
Compiler Extensions for Amy

Computer Language Processing

LARA

Autumn 2018

1 Introduction

In this document you will find some compiler extension ideas for the last assign-
ment of the semester. The ideas are grouped in sections based on the broader
subject they cover. Every extension indicates the maximum size of a group that
is allowed to take it up next to its title. Some assignments suggest additional
features which allow the group to include additional members.

2 Your own idea!

We will be very happy to discuss an idea you come up with yourselves.

3 Language features

Projects in this section extend Amy by adding a new language feature. To
implement one of these projects, you will probably need to modify every stage
of the compiler, from lexer to code generation. If the project is too hard, you
might be allowed to skip the code generation part and only implement the
runtime of your project in the interpreter.

3.1 Imperative features (2+)

With the exception of input/output, Amy is a purely functional language: none
of its expressions allow side effects. Your task for this project is to add imper-
ative language features to Amy. These should include:

• Mutable local variables.

1

var i: Int;

var j: Int = 0;

i = j;

j = i + 1;

Std.printInt(i);

Std.printInt(j) // prints 0, 1

Make sure your name analysis disallows plain vals to be mutated.

• While loops.

def fact(n: Int): Int = {

var res: Int = 1;

var j: Int = n;

while(1 < j) {

res = res * j;

j = j - 1

};

res

}

• Bonus: Arrays. You should support at least array initialization, indexing
and extracting array length. If you add this feature, you can add an
additional member to the group.

3.2 Implicit parameters (1)

Much like Scala, this feature allows functions to take implicit parameters.

def foo(i: Int)(implicit b: Boolean): Int = {

if (i <= 0 && !b) { i }

else { foo(i - 1) + i } // good, implicit parameter in scope

}

foo(1)(true); // good, argument explicitly provided

foo(1); // bad, no implicit in scope

implicit val b: Boolean = true;

foo(1); // good, implicit in scope

// equivalent to foo(1)(b)

implicit val b2: Boolean = false;

foo(1) // Bad, two boolean implicits in scope.

When a function that takes an implicit parameter is called and the implicit
parameter is not explicitly defined, the compiler will look at the scope of the
call for an implicit variable/parameter definition of the same type. If exactly
one such definition is found, the compiler will complete the call with the defined
variable/parameter. If more than one or no such definitions are found, the
compiler will fail the program with “implicit parameter conflict” or “no implicit
found” errors respectively.

2

3.3 Implicit conversions (1)

Much like Scala, this feature allows specified functions to act as implicit con-
versions.

implicit def i2b(i: Int): Boolean = { !(i == 0) }

2 || false // Good, returns true

def foo(b: Boolean): List = { ... }

foo(42) // Also good

1 + true // Bad, no implicit in scope.

def b2s(b: Boolean): String = { ... }

1 ++ "Hello" // Bad, we cannot apply two conversions

An implicit conversion is a function with the qualifier implicit. It must
have a single parameter. At any point in the program, when an expression e

of type T1 is found but one of type T2 is expected, the compiler searches the
current module for an implicit conversion of type (T1) => T2. If exactly one
such conversion f is found, the compiler will substitute the e by f(e) (and the
program typechecks). If multiple such conversions are found, the compiler fails
with an ambiguous implicit error. If none is found, an ordinary type error is
emitted.

Only a single conversion is allowed to apply to an expression. For example,
in the above example, we cannot implicitly apply i2b and then b2s to get a
String.

3.4 Tuples (1)

Add support for tuples in Amy. You should support tuple types, literals, and
patterns:

def maybeNeg(v: (Int, Boolean)): (Int, Boolean) = { // Type

v match {

case (i, false) => // pattern

(i, false) // literal

case (i, true) =>

(-i, false)

}

}

There are two ways you could approach this problem:

• Treat tuples as built-in language features. In this case, you need to support
tuples of arbitrary size.

• Desugar tuples into case classes. A phase after parsing and before name
analysis will transform all tuples to specified library classes, e.g. Tuple2, Tuple3

etc. In this case, you cannot support tuples of arbitrary size, but you still
need to support all sizes up to, say, 10. With this approach, you don’t have
to modify any compiler phases from the name analysis onwards, except
maybe to print error messages that make sense to the user.

3

3.5 Higher-order functions (2+, challenging)

Add support for higher-order functions to Amy. You need to support function
types and anonymous functions.

def compose(f: Int => Int, g: Int => Int): Int => Int = {

(x: Int) => f(g(x))

}

compose((x: Int) => x + 1, (y: Int) => y * 2)(5) // returns 11

def map(f: Int => Int, l: List): List = {

l match {

case Nil() => Nil()

case Cons(h, t) => Cons(f(h), map(f, t))

}

}

map((x: Int) => x + 1, Cons(1, Cons(2, Cons(3, Nil()))))

// Returns List(2, 3, 4)

def foo(): Int => Int = {

val i: Int = 1;

val res: Int => Int = (x: Int) => x + i

// Problem! How do we access i from within res?

res

}

foo()(42) // Returns 43

You have to think how to represent higher order functions during runtime.
In a bytecode setting, a first approach is to represent a higher-order function

as a pointer to a named function, which is then called indirectly. You have to
read about tables and indirect calls in WebAssembly.

This works fine for compose or map above, but not for foo. The problem is
that higher order functions can refer to variables in their scope, like res above
refers to i. The set of those variables are called the environment of the function.
If its environment is empty, the function will be called closed. Above, we have
no way to refer to i from within res at runtime: i is in the frame of foo which
is not accessible in res. In fact, by the time we need i, foo may have returned
and its frame disappeared!

The way to solve this problem is a technique called closure conversion. The
idea is the following: At runtime, a function are represented as a closure, i.e. a
function pointer along with the environment it captures from its scope. When
we create a closure at runtime, we create a pair of values in memory, one of
which points to the code (which will be a function) and the other to the en-
vironment, which will be a list of the captured variables. When we call the
function, we really call the function pointer in the closure. We need to make
sure to extract and somehow pass to the function pointer its environment from
the other pointer. You can find a detailed explanation of closure conversion

4

here.
In the interpreter, things are simpler in both cases: you can define a new

value type FunctionValue which contains all necessary information. In fact,
you should probably start here as an exercise.

For your project, we recommend that you assume all functions in the source
code are closed, but if you are motivated to implement closure conversion, we
will allow an additional group member.

3.6 Custom operators (2)

Allow the user to define operators.

operator def :::(l1: List, l2: List): List = {

l1 match {

case Nil() => l2

case Cons(h, t) => Cons(h, t ::: l2)

}

}

Cons(1, Cons(2, Nil())) ::: Cons(3, Nil()) // returns List(1, 2, 3)

You can choose specific priorities for the operators based e.g. on their first
character, or you can allow the user to define it; e.g. operator 55 def :::(...)

could signify that ::: has a precedence between + and * (with || having 10, up
to * having 60).

You can also choose to have built-in binary operators of Amy subsumed by
this project. Of course, their implementation will be left to be hard-coded by
the compiler backend:

operator 50 def +(i1: Int, i2: Int): Int = { error("+") }

In any case, your parser will be in no position to know what operators are
available in your program before actually parsing it. Therefore, when you have
more than one operators in a row, your parser will just have to parse the tree
as a flat sequence of operand, operator, operand, . . . , and then fix the mess
afterwards. Of course other solutions are welcome.

3.7 Improved Parameters (2)

Add support for named and default parameters for functions and classes. If a
value for a parameter with a default value is not given, the compiler completes
the default value. One can choose to explicitly name parameters when calling
a function/constructor, which also allows reordering:

def foo(i: Int, j: Int = 42): Int = { i + j }

foo(1) // OK, j has default value

foo(i = 5, j = 7) // OK

foo(j = 5, i = 7) // OK, can reorder named parameters

foo(i = 7) // OK

5

https://cs420.epfl.ch/s/acc17_05_closure-conversion.pdf

foo(j = 7) // Wrong, i has no default value

foo() // Wrong, i has no default value

foo(i: Int = 5, j: Int): Int = { i + j }

// Wrong, default parameters have to be at the end

// Similarly for case classes

case class Foo(i: Int, j: Int = 42) extends Bar

Notice that names for case class parameters are currently not preserved in
the AST, which you will have to change.

3.8 List comprehensions (2)

Extend Amy with list comprehensions, which allow programmers to succinctly
express transformations of Lists.

val xs: L.List = L.Cons(1, L.Cons(2, L.Cons(3, L.Nil())));

val ys: L.List = [2*x for x in xs if x % 2 != 0];

Std.printString(L.toString(ys)) // [2, 6]

Your list-comprehension syntax should support enumerating elements from
one or multiple lists, filtering them with and mapping them to arbitrary expres-
sions.

It is up to you to decide whether to treat these comprehensions as prim-
itives in your compiler. If you do so, you will have a dedicated AST node
for comprehensions in the entire compiler pipeline and generate specific code
or interpret them accordingly in the end. Alternatively, you can desugar list
comprehensions earlier in the pipeline, e.g. right after (or during) parsing. You
could, for instance, generate auxiliary functions that compute the result of the
list comprehension and are called in place of the comprehensions.

3.9 Inlining (1+)

Implement inlining on the AST level, that is, allow users to force the compiler
to inline certain functions and perform optimizations on the resulting AST.

inline def abs(n: Int): Int = { if (n < 0) -n else n }

abs(123); // inlined and constant-folded to ‘123’

abs(-456); // inlined and constant-folded to ‘456’

// inlined, not cf-ed; careful with side-effects!

abs(Std.readInt())

Inlining is effective when we can expect optimizations to make code signif-
icantly more efficient given additional information on function arguments. At
a minimum, you would add an inline qualifier for function definitions and
perform constant folding on inlined function bodies.

6

Inlining is particularly useful when applied to auxiliary functions that only
exist for clarity. While inlining can lead to code explosion when applied too
liberally, note that inlining a non-recursive function that is only called in a single
location will strictly reduce code size and potentially lead to more efficient code.
This makes it very attractive to automatically apply inlining to such functions:

def foo(n: Int): Int = {

def plus1(n: Int): Int = { n + 1 }

inline def times2(n: Int): Int = { 2 * n }

plus1(times2(times2(n))) // inlined and cf-ed to ‘4 * n + 1’

}

def bar(): Int = {

def fib(n: Int): Int = {

if (n <= 2) { 1 }

else { fib(n-2) + fib(n-1) }

}

fib(10) // should *not* be automatically inlined

}

To incentivize the user to break functions down into the composition of
many auxiliary functions we can introduce local function definitions. That is,
the user may define a function within a function. For this project it is sufficient
to enforce local functions that only have access to their own parameters and
locals, but not the surrounding function’s parameters or locals.

This project is for two people, if you choose to also implement local function
definitions, and one otherwise.

4 Type systems

4.1 Polymorphic types (2)

Allow polymorphic types for functions and classes.

abstract class List[A]

case class Nil[A]() extends List[A]

case class Cons[A](h: A, t: List[A]) extends List[A]

def length[A](l: List[A]): Int = {

l match {

case Nil() => 0

case Cons(_, t) => 1 + length(t)

}

}

case class Cons2[A, B](h1: A, h2: B, t: List[A]) extends List[A]

// Wrong, type parameters don’t match

7

You can assume the sequence of type parameters of an extending class is
identical with the parent in the extends clause (see example).

4.2 Case class subtyping (2)

Add subtyping support to Amy. Case classes are now types of their own:

val y: Some = Some(0) // Correct, Some is a type

val x: Option = None() // Correct, because None <: Option

val z: Some = None() // Wrong

y match {

case Some(i) => () // Correct

case None() => () // Wrong

}

Since case classes are types, you can declare a variable, parameter, ADT
field or function return type to be of a case class type, like any other type.

Case class types are subtypes of their parent (abstract class) type. This
means you can assign case class values to variables declared with the parent
type. Since we have subtyping, you can now optionally support the Nothing

type in source code, which is a subtype of every type and the type of error
expressions.

For this project you will probably rewrite the type checking phase in its
entirety. Rather than dealing with explicit constraints, the resulting phase could
perform more classical type-checking based on the minimal type satisfying all
the local subtyping constraints (the so-called least-upper bound).

4.3 Arrays and range types

In both of the following two projects you would add fixed-size arrays of integers
as a primitive language feature along with a type system that allows users to
specify the range of integers. The information about an integer’s range can then
be used to make array accesses safe by ensuring that indices are in-bounds. The
difference between the two projects lies in when integer bounds are checked, i.e.,
at compile-time (statically) or at runtime (dynamically).

In either case you will add two kinds of types: First, a family of primitive
types array[n] that represent integer arrays of size n. Furthermore, range types
that represent subsets of Int taking the following form: [i .. j] where i and
j are integer constants. The intended semantics is for [i .. j] to represent a
signed 32-bit integer n such that i ≤ n ≤ j.

4.3.1 Dynamically-checked range types (2)

Your type system should allow users to specify concrete ranges, e.g., [0 .. 7]

to denote integers 0 ≤ n ≤ 7. Values of Int and any range types will be
compatible during type-checking, but your system will have to be able to detect

8

when an integer might not fall within a given range at runtime. During code
generation your task will then be to emit runtime checks to ensure that, e.g.,
an Int in fact falls within the range [0 .. 7].

// initialize an array of size 8:

val arr: array[8] = [10, 20, 30, 40, 50, 60, 70, 80];

arr[0]; // okay, should not emit any runtime check

arr[arr.length-1]; // okay, same as above

// also okay, but should emit a runtime bounds check:

arr[Std.readInt()];

In effect, your system will ensure that array accesses are always in-bounds,
i.e., do not over- or under-run an array’s first, respectively last, element. Note
that the resulting system should only emit the minimal number of runtime
checks to ensure such safety. For instance, consider the following program:

def printBoth(arr1: array[8], arr2: array[8], i: [0 .. 7]): Unit = {

Std.printInt(arr1[i], arr2[i])

}

val someInt: Int = 4;

printBoth([1,2,3,4,5,6,7,8], [8,7,6,5,4,3,2,1], someInt)

Here it is not necessary to perform any checks in the body of printBoth,
since whatever values are passed as arguments for parameter i should have
previously been checked to lie between 0 and 7. In this concrete case, a runtime
check should occur when someInt is passed to printBoth.

4.3.2 Statically-checked range types (2+, challenging)

Your type system should be strict and detect potential out-of-bounds array ac-
cesses early. In particular, when your type checker cannot prove that an integer
lies in the required range it should produce a type error (and stop compilation
as usual).

val arr: array[8] = [10, 20, 30, 40, 50, 60, 70, 80];

arr[0]; // okay

arr[arr.length-1]; // okay

arr[arr.length]; // not okay, type error "Idx 8 is out-of-bounds"

val i: Int = Std.readInt();

arr[i]; // not okay, type error "Int may be out-of-bounds"

if (i >= 0 && i < 8) {

arr[i] // okay, branch is only taken when i is in bounds

}

To allow as many programs as possible to be accepted your type-checker will
have to employ precise typing rules for arithmetic expressions and if-expressions.
What you will implement are simple forms of path sensitivity and abstract in-
tepretation.

9

Constant-bounds version (2) Implement statically-checked range types for
arrays of fixed and statically-known sizes. Range types will only involve constant
bounds and in effect your type-checker will only have to accept programs that
operate on arrays whose sizes are known to you as concrete integer constants.

The typing rules that you come up with should be sufficiently strong to prove
safety of simple array manipulations such as the following:

def printArray(arr: array[4], i: [0 .. 4]): Unit = {

if (i < arr.length) {

Std.printInt(arr[i]);

printArray(arr, i+1)

}

}

printArray([1,2,3,4], 0)

Dependently-typed version (3) Rather than relying on the user to provide
the exact sizes of arrays, also allow arrays to be of a fixed, but not statically-
known size. To enable your type system to accept more programs, you should
also extend the notion of range types to allow bounds relative to a given array’s
size.

The resulting types will extend the above ones in at least two ways: In
addition to array[n] there is a special form array[*] which represents an array
of arbitrary (but fixed) size. For a range type [i .. j] i and j may not only
be integer constants, but may also be expressions of the form arr.length + k
where arr is an Array-typed variable in scope and k is an integer constant.

Your system should then be able to abstract over concrete array sizes by
referring to some Array-typed binding’s length like in the following example:

def printArray(arr: array[*], i: [0 .. arr.length]): Unit = {

if (i < arr.length) {

Std.printInt(arr[i]);

printArray(arr, i+1)

}

}

printArray([1,2,3,4], 0)

printArray([1,2,3,4,5,6,7,8], 0)

Note that the resulting language will be dependently-typed, meaning that
types can depend on terms. In the above example, for instance, the type of
parameter i of function printArray depends on parameter arr.

5 Alternative frontends/backends

This section contains projects that do not modify the language features of Amy,
but change the implementation of a part of the Amy compiler frontend or back-

10

end.

5.1 Parser combinators (1)

Reimplement the Amy parser and optionally also its lexer using parser combi-
nators. You can use this library.

5.2 Code formatter (1)

Build a code formatter for the Amy language. A straightforward way to ac-
complish this would be to add a special mode (e.g. --format) that the user
can start the compiler in. It would then only run the existing pipeline up to,
say, parsing and subsequently go through a special pretty-printing phase that
outputs the program according to code style rules configurable by the user. A
more sophisticated version could instead work on the Token-level, allowing your
formatter to be aware of whitespace, e.g., respecting new-lines that a user in-
serted. In any case, you will have to maintain comments (which are not part of
the AST).

You can look at scalafmt for some inspiration.

5.3 JVM backend (2)

Implement an alternative backend for Amy which outputs JVM bytecode. You
can use this library. You first have to think how to represent Amy values in a
class-based environment, and then generate the respective bytecode from Amy
ASTs.

5.4 C backend (3)

Implement an alternative backend for Amy which outputs C code. You have to
think how to represent Amy values in C, and then generate respective C code
from Amy ASTs.

6 Execution

This section suggests projects that change how Amy code is executed.

6.1 Memory deallocation (3)

Allow explicit memory deallocation by the user.

val x: List = Cons(1, Nil());

length(x); // OK

free(x);

length(x) // Wrong, might return garbage

11

https://github.com/lihaoyi/fastparse
https://github.com/psuter/cafebabe

When an object in linear memory is freed, the space it used to occupy is
considered free and can be allocated again. Any further reference to the freed
object is undefined behavior.

You need to change how memory allocation works in code generation to
maintain a list of free blocks, which will now not be a continuous part at the
end of the memory. The list should not be external, but rather implemented in
the memory itself: each free block needs to contain a pointer to the next one.
Each block will also need to record its size. This means that free blocks have
to be of size at least 2 words. When you allocate an object, you need to look
through the list of blocks for one that fits and if none does, the program should
fail. Make sure you always modify the free list in the simplest way possible, i.e.
the blocks in the list don’t have to be in the same order as in memory.

6.2 Lazy evaluation (2)

Change the evaluation strategy of Amy to lazy evaluation. Only input and
output are evaluated strictly.

val x: Int = (Std.printInt(42); 0); // Nothing happens

val y: Int = x + 1 // Still nothing...

Std.printInt(y); // 42 and 1 are printed

val l: List = Cons(1, Cons(2, Cons(error("lazy"), Nil())));

// No error is thrown

l match {

case Nil() => () // At this point, we evaluate l just enough

// to know it is a Cons

case Cons(h, t) => Std.printInt(h) // Prints 1

case Cons(h1, Cons(h2, Cons(h3, _))) =>

// Still no error...

Std.printInt(h3)

// This forces evaluation of the third list element

// and an error is thrown!

}

// We can do neat things like define infinite lists, i.e. streams

def countFrom(start: Int): List = Cons(start, countFrom(start + 1))

Std.printString(L.listToString(

take(countFrom(0), 5)

) // Will terminate and return ‘List(1, 2, 3, 4, 5)’

Each value is not evaluated until it is required. Things that are not evaluated
have to live in the runtime state as thunks, or suspensions to be evaluated later.
A thunk is essentially a closure (see Section 3.5) with memoization: it is either
an already calculated value, or an expression to be evaluated and an evaluation

12

environment. In turn, an evaluation environment is a mapping from identifiers
to other thunks.

You have to make sure that pattern matching only evaluates expressions as
much as needed. Maybe this will help you understand the concept.

Because of the difficulty of this project, you should only implement it in the
evaluator.

6.3 Final code optimizations (1+)

Optimize the WebAssembly binary produced by your Amy compiler.
The simplest thing you can do is eliminate some obvious redundancies such as

i32.const 0

if (result i32)

e1

else

e2

end

// equivalent to e2

if (result i32)

i32.const 1

else

i32.const 0

end

// completely redundant

Preferably, you can implement a control flow analysis and some abstract
interpretations to implement more advanced optimizations, also involving local
parameters. This would involve a larger group.

You can have a look at these slides for some ideas on optimization.

6.4 Tail call optimization (1)

Implement tail call optimization for Amy. Tail-recursive functions should not
create any additional stack frames, i.e. use the call instruction.

A way to implement tail recursive functions is to do a source-to-source trans-
formation which transforms tail recursive functions to loops. You will need to
define new ASTs.

When it comes to tail calls that are not tail recursion, things are tougher. If
you feel like also handling those cases, look here for ideas.

6.5 Foreign-function interface (FFI) to JavaScript (2)

Design a cross-language interaction layer between Amy and JavaScript. At
a minimum you should support calling JavaScript functions with primitive
parameter- and result-types from Amy. You can also consider supporting calls
from JavaScript into Amy. You will have to decide how WebAssembly represen-
tations of Amy objects should map to JavaScript objects. To ensure that pro-
grams can be meaningfully type-checked, you should add syntax for external

functions, e.g.

object FS {

external def open(path: String): Int

external def read(fd: Int): String

13

https://en.wikibooks.org/wiki/Haskell/Laziness#Thunks_and_Weak_head_normal_form
https://cs420.epfl.ch/archive/18/s/acc18_07_optimizations.pdf
https://cs420.epfl.ch/archive/18/s/acc18_10_tail-calls.pdf

// ...

}

object Example {

val f: Int = FS.open("/home/foo/hello.txt") // open file

Std.printString(FS.read(f)) // print contents of hello.txt

}

Conversely, Amy functions exposed to JavaScript could be annotated with
an export keyword.

Ideally you will also demonstrate your FFI’s capabilities by wrapping some
NodeJS or browser APIs and exposing them to Amy. For instance, you might
expose the file system API of NodeJS, thus allowing Amy programs to read
from and write to files. Another idea is to adapt the HTML wrapper file that
we provide with the compiler and use the FFI to write an interactive browser
application in Amy.

A more sophisticated version of this project (for three people) would also
support foreign functions involving case classes such as List.

6.6 REPL: Read-Eval-Print Loop (3)

Implement a REPL for Amy. It should support defining classes, functions and
local variables, and evaluating expressions. You don’t have to support redefini-
tions. You can take a look at the Scala REPL for inspiration.

6.7 Virtual machine (3)

Develop your own VM to run WebAssembly code! To simplify things, you will
implement the VM in Scala. Your VM should take as input a wasm Module

from amyc’s CodeGen Pipeline (so you don’t need to implement a parser from
wasm text or binary) and execute the code contained within. Despite using
Scala, you still need to follow the VM execution model as much as possible:
translate labels to addresses, use an array for the memory, a stack for execution
etc. You can choose the VM parameters, such as memory size, any way you
choose, and hard-code built-in functions that are not already implemented in
WebAssembly.

14

	Introduction
	Your own idea!
	Language features
	Imperative features (2+)
	Implicit parameters (1)
	Implicit conversions (1)
	Tuples (1)
	Higher-order functions (2+, challenging)
	Custom operators (2)
	Improved Parameters (2)
	List comprehensions (2)
	Inlining (1+)

	Type systems
	Polymorphic types (2)
	Case class subtyping (2)
	Arrays and range types
	Dynamically-checked range types (2)
	Statically-checked range types (2+, challenging)

	Alternative frontends/backends
	Parser combinators (1)
	Code formatter (1)
	JVM backend (2)
	C backend (3)

	Execution
	Memory deallocation (3)
	Lazy evaluation (2)
	Final code optimizations (1+)
	Tail call optimization (1)
	Foreign-function interface (FFI) to JavaScript (2)
	REPL: Read-Eval-Print Loop (3)
	Virtual machine (3)

