• English only

# Differences

This shows you the differences between two versions of the page.

Link to this comparison view

tree_automata [2010/05/27 18:10]
vkuncak
tree_automata [2015/04/21 17:32] (current)
Line 10: Line 10:

Represent $a_1 a_2 \ldots a_{n-1} a_n$ as a ground term Represent $a_1 a_2 \ldots a_{n-1} a_n$ as a ground term
-$+\begin{equation*} ​a_n(a_{n-1}(\ldots a_2(a_1(\epsilon))\ldots)) ​a_n(a_{n-1}(\ldots a_2(a_1(\epsilon))\ldots)) -$+\end{equation*}

We define the notion of [[finite state machine]] as accepting a set of such terms. We define the notion of [[finite state machine]] as accepting a set of such terms.
Line 23: Line 23:
* $F$ is the set of final states   * $F$ is the set of final states
* $\Delta$ is a set of rewrite rules   * $\Delta$ is a set of rewrite rules
-$+\begin{equation*} f(q_1,​\ldots,​q_n) \to q f(q_1,​\ldots,​q_n) \to q -$+\end{equation*}
where $f$ is a function symbol of arity $n$ and where $q_1,​\ldots,​q_n,​q \in Q$. where $f$ is a function symbol of arity $n$ and where $q_1,​\ldots,​q_n,​q \in Q$.

Line 37: Line 37:

Example: Example:
-  * bottom up tree automaton ​checking the parity of the number of nodes in the tree+  * bottom up tree automaton ​accepting trees with an even number of nodes in the tree, in alphabet with constant '​a',​ binary function '​f'​.
+  * bottom up tree automaton accepting expressions with complement, union, intersection;​ accepting only expressions that are monotonic in each variable

Non-deterministic top-down tree automaton: reverse a bottom-up tree automaton Non-deterministic top-down tree automaton: reverse a bottom-up tree automaton

Deterministic top-down tree automaton: more restrictive. Is there deterministic automaton to check the parity of the number of nodes? Deterministic top-down tree automaton: more restrictive. Is there deterministic automaton to check the parity of the number of nodes?
-
-
-

===== Closure Properties of Tree Automata ====== ===== Closure Properties of Tree Automata ======
Line 77: Line 75:

We consider interpretations $(D,​\alpha)$ where We consider interpretations $(D,​\alpha)$ where
-$+\begin{equation*} ​\alpha({\subseteq}) = \{ (S_1,S_2) \mid S_1 \subseteq S_2 \} ​\alpha({\subseteq}) = \{ (S_1,S_2) \mid S_1 \subseteq S_2 \} -$+\end{equation*}
where $succ0$ takes a tree node and finds its left child: where $succ0$ takes a tree node and finds its left child:
-$+\begin{equation*} ​\alpha(succ0) = \{ (\{w\},​\{w0\}) \mid w \in \Sigma^* \} ​\alpha(succ0) = \{ (\{w\},​\{w0\}) \mid w \in \Sigma^* \} -$+\end{equation*}
and where $succ1$ takes a tree node and finds its right child: and where $succ1$ takes a tree node and finds its right child:
-$+\begin{equation*} ​\alpha(succ1) = \{ (\{w\},​\{w1\}) \mid w \in \Sigma^* \} ​\alpha(succ1) = \{ (\{w\},​\{w1\}) \mid w \in \Sigma^* \} -$+\end{equation*}

The meaning of formulas is then given by standard [[sav08:​First-order logic semantics]]. The meaning of formulas is then given by standard [[sav08:​First-order logic semantics]].

tree_automata.txt · Last modified: 2015/04/21 17:32 (external edit)

© EPFL 2018 - Legal notice 