w〉
is redundant as every internal and external edge incident on w are
translated to every vertex in Incl(w).

An external vertex that is not the target of any external edge can
be removed as such external vertices will not represent any concrete
object by the definition of γT . (The mapping η computed during the
concretization operation will always map them to empty sets.)

However, it is to be noted that a similar simplification cannot be
applied to external edges that emanate from an escaping internal ver-
tex, though an internal vertex represents objects allocated within the
analysed code fragment. Let w be a vertex read from an internal ver-
tex. A pertinent question to ask is whether Incl(w) include all vertices
whose values may flow to w?

Fig. 5.9 shows that this is not always the case. Consider the Incl
mapping computed for the transformer graph shown at the right side
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Q (x, y) {
[1] t = new ();
[2] x.next = t;
[3] y.next.next = x;
[4] retvar = t.next;

}

Figure 5.9: A program illustrating the effect of aliasing in the input state on
internal escaping vertices.

of Fig. 5.9. The Incl function would map the node n4 (which is a vertex
read from an internal vertex) to only itself i.e, Incl(n4) = {n4}. Suppose
that in some calling context the parameters x and y of the procedure Q
are aliases. The field-write at line [3] would actually update the next
field of the object allocated inside Q. The subsequent read of the next
field of the newly allocated object will get the value written at line [3]
which is the parameter object p1. Therefore, p1 flows to n4 if x and y
alias in the calling context.

This example illustrates that the values read from escaping vertices
are dependent on the calling contexts even if they are allocated in-
side the analysed procedure, implying that external edges on escaping
vertices ought to be preserved in the transformer graphs.

5.3.2 Abstract Garbage Collection

Analogous to the function GCc used in the concrete semantics, the
function GCG used in the abstract semantics equations trims the trans-
former graphs by removing internal vertices (and the edges incident on
the vertices) that are not reachable from the variables in the program
and from the prestate.

Fig. 5.10 shows the formal definition of GCG . This operation re-
moves all internal vertices that are unreachable from the variables, the
external vertices and vertices with external edges starting from them.



5.4. Correctness and Termination of the Framework 311

GCG(τ) =
let S = σ̂(Vars) ∪ EV ∪ {u | 〈u, f, x〉 ∈ EE}
let IVun = {x ∈ IV | ¬∃y ∈ S. x is reachable from y } in
let Eun = {〈u, f, v〉 ∈ IE ∪ EE | u (or) v belongs to IVun} in
let σ′ = λx.σ(x) \ IVun in
let  ′= \{(ie, ee) ∈ | ie or ee belongs to Eun} in
(EV,EE \ Eun, σin, IV \ IVun, IE \ Eun, σ′, ′)

Figure 5.10: The definition of the abstract garbage collection operation GCG :
AG 7→ AG . In the figure, τ = (EV,EE, σin, IV, IE, σ, ).

Theorem 5.7 establishes the correctness of the garbage collection op-
eration. In particular, it proves that the set IVun, the set of vertices
unreachable from the set S, represent concrete objects that are un-
reachable from the prestate and the variables in the program.

Recall that when the Simplify operation is performed on a trans-
former graph, the external edges starting from non-escaping vertices
and external vertices that are not targets of external edges are removed
from the transformer graphs. Therefore, applying GCG on a “simplified"
transformer graph will remove all non-escaping internal vertices that
are unreachable from the variables. Many instances of the framework
e.g. [Lattner et al., 2007], [Salcianu and Rinard, 2005], that maintain
a (partially) simplified transformer graphs at every program point as
explained later, adopt this definition for the garbage collection opera-
tion. However, GCG defined above is more general and is applicable to
any transformer graph in AG .

5.4 Correctness and Termination of the Framework

We now state and prove a few insightful lemmas that help in estab-
lishing the correctness of the abstract semantics. As usual, we say that
a concrete value f ∈ C is correctly represented by an abstract value
τ ∈ AG , denoted f ∼ τ , iff f vc γT (τ). For brevity, we only provide
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proof sketches and also completely omit proofs when they are straight
forward to derive from the definitions.

In most of the proofs, we use induction over the computation of
η[[τ, gc,]] which is defined as the least solution of a set of recursive im-
plications (4.3)–(4.6) (see section 4.2 for more details) which naturally
lends itself to an inductive proof structure. To prove that η satisfies a
claim, we hypothesize that the claim holds in the antecedent of each
rule and establish that the claim holds in the consequent of the rule.

Lemma 5.1. (First Escape Lemma) Let τ be a transformer graph such
that every external edge has an escaping source vertex i.e. 〈u, f, v〉 ∈
EE =⇒ u ∈ Escaping(τ). Let gc = (Vc,Ec, σc) be a concrete graph. If
x is a vertex in τ then y ∈ η(x) ∧ y ∈ Vc =⇒ x ∈ Escaping(τ).

In simple words, the lemma states that, when all the external edges
on the transformer graph have only escaping source vertices (the pre-
condition), if a vertex x represents a concrete object (in some context)
then x is an escaping vertex i.e. x is transitively reachable from the
parameters (or globals).

Proof. We prove this by induction on the computation of η. It is easy
to see that in each of the four rules when the claim holds for η in the
antecedent, it also holds in the consequent.

Lemma 5.2. (Second Escape Lemma) Let τ be a transformer graph sat-
isfying the preconditions of the first escape lemma. Let gc = (Vc,Ec, σc)
be a concrete graph. For any pair of vertices x, y in τ , y ∈ η(x) ∧ y 6=
x =⇒ x, y ∈ Escaping(τ).

In simple words, the lemma states that, when the preconditions hold,
if a vertex x represents a vertex other than itself (in some context) then
it must be escaping. The contrapositive form of the above statement is
more intuitive. It states that if a vertex is non-escaping then it repre-
sents only itself and is not a placeholder for any other vertex.

Proof. Induction on the computation of η. The only non-trivial case is
establishing that the claim holds for the alias rule i.e. (4.6). Consider
the antecedent of the alias rule given below.

〈u, f, x〉 ∈ EE, 〈r, f, s〉 ∈ IE, η(u) ∩ η(r) 6= ∅ (5.13)
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The constraint on  is omitted as it is unimportant here. We need to
establish that for all vertices y ∈ η(s), if y 6= x then y escapes (as y
would be added to η(x) by the consequent).

If y 6= s then y escapes by hypothesis. Say y = s. By (5.13),
〈r, f, y〉 ∈ IE. If r escapes then, by the definition of Escaping, y es-
capes as we have hypothesized that there is an internal edge from r

to s (which is same as y). Say r /∈ Escaping(τ). We will now show
that this case is not possible. Let p = η(u) ∩ η(r). If r 6= p then r

escapes by hypothesis. Therefore, the only possibility is r = p. Hence,
r ∈ η(u). Again, if r 6= u then r escapes by hypothesis. Therefore, r
must be equal to u. By (5.13), 〈r, f, x〉 ∈ EE. However, by the prereq-
uisite on the transformer graph, r escapes, which is a contradiction to
the assumption that r /∈ Escaping(τ). Hence, r /∈ Escaping(τ) is not
possible.

Corollary 5.3. Let τ be a transformer graph satisfying the conditions
of first escape lemma. Let gc be a concrete graph. For any vertices x, y
in the transformer graph,

η(x) ∩ η(y) 6= ∅ ∧ x 6= y =⇒ x, y ∈ Escaping(τ)

Proof. Let r = η(x) ∩ η(y). If r ∈ Vc or r is different from x and y, x
and y both escape by the first and second escape lemmas. Say r = x.
x ∈ η(y) and x 6= y implies, by the above lemma, that x and y escape.
Similarly, if r = y and x 6= y, x and y escape.

Lemma 5.4. For every primitive statement S, if f ∼ τ then f ◦ [[S]]c ∼
FG(S)(τ), where FG(S) is the transfer function of a primitive statement
defined in Fig. 5.2.

Proof. f ∼ τ implies that f vc γT (τ). By the definition of γT , for any
concrete graph gc ∈ Gc, every concrete graph in f(gc) embeds in τ〈gc〉.
Therefore, it suffices to show that for any g ∈ Gc such that g � τ〈gc〉,
[[S]]c(g) � τout〈gc〉, where τout = FG(S)(τ). This can be proved from the
definitions of [[S]]c, FG(S), τ〈gc〉, and by induction on the computation
of η[[τ, gc]]. We omit a detailed proof for brevity.



314 Parametric Abstract Semantics

Lemma 5.5. if f1 ∼ τ1 and f2 ∼ τ2, then f1 ◦ f2 ∼ τ2〈〈τ1〉〉S .

Proof. Let gc ∈ Gc be a concrete graph. f1 ∼ τ1 implies that every
concrete graph in f1(gc) embeds in τ1〈gc〉. Similarly, every concrete
graph in f2(gc) embeds in τ2〈gc〉. Hence, every graph in f2(f1(gc)) will
embed in τ2〈g〉 for some concrete graph g such that g � τ1〈gc〉. Hence,
it suffices to show that for any {g, g′} ⊆ Gc such that g � τ1〈gc〉 and
g′ � τ2〈g〉, g′ � τout〈gc〉, where τout = τ2〈〈τ1〉〉S . This can be proved
from the definitions of 〈〈〉〉S , 〈〉, and by induction on the computation
of η[[τ2, g]]. We omit a detailed proof for brevity.

5.4.1 Correctness of the Simplify operation

Theorem 5.6. Let S be any statement and τ ∈ AG be a transformer
graph. γT (τ) = γT (SimplifyS(τ))

Proof. Let τ ′ denote Simplify(τ). The proof of this lemma is quite
involved. The proof consists of two parts, in the first part we show that
γT (τ ′) is an over-approximation of γT (τ) (i.e., γT (τ) vc γT (τ ′)) and in
the second part we prove the converse.

(Part-I): For every input graph gc, γT constructs an abstract graph
τ〈gc〉 representing the possible output concrete states. Every external
or internal edge in τ is primarily used in identifying and adding edges
to the abstract graph τ〈gc〉 as discussed in section 4.2. To prove that
τ ′ over-approximates τ it suffices to show that the edges removed by
Simplify do not matter, that is, for every vertex u in τ there exists a
vertex in τ ′ that adds all the edges added by u to the output abstract
graph τ ′〈gc〉. Given this, it is easy to see that τ〈gc〉 vco τ ′〈gc〉 (which
implies the claim). The function Incl used by Simplify translates all
the edges on a vertex u to every vertex in Incl(u). Hence, it suffices
to show that, for every node x that u represents in τ , there exists at
least one vertex belonging to both Incl(u) and τ ′ that represents x,
which is formally stated below and pictorially illustrated in Fig. 5.11.
In Fig. 5.11 and in the sequel, η denotes η[[τ, gc]](u) and η′ denotes
η[[τ ′, gc]] where τ ′ = Simplify(τ).

Let V denote the vertices in τ .

u ∈ V, x ∈ η(u) =⇒ x ∈ η̂′(Incl(u))
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(a) (b)

Figure 5.11: Pictorial illustration of the correctness of Simplify operation. Say
u is a node removed by Simplify. Part (a) of the figure shows that the vertex u
is found to represent the objects x1, · · · , xn in τ . Part (b) of the figure shows that
Incl mapping computed by the Simplify operation will contain vertices (here, u′, u′′)
which together will represent all the objects that u represented in τ .

This can be formally proved using induction on the computation of η
and using the first and second escape lemmas.

(Part II): We now establish that γT (τ ′) vc γT (τ). Simplify adds in-
ternal and external edges to τ which in turn could result in the addition
of edges to the abstract graph τ ′〈gc〉.

Let 〈u, f, w〉 ∈ IE′. Say u is found to represent an object c in the
concretization of τ ′ (i.e. c ∈ η′(u)) and w represents an object d.
Clearly, 〈c, f, d〉 will be added to τ ′〈gc〉 (by construction). To prove the
claim it suffices to establish that 〈c, f, d〉 would also be added to τ〈gc〉.
However, this would be implied when the following two conditions
hold as explained below:

(a) For any u, v ∈ V, u ∈ Incl(v) =⇒ η(u) ⊆ η(v).
(b) For any x ∈ V′, η′(x) ⊆ η(x).

By the second condition, c ∈ η′(u) implies that c ∈ η(u). Similarly,
d ∈ η(w). Now say 〈u, f, w〉 /∈ IE i.e. the internal edge is added by
Simplify (otherwise the claim directly follows). By the definition of
Simplify, ∃p, q ∈ V s.t. u ∈ Incl(p), w ∈ Incl(q), 〈p, f, q〉 ∈ IE. The first
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condition implies that η(u) ⊆ η(p) and η(w) ⊆ η(q). Hence, c ∈ η(p),
d ∈ η(q). Therefore, 〈c, f, d〉 would be added to τ〈gc〉 as required.

Hence, it just suffices to establish that the conditions (a) and (b)
hold. Condition (a) follows directly from the definition of Incl and the
alias rule (4.6) of η computation. Condition (b) can be proved using
induction on the computation of η[[τ ′, gc]] and using condition (a) (which
is essential for proving that the claim holds for the constraints (4.5) and
(4.6)). Details elided for brevity.

5.4.2 Correctness of the GCG operation

Theorem 5.7. If f ∼ τ then GCc(f) ∼ τ and GCc(f) ∼ GCG(τ).

Proof. The first claim GCc(f) ∼ τ is relatively easier to establish. For
any gc ∈ Gc, if g1 ∈ GCc(f)(gc) then there exists a g2 ∈ f(gc) such
that g1 � g2, as GCc only removes vertices and edges from the graphs
in f(gc). Since f ∼ τ , g2 � τ〈gc〉. Therefore, g1 � g2 � τ〈gc〉. Hence,
g1 ∈ γ(τ)(gc).

Consider the second part. Let gc = (Vc,Ec, σc) be a concrete graph.
Let τ〈gc〉 = (Vr,Er, σr). Let η denote η[[τ, gc]]. To prove this part it
suffices to show that the vertices removed by GCG in τ will only repre-
sent vertices that are unreachable from Vc and Vars in τ〈gc〉 as those
correspond to the vertices that would be removed by GCc.

Claim: if u is not reachable from the set S = σ̂(Vars) ∪ EV ∪
{u | 〈u, f, x〉 ∈ EE} then every vertex y in η(u) is not reachable from
Vc and σ̂r(Vars) in τ〈gc〉.

Before we sketch the proof, we establish a unique property of the
vertices unreachable from the set S. Let u be a vertex in τ that is
unreachable from S. For any concrete graph gc, u ∈ η(u′) ⇒ u = u′.
That is, no vertex other than u itself represents u. This precludes the
existence of other vertices in τ representing u. This property can be
proved, via induction on η, by establishing that no constraint other
than the internal vertex rule (4.3) can add u to η(u′) for any vertex u′.

Now consider the claim. Let w be a vertex not reachable from S and
y ∈ η(w). Consider a path x1, . . . , xn, where xn = y, in τ〈gc〉 ending
at y. It suffices to show that no vertex in this path belongs to Vc or
σ̂r(Vars).
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Since w is not reachable from S, w ∈ IV \ EV. By the definition of
η, y = w. Since there is an edge from xn−1 to y in Er, by the definition
of 〈〉, ∃p, q ∈ V, xn−1 ∈ η(p), y ∈ η(q), 〈p, f, q〉 ∈ IE. Since, y (which
is same as w) is not reachable from S, by the above property, q = y.
Hence, 〈p, f, y〉 ∈ IE. Since y is not reachable from S so is p. Hence,
xn−1 = p and p ∈ IV \ EV. By induction, all of the vertices in the path
are internal vertices and hence do not belong to Vc. Similarly, it can
be shown that no vertex in the path belongs to σ̂r(Vars).

Instantiating (AG,FG)

An abstract semantics (A,FA) is an instance of (AG ,FG) iff A is ob-
tained by defining the set of abstract nodes Na in AG , and FA uses a
set of semantic equations that belong to the family of equations rep-
resented by the Fig. 5.1 and defines the parameters LoadS , AllocS and
InitBind suitably.

Later, in section 6 we present analyses that not only instantiate
the parameters but also specialize the semantics of the framework. For
such instances, the correctness and termination also depend on the
additional specializations that they perform.

Abstract Fixed Point Computation

Given an instance (A,FA) of (AG ,FG) with a set of abstract se-
mantic equations it can be viewed as a single equation ϑ = F ](ϑ),
where F ] is a function from VE 7→ A to itself. (VE denotes the
set of vertices and edges in the control flow graph.) Let ⊥ denote
λx.(∅, ∅, λv.∅, ∅, ∅, λv.∅, ∅). The analysis iteratively computes the se-
quence of values F ]i(⊥) and terminates when F ]i(⊥) = F ]

i+1(⊥). We
define [[P ]]] (the summary for a procedure P) to be the value of ϕexit(P )
in the final solution.

To prove the correctness of the analysis we need to establish that
F ] is a sound approximation of F \, which follows if the correspond-
ing components of F ] are sound approximations of the corresponding
components of F \.
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Lemma 5.8. The abstract semantics equations 5.1–5.4 is a sound ab-
straction of the concrete semantics equations 3.1–3.4.

a. λg.{g} ∼ τid

b. For any primitive statement S, if f ∼ τ , then f ◦ [[S]]c ∼ FG(S)(τ).

c. tco is a sound approximation of tc: if f1 ∼ τ1 and f2 ∼ τ2, then
(f1 tc f2) ∼ (τ1 tco τ2).

d. For any call statement S, if f1 ∼ τ1 and f2 ∼ τ2, then f1◦CallS(f2) ∼
FG(S)(τ1, τ2).

e. if f ∼ τ then GCc(f) ∼ τ .

Proof. The lemma directly follows from the Lemmas 5.4, 5.5, Theo-
rem 5.7 and from the properties of join.

Lemma 5.8, Theorem 5.6 and Theorem 5.7 imply the following
soundness theorem in the standard way (e.g., see Proposition 4.3 of
[Cousot and Cousot, 1992]).

Theorem 5.9. Let [[P ]]] be the abstract summary of a procedure P
computed by an abstract semantics that is an instantiation of (AG ,FG).
The computed procedure summaries are correct. For every procedure
P, [[P ]]\ ∼ [[P ]]].

5.4.3 Termination

For ensuring termination, we require the parameters of our semantics
to satisfy the following assumption.

Assumption 5.10. (a) Na is finite. (b) For every program statement
S, InitBind, AllocS and LoadS terminate on all inputs

The following lemmas establish the monotonicity of F ]. We elide
proofs of the following monotonicity claims as they are straight forward
to derive from the definitions.
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Lemma 5.11. For every statement S, FG(S) is monotonic with respect
to vco:

a. If S is a primitive statement and if τ1 vco τ2, then FG(S)(τ1) vco
FG(S)(τ2).

b. If S is a procedure call and if τ1 vco τ ′1 and τ2 vco τ ′2 then
FG(S)(τ1, τ2) vco FG(S)(τ ′1, τ ′2). (The composition operation is also
monotonic with respect to τ1 and τ2.)

Lemma 5.12. SimplifyS operation is monotonic with respect to vco: if
τ1 vco τ2 then SimplifyS(τ1) vco SimplifyS(τ2).

Lemma 5.13. GCG operation is monotonic with respect to vco: if
τ1 vco τ2 then GCG(τ1) vco GCG(τ2).

Theorem 5.14. If (A,FA) is a instance of (AG ,FG) that satisfies As-
sumption 5.10 then the following conditions hold (the ascending chain
conditions):

a. A has only finite ascending chains.

b. {F ]i(⊥), i ≥ 0} is an ascending chain in VE 7→ A.

c. (A,FA) terminates.



6
Specializations of the Framework

Specializations transform the framework (AG ,FG) to abstract analyses
that are less general in some aspects compared to (AG ,FG). We classify
the specializations considered in this section into three categories: Sim-
ple instantiations, Restrictions and Abstractions. Simple instantiations
refer to the strategies for defining the parameters of the framework.
Restrictions refer to specializations that restrict the abstract semantics
FG to operate over a subset of AG satisfying specific properties. The
restrictions we consider are lossless i.e, the restricted semantics and
the original semantics produce equivalent results. Lossy abstractions
of the framework are referred to as abstractions. We use the catego-
rization only for explanatory purposes. From a theoretical perspective,
the analyses produced by specializations are abstract interpretations
[Cousot and Cousot, 1992] of the framework (AG ,FG).

Multiple specializations discussed in this section can be applied
in conjunction, provided their preconditions, if any, are satisfied. We
refer to an analysis obtained by applying one or more specializations to
(AG ,FG) as an instance of the framework. We eventually show that the
analyses: [Whaley and Rinard, 1999], [Cheng and Hwu, 2000], [Lattner
et al., 2007] and [Buss et al., 2008] are instances of the framework.

320
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6.1 Instantiations

In this section, we discuss the instantiations of the parameters of the
framework that are used by the instances that we study.

6.1.1 Node Naming Strategies and Node Allocation Functions

Creation site based naming strategy (Creation-site-naming) This
naming strategy names the vertices created during a statement with
the label of the statement (which uniquely identifies the statement).
Formally, the set of abstract nodes is defined as

Na = {nx | x ∈ Params ∪Globals ∪ Labels}

The parameters of the abstract semantics are defined as follows.

InitBind(var) = {nvar}

AllocS(x) =

{n`} if S is ` : v1 = new C or if x is unspecified
{x} Otherwise

LoadS(u, f, x) =

{n`} if S is ` : v1 = v2.f or if x is unspecified
{x} Otherwise

Creation site based naming with reuse (Creation-site-naming-reuse)
This strategy is a variant of Creation-site-naming that uses a slightly
different definition for the Load parameter in order to reuse the external
vertices whenever possible.

LoadS(u, f, x) =

{n`} if x is unspecified
{x} Otherwise

Creation site based naming with cloning (Creation-site-naming–
cloning) This strategy names every vertex using a pair: the label
of the creation-site of the vertex and a call-string, which is a (possibly
empty) sequence of labels of call statements. The call-string associ-
ated with a vertex at any given program point denotes the sequence of
call statements that lead to the creation-site of the vertex from that



322 Specializations of the Framework

program point. This is similar to the context-sensitive object naming
schemes employed by several top-down pointer analyses [Smaragdakis
et al., 2011]. The set of abstract nodes are defined as:

Na = {(cs, nx) | cs ∈
⋃
i≤n

Labelsi, x ∈ (Params ∪Globals ∪ Labels)}

The length of the call-strings is bounded by n – the size of the set
Labels. The definition of the parameters of the abstract semantics are
shown below. The definitions ensure that a statement label appears
at most once in any call-string generated during the analysis. (We use
cs · ` to denote the concatenation of label ` with the call-string cs, and
` /∈ cs to denote that the label ` does not occur in the call-string cs.)

InitBind(var) = {nvar}

AllocS(x) =



{(∅, n`)} if S is ` : v1 = new C

or if x is unspecified
{(cs · `, n`′)} if S is ` : Call P ,

x = (cs, n`′) and ` /∈ cs
{x} Otherwise

LoadS(u, f, x) =



{(∅, n`)} if S is ` : v1 = v2.f

or if x is unspecified
{(cs · `, n`′)} if S is ` : Call P

x = (cs, n`′) and ` /∈ cs
{x} Otherwise

Note that the abstract semantics FG when instantiated as above re-
names the abstract vertices along all acyclic call-paths in the program,
which [Lattner et al., 2007], [Liang and Harrold, 2001] refer to as full
heap cloning.

Access-path based naming strategy (Accesspath-based-naming) In
this naming strategy the abstract vertices in the transformer graphs
are named using access-paths which are sequences of field dereferences
starting from variables or statement labels. An interesting aspect of
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this naming strategy is that it is possible to reconstruct the external
edges in a transformer from the names of the vertices. Intuitively, an
external vertex in a transformer graph corresponds to an object that is
transitively read from parameters, global variables or internal vertices,
through a sequence of field dereferences. In other words, every external
vertex corresponds to one or more access-paths. The following naming
strategy makes this relationship explicit.

Access-Paths Let AP = RAP ∪ LAP, where RAP = {δ∗ | δ ∈
(LAP ∪ Labels)}, LAP = Vars ∪ (RAP × Fields), denote the set
of all access-paths that are in one of the following forms: v, v∗, `∗,
x∗.f∗1 . . . . f

∗
n−1fn, x∗.f∗1 . . . . f∗n, where v is a variable, ` is a statement

label (of an allocation site), x ∈ (Vars∪Labels) and f1, . . . , fn ∈ Fields.
We use ∗ to distinguish between objects and pointers. If an access-path
ends with a star or if it is a label ` then it represents an object.

We use a subscript r to denote the set of access-paths of length at
most r. For example, LAP2 denotes the set of access-paths in LAP of
length at most 2.

In this naming strategy, Na is defined as RAPr where r is some pre-
defined integer value greater than one. The parameters of the abstract
semantics are defined as follows.

InitBind(var) = {var}

AllocS(x) =


{`} if S is ` : v1 = new C

or if x is unspecified
{x} Otherwise

LoadS(δ, f, x) = {δ.f∗}

Note that in the above definition LoadS is completely independent
of the statement S and depends only on the dereferenced vertex. This
is an important characteristic of this naming strategy. For simplicity,
the definition of Alloc presented here does not clone the internal ver-
tices during call statements. It is straightforward to extend the above
definition to support cloning by associating call-strings with names of
the vertices as in the Creation-site-naming-cloning strategy.
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When the parameters are defined as above, the abstract transfer
functions preserve the following invariants. (It is straightforward to plug
in the definition of the parameters in the abstract transfer functions
and verify the following.)

(a) Every internal node is named by a statement label such as `, as a
result of the definition of Alloc.

(b) Every external node is named by an access-path that is not a state-
ment label, which is a consequence of the definition of Load.

(c) The presence of a node with name δ.f∗ implies that there exists an
external edge from δ to δ.f∗ and vice versa. This follows from the
definition of Load.

These invariants enable the following interesting simplifications to
the abstract domain. Since the node names implicitly record if a node
is external or internal, we can drop internal and external vertex com-
ponents from the transformer graphs. (Note that isolated nodes can
be encoded using dummy edges that end at null). We can also omit
the external edge component from the transformer graphs as external
edges are implicitly represented by the names of the nodes.

Instantiating the abstract semantics with Simplify and GCG oper-
ations In most of the instances that we study the Simplify and GCG
operations are lazily performed only at the exit point of a procedure.
We refer to this strategy as lazy simplification and lazy garbage collec-
tion (Lazy-simplification and Lazy-garbage-collection), respectively.

6.2 Restrictions

In this section, we discuss the specializations of the abstract semantics
obtained by restricting the transfer functions FG to a subset of AG . All
the specializations we consider in this section are lossless, i.e, they are
semantically equivalent to the abstract semantics (AG ,FG).
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Omitting the σin component (Omitting-σin) This specialization
applies only when Na includes a special set of nodes subscripted by pa-
rameter and global variable names and InitBind is defined as λx.{nx}.

Consider the set that contains ⊥ (the empty transformer graph)
and the transformer graphs where σin is the function λx.{nx}. The
transfer functions FG are closed with respect to this set of transformer
graphs. By definition of FG , the σin component remains constant.

This specialization omits the component σin and modifies the trans-
fer functions so that they use nx instead of σin(x). Clearly, the special-
ized semantics is correct and terminates if the original semantics does.

6.2.1 Incorporating partial simplification

This specialization, abbreviated as Partial-eager-simplification, re-
stricts the abstract semantics of the framework (FG) to operate over
an abstract domain AI ⊆ AG . Transformer graphs belonging to AI
do not contain any external edges with a non-escaping source vertex.
Such edges are not essential: e.g., given any transformer τ ∈ AG , the
Simplify operation presented earlier returns an equivalent transformer
that has no such edges. In other words, Simplify(τ) ∈ AI .

Two of the analysis instances we study are based on the restricted
domain AI . The primary reason for working with the domain AI is
efficiency, as these graphs are more compact.

It turns out that the abstract transfer functions FG(S) is closed with
respect to AI for most types of statements S. We need to adapt the
definition of FG(S) only for field-read statements and call statements.
One way of doing this would be to apply Simplify as the last step (to
the transformer graph produced by FG(S)). Instead, we utilize a partial
simplification which is more efficient. The Simplify operation used by
(AG ,FG) removes external vertices and edges from a transformer graph
and also adds new edges (that were implicitly represented in the original
graph). The partial simplification we utilize removes all external edges
from non-escaping nodes, but avoids adding some of the edges added by
Simplify. Appendix A formally presents this specialization and proves
its correctness and termination.
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6.3 Abstractions

Omitting themay happens before component (Omitting-happen-be-
fore) This abstraction omits the may happens before component of
the transformer graphs that tracks the ordering between the internal
and the external edges. This abstraction modifies the transfer functions
of the framework FG so that they conservatively assume that any in-
ternal edge may happen before any external edge. All instances that
we consider except the flow-aware analysis [Buss et al., 2008] omit the
happens before component. The flow-aware analysis tracks an approx-
imation of the happens before relation.

Ignoring the distinction between internal and external edges and ver-
tices (No-internal-external-distinction) This abstraction compresses
the abstract domain by unifying the following components: internal
and external edges, internal and external vertices, and the initial and
final variable mappings (σin and σ). Every internal edge (or vertex)
is considered an external edge (or vertex) and vice-versa. This essen-
tially reduces the seven-tuple transformer graphs to quadruples of the
form (V,E, σ, ), which actually corresponds to the transformer graph
(V,E, σ,V,E, σ, ). The transfer functions are also simplified using this
property.

Flow Insensitivity Some instances that we consider perform a flow-
insensitive analysis. Flow-insensitivity is an abstraction applied to the
control-flow graph of the procedures that ignores the control-flow be-
tween the program statements. Our framework or more generally any
abstract interpretation formalization is parameterized by the control-
flow graphs of the program. Therefore, flow-insensitivity requires no
additional extensions to the abstract domain or semantics.

Nevertheless, the abstract semantics could be made more efficient
when it is used in a flow-insensitive analysis. For example, we can avoid
performing strong updates on variables. These optimizations, though
important, are conceptually straightforward.

This abstraction also makes the happens before component of the
transformer graph obsolete because every statement may happen be-
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fore every other statement in a flow-insensitive analysis. Therefore, this
abstraction subsumes the Omitting-happen-before abstraction.

6.3.1 Node merging abstraction

This abstraction allows nodes in the transformer graphs to be merged
together at arbitrary points during the analysis, as an efficiency heuris-
tic, without sacrificing correctness or termination. This is formalized
in Appendix B.

Informally, node merging is an operation that replaces a set of nodes
{n1, n2 . . . nm} by a single node nrep such that any predecessor or suc-
cessor of the nodes n1, n2, . . . , nm becomes, respectively, a predecessor
or successor of nrep. While merging nodes seems like a natural heuris-
tic for improving efficiency, it does introduce some subtle issues and
challenges. The intuition for merging nodes arises from their use in the
context of heap analyses where graphs represent sets of concrete states.
However, in our context, graphs represent state transformers.

This abstraction introduces an equivalence relation on nodes (repre-
senting the nodes currently merged together) into the abstract domain
and updates the transfer functions accordingly (see Appendix B). The
resulting semantics (denoted as FÃ) computes a transformer graph and
equivalence relation pair at every program point as opposed to a single
transformer graph computed by the abstract semantics FG .

This abstraction also introduces a new parameter NodesToMerge
(for each statement and program point) that is a function from trans-
former graphs to equivalence relations. The equivalence classes in the
equivalence relation returned by NodesToMerge, at a statement or pro-
gram point, specify the set of nodes that have to be collapsed after
applying the transfer function of the statement or program point. Dif-
ferent node-merging strategies can be realized by appropriately instan-
tiating the NodesToMerge parameter.

The correctness and termination of this abstraction is non-trivial
and is formally established in Appendix B.

Realizing a unification-based analysis using node merging abstrac-
tion A unification-based analysis (such as [Steensgaard, 1996], [Das,
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Stmt S NodesToMergeS((EV,EE, σin, IV, IE, σ, ))

v1 = v2 [{(x, y) | x ∈ σ(v1), y ∈ σ(v2)}]

` : v = new C [{(x, n`) | x ∈ σ(v)}]

v1.f = v2 [{(x, y) | ∃u ∈ σ(v1), 〈u, f, x〉 ∈ IE ∪ EE, y ∈ σ(v2)}]

` : v1 = v2.f [{(x, y) | y ∈ σ(v1),∃u ∈ σ(v2), 〈u, f, x〉 ∈ IE ∪ EE}]

Call Q(args) [{(x, y) | V ∈ args ∪Globals, x ∈ σ(V), y ∈ σ(V)}]

[R] = lfp λX. X∗ ∪
⋃

(u,v)∈X,f∈Fields
Targets(u, f)× Targets(v, f)

Figure 6.1: Definition of NodesToMerge for the statements of our language. X∗
denotes the reflexive, symmetric, transitive closure of a relation X. Targets(v, f)
denotes the vertices that are the targets of the internal or external edges that start
from the vertex v and labelled by the field f .

2000]) maintains equivalence classes of abstract nodes and tracks the
points-to relations between the equivalence classes at every program
point. Unification is typically used by top-down heap analyses that
compute abstract shape graphs. But here, we would like to use unifica-
tion in our bottom-up analysis that compute abstract state transform-
ers.

A unification-based analysis treats the assignment statements in the
program bidirectionally. For instance, given an assignment statement
of the form v1 = v2, a unification-based analysis makes the targets of v1
and v2 equivalent instead of making the targets of v1 a superset of those
of v2. Making two vertices equivalent in turn induces an equivalence
between their targets. Therefore, the transfer function of an assignment
statement transitively ‘unions’ (or merges) the equivalence classes of
the targets of left-hand-side (LHS) and right-hand-side (RHS) of the
assignment statement. This behavior can be simulated using the node-
merging abstraction (discussed above) by appropriately defining the
NodesToMerge parameter.

Fig. 6.1 formally defines the NodesToMerge parameter for every
statement of our language that will enable a unification-based analysis.
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As shown in Fig. 6.1, for every primitive statement, we record that
the targets of LHS and RHS are equivalent which implies that their
corresponding equivalence classes have to be merged.

The function [ ], defined in Fig. 6.1, computes the set of equiva-
lences that are induced by a relation R representing a set of pairs of
equivalent nodes. The induced equivalences are defined as follows. (a)
Given a set of pairs of equivalent nodes X, every element in the reflex-
ive, symmetric, transitive closure X∗ are equivalent nodes. (b) Given
two nodes that are equivalent, the targets of the external and internal
edges starting from the nodes that are labelled by the same field are
equivalent.

Consider the definition of NodesToMerge for procedure calls. Invok-
ing a procedure may introduce new equivalences between the abstract
nodes because of the assignments that happen within the procedure.
The definition of NodesToMerge parameter presented in Fig. 6.1 cap-
tures all such equivalences.
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Instances of the Framework

7.1 Overview of the Instances

In this section, we present an informal overview of the analyses that we
would be formalizing as instances of the framework in the next section.
Fig. 7.1 shows two procedures listAdd and first that manipulate a
singly linked-list, and two clients P and Q of the procedures that perform
a sequence of calls to listAdd and first. We use this example to
illustrate each of the four instances and also highlight the differences
in their precision and scalability.

Say we are interested in the contents of the lists manipulated by
the procedures P and Q. We define content of a list as the set of nodes
in the list. For example, the procedure P adds x to the contents of l1,
x and y to the contents of l2, and z to the contents of l3.

Figures 7.2, 7.3 and 7.4 show the summaries computed by the four
instances for the procedure listAdd and P. The internal edges and
vertices are shown with solid lines, and the external edges and vertices
are shown with dashed lines. All edges (internal and external) of all the
transformer graphs shown in the figures are labelled by the field next
which is not shown for clarity. The arrows from variables to nodes show
the targets of the variables at the end of the procedure (σ).

330
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listAdd (l, n) {
1 while(l.next != null)
2 l = l.next
3 l.next = n

}

first (l) {
4 return l.next

}

P (l1, l2, x, y, z) {
5 fst = first(l1)
6 listAdd(l1, x)
7 listAdd(l2, x)
8 listAdd(l2, y)
9 l3 = new List()
10 listAdd(l3, z)

}

Q (l, x, y, z) {
11 l = new List()
12 listAdd(l, z)
13 P(l, l, x, y, z)

}

Figure 7.1: A list manipulating program. The procedure listAdd adds a node to
the end of a list. The procedure first returns the first element of the list. The pro-
cedures P and Q perform a sequence of listAdd and first operations. The variables
l3 and fst are global variables.

Summary of listAdd Summary of procedure P

nl n2 nn

nl
nl1

nl2

n9l3

l1

l2

n4 fst

n2 nx

ny

nz

x

y

z

Figure 7.2: Summaries computed by the WSR analysis for the procedures listAdd
and P shown in Fig. 7.1.
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Summary of listAdd Summary of procedure P

l eq1
l1

l2

eq2 x

y

fst

l3 eq3

z

Figure 7.3: Summaries computed by the analysis proposed in [Lattner et al., 2007]
for the procedures listAdd and P shown in Fig. 7.1.

Summary of listAdd Summary of procedure P

l∗ l∗.next∗ n∗

nl

l→ l∗

n→ n∗

l∗.next→ l∗.next∗

l∗.next→ n∗

l∗.next∗.next→ n∗

l→ l∗.next∗

l1∗

l2∗

l3∗

l∗9

l1∗.next∗

l2∗.next∗

l3∗.next∗l3

fst

x∗

y∗

z∗

l1

l2

x

y

z

Figure 7.4: Summaries computed by the access-path based analysis proposed in
[Cheng and Hwu, 2000] for the procedures listAdd and P shown in Fig. 7.1.
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WSR Analysis Fig. 7.2 shows the summaries computed by WSR anal-
ysis for the procedures listAdd and P. The abstract domain and seman-
tics of the analysis are very similar to those of our framework except
that it does not track the happens before relation (i.e, it applies the
Omitting-happen-before abstraction to the framework). The definitions
used by WSR analysis for the parameters of the framework will be
clarified in the following discussion.

Consider the summary of the procedure listAdd shown at the left
side of Fig. 7.2. The two external vertices (shown by dashed edges)
nl and nn represent the targets of the parameters at the entry the
procedure. WSR analysis binds every parameter and global variable p
to a vertex with name np at the start of a procedure.

The external vertex n2 represents the targets of the reference
l.next read at line 2 of listAdd procedure. The analysis uses the la-
bel of a field-read statement to name the external nodes created while
processing the statement. (The analysis would also create an external
edge for the next field read at line 1, which is not shown in the figure).
At the end of the while loop, l can be pointing to the initial node nl
or to the nodes read at line 2, namely n2. The internal edges shown in
the figure correspond to the field-write performed at line 2.

Consider the procedure P. At all points where P invokes listAdd i.e,
at lines 6, 7, 8 and 10, the summary of listAdd will be composed with
the transformer graph before the corresponding invocation of listAdd.
For example, consider the first call to listAdd at line 6. The parameter
node nl of the summary of listAdd will be mapped to nl1. The external
vertex n2 will be mapped to itself, and the parameter node nn will be
mapped to nx. The summary of listAdd will be translated by applying
this mapping and will be composed with the transformer graph before
the call.

In the last call to listAdd at line 10, while composing the summary
of listAdd with the transformer graph before the call, the analysis will
not add an external edge from n9 to n2 because n9 is a non-escaping
node (i.e, a node not reachable from the prestate). The transformer
graph computed at the end of P is shown at the right side of Fig. 7.2.
Notice that in the summary of P, the next fields of the lists l1 and l2



334 Instances of the Framework

have the same target n2. This is sound but imprecise as the summary
implies that the procedure P adds the list nodes {x, y, z} to the contents
of the lists l1 and l2.

This imprecision is the consequence of not cloning the external ver-
tices while composing the transformer graphs.

Data Structure Analysis Fig. 7.3 shows the summaries computed by
the data structure analysis (DSA) [Lattner et al., 2007] for the proce-
dures listAdd and P. DSA does not distinguish between internal and
external vertices or edges. Hence, there is only one kind of vertices
and edges, which has to be treated as both internal and external. The
analysis is also unification based.

The summary for listAdd is shown at the left side of Fig. 7.3. To
clarify how the analysis came up with this summary we present a step
by step walk-through on the procedure listAdd. Initially, the analysis
will bind l and n to two different abstract vertices say nl and nn. At
line 2, on seeing the field-read l.next, the analysis will create a new
abstract node, say n2, to represent the target of l.next. However, since
l.next is assigned to l in the same statement, the targets of l and
l.next (namely nl and n2) will be merged into a single node.

Finally, the field-write at line 3 will result in the merging of the
target of l.next (which is also now the target of l) with n. Hence,
the summary will have only one abstract node eq1 that represents the
targets of l, the objects transitively reachable through the next fields
of l, and the parameter n.

The summary of the procedure P is shown at the right side of
Fig. 7.3. It is obtained by composing the summaries of listAdd at
each call statement. Consider the first call to listAdd at line 6. Unlike
WSR analysis, DSA clones the entire summary of the callee by renam-
ing every vertex to a fresh name during summary compositions. The
summary of listAdd is first cloned by renaming eq1 to eq2 and then
is composed with the transformer graph before the call. The resulting
graph will have a single node eq2 to which both l1 and x will point to.

A similar operation will be performed during the second call to
listAdd at line 7. However this time, cloning will not result in ad-
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ditional vertices as explained in the following. Say eq1 is renamed to
eq4 in the cloned summary of listAdd. The vertex eq4 represents the
target of x (in addition to representing other objects such as the tar-
gets of l2, l2.next etc.). But, the transformer graph before the call
will already have a node eq2 representing the target of x. Therefore,
eq4 and eq2 will be merged in the composed transformer graph as they
both represent the target of x. After this statement, eq2 represents the
targets of l1, x, objects reachable via their next fields, as well as the
target of l2.

The third call to listAdd(l2, y) at line 8 will result in the merging
of eq2 and the target of y. This time also the vertex cloned from the
callee summary (a copy of eq1) would be merged with eq2 because
they represent the targets of l2. The final call to listAdd(l3,z) will
add a new vertex eq3 to the composed graph as a result of cloning
and composing the summary of listAdd. The node eq3 represents the
object newly allocated by the procedure as well as the initial targets of
z and l3 at the start of the procedure.

Observe that in spite of using less precise transformer graphs com-
pared to WSR analysis, DSA identifies that the procedure P adds only
x and y to the contents of l1 and l2. This is better than the results
of WSR analysis but is still imprecise. However, flow-insensitivity and
the lack of distinction between internal and external vertices prevents
the analysis from determining that l3 is a new singleton list containing
only z.

Access-path-based Analysis Fig. 7.4 shows the summaries computed
by the analysis proposed in [Cheng and Hwu, 2000] for the procedures
listAdd and P. We will refer to this analysis as access-path-based analy-
sis (APA) as it summarizes procedures using a set of points-to relations
between access-paths.

The access-paths used by the analysis are a sequence of field deref-
erences starting from a parameter or a global variable or a statement
label (that corresponds to an object allocation site). Access-paths that
end with a star ("*") denote objects and those without a suffix "*"
denote pointers (or references). In an access-path of the form δ.f , δ
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always ends with a star i.e, it represents an object. In the analysis, if l
is a parameter of a procedure, l∗ is used to represent the initial target
of the parameter l, l∗.next∗ is used to represent the initial target of
l.next and so on. The objects that are newly allocated are denoted
using their statement labels. 1

The analysis also bounds the lengths of the access-paths to keep the
abstract domain finite. A bounded access-path δ represent a (possibly
infinite) set of access-paths whose prefix is δ. In Fig. 7.4, we assume
that the length of the access-paths are bounded to 2.

The summaries computed by the analysis can be represented as
transformer graphs. The vertices in the transformer graphs are named
using access-paths that denote objects. An access-path l∗.next∗, in re-
ality, denotes an external edge from the vertex l∗, which represents
the initial target of l, to l∗.next∗, which represents the initial tar-
get of l.next. A points-to relation from l∗.next to n∗ corresponds
to an internal edge from l∗ to n∗ labelled by the field next. (See the
Accesspath-based-naming strategy of section 6 for a formal description.)

The transformer graph representation of the summaries of APA are
shown in Fig. 7.4. We also show the actual points-to relations computed
by the analysis for the procedure listAdd. Readers might find it easier
to compare the transformer graph representations of the summaries
with the summaries computed by the other instances.

Consider the summary computed by APA for the procedure
listAdd (left side of Fig. 7.4). Its transformer graph representation
clarifies that the summary for the procedure is semantically equivalent
to WSR summary shown at the left side of Fig. 7.2. They differ only
in the names of the vertices. Consider the summary for the procedure
P shown at the right side of Fig. 7.4. The summary precisely identifies
the contents of the lists l1 and l2, which is in contrast with the re-
sults of WSR analysis. This increased precision is the consequence of
using a naming strategy for nodes that makes it necessary to clone the
external vertices during summary composition. The analysis maintains

1[Cheng and Hwu, 2000] denote the field references in access-paths using field
offsets instead of field names, since the analysis targets C programs where distinct
field names can denote the same offset within a record.
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the invariant that the targets read from a vertex l∗ on a field f are
always named l∗.f∗. In other words, an external edge from l∗ on a field
f always ends at l∗.f∗. To maintain this invariant, during summary
composition the targets of external edges are renamed so that they
are consistent with the names of their source vertices. However, being
flow-insensitive the analysis does not identify the contents of the list
l3 precisely.

It turns out that when this analysis is formulated as an instance
of the framework it closely resembles WSR analysis in most aspects
except for the naming of nodes (see section 7.2.4). This is an inter-
esting result considering that the original formulation of this analysis
as proposed in [Cheng and Hwu, 2000] bears little similarity to WSR
analysis. Moreover, we were able to identify some bugs in the analysis
proposed in [Cheng and Hwu, 2000] by comparing their semantics with
the transfer functions of the instantiation of our framework that uses
the same naming strategy.

Flow-Aware Analysis We now discuss the summaries computed by
the analysis proposed in [Buss et al., 2008], referred to as flow-aware
analysis (FAA), for the procedure listAdd and P. The summaries com-
puted by FAA are not depicted pictorially since they are very similar
to the summaries computed by WSR analysis. The critical difference
between FAA and the other analyses discussed earlier manifest when
there is aliasing in the context in which the summaries are used.

For example, consider the procedure Q shown in Fig. 7.1. The
procedure first adds a list node z to the parameter list l and then
invokes the procedure P passing the list l to l1 and l2 parameters. In
this context, l1 and l2 alias. The procedure P invokes the procedure
first, which reads the targets of the next field of the list l via the
reference l1. The procedure P subsequently adds the nodes x and y to
the list l via the reference l2. In this case, the summaries obtained
for Q by every other instance of the framework discussed earlier will
conservatively infer that fst could be pointing to x, y or z, though
clearly, x and y are added to the list l only after the call to first.



338 Instances of the Framework

This is because every analysis discussed earlier do not track the rel-
ative ordering between internal and external edges in their summaries.
Therefore, they cannot identify that the external edge representing the
read of the next field of the list l1 by the first procedure precedes
the writes performed on the next field of the list l2 by the listAdd
procedure. The flow-aware analysis stores an approximation of the hap-
pens before ( ) relation and hence can decipher that fst can only be
pointing to z.

The preceding discussion highlights that the four analyses actually
have varying levels of precision and scalability. Moreover, some of them
use apparently very different representations for summaries. In the se-
quel, we present a succinct formalization of the analyses as instances
of the framework.

7.1.1 Language Specific Extensions of the Analyses

Each of the analyses that we formalize have extensions specific to the
languages that they analyse. The WSR analysis was designed to anal-
yse Java programs and the rest of the analyses were designed to analyse
C-like programs. To analyse C programs, it is necessary to handle C
language specific features like address-of operators, pointer arithmetic,
type casts, unions and function pointers. For analysing Java programs,
we need extensions for handling virtual method calls, static fields and
so on.

Formalizing the semantics of the analyses for the language-specific
features requires non-trivial extensions to the abstract domain and
transfer functions of our framework. But, in most cases, they are con-
ceptually straight-forward. For example, the framework can be ex-
tended to handle non-record type, pointer-valued memory locations
by allowing unlabelled edges in the transformer graph e.g, like 〈u, v〉 to
capture that the memory location u may-point-to v.

For a more non-trivial example consider the address-of (&) opera-
tor. To support this operation, we need to distinguish between lvalues
(i.e, addresses) and rvalues (i.e, memory locations) of variables and
fields of objects. The mapping σin and σ should be considered as map-
pings from lvalues of variables to their rvalues. Every edge 〈u, f, v〉 that
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indicates that u points-to v on field f should be split into two edges
〈u, f, rf 〉, 〈rf , v〉, where rf denotes the rvalue of the field f . The trans-
fer functions can be easily adapted to this extended abstract domain.
The only significant change required is that reading a variable or an
object’s field should be considered as reading the targets of its rvalue.
Hence, it should result in the creation of external edges. Similarly, writ-
ing a variable or an object’s field should be considered as writing to
its rvalue. Hence, it should result in the creation of internal edges. The
semantics of a statement of the form v1 = &v2 could then be modelled
as adding an internal edge from the rvalue of v1 (given by σ(v1)) to the
rvalue of v2 (given by σ(v2)), which indicates that v1 points-to v2.

All the analyses except DSA assume that the targets of function
pointer calls and virtual method calls are known during the bottom-up
summary computation phase. They either employ a separate conserva-
tive call-graph analysis to estimate the call-graph, or invoke a top-down
phase that propagates the points-to information from callers to callees,
and the bottom-up summary computation phase iteratively, until the
summaries converge to a fix-point. Hence, they do not require any ex-
tensions to the transfer functions for handling dynamic dispatch. On
the other hand, DSA has a custom mechanism for handling function
pointer calls which is discussed while formalizing the analysis in sec-
tion 7.2.3.

We do not formalize the language specific extensions of the anal-
yses in this article for the following two reasons. Firstly, we believe
that formalizing these features is a distraction from the focus of this
article which is to understand the analyses at a conceptual level and
generalize them. The additional formalism that would be required for
the extensions may make it difficult to understand the analyses, and
to appreciate their similarities and differences. Secondly, most of the
language specific extensions are rather straight-forward to devise once
the core abstractions of the analyses are well understood.
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7.2 Formal Definitions of the Instances

7.2.1 WSR Analysis

WSR analysis can be considered as an instance of our framework that
applies the following specializations to the base abstract semantics
(AG ,FG).

(AWSR,FWSR) =



(AG ,FG)
+Creation-site-naming
+Lazy-garbage-collection

 (instantiations)

+Partial-eager-simplification
+Omitting-σin

 (restrictions)

+Omitting-happen-before (abstractions)

7.2.2 Flow-Aware Analysis

Buss et al. present a modular pointer analysis called as flow-aware
analysis in [Buss et al., 2008] and [Buss et al., 2010]. Their abstract
representation of the state transformers, referred to as assign fetch
graphs, is very similar to the transformer graphs discussed in this arti-
cle. They refer to internal edges as assign edges and external edges as
fetch edges. We express the flow-aware analysis as an instance of our
framework that performs the following specializations.

(AFA,FFA) =



(AG ,FG)
+Creation-site-naming
+Lazy-garbage-collection
+Lazy-simplification

 (instantiations)

+Omitting-σin (restrictions)
+approximate-happens-before (abstractions)

The analysis tracks an approximation of the  relation using a
total order (which is described in sections 6.1 and 8.4 of [Buss et al.,
2010]). Being aware of the dependence (or flow) between the external
and internal edges, the analysis can be more precise in some scenarios



7.2. Formal Definitions of the Instances 341

especially when there is aliasing in the calling context (as illustrated in
section 7.1).

The total order is constructed by numbering the external and in-
ternal edges in the order in which they are created (or re-encountered)
during the analysis. The edges with smaller numbers are assumed to
happen before those with higher numbers. The disadvantage of this
strategy is that it introduces spurious orderings between the reads and
writes that happen along the two branches of an if-then-else statement.

Caveats [Buss et al., 2010] informally discusses the Simplify operation
in section 8.1 "computing summaries". A mapping akin to Incl (used
by the Simplify operation) is discussed in detail in section 4.1 "Pointer
Alias Analysis". Unfortunately, since section 8.1 in [Buss et al., 2010] is
not sufficiently detailed, we are unable to decipher the precise definition
of Simplify. The description indicates that their analysis translates the
internal edges on a vertex w to those in Incl(w). However, it is unclear
if the external edges are translated as well, which is necessary for cor-
rectness. Another ambiguity is that in [Buss et al., 2010] it is stated
that the analysis "deletes everything from a summary of a procedure
that the callers could not see". Intuitively, this seems to correspond to
the removeNonEscaping and GCG operations that delete non-escaping
vertices and associated edges from the summary. Due to these ambigu-
ities the above instantiation may not precisely capture all the aspects
of the analysis presented in [Buss et al., 2010].

7.2.3 Data Structure Analysis

[Lattner et al., 2007], [Lattner and Adve, 2005a] present a modular,
unification-based pointer analysis called as data structure analysis
(DSA). The analysis is also capable of summarizing procedures in
presence of function pointer calls. Indirect calls, such as function
pointer calls, virtual method calls and higher-order function calls, pose
a major challenge for bottom-up analyses. The targets of indirect calls
encountered during an analysis of a procedure may depend on the
context in which the procedure is invoked.
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DSA stores the indirect calls encountered during the analysis of a
procedure in the summaries computed for the procedure. These sum-
maries are propagated to the callers of the procedure as in a typical
bottom-up analysis. Eventually, sufficient context information becomes
available for resolving some indirect calls to their targets. At this point,
the analysis instantiates the summaries of the targets of the indirect
calls (that are resolvable) and drops the indirect calls from the sum-
maries.

This feature of DSA is non-trivial to understand and formalize,
but is orthogonal to the focus of this article. (For interested readers,
[Madhavan et al., 2012] presents a generic mechanism for lifting mod-
ular heap analysis approaches for first-order programs to higher-order
programs which is inspired by the approach of DSA. The abstract se-
mantics formalized in this section when used in conjunction with the
approach discussed in [Madhavan et al., 2012] may serve as a formaliza-
tion of this feature.) Below we focus on the abstract transfer functions
of DSA modulo the handling of indirect calls.

DSA as an instance of the framework

(ADSA,FDSA) =

(AG ,FG)
+Creation-site-naming-cloning
+Lazy-simplification
+Lazy-garbage-collection

 (instantiations)

+No-internal-external-distinction
+Flow-insensitivity
+Unification

 (abstractions)

The analysis performs several abstractions to the base abstract se-
mantics FG . It turns out that in the presence of these abstractions the
transformer graphs can be reduced to triples of the form (V,E, σ), which
is deceptively similar to an abstract shape graph though it represents
an abstract state transformer. Due to these abstractions, the transfer
functions can be simplified. In particular, the Simplify operation does
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not add any additional edges but only removes edges and vertices when
applied in conjunction with GCc. The analysis makes up for some of
the losses in precision by using a precise naming strategy that clones
the abstract objects along all acyclic call-paths.

The analysis does not distinguish between external and internal
edges and vertices. Therefore, there is no distinction between edges
created due to field-reads versus those created due to field-writes. Nev-
ertheless, the analysis tracks the vertices that are escaping by associat-
ing a boolean flag (called complete flag) with the vertices. Vertices that
have the complete flag set to true are non-escaping vertices. Though
[Lattner et al., 2007] informally states that the vertices marked as com-
plete are analogous to the internal vertices of WSR analysis, in reality
they correspond to non-escaping vertices.

[Lattner et al., 2007] defines the abstract semantics of a (direct)
call statement S as a function resolveCallee that invokes two func-
tions cloneGraphInto and resolveArguments (Figure 4 of [Lattner et al.,
2007]). The function cloneGraphInto clones the vertices in the callee
transformer graph, and inlines the cloned transformer graph into the
caller transformer graph. This corresponds to the transfer function of
a call statement described in Chapter 5.

The function resolveArguments merges the targets of every argu-
ment in the caller transformer graph with the corresponding parameter
nodes of the callee transformer graph, and also transitively merges the
targets of their out-edges. This corresponds to the definition of the pa-
rameter NodesToMerge for a call statement presented in Fig. 6.1 that
results in a unification-based analysis.

7.2.4 Access-path-based Modular Analysis

[Cheng and Hwu, 2000] proposes a modular pointer analysis technique
that uses access-paths to name abstract objects. The analysis summa-
rizes procedures using a set of points-to relations between access paths.
We will refer to the analysis as access-path-based analysis (APA). Be-
low we present a specialization of the framework that is very similar to
APA.
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(AAP ,FAP) =



(AG ,FG)
+Accesspath-based-naming
+Lazy-garbage-collection

 (instantiations)

+Partial-eager-simplification
+Omitting-σin

 (restrictions)

+Flow-insensitivity (abstractions)

As discussed in section 6, when the Accesspath-based-naming strat-
egy is used, the nodes names can be used to determine if a vertex is
internal or external, and also to reconstruct the set of external edges.
Hence, the internal and external vertex components, and the external
edge component can be omitted from the transformer graphs. The spe-
cializations used by APA (presented above) results in the omission of
the happens before and σin components from the transformer graphs.
(Recall that the flow-insensitivity abstraction omits the happens before
component as well.) In essence, the transformer graphs used by APA
can be reduced to pairs of the form (IE, σ). A pair (IE, σ) corresponds to
a points-to relation between LAPr+1 and RAPr , where r is the bound
on the length of the access-paths . This is precisely the representation
used by [Cheng and Hwu, 2000] for transformer graphs. They define
the abstract domain as 2 LAPr+1×RAPr .

The transfer functions given by FAP can also be simplified using
the condensed (paired) representation of the transformer graphs. (We
elide formal details for brevity). The abstract semantics presented in
[Cheng and Hwu, 2000] is similar to the simplified form of the transfer
functions.

Caveats The above instantiation has two differences compared to the
formulation presented in [Cheng and Hwu, 2000]. Firstly, in the analysis
described in [Cheng and Hwu, 2000], the objects newly created by a pro-
cedure are initially named using their allocation site label (like in the
Accesspath-based-naming strategy). Later, in the summary computed
for the procedure every label (which denotes newly allocated objects)
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is renamed to an access-path called extended-access-path, which is ob-
tained from a path starting at a parameter or global variable and ending
at the label of interest. This is an odd feature of the analysis. This is
sound, but may result in significant loss of precision as an internal ver-
tex (denoting objects allocated inside a procedure) is converted to an
external vertex (that possibly denotes objects read from the prestate).
[Cheng and Hwu, 2000] states that the reason for performing this is to
ensure that the vertices corresponding to newly allocated objects are
given different names in different calling contexts. A more precise way
of achieving this would be to clone such vertices in all (or selected)
calling contexts similar to DSA.

Secondly, we find that the semantics of [Cheng and Hwu, 2000]
has some differences (which are possible bugs) compared to FAP . The
transfer function FAP presented above performs partial simplification
of transformer graphs which is presented in Appendix A. With this
specialization, the transfer functions of field-read and procedure call
statements create external edges that start only from escaping vertices,
which is an optimization compared to the generic abstract semantics
of the framework.

However, the semantics described in [Cheng and Hwu, 2000] pushes
this further and does not create an external edge from a vertex when
there exists an internal edge starting at the vertex. The formalism
presented in [Cheng and Hwu, 2000] creates a new access-path δ.f∗,
that corresponds to an external edge starting from δ, iff δ does not
point to any node on field f (see definition 2.3 in section 2.1 of [Cheng
and Hwu, 2000]). This means that their semantics will not create an
external edge on an escaping node δ if there exists an internal edge
starting from the node. This is unsound. This we believe is a bug in
the algorithm of [Cheng and Hwu, 2000].

The formalization presented above is provably correct, addresses
these problems and yet remains close to the original formulation of the
analysis.



8
Experimental Results

8.1 Implementation, Benchmarks and Metrics

In this chapter, we present an experimental evaluation of the frame-
work using our open source, modular heap analysis tool Seal ([Mad-
havan et al., 2011], [Madhavan et al., 2012]), which is available at
seal.codeplex.com. Seal usesMicrosoft Phoenix Compiler Framework
and can analyze real-world Microsoft .NET applications implemented
in the C] programming language.

Seal is an implementation of the framework discussed in this ar-
ticle. In addition, it also has several extensions for handling advanced
features of the C] language. Most importantly, Seal implements the ap-
proach described in [Madhavan et al., 2012] for handling higher-order
features of C] such as virtual method calls and lambda expressions.

A few client analyses, such as Purity and Side-effects Analysis, In-
formation Flow Analysis, Escape Analysis, Call-graph Analysis, are
also integrated into Seal. The client analyses are implemented as post-
processing phases that analyze the summaries of the procedures com-
puted by the bottom-up summarization phase. Each client analysis
requires tracking some additional information in the summaries. For
instance, the Side-effects Analysis requires tracking the vertices and
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Benchmark Loc Description
(Abbv.)
DocX (doc) 10K Library for manipulating Word files
AvalonDock (ad) 18K Library for docking windows
Facebook API (fb) 21K Library for integrating with Facebook
Dynamic data 25K Real-time data visualization tool
display (ddd)
TestApi (test) 25K Library for testing tool development
SharpMap (sm) 26K Geospatial application framework
Quickgraph (qg) 34K Graph data structures and algorithms
SharpDevelop 43K Code refactoring engine
- NRefactor (ref )
Craig’s utility (cul) 56K Collection of .NET utility methods
PDFsharp (pdf ) 96K Library for processing PDFs

Figure 8.1: Benchmarks used in the experimental evaluation. All benchmarks are
popular, open source C] projects hosted at www.codeplex.com.

their fields that are modified by a procedure in the summary of the
procedure. Seal analyzes not only procedures but also libraries (DLLs)
modularly. Given a DLL, it summarizes the procedures in a DLL us-
ing transformer graphs, stores the summaries in a database, and uses
the summaries while analyzing the clients of the library. In our experi-
ments, the DLLs implementing the core C] library, namely,mscorlib.dll,
system.dll and system.core.dll were analyzed once and for all, and the
computed summaries were used during the analysis of each benchmark.

Seal can be unsound in some cases. It does not soundly handle
calls to native methods (which are methods implemented in C or other
unmanaged languages), graphical user interface (GUI) methods, reflec-
tion, and concurrency. We minimize the unsoundness by using stubs
for commonly used library methods that are not analyzable by Seal.

To evaluate the practical usefulness of our framework, we analyze
real-world C] libraries shown in Fig. 8.1, using different configurations
for the parameters of the framework. We measure the impact of each
configuration on the summaries computed for the procedures, and also

www.codeplex.com


348 Experimental Results

on the results of three client analyses: Purity and Side-effects Analysis,
Escape Analysis and Call-graph Analysis. In the rest of the chapter, we
explain the various configurations used in our experiments, the metrics
used to compare the configurations, and the results for each configura-
tion.

Metrics used in the Experimental Evaluation The following are the
metrics we use to compare the precision and scalability of different con-
figurations of the framework. The total time taken by the bottom-up
summary computation phase. We denote this as Time in the experi-
mental results presented shortly.

The number of vertices and edges in the summary transformer
graphs of procedures. This is a measure of scalability of the analysis.
Analyses that compute smaller summaries are more scalable. In the
experimental results presented shortly we denote this metric as Size.
The results show, for each benchmark, the average and the maximum
size of the summaries computed by the analysis.

The average out-degree of the vertices in the summary transformer
graphs, which is the ratio of edges to the vertices in the transformer
graphs. This is a measure of sparsity of the summaries. Summaries that
are sparse are generally more precise as they identify more references
as non-aliasing. We denote this metric as Deg. in the results presented
later. The results show, for each benchmark, the average sparsity of the
summaries computed by the analysis and theirmean absolute deviation.

We use the following metrics to measure the precision of the Purity
and Side-effects Analysis.

The number of procedures that are pure. A procedure is pure if
it does not write to pre-state memory locations (for more details see
[Salcianu, 2001]). In the presence of indirect calls, a procedure by itself
may not write to prestate locations but the indirect calls invoked by
the procedure may modify the prestate locations. Since the targets
of the indirect calls may depend on the calling context, the purity of
the procedure is also dependent on the calling context. We call such
procedures as conditionally pure. We include such procedures also in
this metric.
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The number of side-effects of a procedure, which are the prestate
memory locations modified by the procedure. It is possible for proce-
dures to have unbounded number of side-effects. For example, a pro-
cedure that appends an element to a linked list lst passed as a pa-
rameter may modify the locations: lst.next, lst.next.next and so
on. One way to represent side-effects of a procedure is using regular
expressions over access-paths. For example, the side-effects of the list
append procedure could be represented as lst.(next)+. But, with this
representation comparing side-effects across different configurations re-
quires checking inclusion and equivalence of regular expressions, which
is quite expensive. Therefore, in our experiments, we use an under-
approximation of the side-effects of a procedure described below.

For every vertex that is modified in the transformer graph, we
choose one access-path starting from each parameter that the modi-
fied vertex corresponds to. In the above example, if there are there
are two modified nodes in the transformer graph one corresponding
to lst.next and other corresponding to lst.next.(next)+. Then we
display the two access-paths: lst.next and lst.next.next as side-
effects of the procedure.

In the results presented shortly, we show the average number of
(under-approximate) side-effects per impure procedure and also their
mean absolute deviation. We refer to this metric as SE.

We measure the precision of the Escape Analysis using the following
metric. The total number of non-escaping (or local) allocation sites. An
allocation site is local only if during every invocation of the procedure
containing the allocation site, no object created by the allocation site
has an handle that is live after the execution of the procedure. We refer
to this metric as LA in the results presented in the next section.

Like many top-down heap analyses, Seal constructs a call-graph on-
the-fly during the bottom-up summary computation phase (see [Mad-
havan et al., 2012]). We evaluate the precision of the call-graph com-
puted by Seal for a given DLL using the following metric abbreviated
as CGE. The number of edges in the call-graph computed for the given
DLL. A call-graph is more precise if it has fewer edges.
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8.2 Evaluation of the Configurations of the Framework

We now describe the various configurations used in the experimental
evaluation and discuss the results they produce. Since the parameters
of the framework can be defined arbitrarily, exhaustively evaluating
all possible configurations of the framework is not practically feasible.
Therefore, we adopt the following approach in this evaluation. We first
present the results of one of the most tested and scalable configurations
of the tool which we refer to as the base configuration. This configura-
tion was also used in the experimental evaluation of [Madhavan et al.,
2012]. We then turn on one specialization of the framework and eval-
uate the change in the results relative to the base configuration. This
would provide an idea of the importance of the specialization and the
criticality of the parameter that is affected by the specialization.

All evaluations presented in this section were carried out on a sys-
tem with 2 core, 2.6 GHz Intel Core i5 processor, with 8 GB RAM,
running Windows 8 operating system.

Base Configuration In this configuration, the abstract vertices are
named using their creation site labels (Creation-site-naming). The con-
figuration uses flow-insensitive analysis and incorporates partial ea-
ger simplification of transformer graphs (Partial-eager-simplification)
in the transfer functions of the statements. Moreover, a node merg-
ing strategy is applied to the transformer graphs computed at the exit
point of a procedure. The node merging strategy used ensures that ev-
ery out-going external edge from a vertex is labelled by a unique field,
and similarly, every out-going internal edge is also labelled by a unique
field. This is one of the most scalable configurations.

Fig. 8.2 shows the results of the analyzing the benchmarks in the
base configuration. The figure shows all the metrics discussed earlier
for each benchmark.

One Level Cloning This configuration employs a context-sensitive
naming strategy. Every node has a label, which is the label of the
creation site, and a context. The context of a node at a program point
is the label of the first call statement in the call-path that leads to the
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Time Size Deg. Pure SE LA CGE
avg avg avg
(max) (dev) (dev)

doc 1m55s 84.8 1.1 392 9.6 743 4234
(697) (1.1) (9)

ad 18m30s 88 1 704 11.5 1267 7482
(2059) (1) (15.4)

fb 2m17s 55.7 0.8 1978 9.4 976 7028
(774) (0.7) (10.9)

ddd 5m4s 50.5 0.5 1622 3.9 2950 8366
(1965) (0.3) (4.1)

test 7m13s 52.8 0.7 709 8.5 1063 6836
(1636) (0.5) (10.2)

sm 1m15s 25.2 0.5 1052 3.3 747 4588
(580) (0.3) (2.8)

qg 1m43s 30.8 0.5 2368 3.1 663 6360
(959) (0.3) (3.1)

ref 24m31s 76.7 0.8 2037 8.8 1115 43160
(5274) (0.6) (9.7)

cul 5m20s 30.6 0.5 2774 3.7 2183 12981
(1654) (0.3) (4.2)

pdf 52m39s 89.9 0.9 1751 13.9 3482 12721
(2659) (0.7) (17.2)

Figure 8.2: Results of running Seal on the benchmarks shown in Fig. 8.1 in the
base configuration.
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%∆ %∆ %∆ %∆ %∆ %∆ %∆
Time Size Deg. Pure SE LA CGE

avg avg avg
(max) (dev) (dev)

doc -3.4 -10 -23.4 5.6 -49 2.4 -10.5
(-4.7) (-33.8) (-51.5)

ad -64.4 -55.5 -36.5 0.7 -72.3 3.4 -29.9
(-75.1) (-53.7) (-85.3)

fb -13.5 -23.3 -29.2 0.4 -30.1 9.9 -15.6
(18.3) (-46.6) (-34.1)

ddd -36.3 -24 -8.4 0.1 -18.5 0.4 -27.2
(-6.9) (-17.6) (-28.3)

test 625.9 -6.2 -13.6 1.3 -40.9 1.9 -13.8
(-11.2) (-26.1) (-51.3)

sm -16.5 14.8 -3.6 0.9 3.2 0.8 -16.5
(8.3) (-7.9) (7.2)

qg -11.8 -2.1 -6.7 0.3 -12.5 2.4 -17.7
(5.3) (-15) (-18.8)

cul 38.3 -0.7 -7 0.7 -8.7 3.9 -20
(17.2) (-17.1) (-10.8)

pdf -17.7 -8 -22.9 0.2 -8.8 0.2 -7.5
(-11.1) (-37.7) (-10.2)

Figure 8.3: Results obtained with one level cloning of abstract nodes. The values
shown in the figure are relative to the values of the base configuration shown in
Fig. 8.2.
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creation site of the node from that program point. Note that unlike the
Creation-site-naming-cloning strategy discussed earlier, this strategy
does not use the entire call-path as the context but only the label of
the first call-site in the call-path.

For example, consider a procedure A that calls procedure B which in
turn calls procedure C twice. The abstract nodes created by the two calls
to procedure C will have distinct names in procedure B, but would be
indistinguishable in procedure A under this naming scheme. We refer to
this naming strategy as one level cloning. This configuration is similar
to the base configuration in every other aspect.

Fig. 8.3 shows the results obtained using this configurations for each
benchmark. All numbers in the figure (including those in parentheses)
show the percentages by which the values of the metrics differ com-
pared to the base configuration. Percentages that are negative indicate
a decrease in the value of the corresponding metric relative to the base
configuration. For example, in this configuration, the analysis of the
benchmark doc took 3.4% lesser time compared to the base configura-
tion, whereas the analysis of benchmark test took almost 625% more
time compared to the base configuration. The analysis did not scale to
the benchmark ref under this configuration within a fixed time limit of
90 minutes and hence is omitted from the results. Note that though this
configuration uses a context-sensitive naming strategy it sometimes re-
sults in significantly faster running times and more compact summaries
for benchmarks like pdf.

The results for the sparsity metric show that this configuration
results in sparser summaries compared to the base configuration across
all benchmarks. This is expected since cloning increases the context-
sensitivity of the analysis.

The increase in the precision of the summaries positively influences
the results of the client analyses as shown by the remaining columns
in the Fig. 8.3. In particular, more methods are identified as pure and
fewer side-effects are inferred for the impure methods. More allocation
sites are identified as non-escaping and the call-graph has significantly
fewer edges compared to the base configuration. Readers might ob-
serve that for the benchmark sm the figure indicates an increase in
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%∆ %∆ %∆ %∆ %∆ %∆ %∆
Time Size Deg. Pure SE LA CGE

avg avg avg
(max) (dev) (dev)

doc -8.2 6.2 -3.9 0 -0.9 0 -3.4
(6.9) (-7.2) (-1.4)

ad -3.1 0.5 -10.3 0 -3.2 0 -1
(20.1) (-18.9) (-5.2)

fb 13.2 5 -13.2 0 0.1 8.9 -1.4
(-11.2) (-27.3) (0.1)

ddd 71.7 27.2 -2.9 0.1 -11.9 0.1 -6.8
(127.6) (-6.4) (-18.7)

sm 157.6 229.4 -3 0.1 6 0 -0.2
(2604) (-6.5) (10.1)

qg 8.6 1.6 -2.3 0 -4.4 0 -6.5
(15) (-5.3) (-7.2)

cul -2.1 31.4 -2.4 0 5.7 0 -3.9
(129.1) (-6.8) (8.6)

Figure 8.4: Results obtained with full cloning of abstract nodes. The values shown
in the figure are relative to the values of the configuration: One Level Cloning shown
in Fig. 8.3.

the number of side-effects. However, on manual inspection, we found
that this was because of the duplicates in the listing of side-effects and
do not correspond to an actual increase in the side-effects. The under-
approximation heuristic that we use to list side-effects did not identify
the duplicates as they were syntactically different.

Full Cloning This configuration performs full cloning of abstract
nodes like in the case of DSA, i.e. it uses the Creation-site-naming-
cloning strategy. It is similar to the base configuration in every other
aspect. Fig. 8.4 shows the results obtained with this configuration. All
numbers in the figure (including those in parentheses) show the per-
centages by which the values increase or decrease with respect to the
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One Level Cloning configuration. Under this configuration, the analy-
sis timed out on three benchmarks: test, ref and pdf. Hence, they are
omitted from the Fig. 8.4.

Notice that for most benchmarks this configuration increases the
summary sizes compared to One Level Cloning. In the case of the sm
benchmark the increase in the summary sizes is quite dramatic (almost
26 times). In contrast, the decrease in average degree of vertices (i.e,
the increase in sparsity) of the summaries is only marginal.

There is also almost no increase in the number of pure methods.
However, there is some reduction in the number of side-effects per pro-
cedure in some benchmarks. (The increase in side-effects for a couple
of benchmarks were due to the issue of duplicates mentioned while dis-
cussing one level cloning.) The Escape Analysis doesn’t benefit across
the board from the increased context-sensitivity. The number of local
allocation sites increases significantly for the fb benchmark, but remains
almost unchanged for the remaining benchmarks. However, the Call-
graph analysis does benefit from the increase in context-sensitivity. In
particular, the number of call-graph edges decreases across all bench-
marks.

On the whole, the results of the One Level Cloning and Full Cloning
configurations indicate the following trends. (a) There is a huge im-
provement in the precision of the summaries as well as that of the client
analyses while switching from a context-insensitive naming strategy to
a context-sensitive naming strategy. (b) However, using a very precise
context-sensitive naming strategy does not benefit some applications,
but instead hampers the scalability of the analysis quite significantly.

The bottom line is that choosing the right level of context-
sensitivity in the naming of abstract nodes should be one of the main
concerns while designing a modular heap analysis for a particular ap-
plication.

Flow-sensitive Configuration This configuration performs a flow-
sensitive analysis but otherwise uses the same abstractions as the base
configuration. Fig. 8.5 shows the results obtained with this configura-
tion. All numbers in the figure (including those in parentheses) show



356 Experimental Results

%∆ %∆ %∆ %∆ %∆ %∆ %∆
Time Size Deg. Pure SE LA CGE

avg avg avg
(max) (dev) (dev)

doc 49.9 -1 -0.5 0 -0.4 0.7 -2.1
(-12.1) (-0.4) (-0.6)

ad 90.2 -1.9 -4.1 0.4 -3.5 0.5 -3.3
(0) (-4.7) (-4.4)

fb 21.4 -3.5 -4.7 0 -2 0 -1.8
(-0.6) (-7.3) (-2.3)

ddd -3.3 -1.2 -1.4 0.1 -1.2 0 -0.1
(-1.1) (-2.8) (-0.3)

test 110.8 -3.9 -2.7 0 -4.1 0.2 -1.8
(-0.9) (-5) (-2.9)

sm 87.3 -7 -2.2 0.3 -8 0.1 -2
(-8.6) (-5) (-5.1)

qg -10.1 -5.1 -4.6 0.2 -5.3 0 -8.5
(-9.2) (-10.6) (-4.4)

ref 25.3 -0.6 -0.7 0 -0.8 0.1 -3.4
(-0.5) (-1.1) (-0.7)

cul 13.4 -2 -1.9 0.2 -3.6 0.5 -1.9
(1.4) (-4.6) (-5.2)

pdf -17.4 -9.9 -10.6 0.2 -1.5 -0.9 -9.8
(-5.5) (-18.1) (-1.4)

Figure 8.5: Results obtained using a flow-sensitive analysis. The values shown in
the figure are relative to the values of the base configuration.
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the differences (in percentage) compared to the results of the base con-
figuration shown in Fig. 8.2. The data highlights that the flow-sensitive
analysis results in a marked increase in the precision when compared
to the base configuration, especially in the number of call-graph edges
and average side-effects per procedure.

It may be somewhat surprising to the readers that flow-sensitivity
does not significantly slow down the analysis. Even though there is a
two fold increase in the analysis time for some benchmarks, all of the
benchmarks except pdf complete well within 30 minutes. The analysis
of the pdf benchmark actually runs faster. This is mainly because of
our efficient implementation of the flow-sensitive analysis. Recall that
the transfer functions of the framework perform only weak updates on
the abstract vertices. Hence, only variables are strongly updated during
a flow-sensitive analysis.

We exploit this property in the implementation. We maintain a
single copy of the portion of the transformer graph that is weakly up-
dated, and use separate copies of the variable to abstract node mapping
(σ) at each program point. However, this may result in some loss of
flow-sensitivity, since the heap-effects along one branch of an if-then-
else statement may percolate into the other branch. Nevertheless, it
greatly reduces the overhead of copying the transformer graphs at each
program point.

Readers might notice that in the pdf benchmark the number of local
allocation sites (LA) actually decreases. Our investigations reveal that
this is due to increased merging of nodes in the summaries of a few pro-
cedures compared to the flow-insensitive configuration. Unfortunately,
since the benchmark is huge and also because its analysis takes a long
time to complete, we were unable to precisely determine the reason for
this aberration.

Happens Before Configuration This configuration performs a flow-
sensitive analysis and additionally tracks an approximation of the hap-
pens before relation in the transformer graphs. The happens before
relation is approximated by a total order using the idea presented by
flow-aware analysis [Buss et al., 2010], which is briefly explained in
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%∆ %∆ %∆ %∆ %∆ %∆ %∆
Time Size Deg. Pure SE LA CGE

avg avg avg
(max) (dev) (dev)

doc 24.1 0 0 0 0 0 0

ad 19 0 0 0 0 0 0

fb 2.7 0 0 0 0 0 0
(-0.1)

ddd 26.3 0 0 0 0 0 0
(-0.1)

test 45.1 -0.1 -0.1 0 -0.1 0 0
(0) (-0.1) (0)

sm -24.5 -0.1 -0.3 0 -0.5 0 0
(0) (-0.8) (-0.8)

qg 12.4 -0.1 -0.1 0 0 0 -0.1
(0) (-0.3)

ref -21.9 0 0 0 0 0 0

cul 17.6 0 0 0 0 0 0
(-0.1)

pdf 62.6 -0.1 0 0 -0.4 0 0
(0) (0.1) (-0.5)

Figure 8.6: Results obtained using a flow-sensitive analysis and with the tracking
of the happens before relation. The values shown in the figure are relative to the
values of the flow-sensitive configuration.
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%∆ %∆ %∆ %∆ %∆ %∆ %∆
Time Size Deg. Pure SE LA CGE

avg avg avg
(max) (dev) (dev)

doc 83.6 167.5 8.4 5.6 -56.6 3.1 -10.6
(719.1) (11.1) (-60.4)

fb -12.2 79.1 -18 0.4 -30.2 2.6 -14.5
(123.8) (-29.6) (-34.1)

sm 24.4 173.5 30.6 0.8 4.2 0.3 -13
(720) (62.6) (16.9)

Figure 8.7: Results obtained without node merging. The values shown in the figure
are relative to the results of the base configuration.

section 7.2.2. We use this approximation since the overhead of tracking
the happens before relation precisely becomes prohibitively expensive
as the number of edges in the transformer graphs increase.

Fig. 8.6 shows the results obtained with this configuration relative
to the results of the flow-sensitive configuration shown in Fig. 8.5. The
results indicate that this configuration results in slower running times
in most cases compared to the plain flow-sensitive analysis, but only
results in marginal increase in precision. This suggests that omitting
the happens before relation from the transformer graphs is perhaps a
good trade-off for certain applications. However, note that even this
marginal increase in precision may be critical for certain applications
like program verification.

Impact of Node Merging To measure the impact of the node merging
abstraction, we evaluate the benchmarks under two variations of the
base configuration . The first variation, called as base minus node-
merging, does not employ a node-merging strategy at any point in
the analysis. The second configuration, referred to as quasi-unification,
aggressively merges nodes in the transformer graphs during the analysis
of procedures. Note that the base configuration itself applies a lossy
node merging strategy at the exit points of the procedures.
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The results for the configuration without node merging is shown in
Fig. 8.7. Only three benchmarks were analyzable within a time limit
of one and a half hours with this configuration. The reason for this is
evident from the values for the summary size metric, which highlights
that the sizes of the summaries increase by an order of magnitude in the
absence of node merging. However, this configuration does improve the
precision of the summaries as indicated by the precision of the client
analyses.

Fig. 8.8 shows the results of analyzing the benchmarks under the
quasi-unification configuration. This configuration applies the node
merging strategy used by the base configuration not only to the trans-
former graphs resulting at the exit point of a procedure but also to the
transformer graphs that results before and after the call-statements en-
countered during the analysis of a procedure. The node merging strat-
egy used ensures that every external (or internal) edge starting from
a vertex is labeled by a unique field. This is almost like performing a
unification based analysis, and hence the name quasi-unification.

The results shown in Fig. 8.8 indicate that the analysis runs
slightly faster on most benchmarks under this configuration. There is
a marginal increase in the average degree of the summaries implying
that the summaries are becoming denser. The loss of precision in Pu-
rity and Side-effects Analysis is minimal except for the benchmark doc.
However, this configuration worsens the results of the Escape Analysis
and Call-graph Analysis for most benchmarks.

The results of these two configurations indicate that node merging
may result in loss of precision in the client analyses. However, it can-
not be completely dispensed with as the analysis without node merging
hardly scales to large real-world applications. This leads us to the con-
clusion that node merging should be carefully fine tuned to suit the
precision-scalability needs of an application.
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%∆ %∆ %∆ %∆ %∆ %∆ %∆
Time Size Deg. Pure SE LA CGE

avg avg avg
(max) (dev) (dev)

doc 27 2.8 4 -3.1 13.7 -7.1 0.5
(0.4) (4.7) (8.5)

ad 12.1 0 0.3 0 0.1 -1.1 2.8
(0.3) (0)

fb 4.9 -0.4 1.4 0 1.2 -0.2 5.3
(2.3) (2) (1.5)

ddd -15.9 0 0.1 0 0 0 0.1
(0.2)

test -27.2 0.7 1.7 0 0.3 -0.6 0.6
(-0.7) (3.4) (0.1)

sm -12.1 -0.4 -0.2 0 0.2 -0.4 0.1
(0.7) (-0.5) (0.4)

qg -32.1 0 0.1 0 -0.5 -0.2 0
(0) (-0.9)

ref -31 -0.6 2 0 2.7 -0.6 2.2
(-0.2) (3.9) (3.8)

cul 10.7 0.2 0.5 0 0 -0.1 0.3
(0) (0.8)

pdf -6.8 0.1 0.4 0 -0.1 -3.8 0.4
(0.3) (0.7) (-0.2)

Figure 8.8: Results obtained with quasi-unification configuration. The values
shown in the figure are relative to the results of the base configuration.



9
Related Work and Conclusion

Related Work Pointer and heap analysis techniques have been stud-
ied extensively in the past few decades. Much of the research on pointer
analysis has been directed toward top-down analyses. Some of the re-
cent works include [Smaragdakis et al., 2014], [Marron et al., 2012],
[Hardekopf and Lin, 2011], [Smaragdakis et al., 2011], [Lhoták and
Chung, 2011], [Liang and Naik, 2011], [De and D’Souza, 2012], [Zhang
et al., 2014].

Modular heap analysis techniques have also been a subject of active
research, but have attracted lesser attention. Some of the important
works include [Chatterjee et al., 1999], [Whaley and Rinard, 1999],
[Cheng and Hwu, 2000], [Liang and Harrold, 2001], [Nystrom et al.,
2004], [Salcianu and Rinard, 2005], [Lattner et al., 2007], [Buss et al.,
2008], [Jeannet et al., 2010], [Dillig et al., 2011], [Madhavan et al., 2011],
[Madhavan et al., 2012], [Kneuss et al., 2013], [Mangal et al., 2014].

Parametric frameworks for heap analyses with tunable precision
and scalability have also been explored by prior works. However, al-
most all of these works target top-down heap analyses. A pioneering
work in this space is TVLA [Sagiv et al., 1999]. TVLA is a parametric
abstract interpretation. It has been used to formalize a number of heap

362
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analyses, and has been applied extensively to verify deep properties of
imperative programs. The DOOP heap analysis framework ([Braven-
boer and Smaragdakis, 2009], [Smaragdakis and Bravenboer, 2010])
provides a declarative language for expressing points-to analyses. In
this framework, a points-to analysis is expressed as a set of datalog
rules which is then solved using an optimized datalog engine. The bur-
den of proving the analysis correct still rests with the developer of the
analysis. However, the framework relieves the developer from having to
perform low-level performance optimizations. DOOP has been used to
implement a number of context-sensitive points-to analyses.

Other parametric points-to analyses include k-CFA style context-
and object-sensitive analyses such as the analysis proposed in [Smarag-
dakis et al., 2011], [Liang and Naik, 2011], [Zhang et al., 2014], the Pad-
dle pointer analysis of the SOOT program analysis framework [Lhoták,
2006], the pointer analysis of the WALA program analysis framework
[WALA]. The context-sensitivity of these analyses can be varied by
adjusting the parameter k.

To our knowledge there is no prior work on parametric frameworks
for modular heap analysis, especially those that are capable of express-
ing existing modular analyses as instances. One of the main reasons
for this is the apparent complexity of these analyses. Below we briefly
describe some of the related modular heap analysis approaches that
were not described earlier.

[Jeannet et al., 2010] proposed an approach for using the abstract
shape graphs of TVLA to represent abstract graph transformers (using
a double vocabulary), which is used for modular interprocedural anal-
ysis. Their approach can be used to perform bottom-up or top-down
interprocedural analysis. However, as duly noted by the authors, when
used in a fully bottom-up fashion (as in our framework) the approach
may enumerate a large number of input shape configurations.

Rinetzky et al. [Rinetzky et al., 2005] present a tabulation-based
approach to interprocedural heap analysis of cutpoint-free programs
which imposes certain restrictions on aliasing. While our framework
computes a procedure summary that can be reused at any callsite,
the tabulation approach may analyze a procedure multiple times, but
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reuses analysis results at different callsites if the “input heap” is the
same. However, there are interesting similarities and connections be-
tween the Rinetzky et al. approach to merging “graphs” from the callee
and the caller and the transformer graph composition of our framework.

Modular approaches have also been explored by separation logic
based shape analysis techniques such as [Calcagno et al., 2009], [Gula-
vani et al., 2009]. They compute Hoare triples, which correspond to
conditional summaries: summaries which are valid only in states that
satisfy the precondition of the Hoare triple. These summaries typically
incorporate significant “non-aliasing” conditions in the precondition.

Conclusion and Future Work In this article, we proposed a frame-
work for modular heap analysis that creates context-independent sum-
maries for procedures but avoids enumerating possible configurations of
the input heap. We presented our framework as a parametric abstract
interpretation and established the correctness and termination prop-
erties. We showed that the framework subsumes at least four existing
modular heap analyses.

We presented an experimental evaluation of the framework using
our implementation Seal. We evaluated the framework by analyzing
ten real-world C] applications with six different configurations for the
parameters. We used three client analyses to gauge the precision and
scalability of the analysis. The results highlight that the framework can
be instantiated to obtain analyses with varying levels of precision and
scalability.

Parametric heap analysis tools such as Seal are quite useful as they
enable fine tuning of heap analyses to suit a particular application.
They also provide a platform for developing analyses that can dynam-
ically alter their precision and scalability during an execution, like the
analyses proposed in [Smaragdakis et al., 2014] and [Liang and Naik,
2011].

The framework proposed in this article has two limitations: (a) it
does not perform strong updates on heap allocated objects, and (b)
it does not support path-sensitivity. The program representation of
transformer graph presented in this article hints at a potential approach
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to address both these challenges. Recall that every internal edge in the
transformer graph corresponds to a non-deterministic write which may
or may not execute. In order to support strong updates, we need to
allow unconditional writes in the programs representing transformer
graphs. Hence, the transformer graphs have to be enriched with two
types of internal edges: may and must internal edges. Moreover, the
node naming strategy must be enriched so that it distinguishes between
singleton nodes that represent a single concrete object and summary
nodes that represent two or more concrete objects, akin to TVLA-style
shape analyses. With these extensions it is possible to perform strong
updates on singleton nodes.

Path-sensitivity can also be incorporated into the transformer
graphs by associating internal and external edges in the transformer
graphs with predicates that capture the conditions under which an
edge holds. We plan to explore these approaches in the future.



Appendices



A
Simplified Transformer Graphs

This section formalizes the partial simplification restriction informally
described in section 6.2.1.

The Domain AI Let AI denote the set of all transformer graphs
τ = (EV,EE, σin, IV, IE, σ, ) that satisfy the following condition:

〈u, f, w〉 ∈ EE =⇒ u ∈ Escaping(τ).

The join operator tco is closed under this domain AI , i.e. given any
τ1, τ2 ∈ AI , τ1tcoτ2 ∈ AI . Therefore, (AI ,vco,tco) forms a sub-lattice
of the lattice (AG ,vco,tco).

Transformer graphs belonging to AI do not contain any external
edges with a non-escaping source vertex. Such edges are not essential:
e.g., given any transformer τ ∈ AG , the Simplify operation presented
earlier returns an equivalent transformer that has no such edges. In
other words, Simplify(τ) ∈ AI .

The Abstract Semantics FI

We now present an adaptation of FG (the abstract semantic functions)
to ensure that they always produce elements of AI . The abstract se-
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FI(v1 = v2.f)(τ) =
let A = {n | ∃n1 ∈ σ(v2), 〈n1, f, n〉 ∈ IE}
let B = σ(v2) ∩ Escaping(τ)
if (B = ∅)
then (EV,EE, σin, IV, IE, σ[v1 7→ A], )
else
let g = λu.

(∃x.〈u, f, x〉 ∈ EE)→
⋃

〈u,f,x〉∈EE
LoadS(u, f, x)

| LoadS(u, f)

let EVnew =
⋃
u∈B

g(u)

let EEnew =
⋃
u∈B
{u} × f × g(u)

let  new= {(ie, ee) | ie ∈ IE, ee ∈ EEnew})
(EV ∪ EVnew,EE ∪ EEnew, σin,

IV, IE, σ[v1 7→ A ∪ EVnew], ∪ new)

Figure A.1: The abstract semantics of field-read statement that incorporates the
Simplify operation partially.

mantic function FG(S) shown in Figures 5.1 and Fig. 5.2) is closed with
respect to AI for most types of statements S. We need to adapt the
definition of FG(S) only for field-read statements and call statements.
One way of doing this would be to apply Simplify as the last step (to
the transformer graph produced by FG(S)). Instead, we utilize a partial
simplification which is more efficient.

Recall that the Simplify operation used by (AG ,FG) removes un-
necessary external vertices (and edges) from a transformer graph but
also adds new edges (that were implicitly represented in the original
graph). The partial simplification we utilize here removes all external
edges from non-escaping nodes, but avoids adding some of the edges
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added by Simplify. We integrate the partial simplification with the
abstract semantic function as it is simpler and more efficient. Further-
more, we exploit the fact that the input transformer graph is already
partially-simplified. We denote this variant of the abstract semantics
as FI .

Abstract Semantics of Field-Read Statements

Fig. A.1 formally defines the modified semantics of a field-read state-
ment. Let S denote a field-read statement v1 = v2.f . The transfer
function FI(S) is is similar to FG(S) (shown in Fig. 5.2) but has two
important differences: (a) new external edges are added only to the
escaping nodes in σ(v2). If there are no escaping nodes in σ(v2) (i.e,
when B = ∅), no external edges are added. (b) σ(v1) includes the tar-
gets of internal edges of v2.f (the set A). The transfer function FI(S) is
equivalent to SimplifyS(FG(S)(τ)), and hence equivalent to FG(S)(τ).
This is formally stated in Lemma A.1. We now explain how the transfer
function partially incorporates the simplify operation.

Consider the definition of FG for a field-read statement S shown
in Fig. 5.2. Applying SimplifyS on FG(S)(τ) will match the newly
added external edges EEnew to the internal edges starting from
vertices in σ(v2) labelled by field f , which is given by the set
{〈n1 , f ,n〉 ∈ IE | n1 ∈ σ(v2 )}. Hence, after simplify, σ(v1) will include
the set A. In comparison, FI(S) proactively adds the vertices in A

to σ(v1). Indeed, Simplify may add more vertices to σ(v1) besides the
vertices in the set A.

When the domain invariant holds, it can be shown that for the ver-
tices belonging to the set σ(v2)\B which are the non-escaping vertices
in σ(v2), all targets on field f are included in the set A (see lemma A.1).
Since FI(S) has proactively added the vertices in the set A to σ(v1),
the external edges on these nodes are redundant and hence are not
added by FI(S).

In essence, FI(S) partially incorporates the Simplify operation.
However, it does not fully incorporate the Simplify operation and so
the resulting transformer graph may not be syntactically identical to
the result of Simplify(FG(S)), yet it has the same concrete image.
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x ∈ EV2 \ range(σin2)⇒ x ∈ ηI(x) (A.1)
x ∈ σin2(X)⇒ σ1(X) ⊆ ηI(x) (A.2)

x ∈ IV2 ⇒ AllocS(x) ∈ ηI(x) (A.3)
〈u, f, x〉 ∈ EE2, a ∈ ηI(u)⇒ LoadS(a, f, x) ∈ ηI(x) (A.4)

〈u, f, v〉 ∈ EE2, u
′ ∈ ηI(u), 〈u′, f, v′〉 ∈ IE1 ⇒ v′ ∈ ηI(v) (A.5)

〈u, f, v〉 ∈ EE2, 〈u′, f, v′〉 ∈ IE2,

ηI(u) ∩ ηI(u′) 6= ∅,
〈u, f, v〉 2 〈u′, f, v′〉

⇒ ηI(v′) ⊆ ηI(v) (A.6)

Figure A.2: The definition of the function ηI [[τ1, τ2]] used by the composition op-
eration. The transformer graphs τ1 = (EV1,EE1, σin1, IV1, IE1, σ1, 1) and τ2 =
(EV2,EE2, σin2, IV2, IE2, σ2, 2).

Abstract Semantics of Call Statements

Consider a call statement S. The semantics of the call statement is
defined using the composition operation. Here, we redefine the compo-
sition operation by partially incorporating the Simplify operation as in
the case of field-read statement. We define τ2〈〈τ1〉〉I as

removeNonEscaping(Append(τ1, τ2, ηI)),

where Append is defined and discussed in section 5.2.1, and
removeNonEscaping is defined in section 5.3.1. The function ηI is de-
fined in Fig. A.2.

As shown in Fig. A.2, ηI has all the rules of η[[τ2, τ1]] (defined in
section 5.2.1), namely (A.1)–(A.4). In addition to it, it is augmented
with rules borrowed from the Simplify operation. The net result is that
ηI partially computes the mapping Incl used by the Simplify operation.

The composition operation invokes removeNonEscaping without
performing a full blown Simplify operation. This is possible because
of the domain invariant. Lemma A.2 establishes the correctness of this
operation by proving equivalence to Simplify(τ2〈〈τ1〉〉S).
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Correctness, Equivalence and Termination of FI

Lemma A.1. Let S be a field-read statement of the form v1 = v2.f and
τ ∈ AI . The transfer functions: FI(S), FG(S), and FG(S) composed
with Simplify, are all equivalent. That is,

γT (FG(S)(τ)) = γT (Simplify(FG(S)(τ))) = γT (FI(S)(τ))

Lemma A.2. Let τ1, τ2 ∈ AI and let S be a call statement. The com-
position operation 〈〈〉〉I is equivalent to the base composition operation
(〈〈〉〉), and also to 〈〈〉〉 composed with Simplify.

γT (τ2〈〈τ1〉〉S) = γT (SimplifyS(τ2〈〈τ1〉〉S)) = γT (τ2〈〈τ1〉〉I).

Lemma A.3. If τ ∈ AI then

a. FI(v1 = v2.f)(τ) is monotonic w.r.t vco.

b. The composition operation τ1〈〈τ2〉〉I , and the abstract semantics of
the call statement are monotonic w.r.t vco.

Theorem A.4. For any instantiation (A,FA) of (AI ,FI) satisfying
Assumption 5.10

a. There exists an instantiation of (AG ,FG) semantically equivalent to
(A,FA) and vice versa. Therefore, (A,FA) is correct.

b. (A,FA) will terminate since the transfer functions are monotonic.
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The Node Merging Abstraction

In this section we formalize the node merging abstraction informally
described in section 6.3.1.

Transformer Graph Embedding We say that a transformer graph τ1
can be embedded in τ2, denoted τ1 � τ2, iff there exists a homomor-
phism h from the vertices τ1 to τ2 such that the following holds. (We
use subscripts 1 and 2 to denote components of τ1 and τ2.)

x ∈ IV1 ⇒ h(x) ∈ IV2

x ∈ EV1 ⇒ h(x) ∈ EV2

〈x, f, y〉 ∈ IE1 ⇒ 〈h(x), f, h(y)〉 ∈ IE2

〈x, f, y〉 ∈ EE1 ⇒ 〈h(x), f, h(y)〉 ∈ EE2

∀v ∈ Vars. {h(x) | x ∈ σ1(v)} ⊆ σ2(v)
∀v ∈ Vars. {h(x) | x ∈ σin1(v)} ⊆ σin2(v)
(〈u, f, w〉, 〈x, g, y〉) ∈ 1⇒ (〈h(u), f, h(w)〉, 〈h(x), g, h(y)〉) ∈ 2

We use τ1 �h τ2 to denote that the function h induces an embedding
from τ1 to τ2. (Unlike the embedding notions used by TVLA [Sagiv
et al., 1999], here h is not required to be surjective.)
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Node merging produces an embedding. Assume that we are given a
function ξ representing an equivalence relation on the nodes of a trans-
former graph τ . ξ maps a node in τ to the representative of its equiva-
lence class. We define the transformer graph ξ(τ) to be the transformer
graph obtained by replacing every node u by a unique representative of
its equivalence class in every component of τ (we formally define ξ(τ)
later).

Lemma B.1. The embedding operation satisfies the following:

a. � is a pre-order. (i.e., it is reflexive and transitive).

b. γT is monotonic with respect to �: ∀τa, τb ∈ AG ,
τa � τb ⇒ γT (τa) vc γT (τb)

c. τ � ξ(τ).

Assume that we wish to replace a transformer graph τ by a graph
ξ(τ) at some point during the analysis (perhaps by incorporating this
into one of the abstract operations). Our earlier correctness argument
still remains valid (since if f ∼ τ1 � τ2, then f ∼ τ2). (The proof is
essentially a simple inductive proof: see Prop. 4.3 of Cousot and Cousot
[1992]).

However, this optimization impacts the termination argument be-
cause node merging is not monotonic w.r.t containment ordering. In-
deed, our initial implementation of the optimization did not terminate
for one program because the computation ended up with a cycle of
equivalent, but different, transformers (in the sense of having the same
concretization).

Informally, we get around this problem by refining the analysis to
ensure that once two nodes are chosen to be merged together, they are
always merged together in all subsequent steps. This approach guaran-
tees termination. We formalize this approach in the sequel. The formal-
ization adds an equivalence relation on nodes (representing the nodes
currently merged together) to the abstract domain and updates the
transformers accordingly.
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The Equivalence Relations Domain We represent an equivalence re-
lation on Na (the set of abstract nodes) using a function ξ : Na 7→ Na

that maps every node in an equivalence class to the (unique) represen-
tative of the equivalence class. Let E ⊆ Na 7→ Na be the set of such
functions representing the equivalence relations on Na. Given a func-
tion ξ ∈ E it is straight forward to construct the equivalence relation
it represents (denote as 'ξ), 'ξ= {(x, y) | ξ(x) = ξ(y)}. For every
ξ ∈ E let ξ−1 : Na 7→ 2 Na denote the inverse function that maps the
representative of an equivalence class to the set of nodes it represents.

Let ≤ be a partial order on E corresponding to the refinement order
of equivalence relations, i.e., ξ1 ≤ ξ2 iff 'ξ1⊆'ξ2 . Let t denote the
corresponding join operator: for all ξ1, ξ2 ∈ E , ξ1 t ξ2 is the function
representing the equivalence relation on Na that is a superset of 'ξ1

and 'ξ2 .

Lemma B.2. (E ,≤,t) is a join semi-lattice. The least element of (E ,≤)
is λx.x.

The Abstract Domain

Define an abstract domain Ã as the set of pairs (τ, ξ) ∈ AG×E satisfying
the following condition:

x ∈ (EV ∪ IV) =⇒ ξ(x) = x

where τ = (EV,EE, σin, IV, IE, σ, ). The above condition implies that
in every (τ, ξ) ∈ Ã, the vertices in τ are the representatives of the
equivalence classes of 'ξ.

The equivalence classes are kept around in the abstract state along
with transformer graphs to remember the nodes that were merged (and
replaced by their representatives) so that these nodes are merged again
in the future if they show up.

Let τ ∈ A and let µ : Na 7→ 2 Na be any function. Let µ(τ) be the
transformer graph obtained by replacing v by µ(v) in every component
of τ . Formally, µ(τ) is defined as: (µ̂(EV), µ̂(EE), µ(σin), µ̂(IE), µ̂(IV),
µ(σ),

⋃
ie ee µ(ie) × µ(ee)), where µ(〈x, f, y〉) = µ(x) × {f} × µ(y),

µ(σ) = λx.µ̂(σ(x)), and µ̂(S) =
⋃
x∈S µ(x).
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Depending on the definition of µ, µ(τ) may collapse multiple ver-
tices in τ into a single vertex or blow-up a vertex in τ to a set of vertices.
For instance, given a function ξ ∈ E , ξ(τ) will replace every vertex in τ
by the representative of the equivalence class it belongs to in 'ξ. (To
be mathematically precise, in ξ(τ) we interpret ξ as a function from
Na 7→ 2 Na .) To the contrary, ξ−1(τ) will replace the representative of
an equivalence class by the vertices it represents.

Define a partial order ≤m on Ã as follows: (τ1, ξ1) ≤m (τ2, ξ2) iff
ξ1 ≤ ξ2 and τ1 �ξ2 τ2. Let tm denote the join operation with respect
to ≤m. We define the concretization function γm : Ã 7→ C as γm(τ, ξ) =
γT (τ).

Node Merging

With every edge and vertex of the control flow graph we associate a
node merging operation NMi : Ã 7→ Ã, where i is a statement or vertex
of the control flow graph, defined as follows:

NMi(τ, ξ) =
let ξ′ = NodesToMergei(τ)
let ξ′′ = ξ t ξ′

(ξ′′(τ), ξ′′)

The node merging operation is parameterized by a function
NodesToMergei . It returns an equivalence relation whose equivalence
classes specify the nodes that have to be merged together. The following
results hold for any arbitrary definition of NodesToMergei .

Lemma B.3. If (τ, ξ) ∈ Ã and (τ ′, ξ′) = NMi(τ, ξ) then τ � τ ′

For ensuring termination we require that NodesToMergei is mono-
tonic with respect to the embedding operation i.e, for all τ1, τ2 ∈ A, if
τ1 � τ2 then NodesToMergei(τ1) ≤ NodesToMergei(τ2). This property
will be satisfied if the nodes are chosen for merging based on the prop-
erties of the transformer graph that are preserved by the embedding,
e.g. based on reachability of nodes.
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Semantics Equations

ϑv = (τid , λx.x) v is an entry vertex (B.1)

ϑv = tm({ϑu,v | u
S→ v}) v is not an entry vertex (B.2)

ϑu,v = FÃ(S)(ϑu) u
S→ v, S is not a call statement (B.3)

ϑu,v = FÃ(S)(ϑu, ϑexit(Q)) u
S→ v, S is a call to Q (B.4)

Correctness preserving operations

NMi ∈ Ã 7→ Ã i is a statement or a vertex

Figure B.1: The abstract semantics that incorporates the node merging operation.

The Abstract Semantics

The abstract semantics equations that incorporate the node merging
operation are shown in Figure B.1. Let S be a primitive statement.
FÃ(S) : Ã 7→ Ã is defined as:

FÃ(S)(τ, ξ) = (ξ(FG(S)(ξ−1(τ))), ξ)

If S is a call to procedure Q, then

FÃ(S)((τr, ξr), (τe, ξe))) = let ξ′ = ξr t ξe
(ξ′(FG(S)(ξr−1(τr), ξe−1(τe))), ξ′)

In simple words, the abstract transfer function FÃ(S) first constructs
a blown-up transformer graph ξ−1(τ) by reintroducing all the ver-
tices/edges that may have been merged in τ . (Note that ξ−1(τ) and
τ are semantically equivalent i.e, have the same concrete image as each
embed in the other.) It then applies the base semantics FG(S), and col-
lapses the merged vertices/edges again by applying ξ on the resulting
transformer graph.

The application of ξ−1 to the input transformer graph is necessary
in order to ensure the monotonicity of FÃ with respect to ≤m. This is
a fall out of the fact that for any arbitrary definition of the parameters
we are only guaranteed that FG(S) is monotonic with respect to the
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containing ordering vco . However, for many practical instantiations of
the parameter, the transfer function FG(S) would be monotonic with
respect to �ξ (for any ξ ∈ E). In such cases, as an optimization we can
eliminate the application of ξ−1 from the above definition and obtain
a more efficient semantics.

Notice that when no nodes are merged during the analysis, the
above semantics is equivalent to (AG ,FG), since the NM operation at
every statement and vertex reduces to an identity function and the
equivalence relation remains unchanged (from the initial identify rela-
tion) throughout the analysis.

Correctness and Termination of the Node Merging Abstraction

The correctness of the semantics (Ã,FÃ) is straightforward to estab-
lish. The ξ component of the abstract state is not relevant for proving
correctness (see the definition of γm). The τ component of the abstract
state is updated by the transfer functions FÃ by applying the base
transfer function FG , followed and preceded by the application of ξ
and ξ−1, respectively (for some ξ ∈ E). However, the application of ξ
or ξ−1 on a transformer graph is correctness preserving because τ can
be embedded in both ξ(τ) and ξ−1(τ). Hence, FÃ is correct. Below we
formalize the termination of the abstract semantics FÃ.

Assumption B.4. NodesToMergei terminates on all inputs and is
monotonic w.r.t the embedding operation �.

Lemma B.5. If the Assumptions B.4 and5.10 hold,

a. For every statement S, FÃ(S) is monotonic w.r.t ≤m.

b. For every vertex of the control flow graph or statement i, NMi is
monotonic with respect to ≤m.

Theorem B.6. Every instantiation of (Ã,FÃ) satisfying assump-
tions B.4 and 5.10 terminates.
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