
Specification of the Amy language

Computer Language Processing

LARA

Autumn 2019

1 Introduction

Welcome to the Amy project! This semester you will learn how to compile a
simple functional Scala-like language from source files down to executable code.
When your compiler is complete, it will be able to take Amy source (text) files as
input and produce WebAssembly bytecode files. WebAssembly is a new format
for portable bytecode which is meant to be run in browsers.

This document is the specification of Amy. Its purpose is to help you clearly
and unambiguously understand what a Amy program means, and to be the
Amy language reference, along with the reference compiler. It does not deal
with how you will actually implement the compiler; this will be described to
you as assignments are released.

1.1 Features of Amy

Let us demonstrate the basic features of Amy through some examples:

1.1.1 The factorial function

object Factorial {

def fact(i: Int): Int = {

if (i < 2) { 1 }

else { i * fact(i-1) }

}

}

Every program in Amy is contained in a module, also called object. A func-
tion is introduced with the keyword def, and all its parameters and result type
must be explicitly typed. Amy supports conditional (or if-) expressions with

1

http://webassembly.org

obligatory brackets. Notice that conditionals are not statements, but return a
value, in this case an Int.

In fact, there is no distinction between expressions and statements in Amy.
Even expressions that are called only for their side-effects return a value of type
Unit.

The condition of an if-expression must be of type Boolean and its branches
must have the same type, which is also the type of the whole expression.

1.1.2 Saying hello

object Hello {

Std.printString("Hello " ++ "world!")

}

Amy supports compiling multiple modules together. To refer to functions
(or other definitions) in another module, one must explicitly use a qualified
name. There is no import statement like in Scala.

In this example, we refer to the printString function in the Std module,
which contains some builtin functions to interact with the user. The string we
print is constructed by concatenating two smaller strings with the ++ operator.

1.1.3 Input, local variables and sequencing expressions

object ReadName {

Std.printString("What is your name?");

val name: String = Std.readString();

Std.printString("Hello " ++ name)

}

We can read input from the console with the readX functions provided in
Std.

We can define local variables with val, which must always be typed explic-
itly. The value of the variable is given after “=”, followed by a semicolon.

We can sequence expressions with “;”. The value of the first expression is
discarded, and the value of the second one is returned. Note that “;” is an
operator and not a terminator: you are not allowed to put it at the end of a
sequence of expressions.

1.1.4 Type definitions

Except for the basic types, a user can define their own types in Amy. The
user-definable types in Amy come from functional programming and are called
algebraic data types. In this case, we define a type, List, and two constructors
Nil and Cons, which we can call to construct values of type List.

2

object L {

abstract class List

case class Nil() extends List

case class Cons(h: Int, t: List) extends List

}

1.1.5 Constructing ADT values

def range(from: Int, to: Int): List = {

if (to < from) { Nil() }

else {

Cons(from, range(from + 1, to))

}

}

We can create a List by calling one of its two constructors like a function,
as demonstrated in the range function.

1.1.6 Pattern matching

def length(l: List): Int = { l match {

case Nil() => 0

case Cons(h, t) => 1 + length(t)

}}

To use a list value in any meaningful way, we have to break it down, according
to the constructor used to construct it. This is called pattern matching and is
a powerful feature of functional programming.

In length we pattern match against the input value l. Pattern matching will
check if its argument matches the pattern of the first case, and if so will evaluate
the corresponding expression. Otherwise it will continue with the second case
etc. If no pattern matches, the program will exit with an error. If the constructor
has arguments, as does Cons in this case, we can bind their values to fresh
variables in the pattern, so we can use them in the case expression.

1.1.7 Wildcard patterns and errors

The error keyword takes a string as argument, prints Error: and its argument
on the screen, then exits the program immediately with an error code. In this
function, we are trying to compute the head of a list, which should fail if the
list is empty.

Notice that in the second case, we don’t really care what the tail of the list
is. Therefore, we use a wildcard pattern (_), which matches any value without
binding it to a name.

3

def head(l: List): Int = {

l match {

case Cons(h, _) => h

case Nil() => error("head(Nil)")

}

}

1.2 Relation to Scala

Amy is designed to be as close to a simple subset of Scala as possible. However,
it is not a perfect subset. You can easily come up with Amy programs that are
not legal in Scala. However, many “reasonable” programs will be compilable
with scalac, provided you provide an implementation of the Amy standard
library along with your code. This should not be required however, as we are
providing a reference implementation of Amy.

2 Syntax

The syntax of Amy is given formally by the context-free grammar of Figure 1.
Everything spelled in italic is a nonterminal symbol of the grammar, whereas
the terminal symbols are spelled in monospace font. ∗ is the Kleene star, s+

stands for one or more repetitions of s, and ? stands for optional presence of a
symbol (zero or one repetitions). The square brackets [] are not symbols of the
grammar, they merely group symbols together.

Before parsing an Amy program, the Amy lexer generates a sequence of
terminal symbols (tokens) from the source files. Some notnerminal symbols
mentioned, but not specified, in Figure 1 are also represented as a single token
by the lexer. They are lexed according to the rules in Figure 2. In Figure 2, we
denote the range between characters α and β (included) with [α− β].

The syntax in Figure 1 is an overapproximation of the real syntax of Amy.
This means that it allows some programs that should not be allowed in Amy.
To get the real syntax of Amy, there are some additional restrictions presented
(among other things) in the following notes:

• The reserved words of Amy are the following: abstract, Boolean, case,
class, def, else, error, extends, false, if, Int, match, object, String,
true, Unit, val, (the wildcard pattern).

Identifiers are not allowed to coincide with a reserved word.

• The operators and language constructs of Amy have the following prece-
dence, starting from the lowest :

(1) val, ; (2) if, match (3) || (4) && (5) == (6) <, <= (7) +, -, ++ (8)
*, /, % (9) Unary -, ! (10) error, calls, variables, literals, parenthesized
expressions.

4

Program ::= Module∗

Module ::= object Id { Definition∗ Expr? }
Definition ::= AbstractClassDef | CaseClassDef | FunDef

AbstractClassDef ::= abstract class Id
CaseClassDef ::= case class Id (Params) extends Id

FunDef ::= def Id (Params) : Type = { Expr }
Params ::= ε | ParamDef [, ParamDef]∗

ParamDef ::= Id : Type
Type ::= Int | String | Boolean | Unit | [Id .]? Id
Expr ::= Id

| Literal
| Expr BinOp Expr
| UnaryOp Expr
| [Id .]? Id (Args)

| Expr ; Expr
| val ParamDef = Expr ; Expr
| if (Expr) { Expr } else { Expr }
| Expr match { MatchCase+ }
| error (Expr)

| (Expr)

Literal ::= true | false | ()

| IntLiteral | StringLiteral
BinOp ::= + | - | * | / | % | < | <=

| && | || | == | ++

UnaryOp ::= - | !

MatchCase ::= case Pattern => Expr
Pattern ::= [Id .]? Id (Patterns) | Id | Literal |
Patterns ::= ε | Pattern [, Pattern]∗

Args ::= ε | Expr [, Expr]∗

Figure 1: Syntax of Amy

IntLiteral ::= Digit+

Id ::= Alpha AlphaNum∗ (and not a reserved word)
AlphaNum ::= Alpha | Digit |

Alpha ::= [a− z] | [A− Z]
Digit ::= [0− 9]

StringLiteral ::= " StringChar∗ "

StringChar ::= Any character except newline and "

Figure 2: Lexical rules for Amy

5

For example,
1 + 2 * 3 means 1 + (2 * 3) and
1 + 2 match {...} means (1 + 2) match {...}.

A little more complicated is the interaction between ; and val: the defini-
tion part of the val extends only as little as the first semicolon, but then
the variable defined is visible through any number of semicolons. Thus
(val x: Int = y; z; x) means (val x: Int = y; (z; x)) and not
(val x: Int = (y; z); x) or ((val x: Int = y; z); x) (i.e. x takes
the value of y and is visible until the end of the expression).

All operators are left-associative. That means that within the same prece-
dence category, the leftmost application of an operator takes precedence.
An exception is the sequence operator, which for ease of the implementa-
tion (you will understand during parsing) can be considered right-associative
(it is an associative operator so it does not really matter).

• A val definition is not allowed directly in the value assigned by an enclos-
ing val definition. E.g. (val x: Int = val y: Int = 0; 1; 2) is not
allowed. On the other hand, (val x: Int = 0; val y: Int = 1; 2) is
allowed.

• It is not allowed to use a val as a (second) operand to an operator. E.g.
(1 + val x: Int = 2; x) is not allowed.

• A unary operator is not allowed as a direct argument of another unary
operator. E.g. --x is not allowed.

• It is not allowed to use match as a first operand of any binary operator,
except ;. E.g. (x match { ... } + 1) is not allowed. On the other
hand (x match { ... }; x) is allowed.

• The syntax [Id .]? Id refers to an optionally qualified name, for example
either MyModule.foo or foo. If the qualifier is included, the qualified
name refers to a definition foo in another module MyModule; otherwise,
foo should be defined in the current module. Since Amy does not have
the import statement of Scala or Java, this is the only way to refer to
definitions in other modules.

• One line comments are introduced with “//”: //This is a comment.
Everything until the end of the line is a comment and should be ignored
by the lexer.

• Multiline comments can be used as follows: /*This is a comment */.
Everything between the delimiters is a comment, notably including new-
line characters and /*. Nested comments are not allowed.

• Escaped characters are not recognised inside string literals. I.e. "\n"

stands for a string literal which contains a backspace and an “n”.

6

3 Semantics

In this section we will give the semantics of Amy, i.e. we will systematically
explain what a Amy represents, as well as give the restrictions that a legal Amy
program must obey. The discussion will be informal, except for the typing rules
of Amy.

3.1 Program Structure

A Amy program consists of one or more source files. Each file contains a single
module (object), which in turn consists of a series of type and function defini-
tions, optionally followed by an expression. We will use the terms object and
module interchangeably.

3.2 Execution

When a Amy program is executed, the expression at the end of each module,
if present, is evaluated. The order of execution among modules is the same
that the user gave when compiling or interpreting the program. Each module’s
definitions are visible within the module automatically, and in all other modules
provided a qualified name is used.

3.3 Naming rules

In this section, we will give the restrictions that a legal Amy program must
obey with regard to naming or referring to entities defined in the program. Any
program not following these restrictions should be rejected by the Amy name
analyzer.

• Amy is case-sensitive.

• No two modules in the program can have the same name.

• No two classes, constructors, and/or functions in the same module can
have the same name.

• No two parameters of the same function can have the same name.

• No two local variables of the same function can have the same name if
they are visible from one another. This includes binders in patterns of
match-expressions. Variables that are not mutually visible can have the
same name. E.g. the program
val x = 0; val x = 1; 2 is not legal, whereas
(val x = 0; 1); (val x = 1; 2) is.

• A local variable can have the same name as a parameter. In this case, the
local variable definition shadows the parameter definition.

7

• Every variable encountered in an expression has to refer to a function
parameter or a local variable definition.

• All case classes have to extend a class in the same module.

• All function or constructor calls or type references have to refer to a func-
tion/constructor/type defined in the same module, or another module
provided a qualified name is given. It is allowed to refer to a construc-
tor/type/function before declaring it.

• All calls to constructors and functions have to have the same number of
arguments as the respective constructor/function definition.

3.4 Types and Classes

Every expression, function parameter, and class parameter in Amy has a type.
Types catch some common programming errors by introducing typing restric-
tions. Programs that do not obey these restrictions are illegal and will be
rejected by the Amy type checker.

The built-in types of Amy are Int, String, Boolean and Unit.
Int represents 32-bit signed integers. String is a sequence of characters.

Strings have poor support in Amy: the only operations defined on them are are
concatenation and conversion to integer. In fact, not even equality is “properly”
supported (see Section 3.5). Boolean values can take the values true and false.
Unit represents a type with a single value, (). It is usually used as the result
of a computation which is invoked for its side-effects only, for example, printing
some output to the user. It corresponds to Java’s void.

In addition to the built-in types, the programmer can define their own types.
The sort of types that are definable in Amy are called Algebraic Data Types
(ADTs) and come from the functional programming world, but they have also
been successfully adopted in Scala.

An ADT is a type along with several constructors that can create values of
that type. For example, an ADT defining a list of integers in pseudo syntax
may look like this: type List = Nil() | Cons(Int, List), which states that
a List is either Nil (the empty list), or a Cons of an integer and another list.
We will say that Cons has two fields of types Int and List, whereas Nil has
no fields. Inside the program, the only way to construct values of the List type
is to call one of these constructors, e.g. Nil() or Cons(1, Cons(2, Nil())).
You can think of them as functions from their field types to the List type.

Notice that in the above syntax, Nil and Cons are not types. More specif-
ically, they are not subtypes of List: in fact, there is no subtyping in Amy.
Only List is a type, and values such as Nil() or Cons(1, Cons(2, Nil()))

have the type List.
In Amy, we use Scala syntax to define ADTs. A type is defined with an

abstract class and the constructors with case classes. The above definition in
Amy would be

8

https://en.wikipedia.org/wiki/Algebraic_data_type

abstract class List

case class Nil() extends List

case class Cons(h: Int, t: List) extends List

Notice that the names of the fields have no practical meaning, and we only
use then to stay close to Scala.

We will sometimes use the term abstract class for a type and case class for
a type constructor.

The main programming structure to manipulate class types is pattern match-
ing. In Section 3.5 we define how pattern matching works.

3.5 Typing Rules and Semantics of Expressions

Each expression in Amy is associated with a typing rule, which constrains and
connects its type and the types of its subexpressions. A Amy program is said
to typecheck if (1) all its expressions obey their respective typing rules, and (2)
the body of each function corresponds to its declared return type. A program
that does not typecheck will be rejected by the compiler.

In the following, we will informally give the typing rules and explain the
semantics (meaning) of each type of expression in Amy. We will use function
type notation for typing of the various operators. For example, (A,B) ⇒ C
denotes that an operator takes arguments of types A and B and returns a value
of type C.

When talking about the semantics of an expression we will refer to a context.
A context is a mapping from variables to the values that have been assigned to
them.

• Literals of Amy are expressions of the base types that are values, i.e.
they cannot be evaluated further. The literals true and false have type
Boolean. (), the unit literal, has type Unit. String literals have type
String and integer literals have type Int.

• A variable has the type of the corresponding definition (function parameter
or local variable definition). Its value is the value assigned to it in the
current context.

• +, -, *, / and % have type (Int, Int) ⇒ Int, and are the usual integer
operators.

• Unary - has type (Int)⇒ Int and is the integer negation.

• < and <= have type (Int, Int) ⇒ Boolean and are the usual arithmetic
comparison operators.

• && and || have type (Boolean, Boolean)⇒ Boolean and are the boolean
conjunction and disjunction. Notice that these operators are short-circuiting.
This means that the second argument does not get evaluated if the result

9

is known after computing the first one. For example, true || error("")

will yield true and not result in an error, whereas false || error("")

will result in an error in the program.

• ! has type (Boolean)⇒ Boolean and is the boolean negation.

• ++ has type (String, String)⇒ String and is the string concatenation.

• == is the equality operator. It has type (A,A)⇒ Boolean for every type A.
Equality for values of the Int, Boolean and Unit types is defined as value
equality, i.e. two values are equal if they have the same representation.
E.g. 0 == 0, () == () and (1 + 2) == 3. Equality for the reference
types String and all user-defined types is defined as reference equality, i.e.
two values are equal only if they refer to the same object. I.e. "" == "",
"a" ++ "b" == "ab" and Nil() == Nil() all evaluate to false, whereas
(val s = "Hello"; s == s) evaluates to true.

• error() has type (String) ⇒ A for any type A, i.e. error is always
acceptable, regardless of the expected type. When a program encounters
error, it needs to print something like Error: <msg>, where <msg> is its
evaluated argument, and then exit immediately.

• if(..) {..} else {..} has type (Boolean, A,A) ⇒ A for any type A,
and has the following meaning: First, evaluate the condition of if. If it
evaluates to true, evaluate and return the then-branch; otherwise, evalu-
ate and return the else-branch. Notice that the value that is not taken is
not evaluated.

• ; is the sequence operator. It has type (A,B) ⇒ B for any types A and
B. Notice that the first expression has to be well typed, although its
precise type does not matter. ; evaluates and discards its first argument
(which we will usually invoke just for its side-effects) and then evaluates
and returns its second argument.

• val n = e; b defines a local variable with name n and adds it to the
context, mapped to the value of e. It is visible in b but not in e. n has to
obey the name restrictions described in Section 3.3.

• An expression f(..) or m.f(..) denotes either a function call, or an
invocation of a type constructor. f has to be the name of a function/con-
structor defined in the program. The types of the real arguments of the
function/constructor invocation have to match the corresponding types of
the formal arguments in the definition of the function/constructor. The
type of a function/constructor call is the return type of the function, or
the parent type of the constructor respectively.

Evaluating a function call means evaluating its body in a new context, con-
taining the function’s formal arguments mapped to the values of the real
arguments provided at the function call. Evaluating a call to a constructor

10

means generating and returning a fresh object containing (a reference to)
the constructor and the arguments passed to it.

Notice that an invocation of a type constructor on values is itself a value,
i.e. cannot be evaluated further. It corresponds to literals of the other
types.

• match is the pattern-matching construct of Amy. It corresponds to Scala’s
pattern matching. Java programmers can think of it as a generalized
switch-statement. match is the only way to access the structure of a value
of a class type. It also happens to be the most complicated structure of
Amy.

Terminology: To explain how the match-expression works, let us first
establish some terminology. A match case has a scrutinee (the first operand,
which gets pattern matched on), and a number of match cases (or simply
cases). A case is introduced with the keyword case , followed by the
(case) pattern, then the symbol => and finally an expression, which we
will call the case expression.

As seen in Section 2, a pattern comes in four different forms, which in the
grammar are denoted as (1) Id(Patterns), (2) Id, (3) Literal and (4) .
We will call those forms case class pattern, identifier pattern, literal pattern
and wildcard pattern respectively. The identifier at the beginning of case
class pattern is called the constructor of the pattern, and its arguments
are called its subpatterns.

Typing rules: For the match-expression to typecheck, two conditions
have to hold:

– All its case expressions have the same type, which is also the type of
the whole match expression.

– All case patterns have to follow the type of the scrutinee. For a
pattern to follow a type means the following, according to its form:

∗ Each literal pattern follows exactly the type of its literal.

∗ Wildcard and identifier patterns follow any type.

∗ A case class pattern follows only the resulting type of its con-
structor, if and only if all its subpatterns follow the types of the
respective fields of the constructor.
For example, Nil() match { case Cons(_, t) => () } type-
checks, whereas Nil() match { case 0 => () } does not.

Semantics: The semantics of pattern matching are as follows: First,
the scrutinee is evaluated, then cases are scanned one by one until one is
found whose pattern matches the scrutinee value. If such case is found, its

11

case expression is evaluated, after adding to the environment the variables
bound in the case pattern (see below). The value produced in this way
is returned as the value of the match-expression. If none is found, the
program terminates with an error.

We say that a pattern matches a value when the following holds:

– A wildcard pattern or an identifier pattern x match any value. In
the second case, x is bound to that value when evaluating the case
expression.

– A literal pattern matches exactly the value of its literal. Notice that
string literals are compared by reference, so they can never match.

– A case class pattern case C(..) matches a value v, if and only if v
has been constructed with the same constructor C and every subpat-
tern of the pattern matches the corresponding field of v. Notice that
we have to recursively bind identifiers in subpatterns.

• Parentheses (e) can be used freely around an expression e, mainly to
override operator precedence or to make the program more readable. (e)
is equivalent to e.

3.6 Formal discussion of types

In this section, we give a formal (i.e. mathematically robust) description of the
Amy typing rules. A typing rule will be given as

Rule Name
P1 . . . Pn

C

where Pi are the rule premises and C is the rule conclusion. A typing rule
means that the conclusion is true under the premises.

Conclusions and most premises will be type judgements in an environment.
A type judgement Γ ` e : T means that an expression (or pattern) e has type
T in environment Γ. Environments Γ are mappings from variables to types
and will be written as Γ = v1 : T1, . . . , vn : Tn. We can add a new pair to an
environment Γ by writing Γ, vn+1 : Tn+1. We will also sometimes write a type
judgement of the form Γ ` p. This means that p typechecks, but we don’t
assign a type to it. Type checking will try to typecheck a program under the
empty environment, and reject it if it fails to do so.

The initial environment Γ0(p) of a program p is one that contains the types
of all functions and constructors in p, where a constructor is treated as a function
from its fields to its parent type (see Section 3.4). The initial environment is
used to kickstart typechecking at the function definition level.

Figure 3 lists typing rules for expressions. Figure 4 lists typing rules for
patterns, functions and programs. In the typing rule for pattern matching,
bindings(p) refers to the variable bindings implied by a pattern as explained in

12

Section 3.5. Rules for literal patterns are omitted because they are the same as
literal expressions.

4 The standard library of Amy

Amy comes with a library of predefined functions, which are accessible in the Std
object. Some of these function implement functionalities that are not expressible
in Amy, e.g. printing to the standard output. These built-in functions are
implemented in JavaScript and WebAssembly in case of compilation, and in
Scala in the interpreter. Built-in functions have stub implementations in the
Amy Std module for purposes of name analysis and type checking.

The Amy compiler will not automatically include Std to the input files. If
you want them included, you have to provide them manually.

The signature of the Std module is shown in Figure 5.

13

Variable
v : T ∈ Γ

Γ ` v : T

Int Literal
i is an integer literal

Γ ` i : Int

String Literal
s is a string literal

Γ ` s : String

Unit

Γ ` () : Unit

Boolean Literal
b ∈ {true, false}
Γ ` b : Boolean

Arith. Bin. Operators
Γ ` e1 : Int Γ ` e2 : Int op ∈ {+, -, *, /, %}

Γ ` e1 op e2 : Int

Arith. Comp. Operators
Γ ` e1 : Int Γ ` e2 : Int op ∈ {<, <=}

Γ ` e1 op e2 : Boolean

Arith. Negation
Γ ` e : Int

Γ ` -e : Int

Boolean Bin. Operators
Γ ` e1 : Boolean Γ ` e2 : Boolean op ∈ {&&, ||}

Γ ` e1 op e2 : Boolean

Boolean Negation
Γ ` e : Boolean

Γ ` !e : Boolean

String Concatenation
Γ ` e1 : String Γ ` e2 : String

Γ ` e1 ++ e2 : String

Equality

Γ ` e1 : T Γ ` e2 : T

Γ ` e1 == e2 : Boolean

Sequence

Γ ` e1 : T1 Γ ` e2 : T2

Γ ` e1 ; e2 : T2

Local Variable Definition
Γ ` e1 : T1 Γ, n : T1 ` e2 : T2

Γ ` val n : T1 = e1 ; e2 : T2

Function/Class Constructor Invocation

Γ ` e1 : T1 . . . Γ ` en : Tn Γ ` f : (T1, . . . , Tn)⇒ T

Γ ` f(e1, . . . , en) : T

If-Then-Else
Γ ` e1 : Boolean Γ ` e2 : T Γ ` e3 : T

Γ ` if (e1) {e2} else {e3} : T

Error
Γ ` e : String

Γ ` error(e) : T

Pattern Matching
Γ ` e : Ts ∀i ∈ [1, n]. Γ ` pi : Ts ∀i ∈ [1, n]. Γ, bindings(pi) ` ei : Tc

Γ ` e match { case p1 => e1 . . . case pn => en } : Tc

Figure 3: Typing rules for expressions

14

Wildcard Pattern

Γ ` : T

Identifier Pattern

Γ ` v : T

Case Class Pattern
Γ ` p1 : T1 . . . Γ ` pn : Tn Γ ` C : (T1, . . . , Tn)⇒ T

Γ ` C(p1, . . . , pn) : T

Function Definition
Γ, v1 : T1, . . . , vn : Tn ` e : T

Γ ` def f(v1 : T1, . . . , vn : Tn): T = { e }

Program
∀f ∈ p. Γ0(p) ` f

` p

Figure 4: Typing rules for patterns, functions and programs

object Std {

// Output

def printString(s: String): Unit = ...

def printInt(i: Int): Unit = ...

def printBoolean(b: Boolean): Unit = ...

// Input

def readString(): String = ...

def readInt(): Int = ...

// Conversions

def intToString(i: Int): String = ...

def digitToString(i: Int): String = ...

def booleanToString(b: Boolean): String = ...

}

Figure 5: The Std module

15

	Introduction
	Features of Amy
	The factorial function
	Saying hello
	Input, local variables and sequencing expressions
	Type definitions
	Constructing ADT values
	Pattern matching
	Wildcard patterns and errors

	Relation to Scala

	Syntax
	Semantics
	Program Structure
	Execution
	Naming rules
	Types and Classes
	Typing Rules and Semantics of Expressions
	Formal discussion of types

	The standard library of Amy

