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Abstract
We consider from a practical perspective the problem of
checking equivalence of context-free grammars. We present
techniques for proving equivalence, as well as techniques
for finding counter-examples that establish non-equivalence.
Among the key building blocks of our approach is a novel
algorithm for efficiently enumerating and sampling words
and parse trees from arbitrary context-free grammars; the
algorithm supports polynomial time random access to words
belonging to the grammar. Furthermore, we propose an
algorithm for proving equivalence of context-free grammars
that is complete for LL grammars, yet can be invoked on any
context-free grammar, including ambiguous grammars.

Our techniques successfully find discrepancies between
different syntax specifications of several real-world lan-
guages, and are capable of detecting fine-grained incremental
modifications performed on grammars. Our evaluation shows
that our tool improves significantly on the existing available
state of the art tools. In addition, we used these algorithms
to develop an online tutoring system for grammars that we
then used in an undergraduate course on computer language
processing. On questions involving grammar constructions,
our system was able to automatically evaluate the correctness
of 95% of the solutions submitted by students: it disproved
74% of cases and proved 21% of them.
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1. Introduction
Context-free grammars are pervasively used in verification
and compilation, both for building input parsers and as foun-
dation of algorithms for model checking, program analysis,
and testing. They also play an important pedagogical role in
introducing fundamentals of formal language theory, and are
an integral part of undergraduate computer science education.
Despite their importance, and despite decades of theoretical
advances, practical tools that can check semantic properties
of grammars are still scarce, except for specific tasks such as
parsing.

In this paper, we develop practical techniques for checking
equivalence of context-free grammars. Our techniques can
find counter-examples that disprove equivalence, and can
prove that two context-free grammars are equivalent, much
like a software model checker. Our approaches are motivated
by two applications: (a) comparing real-world grammars,
such as those used in production compilers, (b) automating
tutoring and evaluation of context-free grammars. These
applications are interesting and challenging for a number
of reasons.

Programming Language Grammars. Much of the front-
ends of modern compilers and interpreters are automatically
or manually derived from grammar-based descriptions of
programming languages, more so with integrated language
support for domain specific languages. When two compilers
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S → S + S | S ∗ S | ID S → ID E
E → +S | ∗ S | ε

Figure 1. Grammars recognizing simple arithmetic expres-
sions. An example proven equivalent by our tool.

S → A⇒ S | Int
A→ Int ,A | Int

S → Int G
G→⇒ Int G | , Int A | ε
A→, Int A | ⇒ Int G

Figure 2. Grammars defining well-formed function signa-
tures over Int . An example proven equivalent by our tool.

or other language tools are built according to two different
reference grammars, knowing how they differ in the programs
they support is essential. Our experiments show that two
grammars for the same language almost always differ, even
if they aim to implement the same standard. For instance, we
found using our tool that two high quality standard Java
grammars (namely, a Java grammar written for Antlr v4
parser generator [1] and the Java language specification [2])
disagree on more than 50% of words that are randomly
sampled from them.

Even though the differences need not correspond to incom-
patibilities between the compilers that use these grammars
(since their handling could have been intentionally delegated
to type checkers and other backend phases), the sheer volume
of these discrepancies does raise serious concerns. In fact,
most deviations found by our tool are not purposeful. More-
over, in the case of dynamic languages like Javascript, where
parsing may happen at run-time, differences between parsers
can produce diverging run-time behaviors. Our experiments
show that (incorrect) expressions like “++ RegExp - this"
discovered by our tool while comparing Javascript grammars
result in different behaviors on Firefox and Internet Explorer
browsers, when the expressions are wrapped inside functions
and executed using the eval construct (see section 5).

Besides detecting incompatibilities, comparing real-world
grammars can help identify portions of the grammars that are
overly permissive. For instance, many real-world Java gram-
mars generate programs like “enum ID implements char
{ ID }", “private public class ID" (which were dis-
covered while comparing them with other grammars). These
imprecisions can be eliminated with little effort without com-
promising parsing efficiency.

Furthermore, often grammars are rewritten extensively
to make them acceptable by parser generators, which is la-
borious and error prone. Parser generators have become in-
creasingly permissive over the years to mitigate this problem.
However, there still remains considerable overhead in this
process, and there is a general need for tools that pin-point
subtle changes in the modified versions (documented in works
such as [33]). It is almost always impossible to spot differ-
ences between large real-world grammars through manual

(a)
S → A⇒ Int | Int
A→ S, Int | Int (b)

S → A⇒ S | Int
A→ S, S | Int

Figure 3. Grammars subtly different from the grammars
shown in Fig. 2. The grammar on the left does not accept
“Int ⇒ Int ⇒ Int".

scanning, because the grammars typically appear similar, and
even use the same name for many non-terminals. A challenge
this paper addresses is developing techniques that scales to
real-world grammars, which have hundreds of non-terminals
and productions.

Grammars in Teaching. An equally compelling applica-
tion of grammar comparison arises from the importance of
context-free grammar in computer science education. As-
signments involving context-free grammars are hard to grade
and provide feedback on because of the great variation in
the possible solutions arising due to the succinctness of the
grammars. The complexity is further aggravated when the
solutions are required to belong to subclasses like LL(1). For
example, Figures 1 and 2 show two pairs of grammars that
are equivalent. The grammars shown on the right are LL(1)
grammars, and are reference solutions. The grammars shown
on the left are intuitive solutions that a student comes up
with initially. Proving equivalence of these pairs of grammars
is challenging because they do not have any similarity in
their structure, but recognize the same language. On the other
hand, Figure 3 shows two grammars (written by students)
that subtly differ from the grammars of Fig. 2. The smallest
counter-example for the grammar shown in Fig. 3(a) is the
string “Int ⇒ Int ⇒ Int". We invite the readers to identify
a counter-example that differentiates the grammar of Fig. 3(b)
from those of Fig. 2.

In our experience, a practical system that can prove that a
student’s solution is correct and provide a counter-example
if it is not can greatly aid tutoring of context-free grammars.
The state of the art for providing feedback on programming
assignments is to use test cases (though there has been recent
work on generating repair based feedback [29]). We bring the
same fundamentals to context-free grammar education. Fur-
thermore, we exploit the large, yet under-utilized, theoretical
research on decision procedures for equivalence of context-
free grammars to develop a practical algorithm that can prove
the correctness of solutions provided by the students.

Overview and Contributions. At the core of our system is
a fast approach for enumerating words and parse trees of an
arbitrary context-free grammar, which supports exhaustive
enumeration as well as random sampling of parse trees
and words. These features are supported by an efficient
polynomial time random access operation that constructs a
unique parse tree for any given natural number index. We
construct a scalable counter-example detection algorithm by
integrating our enumerators with a state-of-the-art parsing
technique [25].
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We develop and implement an algorithm for proving equiv-
alence by extending decision procedures for subclasses of
deterministic context-free grammars to arbitrary (possibly
ambiguous) context-free grammars, while preserving sound-
ness. We make the algorithm practical by performing numer-
ous optimizations, and use concrete examples to guide the
proof exploration. We are not aware of any existing system
that supports both proving as well as disproving of equiva-
lence of context-free grammars. The following are our main
contributions:

• We present an enumerator for generating parse trees of ar-
bitrary context-free grammars that supports the following
operations: 1) a polynomial time random access operation
lookup(i, l) that given an index i returns the unique parse
tree generating a word of length l, corresponding to the
index, and 2) sample(n, l) that generates n uniformly
random samples from the parse trees of the grammar gen-
erating words of length l (Section 2).

• We use the enumerators to discover counter-examples for
equivalence of context-free grammars (Section 3).

• We integrate and extend the algorithms of Korenjak and
Hopcroft [15], Olshansky and Pnueli [24], and Harrison
et al. [12], for proving equivalence of LL context-free
grammars to arbitrary context-free grammars. Our exten-
sions are sound but incomplete. We show using experi-
ments that the algorithm is effective on many grammars
that lie outside the classes with known decision proce-
dures (Section 4).

• We evaluate the counter-example detection algorithm on
10 real-world grammars describing the syntax of 5 main-
stream programming languages. The algorithm discovers
deep, fine-grained errors, by finding counter-examples
with an average length of 35, detecting almost 3 times
more errors than a state-of-the-art approach (Section 5).

• We implement and evaluate an online tutoring system for
context-free grammars. Our system is able to decide the
veracity of 95% of the submissions, detecting counter-
examples in 74% of the submissions, and proving correct-
ness of 21% of the submissions (Section 6).

2. Enumeration of Parse Trees and Words
A key ingredient of our approach for finding counter-
examples is enumeration of words and parse trees belonging
to a context-free grammar. Enumeration is also used in opti-
mizing and improving the scope of our grammar equivalence
proof engine. We model our enumerators as functions from
natural numbers to objects that are enumerated (which are
parse trees or words), as opposed to viewing them as itera-
tors for a sequence of objects as is typical in programming
language theory. The enumerators we propose are bijective
functions from natural numbers to parse trees in which the
image and pre-image of any given value is efficiently com-

putable in polynomial time (formalized in Theorem 1). The
functions are partial if the set that is enumerated is finite.
Using bijective functions to construct enumerators has many
advantages, for example, it immediately provides a way of
sampling elements from the given set. It also ensures that
there is no duplication during enumeration. Additionally, the
algorithm we present here can be configured to enumerate
parse trees that generate words having a desired length.

Notations. A context-free grammar is a quadruple
(N,Σ, P, S), where N is a set of non-terminals, Σ is a set
of terminals, P ⊆ N × (N ∪ Σ)∗ is a finite set of produc-
tions and S ∈ N is the start symbol. A parse tree belonging
to a grammar is a labelled tree with internal nodes labelled
by non-terminals, and leaves labelled by terminals, that has
the property that if an internal node labelled A has children
labelled C1, · · · , Cn (from left to right) then A→ C1 · · ·Cn.
Let T denote the set of parse trees belonging to a grammar.

We refer to sequences of terminals and non-terminals
belonging to (N ∪ Σ)∗ as sentential forms of the grammar.
If a sentential form has only terminals, we refer to it as a
word, and also sometimes as a string. We adopt the usual
convention of using greek characters α, β etc. to represent
sentential forms and upper-case latin characters to represent
non-terminals. We use lower-case latin characters a, b, c etc.
to represent terminals and w, x, y etc. to denote words. We
say that α derives β in one step, denoted α ⇒ β, iff β is
obtained by replacing the left most non-terminal in α by one
of its right-hand-sides. Let⇒∗ denote the reflexive transitive
closure of⇒. The language recognized by a sentential form
α, denoted L(α), is the set of words that can be derived from
α i.e, L(α) = {w ∈ Σ∗ | α ⇒∗ w}. We introduce more
notations as they are needed.

2.1 Constructing Random Access Enumerators
We use Enum[α] : N → T ∗ to denote an enumerator for a
sentential form α of the input grammar. The enumerators are
partial functions from natural numbers to tuples of parse trees
of the grammar, one rooted at every symbol in the sentential
form. For brevity, we refer to the tuple as parse trees of
sentential forms. We define Enum[α] recursively following
the structure of the grammar as explained in the sequel.

For a terminal a belonging to a grammar, Enum[a] is
defined as {0 → leaf (a)}. That is, the enumerator for a
terminal amaps the first index to a parse tree with a single leaf
node containing a and is undefined for every other index. We
now describe an enumerator for a non-terminal. Consider for
a moment the non-terminal S of the grammar shown in Fig. 4.
The parse trees rooted at S are constructed out of the parse
trees that belong to the non-terminal A and the sentential
form BA. Assume that we have enumerators defined for A
and BA, namely Enum[A] and Enum[BA] that are functions
from natural numbers to parse trees (a pair of them in the
case of BA). Our algorithm constructs an enumerator for S
compositionally using the enumerators for A and BA.
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S → A | BA
A → a | aS
B → b

∀t ∈ {a, b}. Enum[t](i) = leaf (t) if i = 0
∀A ∈ {S,A,B}. Enum[N ](i) = node(S, Enum[α](j)), where (α, j) = Choose[S](i)
Enum[BA](i) = (Enum[B](j), Enum[A](k)) where (j, k) = π(i,∞,∞)
Enum[aS](i) = (Enum[a](j), Enum[S](k)) where (j, k) = π(i, 1,∞)

Figure 4. An example grammar and illustrations of the Enum functions for the symbols of the grammar. Choose and π are
defined in Fig. 6 and Appendix A, respectively.

τ(α) =

n−1∏
i=0

τ(Mi), where α = M0 · · ·Mn−1, n > 1

τ(A) =

n−1∑
i=0

τ(αi), where A→ α0 | · · · | αn−1

τ(a) = 1, where a ∈ Σ

Figure 5. Equations defining the number of parse trees of
sentential forms. #t is the greatest fix-point of the equations.

Recall that we consider enumerators as bijective functions
from natural numbers. So, given an index iwe need to define a
unique parse tree of S corresponding to i (provided i is within
the number of parse trees rooted at S). To associate a parse
tree of S to an index i, we first need to identify a right-hand-
side α of S and select a parse tree t of the right-hand-side. To
determine a parse tree t of the right-hand-side α, it suffices
to determine the index of t in the enumerator for α. Hence,
we define a function Choose[A] : N → ((N ∪ Σ)∗ × N)
for every non-terminal A, that takes an index and returns a
right-hand-side of A, and an index for accessing an element
of the right-hand-side. We define the enumerator for a non-
terminal as: Enum[A](i) = node(A, Enum[α](j)), where
(α, j) = Choose[A](i). That is, as a node labelled A and
having the tuple Enum[α](j) as children.

In the simplest case, if A has n right-hand-sides
α0, α2, · · · , αn−1, the choose function Choose[A](i) could
be defined as (αi%n, bi/nc). This definition, besides being
simple, also ensures a fair usage of the right-hand-sides of A
by mapping successive indices to different right-hand-sides,
which ensures that any sequence of enumeration of the words
belonging to a non-terminal alternates over the right-hand-
sides of the non-terminal. However, this definition is well
defined only when every right-hand-side of A has unbounded
number of parse trees. For instance, consider the non-terminal
A shown in Fig. 4. It has two right-hand-sides a and aS of
which a has only a single parse tree. Defining Choose[A] as
(αi%2, bi/2c) is incorrect as, for example, Enum[A](2) maps
to Enum[a](1), which is not defined. Therefore, we extend
the above function so that it takes into account the number
of parse trees belonging to the right-hand-sides, which is
denoted using #t(α).

It is fairly straightforward to compute the number of parse
trees of non-terminals and right-hand-sides in a grammar. For

Choose[A](i) =

let A→ α0 | · · · | αn−1 s.t.

∀1 ≤ m < n. #t(αm−1) ≤ #t(αm) in

let b0 = 0, and b1, · · · , bn = #t(α0), · · · ,#t(αn−1) in

let ∀0 ≤ m ≤ n. im = bm(n−m+ 1) +

m−1∑
i=0

bi in

let k be such that 0 ≤ k ≤ n− 1 and ik ≤ i < ik+1 in

let q = b(i− ik)/(n− k)c and r = (i− ik)%(n− k) in

(αk+r, bk + q)

Figure 6. Choose function for a non-terminal A.

completeness, we show a formal definition in Fig. 5. Consider
the recursive equations shown in Fig. 5 of the form τ = F (τ)
that define a function F from the set (N ∪Σ)∗ → (N∪{∞})
to itself. Let ≤] be the relation ≤ lifted to the domain of
F , i.e, for any τ1, τ2, τ1 ≤] τ2 iff ∀α.τ1(α) ≤ τ2(α). The
number of parse trees #t is the greatest fix-point of F with
respect to the ordering≤]. Note that the greatest fix-point can
be computed iteratively starting from the initial value λx.∞.
As shown in the equations, the number of (tuples of) parse
trees of a sentential form is the product of the number of
parse trees of the symbols in the sentential form. The number
of parse trees of a non-terminal is the sum of the number of
parse trees of its right-hand-sides, and the number of parse
trees of a terminal is one. Note that if the grammar has cycles,
#t could be infinite for some sentential forms.

Fig.6 defines a Choose function, explained below, that can
handle right-hand-sides with a finite number of parse trees.
The definition guarantees that whenever Choose returns a
pair (α, i), i is less than #t(α), which ensures that Enum[α]
is defined for i. In Fig.6, the right-hand-sides of the non-
terminal A: α0, · · · , αn−1, are sorted in ascending order of
the number of parse trees belonging to them. We define b0 as
zero and use b1, · · · , bn to denote the number of parse trees
of the right-hand-sides. (Note that #t(αi) is given by bi+1.)
The index im is the smallest index (of Enum[A]) at which
the mth right-hand-side αm becomes undefined, which is
determined using the number of parse trees of each right-
hand-side as shown. Given an index i, Choose[A](i) first
determines the right-hand-sides that need to be skipped i.e,
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whose enumerators are not defined for the index i, by finding
a k such that ik ≤ i < ik+1. It then chooses a right-hand-
side (namely αj) from the remaining n− k right-hand-sides
whose enumerators are defined for the index i, and computes
the index to enumerate from the chosen right-hand-side.

Most of the computations performed by Fig. 6 – such
as computing the number of parse trees of the right-hand-
sides (and hence b0, · · · , bn) and the indices i0, · · · , im,
and sorting the right-hand-sides of non-terminals by their
number of parse trees – need to performed once per grammar.
Therefore, for each index i, the Choose function may only
have to scan through the right-hand-sides to determine the
value of k, and perform simple arithmetic operations to
compute q and r.

Note that the Choose function degenerates to the simple
definition (αi%n, bi/nc) presented earlier when #t is un-
bounded for every right-hand-side of N . The function also
preserves fairness by mapping successive indices to differ-
ent right-hand-sides of the non-terminals. For instance, in
the case of the non-terminal A shown in Fig. 4, the Choose
function maps index 0 to (a, 0), index 1 to (aS, 0), but in-
dex 2 is mapped to (aS, 1) as a has only one parse tree, i.e,
#t(a) = 1.

We now describe the enumerator for a sentential form α
with more than one symbol. Let α = M1M2 · · ·Mm. The
tuples of parse trees belonging to the sentential form is the
cartesian product of the parse trees of M1, · · · ,Mm. How-
ever, eagerly computing the cartesian product is impossible
for most realistic grammars because it is either unbounded
or untractably large. Nevertheless, we are interested only
in accessing a tuple at a given index i. Hence, it suffices
to determine for every symbol Mj , the parse tree tj that is
used to construct the tuple at index i. The tree tj can be de-
termined if we know its index in Enum[Mj ]. Therefore, it
suffices to define a bijective function π : N→ Nm that maps
a natural number (the index of Enum[α]) to a point in an m-
dimensional space of natural numbers. The jth component
of π(i) is the index of Enum[Mj ] that corresponds to the jth

parse tree of the tuple. In other words, Enum[M1 · · ·Mm](i)
could be defined as (Enum[M1](i1), · · · ,Enum[Mm](im)),
where ij is the jth component of π(i).

When m is two, the function π reduces to an inverse
pairing function that is a bijection from natural numbers to
pairs of natural numbers. Our algorithm uses only an inverse
pairing function as we normalize the right-hand-sides of the
productions in the grammar to have at most two symbols. We
use the well known Cantor’s inverse pairing function [26].
But, this function assumes that the two dimension space is
unbounded in both directions, and hence cannot be employed
directly when the number of parse trees generated by the
symbols in the sentential form are bounded. We extend the
inverse paring functions to two dimensional spaces that are
bounded in one or both the directions. The extended functions
take three arguments, the index that is to be mapped, and

Prgm → import QName ; ClassDef
QName → ID | ID . QName
ClassDef → class { Body }

Figure 7. A grammar snippet illustrating the need to bound
the length of the generated words during enumeration.

the sizes of the x and y dimensions (or infinity if they are
unbounded). We present a formal definition of the functions
in Appendix A.

Using the extended Cantor’s inverse pairing function π we
define the enumerator for a sentential form with two symbols
as: Enum[M1M2](i) = (Enum[M1](i1), Enum[M2](i2)),
where (i1, i2) = π(i,#t(M1),#t(M2)).

Termination of Random Access. Later in section 2.3 we
present a bound on the running time of the algorithm, but
now we briefly discuss termination. If A is a recursive non-
terminal e.g, if it has a production of the form A → αAβ,
the enumerator for N may recursively invoke itself, either
directly or through other enumerators. However, for every
index other than 0 and 1, the recursive invocations will always
be passed a strictly smaller index. This follows from the
definition of the Choose and the inverse pairing functions
used by our algorithm. (In the case of the inverse pairing
function, if π(i) = (j, k), j and k are strictly smaller than i
for all i > 1). For indices 0 and 1 the recursive invocations
may happen with the same index. However, this will not result
in non-termination if the following properties are ensured: (a)
for every non-terminal, the right-hand-side chosen for index
0 is the first production in the shortest derivation starting
from the non-terminal and ending at a word. (b) There are no
unproductive non-terminals (which are non-terminals that do
not generate any word) in the input grammar.

From Parse Trees to Words. We obtain enumerators for
words using the enumerators for parse trees by mapping the
enumerated parse trees to words. However, when the input
grammar is ambiguous, the resulting enumerators are no
longer bijective mappings from indices to words. The number
of indices that map to a word is equal to the number of parse
trees of the word.

2.2 Enumerating Fixed Length Words
The enumeration algorithm we have described so far is agnos-
tic to the lengths of the enumerated words. As a consequence,
the algorithm may generate undesirably long words, and in
fact may also favour the enumeration of long words over
shorter ones. Fig. 7 shows a snippet from the Java grammar
that results in this behavior.

In the Fig. 7, the productions of the non-terminal Body are
not shown for brevity. It generates all syntactically correct
bodies allowed for a class in a Java program. Consider the
enumeration of the words (or parse trees) belonging to the
non-terminal Prgm starting from index 1. A fair enumeration
strategy, such as ours, will try to generate almost equal num-
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S → a | BS
B → b

(a)

S3 → B1S2 | B2S1

S2 → B1S1

S1 → a
B1 → b

(b)

Figure 8. (a) An example grammar. (b) the result of restrict-
ing the grammar shown in (a) to words of size 3.

[[N ]]l = [[N → α1]]l ∪ · · · ∪ [[N → αn]]l,

where N → α1, | · · · | αn

[[N → a]]l =

{
{Nl → a} if l = 1

∅ otherwise

[[N → AB]]l =

l−1⋃
i=1

({Nl → AiBl−i} ∪ [[A]]i ∪ [[B]]l−i)

Figure 9. Transforming non-terminals and productions of a
grammar to a new set of non-terminals and productions that
generate only words of length l.

ber of words from the non-terminals QName and ClassDef.
However, the lengths of the words generated for the same
index differ significantly between the non-terminals. For in-
stance, the word generated from the non-terminal QName at
an index i has length i + 1. On the other hand, the lengths
of the words generated from the non-terminal ClassDef grow
slowly relative to their indices, since it has many right-hand-
sides, and each right-hand-side is in turn composed of non-
terminals having many alternatives. In essence, the words
generated for the non-terminal Prgm will have long import
declarations followed by very short class definitions.

Moreover, this also results in reduced coverage of rules
since the enumeration heavily reuses productions of QName,
but fails to explore many alternatives reachable through
ClassDef. We address this issue by extending the enumeration
algorithm so that it generates only parse trees of words having
a specified length. We accomplish this by transforming the
input grammar in such way that it produces only strings
that are of the required length, and use the transformed
grammar in enumeration. The idea behind the transformation
is quite standard. For instance, previous works [14], [19] on
theoretical algorithms for random sampling of unambiguous
grammars also resort to a similar approach. However, what
is unique to our algorithm is using the transformation to
construct bijective enumerators while guaranteeing random
access property for all words of the specified length.

Fig. 8 illustrates this transformation on an example, which
is explained in detail below. For explanatory purposes, as-
sume that the input grammar is in Chomsky’s Normal Form
(CNF) [16] which ensures that every right-hand-side of the
grammar is either a terminal or has two non-terminals.

Fig. 9 formally defines the transformation. For every non-
terminal N of the input grammar, the transformation creates
a non-terminal Nl that generates only those words of N
that have a length l. The productions of Nl are obtained by
transforming the productions of N . For every production of
the form N → a, where a is a terminal, the transformation
creates a production Nl → a if l = 1. For every production
of the form N → AB that has two non-terminals on the
right-hand-side, the transformation considers every possible
way in which a word of size l can be split between the
two non-terminals, and creates a production of the form
Nl → AiBl−i for each possible split (i, l − i). Additionally,
the transformation recursively produces rules for the non-
terminals Ai and Bl−i. The transformed grammar may have
unproductive non-terminals and rules that do not generate
any word (like the non-terminal B2 and rule S3 → B2S1 of
Fig. 9(b)), and hence may have to be simplified. Observe that
the transformer grammar is acyclic and generates only a finite
number of parse trees.

This transformation increases the sizes of the right-hand-
sides by a factor of l, in the worst case. For efficiency reasons,
we construct the productions of the transformed grammar
on demand, when it is required during the enumeration of
a parse tree. Therefore, the functions Enum and Choose take
the length of the word to be enumerated as an additional
parameter.

Sampling Parse Trees and Words. Having constructed enu-
merators with the above characteristics, it is straightforward
to sample parse trees and words of a non-terminal N hav-
ing a given length l. We sample numbers in the interval
[0,#t(N)−1] uniformly at random, and lookup the parse tree
or word at the sampled index using the enumerators. Since we
have a bijection from numbers in the range [0,#t(N)− 1] to
parse trees of N , this approach guarantees a uniform random
sampling of parse trees. However, sampling of words is guar-
anteed to be uniform only if the grammar is unambiguous. In
general, the probability of choosing a word w of length l in a
sample of size s is equal to t×s

#t(N) , where t is the number of
parse trees of the word w.

2.3 Running Time of Random Access
We derive an upper bound on the time taken by the random
access operation by bounding the number of recursive invo-
cations of Enum, and the time spent between two successive
invocations of Enum. The number of recursive invocations
performed by Enum for generating a word of length l is equal
to the number of nodes and edges in the parse tree of the word,
which is O(l) for a grammar in CNF [16]. The time spent
between two successive invocations of Enum is dominated
by the Choose operation, whose running time is bounded by
O(r · l · |i|2) since it performs a linear scan over the right-
hand-sides of a non-terminal performing basic arithmetic
operations over the given index i. Therefore, we have the
following theorem.
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Theorem 1. Let G be a grammar in Chomsky’s Normal
Form. Let r denote the largest number of right-hand-sides of
a non-terminal. Let i be an index, and l the length of the word
to be generated. For any non-terminal A belonging to the
grammar, the time taken by Enum[A](i, l) is upper bounded
byO(r·|i|2 ·l2), provided the number of parse trees generated
by each non-terminal and right-hand-side is precomputed.

Notice that the time taken for random access is polynomial
in the size of the input grammar, the number of bits in the
index i (which is O(log i)), and the size of the generated
word l. We now briefly discuss the complexity of computing
the number of parse trees (#t). For a grammar in CNF, the
number of parse trees that generate a word of length l is
O(r2l

) in the worst case. (For unambiguous grammars, it is
O(cl), where c is the number of terminals.) Thus, computing
the number of parse trees could, in principle, be expensive.
However, in practice, the number of parse trees, in spite of
being large, is efficiently computable.

Prior theoretical works on uniform random sampling (such
as [19]) for context-free grammars assume that the input
grammar is a constant, and that the arithmetic operations
take constant time. (Our approach matches the best known
running time O(l log l) under these assumptions). But, this
assumption is quite restrictive in the real-world. For example,
the Java 7 grammar has 430 non-terminals and 2447 rules
when normalized to CNF, and the number of parse trees
increases rapidly with the length of the generated word. In
fact, for length 50, it is a 84 digit number (in base 10). Using
numbers as big as these in computation introduces significant
overhead which cannot be discounted. Our enumerators offer
quite some flexibility in sampling by supporting random
access. For example, we can sample only from a restricted
range instead of using the entire space of parse trees. Since
we ensure a fair usage of rules while mapping rules to indices,
restricting the sizes of indices still provides a good coverage
of rules. In fact, our implementation exposes a parameter
for limiting the size of indices, which we found useful in
practice.

3. Counter-Example Detection
We apply the enumerators described in previous sections to
find counter-examples for equivalence of two context-free
grammars. We sample words (of length within a predefined
range) from one grammar and check if they are accepted
by the other and vice versa. Bounding the length of words
greatly aids in reducing the parsing overhead especially while
using generic parsers.

In section 5, we present detailed results about the effi-
ciency and accuracy of counter-example detection. The re-
sults show that the implementation is able to enumerate and
parse millions of words within a few minutes on large real-
world grammars. In the sequel, we present an overview of the
parsers used by the tool.

Parsing. We use a suite of parsers consisting of CYK parser
[16], Antlr v4 parser [1] (in compiler and interpreter modes),
and LL(1) [3] parser, and employ them selectively depend-
ing on the context. For instance, for testing large program-
ming language grammars for equivalence, we compile the
grammars to parsers (at runtime) using Antlr v4, which uses
adaptive LL(*) parsing algorithm [25], and use the parsers to
check if the generated words are accepted by the grammar.
The CYK parsing algorithm we implement in our tool, is a
top-down, non-recursive algorithm that memoizes the parsing
information computed for the substrings of the word being
parsed (using a trie data structure), and reuses the information
on encountering the same substring again, during a parse of
the same or another word. Though the top-down evaluation
introduces some overheads compared to the conventional dy-
namic programming approach, it improves the performance
of the CYK parser by orders of magnitude when used in batch
mode to parse a collection of words using the same grammar.

We mostly rely on the optimized CYK parser for checking
the correctness of students’ solutions. We find that quite
often the solutions provided by students are convoluted, and
are tricky to parse using specialized parsers. For instance,
for a grammar with productions S → a | B and B →
aaBb | aB | ε, the performance of the Antlr v4 parser
degenerates severely with the length of word that is parsed.

4. Proving Equivalence
Our approach for proving equivalence is based on the algo-
rithms proposed by Korenjak and Hopcroft [15], and extended
by Olshansky and Pnueli [24] and Harrison et al. [12]. This
family of algorithms is attractive because it works directly
on context-free grammars without requiring conversions to
other representation like push-down automata. Moreover,
they come with strong completeness guarantees. Korenjak
and Hopcroft [15] introduce a decision procedure for check-
ing equivalence of simple deterministic grammars, which are
LL(1) grammars in Griebach Normal Form (GNF). Olshan-
sky and Pnueli [24] extend this algorithm to LL(k) grammars
in GNF, while Harrison et al. [12] extend the algorithm in
another direction, namely to decide equivalence of determin-
istic GNF grammars one of which is LL(1). (A grammar is in
GNF iff the right-hand-side of every production starts with a
terminal. A subtle point to note is that an LL(k) grammar with
epsilon productions may become LL(k+1) when expressed in
GNF [28].)

Our approach extends the work of Olshansky and Pnueli
[24] by incorporating several aspects of the algorithm of
Harrison et al. [12]. The resulting algorithm is applicable
to arbitrary context-free grammars, but at the same time is
complete for LL grammars. (Our implementation is complete
only for LL(2) grammars since we limit the lookahead for
efficiency reasons.) Furthermore, we perform several exten-
sions to the algorithm that improves its precision and also
performance in practice. In particular, we extend the approach
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(a)
S → aT
T → aTb | b (b)

P → aR
R → abb | aRb | b

Figure 10. GNF grammars for the language anbn.

to handle inclusion relations, which provides an alternative
way of establishing equivalence when the equivalence query
is not directly provable. We also introduce transformations
that use concrete examples to dynamically refine the queries
during the course of the algorithm. Our experiments show
that the algorithm succeeds in 82% of the cases that passed
all test cases, even on queries involving ambiguous grammars
(see section 5).

Algorithm. We use the grammars shown in Fig. 10 for
the language anbn as a running example. Observe that the
grammar shown on the right is ambiguous – it has two parse
trees for aabb. We formalize the verification algorithm as a
proof system that uses the inference rules shown in Fig. 11.
We later discuss an extension to the algorithm that augments
the rules with a fixed lookahead distance k. Fig. 12 illustrates
the algorithm on our running example.

In the sequel, we make the following assumptions: (a)
the input grammars have the same set of terminals, (b) the
grammars do not have any epsilon productions, and (c) the
non-terminals belonging to grammars are unique. In our im-
plementation, if an input grammar has epsilon productions,
we remove them using the standard transformations [16].
However, in the case of LL(1) grammars we use the spe-
cialized, but expensive algorithm introduced by Rosenkrantz
and Stearns [28] that preserves the LL property. This ensures
that the algorithm is complete for arbitrary LL(1) grammars
including those not in GNF.

Derivatives. We express our algorithm using the notion of
a derivative of a sentential form which is defined as follows.
A derivative d : Σ∗ × (N ∪ Σ)∗ → 2(N∪Σ)∗ is a function
that given a (non-empty) word w and a sentential form α,
computes the sentential forms β that remain immediately
after deriving w from α. We define derivatives using left most
derivations.

d(w,α) =


{β} if α = wβ

{β | ∃x ∈ Σ∗, A ∈ N, γ ∈ (N ∪ Σ)∗

α⇒∗ xAγ ⇒ wβ ∧ |x| < |w|} otherwise

For example, given the grammar with rules A → a and
B → bB | b, d(aab,AaB) = {ε, B}, and d(b, AaB) = ∅.
We refer to d(w,α) as a derivative of α with respect to w.
Though derivatives are defined for any grammar, they are
more efficiently computable when a grammar is normalized
to GNF. For a grammar in GNF every production of the
grammar starts with a terminal. Hence, a word w that is
derivable from a sentential form α would be derivable in at
most |w| steps,

We lift the derivative operation to a set of sentential forms
as: d̂(w,α) =

⋃
α∈α d(w,α).

Inference Rules. We consider two types of relations be-
tween sets of sentential forms: equivalence (≡) and inclusion
(⊆). A relation α ≡ β (or α ⊆ β) holds if the set of words
generated by the sentential forms in α i.e,

⋃
α∈α L(α) is

equal to (or included in) the set of words generated by the
sentential forms in β i.e,

⋃
β∈β L(β). Though we are only

interested in proving equivalence of sentential forms, our
algorithm sometimes uses inclusion relations in the interme-
diate steps to establish equivalence. As a consequence, the
approach can also be used to prove inclusion of grammars.
However, the rules do not guarantee completeness for inclu-
sion queries. The rules shown Fig. 11 use judgements of the
form C ` α ⊆ β, where C is a set of relations that can be
assumed to hold when deciding the truth of α ⊆ β. Every
inference rule shown Fig. 11 provides a set of judgements,
given by the antecedents, which, when established, guaran-
tees that the consequent holds. In other words, the antecedents
provide a sufficient condition for the consequent. (Sometimes
they are also necessary conditions.)

Consider the illustration shown in Fig. 12. Our goal is
to establish that the start symbols of the two grammars are
equivalent under an empty context, i.e, ∅ ` [S ≡ P ]. We
prove this by finding a derivation for the judgement using the
inference rules. In Fig. 12, the relations that are added to the
context are marked with †. At any step in the derivation, we
can assume that every relation that is marked in the preceding
steps leading to the current step hold.

BRANCH Rule. Initially, we apply the BRANCH rule to
[S ≡ P ]. The rule asserts that a relation α op β (where op
denotes ⊆ or ≡) holds in a context C if for every alphabet a,
the derivatives of α and β with respect to a are related under
the same operation. The correctness of this part is obvious: if
two sentential forms are equivalent, the sentential forms that
remain after deriving the first character ought to be equivalent.
Additionally, the BRANCH rule allows the relation α op β
to be considered as valid when proving the antecedents. This
is because the BRANCH rule also incorporates inductive
reasoning. To prove α op β, the rule hypothesises that the
relation holds for all words with length smaller than k, and
attempts to establish that the relation holds for words of
length k. It suffices for the antecedents to hold for all words
of length less than k since we peel off the first character from
the words generated by α and β by computing the derivative.
Therefore, during the proof of the antecedents if the relation
α op β is encountered again then we know that it needs to
hold only for words of length less than k, which holds by
hypothesis.

An equivalent contrapositive argument is that, if the re-
lation α op β has a counter-example then the antecedents
will have a strictly smaller counter-example. However, when
α op β is encountered during the proof of the antecedents it
need not be explored any further because it would not lead to
the smallest counter-example. Harrison et al. [12] refer to this
property, wherein the counter-examples of the newly created
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BRANCH

∀a ∈ Σ. C ∪ {α op β} ` d̂(a,α) op d̂(a,β)

C ` α op β

INCLUSION
C ` α ⊆ β C ` β ⊆ α

C ` α ≡ β

DIST
∀1 ≤ i ≤ m. C ` {αi} ⊆ β

C `
m⋃
i=1

αi ⊆ β

INDUCT
rel ∈ C rel⇒ α op β

C ` α op β

SPLIT

x ∈ ||A|| |γ| > 1 Ψ =

m⋃
i=1

ψiβi d̂(x,Ψ) =

m⋃
i=1

ρiβi ∀0 ≤ i ≤ m. |βi| > 0

C′ = C ∪ {{Aγ} op Ψ} C′ ` {γ} op d̂(x,Ψ) ∀0 ≤ i ≤ m. C′ ` {Aρi} op {ψi}
C ` {Aγ} op Ψ

TESTCASES

S ⊂ β sample(n, α) ⊆
⋃
β∈S

L(β) C ` {α} ⊆ S

C ` {α} ⊆ β

EMPTY1

` ∅ ≡ ∅
EMPTY2

` ∅ ⊆ β

EPSILON
C ` α op β

C ` (α ∪ {ε}) op (β ∪ {ε})

Figure 11. Basic inference rules of the verification algorithm. In the figure, op ∈ {≡,⊆}, ||A|| is the set of shortest words
derivable from A, and rel1 ⇒ rel2 is a syntactic implication check that holds if rel1 is stronger than rel2.

1[S ≡ P ]
† BRANCH−−−−−→ 2[T ≡ R]

† BRANCH−−−−−→ 3[Tb ≡ Rb ∪ bb] ∧ 4[b ≡ b]
4[b ≡ b] BRANCH−−−−−→ 5[ε ≡ ε] EPSILON−−−−−→ [∅ ≡ ∅] EMPTY−−−−→ proved
3[Tb ≡ Rb ∪ bb] INCLUSION−−−−−−→ 6[Tb ⊆ Rb ∪ bb] ∧ 7[Rb ∪ bb ⊆ Tb]
6[Tb ⊆ Rb ∪ bb] TESTCASES−−−−−−→ 8[Tb ⊆ Rb]† SPLIT−−−→ 9[b ⊆ b] ∧ 10[T ⊆ R]

INDUCT−−−−→ 11[b ⊆ b] ∗−→ proved
7[Rb ∪ bb ⊆ Tb] DIST−−−→ 12[Rb ⊆ Tb] ∧ 13[bb ⊆ Tb]
13[bb ⊆ Tb]† BRANCH−−−−−→ 14[b ⊆ b] ∧ 15[∅ ⊆ Tbb] ∗−→ proved
12[Rb ⊆ Tb]† SPLIT−−−→ 16[b ⊆ b] ∧ 17[R ⊆ T ]

INDUCT−−−−→ 18[b ⊆ b] ∗−→ proved

Figure 12. Illustration of application of the rules on the running example. A star (∗) denotes application of one or more rules.
Curly braces around singleton sets are omitted.

relations (antecedents) are strictly smaller than the counter-
examples of the input relation (consequent) when they exist,
as monotonicity. In our system, the only other monotonic rule
is SPLIT.

Applying the BRANCH rule to [S ≡ P ] produces the
relation [T ≡ R] for the terminal a since T and R are
derivatives of S and P w.r.t a, and produces the empty
relation [∅ ≡ ∅] for terminal b. The empty relation trivially
holds, as asserted by rule Empty, and hence is not shown.

Equivalence to Inclusion. The INCLUSION rule reduces
equivalence relations to pairs of inclusion relations, (e.g. see
relation 3 in Fig. 12). The DIST rule simplifies the inclusion
relations by distributing the inclusion operation over the
left-hand-sides, as illustrated on the relation 7. These rules
ensure that every relation generated during the algorithm is
normalized to the form {α} ≡ {β}, or {α} ⊆ β.

The TESTCASES rule applies to a relation of the form
{α} ⊆ β. It samples a predefined set of words from α and
searches for a strict subset of β that accepts all the samples.
On finding such a subset S, it construct a stronger relation
{α} ⊆ S that implies the input relation. For instance, the rule

reduces the relation 6: [Tb ⊆ Rb ∪ bb] to [Tb ⊆ Rb] using
a set of examples. This rule uses an enumerator to sample
words from sentential forms and a parser to check if the
sample words are accepted by the sentential forms. In our
implementation, we use a CYK parser extended for parsing
sentential forms to check if the sample words are accepted by
the sentential forms.

The TESTCASES rule, despite being incomplete, is useful
in practice. It makes the tool converge faster, and also helps in
proving more queries by making other rules applicable. For
instance, removing smaller sentential forms from a union may
make the SPLIT rule (described shortly) applicable. (Fig. 18
of section 5 sheds light on the usefulness of the TESTCASES
rule in practice.)

INDUCT Rule. The INDUCT rule asserts that all relations
implied by the context hold. The implication check only uses
syntactic equality of the sentential forms. In particular, for
equality relations α ≡ β, we check if the context contains
the same relation or β ≡ α. For inclusion relations of the
form α ⊆ β, we check if the context contains an equivalence
relation between α and β or an inclusion relation of the form
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α ⊆ S, where S has fewer sentential forms than β. For
instance, in the derivation shown in Fig. 12, the relations 10
and 17 are implied by the relation 2: [T ≡ R], added to the
context in step 2 during the application of BRANCH rule, and
hence are considered valid.

SPLIT Rule. The main purpose of the SPLIT Rule is to pre-
vent the sentential forms in the relations from becoming ex-
cessively long. The key idea behind the rule is to split the sen-
tential forms that are compared (say [Aγ ≡ βδ]) into smaller
chunks that are piece-wise equivalent e.g. as [Aρ ≡ β], and
[γ ≡ ρδ] (where ρ is a sentential form derived from β), while
preserving completeness under some restrictions. It identifies
the point to split by deriving a shortest word of A from the
other side of the relation.

We apply this rule only to a relation whose left-hand-
side is a singleton (since all relations will be reduced to this
form). Let r1 be the relation {Aγ} op Ψ (with non-empty γ).
Let x be one of the shortest words derived from A, denoted
||A||. The SPLIT rule requires that every sentential form in
Ψ can be split into ψiβi such that ψi can derive x, and βi
is non-empty. (However, this requirement can be relaxed as
described shortly.) This implies that the derivative of Ψ w.r.t
the word xwill preserve the suffix βi. That is, d̂(x,Ψ) will be
of the form

⋃
i ρiβi, where ρi is a union of sentential forms

corresponding to the derivative of ψi.
Under the above conditions, the rule asserts that if

γ op d̂(x,Ψ), and, for all i, Aρi op ψi holds, then so does
r1. Furthermore, the rule allows assuming r1 while proving
the antecedents. The requirement that all βis are non-empty
ensures the monotonicity of the rule. (Note that βis cannot
derive the empty string as there are no epsilon productions.)
If it is not possible to split Ψ in a way that all βis are non-
empty, the rule is still applicable but r1 cannot be added to
the context, since the rule may not be monotonic.

The soundness of this assertion is relatively easy to es-
tablish. For all i, Aρi op ψi implies Aρiβi op ψiβi
(since we are concatenating the left- and the right-hand-
sides with the same sentential form). This entails that⋃
iAρiβi op

⋃
i ψiβi. We are also given that γ and

⋃
i ρiβi

(which is d̂(x,Ψ)) are related by op, where op ∈ {≡,⊆}.
Substituting

⋃
i ρiβi with γ yields Aγ op

⋃
i ψiβi, which is

the relation r1. Hence, the antecedents imply the consequent.
However, the converse does not necessarily hold. It holds (for
equivalence) when the grammars satisfy the suffix property:
αβ ≡ γβ ⇒ α ≡ γ, and are strict deterministic [12] (which
includes LL(1) grammars).

In the illustration shown in Fig. 12, the split rule is applied
on relations 8 and 12. Consider the relation 8: [Tb ⊆ Rb].
The shortest word derivable from T is b (see Fig. 14). Since,
d(b, Rb) = b, we can deduce that ψ1 is R, β1 is b, and
ρ1 = {ε} (which are the sentential forms that remain after
deriving b from R). The new relations created by the SPLIT
rule are γ op d(b, Rb), and Aρ1 op ψ1, which correspond to
[b ⊆ b] and [T ⊆ R]. Note that without the application of the

SPLIT rule, the relation [Tb ⊆ Rb] will gradually grow with
the application of BRANCH rule and lead to non-termination.

Application Strategy and Termination Checks. In order to
preserve termination and completeness of the algorithm for
LL grammars, we adopt a specific strategy for applying the
rules. We use the INCLUSION rule to convert an equivalence
relation to inclusion relations only when at least one of the
operands of the relation has size greater than one. Such cases
will not arise if both the grammars are LL(1) (or LL(k) when
the rules are augmented with a lookahead distance of k). We
prevent the sentential forms from growing beyond a threshold
by applying SPLIT rule whenever the threshold is reached.
We prioritize the application of rules EMPTY, INDUCT, and
TESTCASES that simplify the relations over the BRANCH
rule. Note that TESTCASES rule, which is incomplete, will
not apply to LL(1) grammars since inclusion relations will
not be created during its proof exploration.

We use a set of filters to identify relations that are false and
to terminate the algorithm. An important filter is the Length
filter, which checks for every equivalence query {α} ≡ {β},
whether the length of the left sentential form α is larger than
the length of the shortest word that can be generated by β,
and vice versa. If this check fails, one of the sentential forms
cannot generate the shortest word of the other and the relation
does not hold. (Recall that the input grammar do not have
epsilon productions.) We also enumerate words from the
sentential forms contained in the relations to detect counter-
examples that violate the relation. This helps in quickly
aborting the search and reporting a failure, especially for
inclusion relations.

The algorithm described above reduces to the algorithm
of Korenjak and Hopcroft [15] for LL(1) grammars that are
in GNF. Hence, our algorithm is a decision procedure for
LL(1) grammars in GNF. Our algorithm may not terminate
for grammars outside this class, since the sentential forms
in an inclusion relation can grow arbitrarily long. In our
implementation, we abort the algorithm and return failure if
the algorithm exhausts the memory resources or exceeds a
parametrizable time limit (fixed as 10s in our experiments).

4.1 Incorporating Lookahead
In general, the SPLIT rule described above is incomplete.
Recall that given a relation [Aγ ≡ ψ], the rule computes a
word x of shortest length derivable from A, and equates γ
with the derivative of ψ with respect to x. This is because,
since Aγ ⇒∗ xγ, the rule optimistically hypothesises that
γ and d(x, ψ) are equivalent. However, if there are other
derivations of the form Aγ ⇒∗ xβ where β 6= γ, equating γ
alone with d(x, ψ) could be incomplete. In the case of LL(1)
grammars there is at most one derivation for a sentential
form starting with a prefix x from a non-terminal A (if x is
non-empty), which entails completeness of the SPLIT rule.
Interestingly, this property also holds for LL(k) grammars
provided we know the string w of length at least k − 1
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that would follow x. In the sequel, we briefly describe the
extensions we perform to the proof rules shown in Fig. 11
to exploit this property. Our extensions are based on the
algorithm of Olshansky and Pnueli [24]. In essence, the
extensions statically enumerate all strings of length smaller
than k, referred to as lookahead strings, and use them to
create fine-grained relations between sentential forms.

We perform two major extensions to the relations and sen-
tential forms: (a) We qualify every relation with a (possibly
empty) word x, which restricts the relations to only words
having x as a prefix. For instance, α ≡x β holds iff α and β
generate the same set of words having the prefix x. (b) We in-
troduce two special types of sentential forms: prefix restricted
sentential forms (PRS), and grouped variables. A PRS is of
the form [[x, α]] where x is a word and α is a sentential form.
It allows only those derivations of α that will lead to a word
having x as the prefix. A grouped variable is a disjoint union
of two or more PRS that have different prefixes. A grouped
variable allows all derivations that are possible through its
individual members, akin to a union of sentential forms. PRS
and grouped variables are formally defined by Olshansky and
Pnueli [24]. They can be treated as any other sentential form.
For example, they can be concatenated with other sentential
forms, used in derivative computation and so on.

We extend the definition of a derivative d(w,α) so that
it additionally accepts a string x and refines the result of
d(w,α) to include only those sentential forms that can derive
the string x. That is, d(w, x, α) = {β | β ∈ d(w,α) ∧
(∃γ s.t. β ⇒∗ xγ)}. We refer to this parameter x as a
lookahead as it is not consumed by the derivative but is used
to select the sentential forms. We denote using d̂ the operation
d lifted to a set of sentential forms.

We adapt the BRANCH and SPLIT rules shown in Fig. 11
to the extended domain of relations and sentential forms.
(Other rules in Fig. 11 do not require any extensions.) We
now discuss the extended branch rule. For brevity, we present
the extended SPLIT rule in Appendix B.
BRANCHEXT.

x = aw

∀b ∈ Σ. C ∪ {α opx β} ` d̂(a,wb,α) opwb d̂(a,wb,β)

C ` α opx β

Similar to BRANCH rule, the BRANCHEXT rule removes
the first character a (of the words considered by the relation)
from the sentential forms in α and β. However, unlike the
BRANCH rule that compares all the sentential forms left
behind after deriving the first character, the BRANCHEXT
rule looks ahead at the string wb that follows the character a
to choose the sentential forms that have to be compared. Note
that the derivative operation only returns the sentential forms
that can derive the lookahead string wb.

Given a lookahead distance k, and two grammars with
start symbols S1 and S2, we begin the algorithm with the
initial set of relations S1 ≡wk−1

S2, where wk−1 is a word of
length≤ k−1. The grammars are equivalent if every relation

Query # Ctr. Exs. # Samples RA time
c1 ≡ c2 82 227 1.0ms
p1 ≡ p2 417 1053 0.2ms
js1 ≡ js2 75 150 0.8ms
j1 ≡ j2 133 240 1.5ms
v1 ≡ v2 41 52 2.7ms

Figure 14. Counter-examples found in 1min when compar-
ing grammars of the same programming language. The col-
umn RA time denotes the average time taken for one random
access.

is proven using the inference rules. In our implementation, we
fix the lookahead distance as 2. Our implementation reduces
to the algorithm of Olshansky and Pnueli [24] when the input
grammars are LL(2) GNF grammars, and hence is complete
for LL(2) grammars in GNF.

5. Experimental Results
We developed a grammar analysis system based on the algo-
rithms presented in this paper, using the Scala programming
language. All the experiments discussed in this section were
performed on a 64 bit OpenJDK1.7 VM running on Ubuntu
Linux operating system, executing on a server with two 3.5
GHz Intel Xeon processors, and 128GB memory.

5.1 Evaluations with Programming Language
Grammars

Fig. 13 presents details about the benchmarks used in the
evaluation. The column Language shows the list of program-
ming languages chosen for evaluation. For each language
we considered at least two grammars which are denoted us-
ing the names shown in column B. For each language we
hand-picked grammars that cover almost all features of the
language and are expected to be identical. For example, in the
case of Javascript and VHDL, the grammars we choose were
supposed to implement the same standard, namely ECMA
standard and VHDL-93. In some cases, the grammars even
use identical names for many non-terminals, which, however,
our algorithm does not attempt to exploit. The column Size
shows the number of non-terminals and productions in each
grammar when expressed in standard BNF form. The column
Source shows the source of the grammars.

Comparing Real-world Grammars. As an initial experi-
ment, we compared the grammars belonging to the same
programming language for equivalence. We ran the counter-
example detector for 1 minute on each pair of grammars,
fixing the maximum length of the word that is enumerated as
50. Fig. 14 show the results of this experiment. The column
Ctr.Exs shows the number of counter-examples that were
found in 1min, and the column Samples shows the number of
samples generated during counter-example detection.

The column RA time shows the average time taken for
accessing one word (of length between 1 and 50) uniformly at
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Language B Size Source

C 2011
c1 (228 444) Antlr v4
c2 (75 269) www.quut.com/c/ANSI-C-grammar-y.html

Pascal
p1 (177 79) ftp://ftp.iecc.com/pub/file/pascal-grammar
p2 (148 244) Antlr v3

JavaScript
js1 (128 336) www-archive.mozilla.org/js/language/grammar14.html
js2 (124 278) Antlr v4

Java 7
j1 (256 530) docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
j2 (229 490) Antlr v4

VHDL
v1 (286 587) tams-www.informatik.uni-hamburg.de/vhdl/vhdl.html
v2 (475 945) Antlr v4

Figure 13. Benchmarks, their sizes as pairs of number of non-terminals and productions, and their sources. Antlr v4 and Antlr
v3 denote the repositories: github.com/antlr/grammars-v4/ and www.antlr3.org/grammar/.

try {
eval("var k = function() { ++ /ab∗/ − this }");
false;

} catch(err) {
true;

}

Figure 15. A Javascript program, created using a counter-
example discovered by our tool, that returns true in Fire-
fox/Chrome browsers, and false in Internet Explorer.

random. The results show that the operation is quite efficient,
taking only a few milliseconds across all benchmarks.

Interestingly, as shown by the results, the grammars have
many differences even when they implement the same stan-
dard. In many cases, more than 40% of the sampled words
are counter-examples. Manually inspecting a few counter-
examples revealed that this is mostly due to rules that are
more permissive than they ought to be. For instance, the
string “enum ID implements char { ID }" is generated
by j2 (Antlr v4 Java grammar), but is not accepted by j1 [2].
The counter-examples were mostly distinct but sometimes
strings that have many parse trees occurred more than once.

From Counter-examples to Incompatibilities. Focusing
on Javascript, we studied the usefulness of the counter-
examples found by our tool in discovering incompatibilities
between Javascript interpreters (embedded within browsers).
In this experiment, we automatically converted every counter-
example found by our tool (in one minute) while compar-
ing Javascript grammars to a valid Javascript expression,
wrapped the expression inside a function, and passed the
function as a string to the eval construct. For example, for
the counter-example “++ RegExp - this", we generate
the program eval("var k = function(){ ++ /ab*/ -
this }"). This program when executed may either assign a
function value to the variable k if the body of the function is
parsed correctly, or throw an exception if the body has parse
errors1.

1 www.ecma-international.org/ecma-262/5.1/#sec-15.1.2.1

We executed the code snippets on Mozilla Firefox (ver-
sion 38), Google Chrome (version 43) and Microsoft Internet
Explorer (version 11) browsers. On five counter-examples,
the code snippet threw an exception (either ParseError or
ReferenceError) in Firefox and Chrome browsers, but ter-
minated normally in Internet Explorer assigning a function
value for k. Exploiting this we created a pure Javascript pro-
gram shown in Fig. 15 that returns true in Firefox/Chrome
browsers and false in Internet Explorer. This can potentially
be used as a hidden identification mechanism in adaptive
attacks on browser vulnerabilities.

In essence, the experiment highlights that in dynamic
languages that supports constructs like eval, where parsing
may happen at run-time, differences in parsers will likely
manifest as differences in run-time behaviors.

Discovering Injected Errors. In this experiment, we evalu-
ate the effectiveness of our tool on grammars that have com-
paratively fewer, and subtle counter-examples. Since gram-
mars obtained from independent sources are likely to have
many differences, in order to obtain pairs of grammars that
almost recognize the same language, we resort to automatic,
controlled tweaking of our benchmarks. We introduce 3 types
of errors as explained below. (Let Gm denote the modified
grammar and G the original grammar).

• Type 1 Errors. We construct Gm by removing one pro-
duction of G chosen at random. In this case, L(Gm) ⊆
L(G).

• Type 2 Errors. We create Gm by choosing (at random)
one production of G having at least two non-terminals,
and removing (at random) one non-terminal from the right-
hand-side. In this case, neither L(Gm) nor L(G) has to
necessarily include the other.

• Type 3 Errors. We construct Gm as follows. We ran-
domly choose one production of the grammar, say P ,
having at least two non-terminals, and also choose one
non-terminal of the right-hand-side, say N . We then cre-
ate a copy (say N ′) of the non-terminal N that has every
production of N except one (determined at random). We
replace N by N ′ in the production P .
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The above error model has some correspondence to prac-
tical scenarios. For instance, most grammars we found do
not enforce that the condition of an if statement should be a
boolean valued expression. They have productions like S →
if E then E else E | · · · , and E → E + E | E ≥ E| · · · .
Enforcing this property requires one or more type 3 fixes,
as we need to create a copy E′ of E that do not have some
productions of E, and use E′ in place of E to define an if
condition.

We avoid injecting errors that can be discovered through
small counter-examples using the following heuristic. We
repeat the random error injection process until the modified
grammar agrees with the original grammar on the number
of parse trees (the function #t defined in Fig. 5) generating
words of length≤ 15. This ensures that the minimum counter-
example, if it exists, is at least 15 tokens long. We relax
this bound to 10 and 7 for C and JavaScript grammars,
respectively, since the approach failed to produce errors that
satisfy larger bounds within reasonable time limits. We also
ensured that the same error is not reintroduced. It is to be
noted that the counter-example detection algorithm is not
aware of the similarities between the input grammars, neither
does it attempt to discover such similarities.

For each benchmark b and error type t, we create 10
defective versions of b each containing one error of type
t. In total, we create 300 defective grammars. In each case,
we query the tool for the equivalence of the erroneous and the
original versions, with a time out of 15 minutes. Fig. 16 shows
the results of this experiment. We categorize the results based
on the type of the error that was injected. For now consider
only the sub-columns labelled ours.

The column Disproved shows the number of queries
disproved, i.e, the cases where the defective grammar was
identified to be not equivalent to the original version. (The
maximum possible value for this columns is 10.) Note that for
this experiment we ran our tool only until it finds one counter-
example. The column Avg.Time/query shows the average time
taken by the tool on queries where it found a counter-example.
The column Avg.Ctr.Size shows the average length of the
counter-example discovered by the tool. The last row of the
table summaries the results by showing the total number of
queries disproved, average time taken to disprove a query,
and the average length of a counter-example.

The results show that the tool was successful in disproving
all queries except 3 for Type 1 Errors, and 92 out of 100
queries for Type 2 Errors, within a few seconds. For Type 3
Errors, which are quite subtle, the tool succeeded in finding
counter-examples for 73 out of 100 queries taking at most
200s. It timed out after 15 min in the remaining cases. We
found that the tool generated millions of words before timing
out on a query, across all benchmarks,.

To put these results in perspective, we now present a
comparison with the approach proposed in Axelsson et al.

Type 1 Errors
B Disproved Avg.Time/query Avg.Ctr.Size

our cfga our cfga our cfga
c1 10 7 12.7s 396.7s 29.1 10.0
c2 10 4 13.8s 325.0s 30.3 10.3
p1 10 7 6.8s 127.8s 39.3 15.0
p2 10 5 6.8s 329.2s 43.2 16.2
js1 10 0 10.9s - 32.2 -
js2 10 9 9.6s 190.9s 31.2 8.1
j1 8 0 14.5s - 41.1 -
j2 9 0 14.3s - 32.1 -
v1 10 1 16.9s 810.4s 39.3 15.0
v2 10 0 23.4s - 39.0 -

Type 2 Errors
c1 9 3 13.3s 319.1s 33.8 10.0
c2 10 6 9.1s 300.7s 35.6 10.3
p1 10 5 6.2s 358.5s 41.3 16.0
p2 10 5 7.9s 229.8s 40.0 15.8
js1 10 0 12.3s - 33.8 -
js2 7 8 15.3s 52.8s 31.4 7.4
j1 7 0 16.3s - 33.9 -
j2 9 0 15.1s - 38.1 -
v1 10 2 16.4s 729.2s 43.7 15.0
v2 10 0 58.0s - 35.8 -

Type 3 Errors
c1 5 4 37.2s 413.6s 17.8 10.3
c2 6 5 131.3s 361.2s 30.3 10.0
p1 10 3 11.0s 272.5s 34.8 15.0
p2 10 5 7.5s 526.8s 34.8 15.8
js1 5 0 198.6s - 28.2 -
js2 5 2 34.0s 79.3s 33.2 7.5
j1 8 0 25.7s - 35.4 -
j2 6 0 24.8s - 36.3 -
v1 9 0 17.7s - 38.6 -
v2 9 0 54.6s - 37.3 -

262 81 28.1s 342.6s 35.0 12.2

Figure 16. Identification of automatically injected errors,
using our tool (our) and the implementation of Axelsson et
al. [4] (cfga).

[4], which is also used in the more recent work of Creuss and
Godoy [7].

Comparison with Previous SAT Solving Approach. The
approach proposed in [4] finds counter-examples for equiva-
lence by constructing a propositional formula that is unsat-
isfiable iff the input grammars are equivalent upto a bound
l, i.e, they accept (or reject) the same set of words of length
≤ l. The approach uses an incremental SAT solver to obtain
a satisfying assignment of the formula, which corresponds to
a counter-example for equivalence. We ran their tool cfgAna-
lyzer on the same set of equivalence queries constructed by
automatically injecting errors in our benchmarks as described
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earlier, with the same time out of 15 minutes. We present the
results obtained using their tool in Fig. 16 adjacent to our
results, under the sub-column cfga. The cfgAnalyzer tool was
run in its default mode, wherein the bound l on the length of
the words is incremented in unit steps starting from 1 until a
counter-example is found. (We tried adjusting the start length
to 15 and greater, and also tried varying the length incre-
ments, but they resulted in worse behaviour. This is probably
because of incremental solving which may benefit starting
from 1.)

The results show that our tool out performs cfgAnalyzer
by a huge margin on these benchmarks. When aggregated
over all benchmarks, our tool disproves 3 times more queries
than cfgAnalyzer. Observe that on Java, VHDL and the
first Javascript (js1) benchmarks, cfgAnalyzer timed out on
almost all queries. In general, we found that the performance
of cfgAnalyzer degrades with the length of the counter-
examples, and with the sizes of the grammars. On the other
hand, as highlighted by the results in Fig. 16, our tool
discovers large counter-examples within seconds.

To the credit of cfgAnalyzer, in cases where it terminates,
it finds the shortest counter-example (as a consequence of
running it in the default mode). This, however, is not a
limitation of our tool, since we can progressively search
for smaller counter-examples by narrowing the range of the
possible word lengths after discovering a counter-example.

6. Tutoring System for Context-free
Grammars

We implemented an online grammar tutoring system available
at grammar.epfl.ch using our tool. The tutoring system of-
fers three types of exercises: (a) constructing (LL(1) as well as
arbitrary) context-free grammars from English descriptions,
(b) converting a given context-free grammar to normal forms
like CNF and GNF, and (c) writing left most derivations for
automatically generated strings belonging to a grammar. Each
class of exercise had about 20 problems each with varying
levels of difficulty.

For exercises (a) and (b), the system automatically checks
the correctness of the grammars submitted by the users
by comparing them to a pre-loaded reference solution for
the question. The following are the possible outcomes of
checking a solution: (i) the shortest counter-example that
was found within the time limits, or (ii) a message that the
grammar has been proved correct, or (iii) a message that
the grammar passed all test cases but was not proved to be
correct.

The system also supports checking LL(1) property and
ambiguity of grammars. Moreover, it also has experimental
support for generating hints (a feature outside the scope of
this paper). The system offers a very intuitive syntax for
writing grammars, and also supports EBNF form that permits
using regular expressions in right-hand-sides of productions.

Query Refuted Proved Unprvd. time/query
1395 1042 289 64 107ms

(100%) (74.6%) (20.7%) (4.6%)

Figure 17. Summary of evaluating students’ solutions.

Query Proved Time LL1 LL2 Amb
353 289 410ms 7 56 101

100% 81.9% 2% 15.9% 28.6%
w/o TESTCASES rule

353 280 630ms 7 56 94

Figure 18. Evaluation of the verification algorithm on stu-
dents’ solutions.

6.1 Evaluations of the Algorithms in the Context of a
Tutoring System

We used our tutoring system in a 3rd year undergraduate
course on computer language processing. We summarize the
results of this study in Fig. 17. The column Queries shows
the total number of distinct equivalence queries that the tool
was run on. The system refuted 1042 queries by finding
counter-examples. (It was configured to enumerate at most
1000 words of length 1 to 11). Among the 353 submissions
for which no counter-example was found, the tool proved
the correctness of 289 submissions. For 64 submissions, the
tool was neither able to find a counter-example nor able
to prove correctness. In essence, the tool was to able to
decide the veracity of 95% of the submissions, and was
incomplete on the remaining 5% (in which cases we report
that the student’s solution is possibly correct). The grammars
submitted by students on average had around 3 non-terminals
and 6 productions (the maximum was 9 non-terminals and
43 productions). Moreover, at least 370 of the submissions
were ambiguous. We now present detailed results on the
effectiveness of the verification algorithm, which is, to our
knowledge, a unique feature of our grammar tutoring system.

Evaluation of the Verification Algorithm. Our tutoring
system uses the verification algorithm described in section 4
to establish the correctness of the submissions for which no
counter-examples are found within the given time limit and
sample size. In our evaluation, there are 353 such submis-
sions. The first row of Fig. 18 shows the results of using the
algorithm, with all of its features enabled, on the 353 submis-
sions. We used a time out of 10s per query. The system proved
almost 82% of the queries taking on average less than half a
second per query (as shown by column Time). The remaining
columns further classify the queries that were verified based
on the nature of the grammars that are compared.

The column LL1 shows the number of queries in which
the grammars that are compared are LL(1) when normalized
to GNF. The algorithm of [15] is applicable only to these
cases. The results show that only a meager 2% of the queries
belong this category. This is expected since even LL(1)
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grammars may become non-LL(1) when epsilon productions
are eliminated [28] (which is required by the verification
algorithm).

The column LL2 shows the number of queries in which the
grammars compared are LL(2) but not LL(1), after conversion
to GNF. About 16% of the queries belong this category.
This class is interesting because the algorithm of [24] is
complete for these cases. (Although the algorithm of [12] is
also applicable, it seldom succeeds for these queries since
it uses no lookhead.) A vast majority (72%) of the queries
that are proven involved at least one grammar that is not
LL(2). In fact, about 28% of the queries involved ambiguous
grammars. (Neither [24] nor [15] is directly applicable to
this class of grammars, and [12] is likely to be ineffective.)
This indicates that without our extensions a vast majority
of the queries may remain unproven. We are not aware of
any existing algorithm that can prove equivalence queries
involving ambiguous grammars.

We also measure the impact of the TESTCASES inference
rule, which uses concrete examples to refine inclusion rela-
tions (see section 4). The second row of Fig. 18 shows the
results of running the verification algorithm without this rule.
Overall, the number of queries proven decreases by 9 when
this rule is disabled. The impact is mostly on queries involv-
ing ambiguous grammars. Moreover, the verifier is slower
in this case as shown by the increase in the average time per
query. It also timed out on 25 queries after 10s. This is due
to the increase in the number and sizes of relations created
during the verification algorithm. We measured a two fold
increase in the average number of sentential forms contained
in a relation.

7. Related Work
Grammar Analysis Systems. Axelsson et al. [4] present a
constraint based approach for checking bounded properties
of context-free grammars including equivalence and ambigu-
ity. In section 5 we presented a comparison of our counter-
example detection algorithm with this work, which shows
that our approach does better especially when the counter-
examples and grammars are large. Creus and Godoy [7]
present RACSO an online judge for context-free grammars.
RACSO integrates many strategies for counter-example de-
tection including the approach of Axelsson et al. [4]. We
differ from this work in many aspects. For instance, our enu-
merators support random access and uniform sampling, scale
to large programming language grammars generating mil-
lions of strings within seconds. Our system can additionally
prove equivalence of grammars. (An empirical comparison
with this work was not possible since their interface restricts
the sizes of grammars that can be used while creating prob-
lems, by requiring that non-terminals have to be upper case
characters.)

Decision Procedures for Equivalence. Decision proce-
dures for restricted classes of context-free grammars have

been extensively researched [15], [24], [12], [28], [32], [23],
[5], [31]. For brevity we only highlight a few important works.
Korenjak and Hopcroft [15], and later Bastien et al. [5] de-
veloped algorithms for deciding equivalence of simple gram-
mars. Rosenkrantz and Streans [28] introduced LL(k) gram-
mars and showed that their equivalence is decidable. Later,
Olshansky and Pnueli [24] proposed a direct algorithm for de-
ciding equivalence of LL(k) grammars. Nijholt [23] presented
a similar result for LL-regular grammars, which properly con-
tain LL(k) grammars. Decision procedures for several proper
subclasses of deterministic grammars were studied by Harri-
son et al. [12], and Valiant [32]. Sénizergues [31] showed that
equivalence of arbitrary deterministic grammars is decidable.

We are not aware of any practical applications of these
algorithms. We extend the algorithms of Olshansky and
Pnueli [24], and Harrison et al. [12] to a sound but incomplete
approach for proving equivalence of arbitrary grammars, and
use it to power a grammar tutoring system.

Uniform Sampling of Words. Hickey and Cohen [14], and
Mairson [19] present algorithms for sampling words from
unambiguous grammars uniformly at random (u.a.r). Gore
et al. [10] develop a subexponential time algorithm for
sampling words from (possibly ambiguous) grammars, where
the probability of generating a word varies from uniform
by a factor 1 + ε, ε ∈ (0, 1). Bertoni et al. [6] present an
algorithm for sampling from a finitely ambiguous grammar
in polynomial time.

Our approach has a comparable running time for sampling
a word u.a.r, and is not restricted to uniform random sampling.
We are not aware of any implementations of these related
works.

Enumeration in the Context of Testing. Grammar-based
software testing approaches (such as [27], [22], [30], [21],
[13], [18], [20], [9], [11]) generate strings belonging to gram-
mars describing the structure of the input, and use them to
test softwares like refactoring engines and compilers. In con-
trast to our objective, there the focus is on generating strings
from grammars satisfying complex semantic properties, such
as data-structure invariants, type correctness etc., that will
expose bugs in the software under test.

Purdom [27], and Malloy [21] present specialized algo-
rithms for generating small number of strings that result in
semantically correct test cases useful for detecting bugs. Mau-
rer [22], Sirer and Bershad [30], and Guo and Qiu [11] pro-
pose approaches for stochastic enumeration of strings from
probabilistic grammars where productions are weighted by
probabilities. The probabilities are either manually provided
or dynamically adjusted during enumeration. A difference
compared to our approach is that they do not sample words
by restricting their length (which is hard in the presence of
semantic properties), but control the frequency with which
the productions are used.

Hennessy [13], and Lämmel and Schulte [18] explore var-
ious criteria for covering the productions of the grammar that
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can be beneficial in discovering bugs in softwares. Majumdar
and Xu [20], and Godefroid et al. [9] propose approaches
for selectively generating strings from a grammar that will
exercise a path in the program under test using symbolic
execution.

Daniel et al [8], and Kuraj and Kuncak [17] present generic
approaches for constructing enumerators for arbitrary struc-
tures, by way of enumerator combinators. They allow com-
bining simple enumerators using a set of combinators (such
as union and product) to produce more complex enumera-
tors. These approaches (Kuraj and Kuncak [17] in particular)
were an inspiration for our enumeration algorithm, which is
specialized for grammars, and provides more functionalities
like polynomial time random access, and uniform random
sampling.

8. Conclusions
We present scalable algorithms for enumerating and sampling
words (and parse trees) belonging to context-free grammars,
using bijective functions from natural numbers to parse
trees that provide random access to words belonging to a
grammar in polynomial time. Our experiments show that the
enumerators are effective in finding discrepancies between
large, real world grammars meant to describe the same
language, as well as for unraveling deep, subtle differences
between grammars, outperforming the available state of the
art. We also show that the counter-examples serve as good test
cases for discovering incompatibilities between interpreters,
especially for languages like Javascript.

We also develop a practical system for proving equiva-
lence of arbitrary context-free grammars building on top of
prior theoretical research. We built a grammar tutoring sys-
tem, available at grammar.epfl.ch, using our algorithms.
Our evaluations show that the system is able to decide the
correctness of 95% of the submissions, proving over 80%
of grammars that pass all test cases. To our knowledge, this
is the first tutoring system for grammars that can certify the
correctness of the solutions. This opens up the possibility of
using our tool in massive open online courses to introduce
grammars to large populations of students.
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A. Cantor’s Inverse Pairing Functions for
Bounded and Unbounded Domains

The basic inverse pairing function π that maps a natural
number in one dimensional space to a number in two dimen-
sional space that is unbounded along both directions [26].
π(z) = (x, y), where x and y are defined as follows:

x = w − y
y = z − t

(t, w) = simple(z)

where, simple(z) = (t, w) is a function defined as follows:

t =
w(w + 1)

2

w =

⌊⌊√
8z + 1

⌋
− 1

2

⌋
We extend the Cantor’s inverse pairing function to two

dimensional spaces bounded along one or both directions.
The inverse pairing function π takes three arguments: the
number z that has to be mapped, and the bounds of the x

and y dimensions xb and yb (which could be∞). xb is the
(inclusive) bound on the x-axis i.e, ∀x.x ≤ xb, and yb is the
(exclusive) bound on the y-axis i.e, ∀y.y < yb. We define
π(z, xb, yb) = (x, y), where

x = w − y
y = z − t

(t, w) =


bskip(z) if z ≥ zb
xskip(z) if zx ≤ z < zb

yskip(z) if zy ≤ z < zb

simple(z) Otherwise

where, zx, zy and zb are indices at which the bounds along
the x or y or both directions are crossed, respectively. The
values are defined as follows:

zy =
yb(yb + 1)

2

zx =
(xb + 1)(xb + 2)

2

zb =


yb(xb − yb + 1) + zy if xb > yb − 1

(xb + 1)(yb − xb − 1) + zx if yb − 1 > xb

zy Otherwise

We define xskip(z) as (t, w), where t and w are defined as
follows:

t =
2wxb − x2

b + xb
2

w =

⌊
2z + x2

b + xb
2(xb + 1)

⌋
Define yskip(z) as (t, w), where

t =
2wyb − y2

b + yb
2

w =

⌊
2z + y2

b − yb
2yb

⌋
Define bskip(z) as (t, w), where

t =
(2wb − 1)w − w2 − sb + wb

2

w =

r −
⌈√

r2 − 8z − 4sb + 4yb − 4xb

⌉
2


r = 2wb + 1

wb = xb + yb

sb = x2
b + y2

b

The above definitions use only integer arithmetic opera-
tions. (Note that we always compute floor or ceil of divisions
and square roots). These operations take at most quadratic
time on the sizes of the inputs, and can be optimized even
further. Moreover, many multiplications and divisions are by
powers of 2, and hence can be implemented using bit shift
operations.
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SPLITEXT

x ∈ ||A|| Ψ =

m⋃
i=1

αiδiβi ∀w ∈ Θk−1(γ). d(x,w, αiδiβi) = ρwi δiβi ∀0 ≤ i ≤ m. |δi| > 0, |βi| > 0

C′ = C ∪ {{Aγ} opz Ψ}

∀w ∈ Θk−1(γ). C′ ` {γ} opw d̂(x,w,Ψ) ∀0 ≤ i ≤ m. C′ `

 ⋃
w∈Θk−1(γ)

A[[w,ρwi δi]]

 opz {αiδi}

C ` {Aγ} opz Ψ

Figure 19. Extended Split Rule. Θk−1(γ) is the set of all words of length at most k − 1 derivable from the sentential form γ.
||A|| is the set of shortest words derivable from A. [[w,α]] denotes a prefix restricted sentential form defined by Olshansky and
Pnueli [24].

B. Extended Split Rule
Fig. 19 shows the extended split rule that incorporates a finite
amount of lookahead. We assume that the lookahead distance
k is at least 2. We define Θk−1(γ) as the set of all words of
length at most k − 1 derivable from a sentential form γ. That
is, Θk−1(γ) = {w | w ∈ L(γ) ∧ |w| ≤ k − 1}. Recall the
definition of SPLIT shown in Fig. 11. The SPLITEXT rule has
a similar structure but it creates more constrained relations
by specializing the SPLIT rule for every possible lookahead
string in Θk−1(γ).

Let x be one of the shortest words derivable from A. Akin
to the SPLIT rule, SPLITEXT rule applies only when Ψ can
be expressed as a union of sentential forms ψi each of which
has a non-empty suffix of length at least two (represented
using δiβi) that is preserved by its derivative with respect
to x. The rule computes the derivative of ψi w.r.t x looking
ahead at the strings w ∈ Θk−1(γ) (which are possible strings

that may follow x). We denote using ρwi the derivative of (the
prefix of) ψi w.r.t x when the lookahead string is w.

The relations shown in the antecedents of the SPLITEXT
rule are straightforward extensions of the antecedents asserted
by the SPLIT rule that take into account the lookahead strings
in Θk−1(γ). For instance, the antecedent relations on the left
assert that for any lookahead string w, the strings generated
by γ and d̂(x,w,Ψ) starting with the prefix w should be
related by op. The sentential form [[w,ρwi δi]] used in the
antecedent relations on the right denotes a prefix restricted
sentential form [24] that generates only those strings of ρwi δi
having the prefix w. The extended split rule is applicable to
any arbitrary grammar. However, for LL(k) grammars we
replace the union in the antecedent relations shown on the
right by a grouped variable [24] that denotes a disjoint union,
in order to emulate the algorithm of Olshansky and Pnueli
[24].
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