
From Amy to WebAssembly

Computer Language Processing

LARA

Autumn 2020

From Amy to WebAssembly

Introduction

In this presentation, we will see how to translate an Amy program,
represented as an Abstract Syntax Tree, to WebAssembly binary
code.

From Amy to WebAssembly

Running example

def fact(i: Int): Int = {

if (i < 2) { 1 }

else {

val rec: Int = fact(i-1);

i * rec

}

}

From Amy to WebAssembly

Running example - output

(func $fact (param i32) (result i32) (local i32)

get_local 0

i32.const 2

i32.lt_s

if (result i32)

i32.const 1

else

get_local 0

i32.const 1

i32.sub

call $fact

set_local 1

get_local 0

get_local 1

i32.mul

end

)

From Amy to WebAssembly

WebAssemply basics

Stack. WebAssembly is a stack-based VM: All operations
add/remove values from the top of the stack.
The stack starts empty at the beginning of each function.
Question: How will the stack evolve in our example for
fact(3)?

Types. WebAssembly supports different integer and float
types. In our compiler we will only use 32-bit integers, i32 to
represent all values.

From Amy to WebAssembly

WebAssemply basics

Locals: The header of a function defines
(1) the number and type of function parameters,
(2) the return type of the function,
(3) the number and type of local variables.
Parameters and local variables are both accessible with the
getLocal and setLocal commands. Both use a common
numbering, with parameters coming first, followed by local
variables.
In our example:
getLocal 0 refers to the function parameter (i in Amy),
setLocal 1 to the local variable (rec).

From Amy to WebAssembly

Structured blocks

WebAssembly offers the loop and block structured control
constructs.

Branch instructions are used to jump to the beginning,
respectively end, of the construct.
This is only possible from within the block. This is to
simulate control constructs of higher-level languages, where
one cannot jump in the middle of a loop/if-then-else etc.

Example:
loop $label

...

br $label // Good, jump to $label

end

br $label // Bad, outside the block

From Amy to WebAssembly

If-construct

Webassembly offers an if-else construct, similar to high level
languages:

i32.const 1

if

...

else

...

end

if will pop a value from the stack and will interpret it as a
boolean condition. It will then execute the if branch iff the
popped value is nonzero, otherwise it will execute the else branch.
In the above example, the if branch will be executed.

From Amy to WebAssembly

Control constructs and accessing stack values

Control constructs are not allowed to pop values from the stack
that were there before the start of the construct.

E.g.
i32.const 0

i32.const 1

if

i32.eqz // Wrong!

...

Although the stack has the value 0 when we enter the if, we are
not allowed to access it within the if-block.

From Amy to WebAssembly

Control constructs and returning stack values

The if and block are typed. Each construct must leave on the
stack a value of the specified type.

For if, the two versions we will use are
if (no value) and ‘if (result i32)’ (an i32 value)

Examples:

if

i32.const 0 // Wrong

else

i32.const 0

get_local 0

i32.add

set_local 0 // Correct

end

if (result i32)

i32.const 0 // Correct

else

i32.const 0

get_local 0 // Wrong

end

From Amy to WebAssembly

Wasm memory

In the header of a WebAssembly module, we can declare a
linear memory object. Memory is basically an array of bytes,
from where we can load and store values:

i32.load will pop a value addr from the stack, fetch an i32
value from address addr of the memory, and push the value
onto the stack
i32.store will pop 2 values addr, v from the stack, and
store v on address addr in the memory.

Memory is indexed by i32.

We will use the linear memory as the program heap, to store
heap-allocated values, i.e. strings and ADTs.

We will use a global variable (memory boundary) to represent
the first available address on memory.
Every time we allocate a value in the memory, we will increase
the memory boundary accordingly.

We don’t have garbage collection; when the memory is full,
our program fails.

From Amy to WebAssembly

Representing Amy values

We mentioned we will only use i32 values to represent all values.
But how do we represent all different Amy values as integers?

Amy integers are conveniently defined as 32-bit integers, so
we can represent them directly.

We represent booleans as follows: false with 0, true with 1.

We represent the unit literal with 0.

From Amy to WebAssembly

Representing strings in wasm

Strings are sequences of bytes in the linear memory. Each byte
corresponds to the ASCII code of the corresponding character
in the string. We use 0-terminated strings, and pad them to
use space in memory in multiples of 4 bytes.

For example, "Hello" will be the sequence (72, 101, 108,
108, 111, 0, 0, 0) (8 bytes total). The empty string is (0, 0, 0,
0).

A string will be represented by the address of its first
character in memory. For example, if a function allocates a
string starting at address 48 and needs to return it to the
caller, it will return the i32 value 48.

Strings only support two operations and we provide helper
functions for them, so they will be trivial for you to implement.

From Amy to WebAssembly

Representing ADTs in wasm

ADTs are also heap-allocated values.

To represent an ADT, we need to somehow represent in
memory its constructor and its fields.

The fields are just values themselves, so they will be
represented as i32 values, like all other values.

To represent the constructor, we will assign an individual
index or code to every constructor of a type. For example, if
we have a List type with Nil and Cons constructors, we
could assign 0 to Nil and 1 to Cons. The index is stored in
memory before the fields of the ADT.
Conveniently, we already created those indexes in the symbol
table (calling the getConstructor method returns a
ConstrSig, which contains a field index).

An ADT is represented by a reference to its base address in
memory, i.e. as the address of its first word in memory (the
address of the index), which by the way is also an i32!

From Amy to WebAssembly

Allocating ADT values

1 Save the old memory boundary b

2 Increment memory boundary by the size of the allocated ADT

3 Store the constructor index to address b

4 For each field of the constructor, generate code for it and
store it in memory in the correct offset from b

5 Push b to the stack (base address of the ADT)

Note: Feel free to use fresh locals as temporary storage!

From Amy to WebAssembly

Allocating ADT values: Example

abstract class List

case class Nil() extends List

case class Cons(h: Int, t: List) extends List

def foo(): List = { Cons(5, Cons(42, Nil())) }

Suppose at some point during the execution of the program, the
memory boundary is 100. We encounter a call to foo.
After the call, the memory could look like this:

Address: 100 104 108 112 116 120 124

Content: 1 5 112 1 42 124 0

Meaning: Cons(5, −→Cons(42, −→Nil()

The memory boundary would be 128 and foo would return 100 to
its caller

From Amy to WebAssembly

Compiling pattern matching (1)

A pattern matching expression
e match {

case p1 => e1

...

case pn => en

}

can be considered to be equivalent to the following pseudocode:
val v = e;

if (matchAndBind(v, p1)) e1

else if (matchAndBind(v, p2)) e2

else ...

else if (matchAndBind(v, pn)) en

else error("Match error!")

From Amy to WebAssembly

Compiling pattern matching (2)

matchAndBind(v , p) is a function not expressible in Amy which
you will have to implement in WebAssembly. It will examine if the
pattern p matches with a value v , and make sure it binds the
correct values to the identifiers in p.
matchAndBind is defined as follows:

matchAndBind(v, _) = true

matchAndBind(v, id) = { id = v; true } // assign v to id

matchAndBind(v, lit) = { v == lit } // lit is a literal

matchAndBind(C_1(v_1, . . ., v_n), C_2(p_1, . . ., p_m)) = {

C_1 == C_2 &&

matchAndBind(v_1, p_1) &&

. . .
matchAndBind(v_m, p_m) }

From Amy to WebAssembly

Compiling pattern matching (3)

You have to translate the pseudocode above to binary code.
Think about

how you translate the above to the wasm postfix format

when you have to push values on the stack

when you have to drop useless values from the stack

when you need to use extra local variables as temporary
storage

in case of case class patterns, how the object is laid out in
memory and how you can access its constructor and fields.

how to nest if-blocks correctly.

why is it safe to make the recursive calls to matchAndBind?
How are we certain the memory even contains the things we
expect?

From Amy to WebAssembly

Extended example: List concatenation

object L {

abstract class List

case class Nil() extends List

case class Cons(h: Int, t: List) extends List

def concat(l1: List, l2: List): List = {

l1 match {

case Nil() => l2

case Cons(h, t) => Cons(h, concat(t, l2))

}

}

}

Find the commented output code on the course website.
For further examples, don’t hesitate to use the reference compiler!

From Amy to WebAssembly

